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JUMP CONDITIONS FOR BOUSSINESQ EQUATIONS DUE TO AN
ABRUPT DEPTH TRANSITION*

EDUARDO MONSALVE f, KIM PHAM f, AND AGNES MAUREL

Abstract. We revisit the problem of nonlinear water wave propagation in the presence of
an abrupt depth transition. To this end, we use an asymptotic approach conducted to order 3
with respect to the shallowness parameter, in order to capture the first nonlinear and dispersive
contributions. However, the discontinuity of bathymetry, as opposed to slowly varying bathymetry,
requires the use of a consistent three-scale analysis framework and the consideration of different
regions, far from the step and free surface, near the free surface and near the step. This framework
enables consistent navigation, ultimately providing Boussinesq equations supplemented by jump
conditions at the depth discontinuity that encompass the effect of step on wave propagation.

Key words. non-linear water waves; depth transition; bathymetry; Boussinesq equations; jump
conditions; asymptotic techniques; matched asymptotic expansions; boundary layers

AMS subject classifications. 34E13, 35B27, 35L05, 76B15

1. Introduction. The origin of large waves, so-called rogue or freak waves, and
the reasons for their appearance has been studied for many years [18, 12, 2, 3, 45, 1].
In the case of shallow or finite water depth, the presence of depth transitions has
been shown to play a role in the formation and dynamics of these extreme waves
[19, 52, 13, 58, 57, 59]. In many previous studies, the case of a smooth bathymetry,
with a continuous depth transition over a non-zero distance L, has been considered
[52, 13, 58, 51, 57, 20, 21, 22]. The influence of slope has been considered in [13], [60]
and [20] and studied more systematically in [40] who show that higher slopes foster the
appearance of rogue waves up to a critical value beyond which its effect is saturated.
These results suggested the interest of considering waves passing an abrupt transition
(L =0, see figure 1), i.e. a step, as this avoids discussions about the transition region
(its shape and value of the distance L) and provides a reference limiting case. After
the pionneering work of [14] this problem has recently been addressed in a series of
papers by Li and co-workers [23, 24, 25, 10, 26, 27] where the authors examine on
the generation of free and bound waves, which are waves corresponding to harmonics
generated by non-linearities, and show the crucial influence of these second order
effects in the occurrence of extreme events, see also [42, 31, 32, 60, 11, 43, 50, 56].

The interest in this limiting case is also of a fundamental nature, as it poses spe-
cific problems, both numerically and theoretically. While linear wave propagation in
the presence of an abrupt depth transition is simple and well known, the extension
to non-linear (even weakly) propagation remains in part an open subject. Let us
start with numerical methods; among them, the simplest semi-analytical multimodal
analysis easily handles, in the linear case, the reflected and transmitted fields account-
ing for the evanescent field triggered at the depth transition, see e.g. [44] and [41]. A
classical reference to the extension of this method for weakly non-linear propagation is
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2 E. MONSALVE, K. PHAM, AND A. MAUREL

z=—(ho — h.)

Fic. 1. Non-linear propagation over an abrupt depth transition between two regions of constant
depth ho and (ho — hy).

that of [35, 34], see also [5]; the method relies on the use of a small parameter, namely
the ratio between wave amplitude and wavelength, and on an iterative process thanks
to asymptotic expansion of the solution. However, this model suffers from inherent
divergences due to evanescent terms in the second oder solution, and this has been
circumvented at the cost of ad-hoc procedures, using specific truncations [42, 43] or
neglecting these nonlinear evanescent contributions [47, 25]. From a theoretical per-
spective, which is the focus of the present study, asymptotic techniques in the linear
regime are a powerful tool for reducing the problem of water wave propagation in
the presence of a scattering region of dimension smaller than the wavelength. This
technique has a long history, which began in the 1960s [4, 53, 54, 55, 49], see also
[33], [38], [16] and [39], Ch. 4 and 5. In shallow or finite-depth waters, the procedure
consists in eliminating the z-vertical dependence of the solution and encapsulating the
effect of the (small) scatterer in effective jump conditions. This dimensional reduction
has been extended to linear [36, 37] and nonlinear [48] propagation to determine the
evolution of surface waves propagating over periodic bottom irregularities. The pres-
ent study aims to use such asymptotic procedure conducted at high order to recover a
Boussinesqg-type equation, with dispersion and nonlinearity, that is classical [28, 30, 9],
and to supplement this equation with effective jump conditions that encapsulate the
effect of rapid variations in the evanescent field in the vicinity of the abrupt depth
transition.

The paper is organized as follows. In Section 2, we pose the direct problem
of water wave propagation in the presence of an abrupt depth transition in two di-
mensions and give the result of the study i.e. the effective problem comprising the
Boussinesq equations and associated jump conditions. The rest of the paper is devoted
to the derivation of this effective model, starting, in Section 3, with the derivation of
the effective wave equations far from the bathymetry discontinuity. Then, in Section
4, we present the derivation of the jump conditions across the discontinuity, which is
the main result of the analysis; we establish the corresponding boundary layer prob-
lems which define the effective parameters entering the jumps (explicit expressions for
these coefficients, which depend only on the depth ratio, are given in the appendix A).
Finally, in Section 5, we combine the results from the previous sections to reconstruct
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JUMP CONDITIONS FOR BOUSSINESQ EQUATIONS 3

the Boussinesq equations and the associated jump conditions.

2. Sum-up of the main result: Boussinesq approximation for an abrupt
depth transition.

2.1. The actual and effective problems. We begin with the equations gov-
erning the actual problem. Using the assumptions of an inviscid and incompressible
two-dimensional fluid in irrotational motion, the velocity w(z, z, t) and the associated
velocity potential ¢(z, z,t) satisfy

(2.1) divu =0, u=Vyy,
along with the dynamic and kinematic boundary conditions at the free surface, i.e.

dp n on
8t+ 2 + g1 =0, U= = E—i_uzﬁ'z

The depth transition results in a discontinuous bathymetry with water depth h(zx)
being a piecewise constant function such that

(2.3) h(z < 0) = hy, h(z > 0) = hy, — Ay,

(2.2) at z = n(z,1t).

(with h, < h,) so the vanishing normal velocity condition applies on all rigid bound-
aries (noted I')

(2.4) u-n=0 on I.

In relatively shallow waters and in the weakly nonlinear regime, we will establish
that the two-dimensional problem (2.1)-(2.4) can be reduced to the classical one-
dimensional Boussinesq equations [8, 46] which, in a conservative form, are expressed

as follows
0 h? 0*U, 0 U2
m(Uzg D2 >+ax<g"+2> =0,
(2.5)
on 0 B

where the average horizontal Velocity field U, is defined as

1 0
U(x,t):—/ Uy (z, 2, t) dz.
’ ) Jopy
The Boussinesq equations are only valid for z # 0. At x = 0, given the presence of
the bathymetry discontinuity, the motion of the free surface n and the velocity U,
lose their regularity. The main result of this paper is to establish the jump conditions
that the fluxes in the Boussinesq equations (2.5) must satisfy at = = 0, specifically

Ug 0 — on  hoB, 82m
l[gn+ 2ﬂ __E (B1hUz+hoBz>at+ P a2 > s

(2.6)

182 9, 07
[(h+n)U,] = 08 (hChU + hiC, 8t>

with the jump [f] and the average f of a quantity f(wz,t) at x = 0 defined as follows

J0°,8) + 5(07,1)

(2.7) [f1(6) = F(0*,t) = f(07,1),  F(t)= 5
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4 E. MONSALVE, K. PHAM, AND A. MAUREL

Fic. 2. The different domains in which the analysis is performed. The puy+ and mg regions
correspond to boundary layers that aim to disappear; in the my regions, a reduction along the
vertical direction is performed. Solutions in connected regions are matched vertically (large arrows)
or horizontally (small arrows).

In (2.6), (B;) and (C;) are non-dimensional boundary layer coefficients, whose values

depend only on h,/h,, see Appendix A. It is worth noting that the quantities (gn+ UT:)
and (h+n)U, are continuous elsewhere, specifically for « # 0. We observe that these
jumps are overlooked in several studies investigating the impact of a step on the
propagation of shock waves [17] or solitons [31, 32]. From a physical standpoint, it
can be argued that these jumps, arising from evanescent fields triggered in the vicinity
of the step, may have a weak effect under certain conditions. However, the derivation
of the shallow water equations in these references stems from an asymptotic analysis
conducted to high orders, aimed at capturing non-linear and dispersive contributions.
Accordingly, neglecting the contribution of these higher order terms in the jump
conditions raises mathematical concerns, potentially impacting the stability of the
resulting models.

2.2. Summary of the asymptotic procedure. To capture the first contribu-
tions due to non-linearities and dispersion, we use classical scalings for characteristic
wavelength 1/k, water depth h, and wave amplitude a,. Specifically, with

(2.8) s:%<<1, § = khy < 1,
0

the non-linearity and shallowness parameters, we consider

(2.9) e=ad?,  witha=0(1).

In the following sections, we will conduct the asymptotic analysis in the different
regions shown in figure 2 and, for simplicity, we will consider the non-dimensional
form of (2.1)-(2.4). Introducing w = v/gh, k, we use

(2.10)

t—wt, z—=kr, z—z,=2/hy, n—=n/a, u—u/(wa), ¢—kp/(wa,),

which provide the non-dimensional form of (2.1) (incompressibility Inc, and irrota-
tionality Rot)
Ou, 10u,

(2.11) (Inc) : o + 5. 0, (Rot) : uy

_ 9 9y

_1
T T § 0z,

This manuscript is for review purposes only.



126
127
128

129

130
131
132
133
134

135

136
137
138
139
140

142
143
144
145
146
147
148
149
150

JUMP CONDITIONS FOR BOUSSINESQ EQUATIONS 5

T, — —00 T, — +00
r— 0" r — 0"
e e St e e St
! 1 ! I
K- Ho oy
AS (700707) Tm € (7007+OO) x € (0+,+OO)
(. m € (700)0) Zu € (70070) Zp € (_007 0)
Zy = —00 t‘ m_ mg m,
Zm — 0
! z € (—00,07) T € (—00, +00) x € (0%, 4+-00)
Lol z.e(—87,0) Zm € (=B(Twm),0) Zn € (=f7,0)

Fi1c. 3. Diagram summarizing the asymptotic procedure: in each region of figure 2, the problem
is set in proper coordinate (see (2.13)) in order that the rescaled geometry is independent of 6. The
solutions of these problems are then matched asymptotically.

and (2.2) and (2.4) (dynamic DC and kinematic KC conditions at the free surface and

vanishing normal velocity RC on the rigid walls formed by the seabed at z,, = -3, =
—h/h, and the vertical wall of the step)
(2.12)
dp u-u _ an on
DC): — —_— by = KC) : = — — =
(DQ) oy +ed 5 +6 7 n=0,(KC): wu, 5 +66uxax, at z,, = en(x,t),

(RC): w-n=0 on the walls,

The above equations explicitly account for field variations horizontally on the wave-
length scale (via x) and vertically on the depth scale (via z,,); this is appropriate in
m, i.e. far from the step and the free surface. Near the step, however, the fields vary
horizontally on the depth scale; near the free surface, they vary vertically on the wave
amplitude scale. Based on these considerations, we introduce rescaled coordinates
(2.13) macro : x, meso : T, = E, Zms micro : z, = w,

0 en
and in the final model, only the x spatial coordinate will be retained. In each region,
the procedure consists in using the appropriate spatial coordinate so that the geometry
does not depend on § or € (it is O(1) in both directions) and the dependence on
the small parameter appears explicitly in a new system of equations. The different
regions are then connected by asymptotically matching their solutions; this procedure
is summarized in figure 3.

In the linear regime (u. and po do not exist), the horizontal matching between
the regions m, and mg is classical and makes it possible to reduce the effect of the
boundary layer in mg to jump conditions at z = 0% [55]. In the non-linear regime,
boundary layers in p, and pg must be taken into account due to the small but non-
zero amplitude of the wave and are treated in the same way, namely a horizontal
matching between p, and po and a vertical matching between p, and m,.. We
stress that for a flat or smoothly varying bathymetry, my does not exist since it is
implicitly assumed that the bathymetry varies at the wavelength scale x; whereas
strictly speaking, the asymptotic analysis should be conducted by considering the
boundary layer region p with z, € (—00,0) and the region m with z, € (-3(z),0)
(with a single vertical matching between them), the same result is obtained, namely
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6 E. MONSALVE, K. PHAM, AND A. MAUREL

a Boussinesqg-type equation, considering a single region with z,, € (=f8(z),en(z,t))
[46, 6].

3. Asymptotic analysis in m, and p., far from the depth transition. In
this section, we derive the Boussinesq equations in their classical form due to [46] in

the two constant depth regions far from depth transition (the step). The procedure
is the same on both sides of the step, and we will consider p,, m,.

3.1. Setting of the asymptotic procedure.

3.1.1. The mesoscopic in m, and the microscopic in p, problems. In the
mesoscopic region m,, the problem is set in (z, z,,) coordinates, with x € (07, +00),
Zm € (—fB4,0), and the governing equations are, using (2.11)-(2.12),

d¢

Ouy, 10u, dy 1
(] : - =0, "(Rot) : u, = —, = ==,
(3.1) (ne) s 5w 52 (Rot): we =50 =55,
2(RC) : wy(x, 2z, = —fF4,t) =0,
(at this stage, boundary conditions at z,, = 0 are missing). The solutions of (3.1) are
expanded in terms of series of the small parameter §

(3.2) uy = Zé”ugﬁ“’>(x,zm7t), Uy =0 Z S"ul (z, 2, t), © = Z "N (T, 2, ).

n>0 n>0 n>0

where we anticipate that u, = O(1) imposes u, = O(d) from ™(Inc) in (3.1).

In the microscopic region p,, the problem is set in (z,z,) coordinate, with z €
(0%, +00), z, € (—00,0), and with z,, defined in (2.13) (the free surface is now fixed
at z, = 0). Consequently, the governing equations are, from (2.11)-(2.12) and using
(2.13) with & = a2,

(3.3)
Ouy 1 Ou, Op 1 0Oy
u(] . L i = #“(Rot) : u, = -, z = )
(Inc) = oz * ad® 0z, 0 (Rot) : u. 2 T sl 0z,
%) u-u 1 on In
“(DC) : = 3 . 4= *(KC) : = — 3 Uy — =0.
(DQ) 5t + ad 5 + 5" 0, “(KC): u, 5t + ad” uy pe at z, =0

(at this stage, boundary conditions are missing when z, — —o0). The solutions of
(3.3) are expanded in terms of series of the small parameter 0,

(3.4)
Uy = Z 6nv(mn)(mv Zlh t)a Uy = 6 Z 5nvén)(x, ZIM t)a 90 = Z 6n,¢(n)($7 ZN) t)7
n>0 n>0 n>0
n=2o Z 3" (z,t),
n>0

where we anticipate that u,,¢ = O(1) imposes u,,n = O(0), according to *(DC)-
#(KC) in (3.3).

3.1.2. The hierarchies of equations. In m,, by injecting (3.2) into (3.1), we
obtain a hierarchy of equations, namely V n

(n) (n)
oul oul

"(Inc)™ : =
(Inc) Oz + 0z 0,
(35) m R no, (n) __ 830<n) m R n, (n) __ a@(n+2)
(Rot)" : ul” = oy (Rot)" = wl = “on

“(RC)": ul (2,2, = —B.t) = 0,

This manuscript is for review purposes only.
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JUMP CONDITIONS FOR BOUSSINESQ EQUATIONS 7

with by convention u{” = 0 for n < 0. In u,, by injecting (3.4) into (3.3), we obtain

(n) (3) (0)
“(Inc)™ " _ 0, n<2, P _ _, <0)%’
0z, 0z, ox
(3.6) . ™ L O™
“(Rot)m : U(xn) - W) n Z 07 M(ROt)z : azu = 0? n S 47

along with the boundary conditions at the free surface z, =0,

o™ M@
(3.7)
8 (n) 8 (3) 8 (0)
(KO oz = 2T0 m<a w =2y au0 2

3.1.3. Vertical matching conditions between m, and p. Solutions inm,
and g, must match in an intermediate region when z,, — 0 and 2z, — —oo (figure 4).
Specifically, for ¢ (for example), we need to have

(3.8) N, 2, 1) + 00 (@, 2, 1) + -~ PO (@, 2, 1) + SY D (2, 2, 8) 4+ -
Taking into account (2.13) and using Taylor expansion

of

(3.9) P 2008) = F(2,0,8) + a0 (5 + (1) 5

(:C,O,t)-f-

we identify in (3.8) the terms of the same power of §, which gives

"™ (x,0,t) = lm ™ (z,z,,1), n <2,

2y —>—00

©)
@ (2,0,t) = lim (w(a)(m,zu,t) —a(z, + 10 (x,t) 8(;0 (x,O,t)) .
2

Zy—>—00

(3.10)

m

The same relations are obtained by replacing ¢ by u{ or u{” and ¥™ by v{® or
v,

3.2. Effective wave equation at order n = 0,1. At the first two orders, the
effective wave equation is linear and non-dispersive.

PROPOSITION 3.1. The effective wave equation reads at the first two ordersn =0,

1:
U™ onm
11 EW)" : L =
(3.11) (Ew);: S+ S,
(n) (n)
(3.12) (EW)" : g0 o

or ot
with 8= B, or B_.

3.2.1. Derivation of (EW)" for n = 0,1. From ™(Rot)_” and ™(Rot)_" in (3.5),
©™ does not depend on z,, for n = 0,1 hence

(313) (p(n) = ¢(n)('ra t)7 n=0,1,
and from ™(Rot)’ and ™(Rot)’ in (3.5), we also have

D™

3.14 ™ = UM (2,t) =
(3.14) ug = U 1) = =

(x7t)7 nZO? 1’

This manuscript is for review purposes only.
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8 E. MONSALVE, K. PHAM, AND A. MAUREL

2, — —00

t vertical matching

Fic. 4. (a) A region of constant depth B = B+ = O(1) over which waves of amplitude O(g)
propagate; (b) Asymptotically, the analysis is performed in the regions p = p+ (in coordinate (x,z,))
and my (in coordinate (x,z,)) and matching conditions apply when z;, — —00, zy = 0.

with U{™ the mean velocity field, and the associated flux, defined as

1 /0
(3.15) Vo, U (xt)= B/g ul (T, 2, t) Az, ¢ (2, ) = BULY (2, 1),

for B = B.. Note that (3.13) is consistent with “(Rot)” and #(Rot)! in (3.6), which
tell us that, for n = 0,1, 9™ does not depend on z,, hence ™ = ¢ (x,t) from the
matching conditions (3.10) and v{® = US™. It remains to use #(DC)" in (3.7) which
provides

o™
(316) ot (Il?, t) + n(n)(it, t) =0, n=0,1,
which we differentiate with respect to = to obtain (3.11).

3.2.2. Derivation of (EW), for n = 0,1. We now use ™(Inc)" in (3.5) and u{"
in (3.14). Taking into account the vanishing vertical velocity condition at z,, = —f8,,
we obtain

oum
(3.17) U2, 2y t) = —(2m + 5+)6—w($,t)7 n=0,1
x

Then, according to “(Inc)" in (3.6), v2 does not depend on z,. By combining #(KC)" in
(3.7) with the matching condition (3.10), we conclude that u{(x,0,t) = v (x,t) =
O™ (x,t). Finally, returning to (3.17) and setting z,, = 0, we obtain (3.12).

This manuscript is for review purposes only.
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JUMP CONDITIONS FOR BOUSSINESQ EQUATIONS 9

3.3. Effective wave equation at order n = 2. At order 2, a dispersive term
appears in the effective wave equation.

PROPOSITION 3.2. The effective wave equation at order n = 2 reads :

, U@  on®» BT
1 EW) : L - — L. =
(3.18) W) 5 T ar ~ 3 a0er
(2) (2)
(3.19) (EW)? : gl o™ _

ox ot

with 8=, or [_.
3.3.1. Derivation of (EW)?. We start with ™(Rot)” in (3.5) which, after inte-
grating (3.17), yields

22 (0)

(3.20) ¢W&%ﬁ=—(m+&%>%3@ﬁ+¢W%ﬂ

2

Then, from *(Rot)’ in (3.6), we deduce as before that ¢ is independent of z,,. Using
#(DC)* in (3.7) and taking into account the matching condition (3.10), we obtain

0>

(3.21) 5

(wvt) + 77(2) (Jj,t) =0.
Injecting (3.20) in ™(Rot)’ from (3.5) yields

D@

2 QU
22 @ S goe
(3.22) uP (T, Zm, t) (2 —|—ﬂ+zm> 52 (x,t) + o (z,1),

which, after taking the average with respect to z.,, leads to

B2 92U
(2) I x
(3.23) UP(a,8) = S (o) +

o™
ox

(z,1).

Finally, differentiating (3.23) with respect to ¢ and (3.21) with respect to x provides
(3.18) after combination.

3.3.2. Derivation of (EW):. As before, we use ™(Inc)” in (3.5) with u{? given
bt (3.22). After integration, we obtain

2, pud @)wwm

92
(2) — —
U (@ 2, ) (6 + 2 3 oz

0x?

(1) = (2u + Bs) (1),

which satisfies the boundary condition ™(RC)* on the rigid wall at z,, = —3,. The
matching condition reads u{”(x,0,t) = v®(z,t) since v is independent of z,, ac-
cording to #(Inc)” in (3.6). Simply combine with #*(KC)® in (3.7) to obtain

) o 52 83U§” D@ On®@
w0, =, 5 (O w0 + 2 ) = O

(z,t).

The term in the parentheses is none than U?, see (3.23), hence (3.19).
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10 E. MONSALVE, K. PHAM, AND A. MAUREL

3.4. Effective wave equation at order n = 3. At order n = 3 a non-linear
contribution appears.

PROPOSITION 3.3. The effective wave equation reads at order n = 3:

UL o BTN U

5 _ 0 _
(3:24) EW): 5+ ~ S amer TV g, =0
s QOUY  on® 9 o, @y —
(3.25) (EW);: 52+ T+ ol (U©0n) =0,

with B =6, or B_.
3.4.1. Derivation of (EW)}. We start with ™(Rot)’ in (3.5), i.e. ul’ =9, ™.
Using (3.17) we obtain

2 (1)

(3.26) P (2, 2, t) = — <Z2“ + ﬂ+zm> %(%ﬂ + ¢ (2, 1).

From *(Rot)? in (3.6) we still have ¢® (z,t) = ¢®(z,0,t) = ¢* (z,t) independent of
z,. But now #(DC)” in (3.7) reveals a non-linear contribution, with

o
ot

(3.27) (w.8) + S (UL (@, 0)% + 1, t) = 0,

since u{? = U” = v from the matchings (3.10). As we did previously, by injecting
(3.26) into ™(Rot)? in (3.5), we obtain

22 oPUw 0p®
(3.28) U (2, 2 ) = — <2 *ﬂ“m) ez WD+ @),
which, after taking the average with respect to z,,, leads to
B2 92UW DP®
2 (3) = — z .
(3:29) UL (1) = 55t (0, + S (1)

The differentiation of (3.29) with respect to ¢ and (3.27) with respect to z gives, after
combination, the equation (3.24).

3.4.2. Derivation of (EW)). We start by combining ™(Inc)® in (3.5) with u{®
in (3.28). After integration, we obtain
2 | Bi2l 5?) o°ULY

(3) — Zm
(3.30)  uP(z,2z,,1) (6 + 5 3 93

62 (3)
(@, t) — (2m + BJr)a;;(m,t)

which satisfies the boundary condition ™(RC)® of vanishing vertical velocity at z,, =
—p,. The matching condition for n = 3 can be read from the second relation in
(3.10),

| Ou®
(3.31) u®(z,0,t) = lim (U;‘”(m,zu,t) —a(z, + 1)n (x,t) Yz (m,O,t)) .

Zp—>—00 3Zm

To determine the form of v(*, we integrate “(Inc)’ in (3.6) and use the boundary
condition #(KC)” in (3.7) (remembering that v = U”), we have

on® on‘© QU
©) — (0) _ ©) z
V@, 2, t) = T (,8) + QUL () S (1) — i (1) S (1),
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Using the above relation in the matching condition (3.31) and taking into account
=(Inc)’ in (3.5), we obtain

uP(x,0,t) = on® (z,1) +a£ (UL (2, t)n” (x,t))
SR T gz e o e
Now, we just need to identify the above relation with (3.30) for z,, = 0, i.e.
o (B?0%UW OPp®
) — g2 (2 z _
u®(z,0,t) ﬂax ( T 92 (x,t)— B . (x,t) ) .

The term in parentheses being U (see (3.29)), we deduce (3.25).
4. Asymptotics near the depth transition.

4.1. Setting of the asymptotic procedure. In this section, we analyse the
solutions in my and pg, their vertical matchings as in the previous section, and their
horizontal matchings with the solutions in m, and p. (see figures 3 and 5).

4.1.1. The mesoscopic and the microscopic problems. In the mesoscopic
region mg, the problem is set in (z,,2,) coordinates, with z,, € (—o00,00), 2, €
(=B(2m),0). From (2.11)-(2.12), it can be written as

Ou,  Ou,

1
(1 :odi = = "(Rot) : = -
(4.1) = (Inc) v, u . + 0-. 0, “(Rot) : u 5Vmg0,

"(RC): w-n=0 on the walls,

(with missing conditions at z,, = 0, as before) and the solutions of (4.1) are expanded
in terms of series
(4.2)

U = Y MU (T s ), Uz = D 6" (T 2 £), = 3 6" G (T 2 ).

n>0 n>0 n>0

Note that, unlike (3.2), (3.4) and the forthcoming (4.4), we consider u, = O(1); the
reason for this will become apparent later in the asymptotic analysis.

In the microscopic region g, the problem is set in (;vm,zﬂ) coordinate, with z, €
(—00,00), 2, € (—00,0) with z, in (2.13), as in the previous section. Consequently,
starting from (2.11)-(2.12) and using (2.13) with ¢ = ad?, the problem is written as
(4.3)

Ouy, 1 Ou, 1 dp 1 dy
(] . = “(R : = = — = ——
5(Inc) naxm * ad? 0z, 0, o(Rot) - § Oz’ K ad’ dz,’
dy u? 1 on on
“(D L 3 -n = 1K DUy = — 2 r— ., = 0.
§(DC) - +ad® -+ =0, §(KC): vz = = +ad” U at 2, =0

m

(and boundary conditions are still missing when z, — —o0). The solutions of (4.3)
are expanded in terms of series

(4.4)
Uy = Y 0T (T 2pr ), Uz =8 6T (T 2 t), = Y 6" (@, 20 8),
n>0 n>0 n>0
n=0% 8" (2.,1),

n>0

where we anticipate that ¢ = O(1) imposes 1, u, = O(9) from #(DC) - #(KC) in (4.3).
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2y ) 2
T x
1o horizontal matching Ho

Xy — +00 =0

Fic. 5. The different matchings required for the analysis in the the depth transition regions,
according to figure 2. (a) Horizontal matching in the boundary layer at the free surface, near (uo)
and far (u+) from the transition; (b) horizontal matching in the constant depth regions B = B+ =
O(1) near (mg) and far (my ) from the transition; (c) vertical matching, near the transition, between
the boundary layer at the free surface (1o) and the region of constant depth (mg).

4.1.2. The hierarchies of equations. In mg, we inject (4.2) into (4.1), and
we obtain the hierarchy of equations, namely V n

m(Inc)” : div,a™ =0,  T(Rot)": a™ =V,a"+Y,
(4.5)
P(RO)": @™ -n=0 on the walls,

(by convention @™ = 0 for n < 0). In ug, we inject (4.4) into (4.3), and we obtain

9o 9@ ) OTO
(4.6) " Ong) b _an(:f)
“(Rot)" : o{" = %T’ “(Rot)” : ag;u =0, n<5,
along with the boundary conditions at the free surface z, = 0,
, 5(DC)" - a@g;w i =0, n<2, 8"‘(,/3:) +5(39)* +7 =0,
0 HKO)": oM = 87;:), n <1, P = ag—(:) + o ﬁg’)%.

4.1.3. Vertical matching conditions between my and py . As in the pre-
vious section, the solutions in mg and gy must match in an intermediate region when
Zn — 0 and z, — —oo. The result is identical (replacing x by z,, in (3.8)-(3.9)), i.e.
(4.8)

P2, 0,t) = lim &(")(xm,zu,t), n <2,

Z,,—>—00
' - Op®
(20, 0,8) = lim (P (2, 24, 1) — (2, + 1)7V(2,,, 1) (Tm,0,%) |,
2 —r—00 0z,
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JUMP CONDITIONS FOR BOUSSINESQ EQUATIONS 13

and the same relations are obtained replacing 3™ by @{” and ™ by 6{". However,
for o{™, we have to take into account a slightly different matching, according to the
expansions (4.2) and (4.4), which imposes

U (T, Ziny U) + 0UL (T, 2y B) 4 -+~ 00 (@, 20, E) + 5200 (2, Zust),

so using (3.9), we obtain

(4.9)
0 (2,,0,t) =0,
W0, 0,0) = im0 (@, z0t),  n=12
8/1](0)
47 (2.,0,t) = lim (@”(xm,zmt) =z, + 1) (2, t) 3 = (me,t)) .
2, —>—00 2

4.1.4. Horizontal matching conditions between my and m, and between
o and p,. Horizontal matchings are obtained, as for the vertical matchings, by
imposing that solutions in mg (resp. pg) correspond, in an intermediate region, to
solutions in my (resp. p,) when z — 0% and z,, — +o00, see figures 3 and 5. Between
o and po, with

¢(0) (l’, Zus t) + 5'(/)(1)('7;7 Em t) +oe ,(/;(0)(‘,1:“” ) t) + 61;(1)({'51117 2 t) +--- )
and taking into account the Taylor expansion (in the horizontal direction)

0
[z, zu,t) = f(0,2,,1) —I—(Sxma—i(o,zu,t) 4oy

we obtain, for n > 0 and with p > 1, m > 0,

~ P HPq)y(m)
(410) w(n)(oi’zu’t) = hm <¢(")($mvzmt) - Z &a w (Oiazﬂat)> 1)

m—E | D
Ty —> 00 ptmen p ox

which remain valid by replacing %™ by ™, v{" or v{™, and ™ by 7™, oM or o
(for n™ and ™, the dependence in z, has to be omitted). The same applies between
mg and my, i.e.

PGP Hm)
(4.11) (0%, 2,,t) = lim <¢v(">(xm,zm,t)— Yy P (oi,zm,t)>,

—+ ! P
Tm [es} phmen P o

which remain valid by replacing ¢™ by u{® and @™ by a{”. For u{”, however, we
must take into account the shift of the expansions (3.2) and (4.2), which gives
(4.12)

0= lim a©(z,,z,t
Ton—sFo0 z( [ad '3 )7
2P 9Py
n + _ : ~(n+1 m z +
ul™ (0 ,Zm,t)—ﬁmlgrioo (u(z Ty Zmy ) — E o our (0%, 2, t) | -
p+m=n

We are now in position to proceed with the asymptotic analysis of the step dis-
continuity. The main objective of the forthcoming section is to establish the relations
between the surface elevation n™ and the flux ¢ defined in (3.15) satisfy on both
sides of the step discontinuity. These relations will involve both jump and average as
defined in (2.7).
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14 E. MONSALVE, K. PHAM, AND A. MAUREL
4.2. Continuity conditions at order n = 0. At the leading order, surface

elevation and flux are continuous across the step.

PRrROPOSITION 4.1. The continuity conditions apply at the dominant order n = 0:
(4.13) (10 =0,
(4.14) (JO:: [¢“]=0.

4.2.1. Derivation of (JC)!. We start by using ™(Rot) " in (4.5) and *(Rot) ",
“(Rot)? in (4.6) from which we deduce that ¢© and ¢ depend only on ¢. Using the
matching conditions (4.8), (4.10) and (4.11), we obtain

(1.15) VOO%,8) = B0 = §U(0) = (0%, 1),

Then, taking the derivative with respect to t of (4.15) and using *(DC)°, we find

(116) W0 (0,1) = 79(0) = - 25 (0%, 1) =

o
ot

(1),

from which we deduce the continuity condition (4.13). We also deduce from (Inc)’
in (4.6) that 9 does not depend on z,, which, combined with #(KC)", tells us that
2" also does not depend on z,, and satisfies

on©

(4.17) B (t) = S (0.

4.2.2. Derivation of (JC),. We now use the relation ®(Inc)’ in (4.5) which we
integrate over

(4.18) Q= {2, € (—20,,20), 2w € (=B(7.),0)},
(with ¥ > 0) to obtain
(4.19)
0 0 5
/ aP (2, 2, t)dz, — / W (=2, 2, t)dzm + / " (2, 0, t)dz,, = 0.
—B+ —B- -z

According to (4.9), @ (x,,0,t) = 0, and according to (4.11), @ (*x*, z,m,t) —
U™ (0%,t) when ¥ tends to 400 (see (3.14)). This allows us to conclude that (4.19)
simplifies, after passing to the limit x* — 400, to ¢ (0,t) = LU (0%, ), hence the

continuity of the flux (4.14).

4.3. Jump conditions at order n = 1. At order n = 1, we have a jump
condition of the surface elevation and continuity of the flux.

PROPOSITION 4.2. Jump condition and continuity condition apply at the order
n=1:

, 9q"”
(4.20) (JO),: ™= —BIW(O,tL

(4.21) (JO.: l¢™I=0

where the blockage coefficient B, is defined in (4.26).
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4.3.1. Derivation of (JC),. To establish this relation, we will consider the
problem satisfied by (@, »®). It consists in ®(Inc)’, ®(Rot)” and =(RC)’ in (4.5),
and the first equation in (4.9). The behavior of @® when z,, — +o00 is provided by
the matching conditions, which tell us that @{”(£z* , z,.,t) = U (0%, ), according to
(4.11) and (3.14), and that @ (£x¥, 2., t) — 0 according to (4.12). Recalling (4.14)

with (3.15), we can finally establish that (4, ™) satisfies

divm,&'(m = Oa ﬁ(m = Vm@(l)7
(4.22) ' -n =0 on the walls, 4 (2,,,0,t) =0,
g (0,7)

lim @ (=

my Zmy b)) = ——F—— €.
Ty —>F00

B

The above problem is linear with respect to ¢/ (0,t), hence we set

BTy Zens t) = ¢V(0,8) Q1 (T, 20) + 9D (1),

WO (20, 2y t) = ¢ (0, ) VO, (T1ns 20 )

(4.23)

where we have defined ¢™(¢) = % (¢ (0, ¢) + ¢ (0%,1)), and where @, is the solu-
tion to the elementary problem

AQl = 07
(4.24) V@, -n=0 on the walls 94, (2,,,0) =0
. bl azln m) K
. €y
afmli{rjl:()o VQl(‘,I;ln? Zm) - /6:'

Since the solution @), is defined up to a constant, we impose that
., B

+ 1
Be 2 . o
lim Q" =0,
2

, if oz, >0,
(4.25) Q,(Twm,2m) = QY (Tas Zm) +

B ’ Ty —>E00
;—m - —1, if x.<0,
where ()¢ is an evanescent field and B, a blockage coefficient defined as follows

(4.26) B, = lim (Ql—%)— lim (Qlf”—m).

Tm—>+00 T —>— 00 ﬁ7

Owing to the matching condition (4.11) (n = 1), with @ in (4.23), 8,0 = ¢ /B,
from (3.13), (3.14) and (4.14), and accounting for (4.25), we obtain

(4.27) e (0%, 2,0, 1) = £¢*(0, t)% +¢D(t).

Using (3.16), we finally obtain the jump of n™ announced in (4.20). In particular we
have

— 1 B, 9¢©
4.2 WO ) =0+ = [p®P] = p® st
(4.28) N (0%, t) = n™(t) 2[[17 [=n®(@)F 5 ot

0,1).
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4.3.2. Derivation of (JC),. As before, we use %(Inc)" in (4.5) which we inte-
grate over QF defined in (4.18). We obtain, after using =(RC)" in (4.5),
(4.29)

0 0 Ty
/ ﬂ'?pl) (xiﬂ Zm) t)dZm - / 71(11) (_(E:ﬂ Zm) t)dzm + / ﬁ(zl) (xxn? 07 t)dl’m = 0
—B+ —B= —Th

The first two integrals in (4.29) are given by the matching condition (4.11) with
uld = UM (x,t) from (3.14). Also using (3.12), we obtain fEBi P (xk, 2, t)d2z, =

BLUM(0%,1) F 2X 0 (0,t). The third integral in (4.29) is given by the matching
condition (4.9) in @{” with 9 in (4.17), and so we have ffw UM (2, 0,t)dx,, =
2x%0n®(0,t). By summing the contributions, the diverging terms, linear in xk,
cancel out and we obtain the continuity (4.21) of the flux at order 1 defined by (3.15)
with ¢ (0,t) = .UV (0%, 1).

4.4. Jump conditions at order n = 2. At order n = 2, we have jump condi-
tions on both surface elevation and flux across the step discontinuity.

PRrOPOSITION 4.3. Jump conditions apply at the order n = 2:

, Oq® 0%*n©

. 2 — _ — L

(4:30) (U0 s ™) = —B, S~ (0,1) = B2 (0,1),
R , 82 (0)

(431) (U02: [a™] =€, (0.0),

where the effective coefficients B, and C, are defined in (4.35) and (4.40).

4.4.1. Derivation of (JC)?. We proceed as at order 1, and consider the problem
satisfied by (@, »®) which consists of ®(Inc)’, »(Rot)" and ®(RC)" from (4.5), and
the second equation from (4.9) for n =1 with 7 given by (4.17) which provides the
boundary condition at z,, = 0. To complete the problem, we need to determine the
behavior of @™ when z,, — +o0o. By combining the matching condition (4.11) with
(3.12), (3.14) and (4.21), we obtain @{"(£x¥, zm,t) = (¢ (0,t) — 2,00 (0,1)) /Bx.
Then, we have 4" (£2%, 2, t) = (2m/Bx + 1) On(0,t), from the matching (4.12)
and (3.17). This allows us to establish the problem satisfied by (a™, ), i.e.

div,a” =0, a9 =V,g®,

n©
4™ -n =0 on the walls, ) (2, 0,t) = 5 (0,1),

N 1 on® z on'®
. (1) _ (1) _ m
Imlgrioou (@ 2y ) = N (q (0,1) T (O,t)) e, + (51 + 1) P (0,t)e,.

The above problem is linear with respect to ¢ (0,¢) and 9,7 (0,t), so we pose

O _
B (@ 2r 1) = 4 (0. Q (s 20) - 5 (0.) Qs 20) + B (1),
(4.32) S
@ (@200 t) = 070, VQ (@, 20) + 5 (0,0 VQu(, ),
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where we have defined ¢ (t) = 3 (¢ (07,t) + ¢ (0%,t)), and Q, is the solution to
the elementary problem

AQz = 07
0
(4.33) V@, -n=0 on the walls, 8Q2 (2.,,0) =1,
: Zm
i VQu(#. 7) = —2me, + (22 + 1
wmi)H:‘l:OO 2 xm) Zm - ﬁi e:v Bi eZ'
As the solution @), is defined up to a constant, we impose that
(4.34)
2 _ .2 B
Zmﬂfx"‘—i—z,ﬂ—i—;, if x>0,
ev + : ev __
QZ(xn'n Zm) - Qz (xma Zm) + Z2 - $2 62 7xmli>n':|l:oo Qz - 07
“‘257 = +zm—7, if z, <0,

where ()2' is an evanescent field and B, is a blockage coefficient defined as follows

. 2 — T, , = T,
(435)  B,= lim (Q2 B T z) ~ lim (Q2 R TR z)
We now consider the matching condition (4.11) for n = 2, which involves the quan-
tities Oy (0%, ) = ¢ (0,t)/B+ from (3.13)-(3.14) and (4.21), and Oy (0%, t) =
—0m@(0,t)/B. from (3.12)-(3.14). We thus obtain

2 (0)
@ (0t — % ~(2) T x,, On
P05 ) = i (e - 22000+ 2 2 0,0).

Using ¢® in (4.32) and the asymptotic behaviours of @, (in (4.25)) and Q, (in (4.34)),
we deduce that

B On© 2 B -
O (0%, 2,,,t) = j:q“)(O,t)?l + 4 (0,1) ( fmo4 4 2) + 0@ (1),

2 2
(4.36) 5 anff 5 P
@) (* — (€D ) =2 (2)
0200%0) =% (40,05 + 005 ) + 370,

with ¢®(0%,¢) = ¢ (x,0,¢) from (3.20) (note that (4.36) is consistent with (3.20)
thanks to (3.12)). Finally, using (3.21), we obtain the jump (4.30) of n®.

4.4.2. Derivation of (JC).. As we did previously, we use ™(Inc)” in (4.5) which
we integrate over (2*, see (4.18). We obtain, after using =(RC)* in (4.5),
(4.37)

0 0 i

/ P (2F ) 2, 1) A2y — / P (=2t 2, t) dz, + / 1P (2, 0,¢) dz,, = 0.
—B+ —B- -z

For the first two integrals, we use (4.11) with f_oﬁi u® (0%, 2, ) dz,, = ¢ (0%, 1) by

definition, (3.15), and which involves 0,ul (0%,t) = 9y (£¢©(0,¢) 8L + ¢D(t)) /Bx,

from (3.12), (3.14), (3.16) and (4.27), and 9., u(” (0%, t) = 04q(0,t)/B% from (3.11)-

(3.12), (3.14) and (4.14). So for z¥ — 400 we get
(4.38)

0 27(1) 2 * 2
0%p™ 92q©® B
/ (2 Oz~ q®(0%,0) a8 00 (1) 4+ £ (o,t>(x“’ I

g w00 w92 12 28,  m7g
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18 E. MONSALVE, K. PHAM, AND A. MAUREL

For the third integral in (4.37), we use (4.9), 80 42 (24, 0,t) = 0 (2., t) since 0" and
Y™ do not depend on z,, according to *(Inc)" and “(Rot). in (4.6). Using #(DC)" and
“(KC)" in (4.7) (for n = 1), the matching (4.8) (for n = 1) and finally the form of p®
in (4.23), we deduce that @ (z,,,0,t) = =04 (¢ (0,1)Q: (%, 0) + ¢ (¢)). Finally,
using (4.25), we have, for ¥ — +oo,

(4.39)
xh 82(](0) * 2 * 2 62%
~(2) ~ _ m _ m _ 2 *
/z:n @ (T, 0, t)dz,, i v (0,1) <C1 + R 2ﬁ> Y (t),
with
+oo 1
(440) Cl - iv(l‘nno)dxm = BZ - g(ﬁ+ - B*)’
—o0

and C, is finite because Q¢ vanishes for z,, — £oo according to (4.25) (see appendix
A .2 for the relation between C, and B,). By gathering (4.38) and (4.39) in (4.37), the
diverging terms, linear and quadratic in z}, cancel out, leaving us with

2 _(0)
(4.41) [¢®] = Cl%(o,t), with  ¢®(0%,¢t) = BLUL (0%, 1).
In particular, we have
— C, 0%q©
4.42 @(0*,t) = ¢ (t) £ = 0,t
(142 0 (0%,6) = 77(0) + 22 0,1,

with ¢®(t) = 3 (¢®(0~,¢) + ¢ (07, t)) being the average flux across the discontinuity.

4.5. Jump conditions at order n = 3. At order n = 3, non-linear contribu-
tions arise in the jump conditions.

PROPOSITION 4.4. Jump conditions with non-linear contribution apply at the or-
der n = 3:

(4.43)
dq® 9*n® 93q© a 1 1
JO)I: @] =- (B, 5 + B, e + B, o)~ 5((1(0))2 73 -~ )
4.44
( ) 82q(1) 83,,7(0)

(JC),: ] =¢, +C.

1 1
(0) (0)
—an@q (——— ),
ot3 (m 6)

where the effective coefficients B; and C, are defined in (4.48) and (4.52).

ot?

4.5.1. Derivation of (JC)’. We repeat the exercice and consider the problem
satisfied by (@®,$®) which consists in ®(Inc)?, ®(Rot)” and ®(RC)* in (4.5). The
condition at z,, = 0 is obtained using (4.9), with 9" given by #(KC)', #(DC)" in (4.7)
and (4.8) for n = 1, and finally (4.23) as well as (3.16).

The conditions when z,, — +o0o0 on @® are obtained as follows. For @{?, we use
2

(4.11) which involves u® = U® — (33 + 2, + 5)0uUS from (3.22)-(3.23) and

(3.11)-(3.12) (with (3.15) for n = 0,2 and ¢ given in (4.42)), 9,ul(x,,0%,¢) =

-0 (2,,,t) /B from (3.12) and (3.14) (n™ given in (4.28)), and 9., ul® (x,,, 0%, t) =

0uq”(0,t)/5.. For 4, we use (4.12) which involves u{" = (g—i + 1) O™ and
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+ 1) Optq'®, from (3.17) with (3.11)- (3.12). We obtain

B+
div,@® =0, 4® =V,5,
~ On® R
2® -n=0 on the walls, ) = gt - 187?2 at z, =0,
1 on™® 9%q© z o™ 92q©
li 11(2) — — [7@ _ + e. m 1 _ L E e
e 3, (q Toor TXe g )T\ BT Tar T )

where we have defined

Zm): ?—?— E-’-Z

o= (30) (43)

The above problem is linear with respect to g (t), 9;n™(t) and 9:¢‘*(0,), so we set
(4.45)

2
X (T, G _ b (z

)+ (5es).

2(3) _ =) 877 9%q” pYey
Y = 0 (DQ (T 2) + i (D@ 20) + o (0,)Qs (s 2) + 5T (1),
on® 92q(©
@ =3 () VQi (2 2) + gt (Y Q{0 70) + 5 (0.0)VQul, 2.
where @); satisfies the elementary problem
AQ3 =0,
VQ, -n=0 on the wall BQB( 0) = —Q,(,,0)
(446) 3 1= on € walls, aZm Ty - 1\ Lm, )
L.
zm]'i)nioo VQS( Ly m) - EX@ (xnn zm) Xz( Ty m)eZ°
As the solution @), is defined up to a constant, we impose
(4.47)
B,
CH Ty 2m) + > if x, >0,
QS(xrm Zm) = &3 (*T’mv Zm) + B, ) acmhﬁnz}:ooQ
C_(',I:nn Zm) - lf T < 07

where Q2 is an evanescent field, (* polynomial functions given by
Ly

C, JL‘QU B, zf z,., B
2@) 25, (3@*2) B (2@ e ) (ﬁi * )

and B, a blockage coefficient defined as follows
(@ ¢ (e

1
o = (L

lim
T — — 00

lim
Tm—>+00

(4.48) B, =

(Qs = (" (@, Zm)) -

To obtain the jump of ®, we use (4. 1) which involves ¢® in (4.45) (with @, in
(4.25), (4.34), (4.47)), B,0® = L — ( B+ %) 9req® from (3.20) and (3.23)

Z m
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(with ¢ in (4.42)) and, from (3.12)-(3.14), Ozrp™ = =™ /B. (with n® in (4.28))
and Oy = —0nq” /B.. We obtain

2 (1) 2 (0)
e (0%, 2,0, 1) = (0%, 1) — <Zm +zm> <—a7’ (t) £ B, 0%g (O,t)) ,

28, ot 2 92
with
B B, on™ B; 0%¢™ —
G0 #) = + [ Dlg® 2z s @ (t).
0210050 =+ (G2 + 0+ BT 00) + 350
Note that the above relation is consistent with (3.26) since 0, U = —9;n™ with n™
in (4.28). Using (3.27) and (4.14), we deduce that
0¢® o
@(0*,t) = — 0%,t) — =— (¢ (1)),
(0%, 1) 5 (07:1) 2@(Q())

hence the jump (4.43) of n®.

4.5.2. Derivation of (JC). We repeat the exercice for the last time, with
=(Inc) in (4.5) which we integrate over Q* , see (4.18). We obtain, after using (RC)®
in (4.5),

(4.49)

*

0 0 T
/ WP (2 2, )2, — / WP (=2 2, t)dzn + / P (2, 0, t)dz,, = 0.
—B+ —B- —Th

The first two integrals in (4.49) involve the behavior of @¢ which, for z* — +o0,
is given by (4.11). It involves several terms, namely O.pul™, p + m = 3 which
after integration with respect to z, provides S.0,»US™ (0%,t) (see (3.15)). These
contributions are determined as follows.

From (3.19) and (3.21), we have 5.0, U (0%, 2z,,t) = 0ud™®(0*,¢). Then, from
(3.11) and (3.12), we have 5.0, ULV (0%,t) = 0nq™(0,t)/Bs and B10z5, UL (0%, ) =
—1/B:0::n(0,t). Consequently, noting J(£z*,t) = Eﬁi WP (£2%, 2, )20, We
have

(4.50)

* 3 + * 82(25(2)
J(Ez¥ 1) o i q® (0%, ) £ a2 52

*2 92 (1 0
=2 9%qW x=° 9°n®

m t) 5 Lo n
208, Ot? 0.%) 668, O3 0,%)

(0%,8) +

For the third integral in (4.49), we use (4.9) and take into account the following rela-
tions. By integrating “(Inc)” in (4.6) with respect to z, we have @ (2., z,,t) =
—an®(0,)05,, 0 (T, 0,t) 2, + 0 (24, 0,t) with 0 (2,,,0,t) = —0uP™ (2..,0,1),
from #(KC)* and #(DC)? in (4.7), as well as 9 (2., 24, 1) = $ (2,,0,1) from (4.8)
(1® being independent of z, from “(Rot)? in (4.6)). Then, we have 7 (t) 9, 4" =
—n©(0,t) 0, 0 from (4.16) and = (Inc)’ in (4.5). It follows that

2 ,%(2) 77(0)
B (0200.0) = = L5 (0 0,0) + 0, (1,0,

Now we just need to use the forms of @{” in (4.23) and of @ in (4.32) (as well as
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(4.25) and (4.34)) to find that, denoting I(t) = ff: U (2,0, t)dz,,, we have
(4.51)

62@ 8261 * 2 * 2
I(t ~ =2z — t n
(X%»+m T W~ g ) C“%mi m3>
03n©® 3 a3 1 1
—_ 0715 c, — 2 = _— (0) O,t (0) O,t ,
FE )<2 6, 6&)”(& ﬂ_)” (0, 2)¢7(0,2)
where the effective parameter C, is defined as follows
+oo
(4.52) C, = Q5 (2, 0)dx,,,

with Q2" given by (4.33) and (4.34). By gathering (4.50) and (4.51) in (4.49), we
obtain that all the diverging terms, linear, quadratic and quartic with respect to z¥ ,
cancel out, and we get the jump (4.44) in the flux.

5. Construction of a unique model. In this section, we reconstruct the
Boussinesq equations and corresponding jump conditions at the depth transition from
the results of the asymptotic analysis. Classically, this means combining the equa-
tions obtained at orders n = 0 to 3 into a single equation. We begin by reconstructing
the Boussinesq equations, which is a classical procedure, before repeating the same
procedure for the jump conditions.

5.1. The Boussinesq equations. Gathering the results from (3.11), (3.18) and
(3.24), we have for g = 5,

U  on™
ot + ox

ou®  on® B 67283U§)’ B
ot oz 3 otor2

ou®  on® B 57283U§51> Uy
ot ox 3 Otox? n

and gathering the results (3.12), (3.19) and (3.25), we also have

=0, n=0,1.

(5.1)

U™ gnm

pTe 9T g, p=0,1,2
(5.2) ox ot
' AU on®

0
+am (OU) =0,

P T o T%%

Considering the truncated expansions of the fields, U, = Zi:o o"UM and n =

52220 d"n™ (up to terms O(6*)) and summing the results from order n = 0 to
3 in (5.1)-(5.2) after multiplication by §” we obtain

253 92 2
0 (5Uw—“a U$> -i-ﬁ (774—0464([];)) =0,

ot 3 0x2 Oz
1on 0 2 _
550 T 5y (B adn)U.) =0

We then simply return to the dimensional form of the problem, using (2.10) and
scalings (2.8)-(2.9) to obtain the classical Boussinesq equations (2.5). Note that a
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more general family of Boussinesq equations could have been obtained at this stage
by using Boussinesq’s trick, the idea being that lower-order relations such as (3.11)-
(3.12) can be used to modify the higher-order equations without loss of the asymptotic
order of approximation, see e.g. [6, 7].

5.2. The jump conditions. Gathering the results of (4.13), (4.20), (4.30) and
(4.43) we have

[7”] =0,
01 = 8.2 0,1
(5:3) [h®] = —B, 8;:’ (0,t) — B, 8877;0) (0,1),
[[77(3) L@ (U“”) ]] _ B, 3;;”( P 2% t) — 3323;0’ (0,1),

and gathering the results of (4.14), (4.21), (4.31) and (4.44), we also have

[[q(")ﬂ = 07 n= 07 17

. 92q®
(5.4) [¢?] = ¢, R (0,1),
(C) 30©
[¢® + an®@U®] =C 6832 (0,t)+C, 823 (0,2).

Considering again the truncated expansions of the fields U, = Zi:o o"ULM (with g™

defined in (3.15)) and n = 6 Zi:o d"n™ and summing the results at order n = 0 to
3 given by (5.3)-(5.4) after multiplication by 6™ give

2 2 3
|[n + a547(U;) H = B8 8@? 2?%’27 5,52 £3Um,
028U, o°n
2 2 2
[(8 + ad®n)Us] = C.6* =25 +Cab® = 5.

Once again, we only need to return to the dimensional form of the problem using
(2.10) and the scalings (2.8)-(2.9) to obtain the jump conditions announced in (2.6).

6. Conclusion. In this work, we have sought to challenge, in the presence of an
abrupt depth transition, the classical asymptotic approach used to obtain the Boussi-
nesq equations. Indeed, the classical procedure for a flat or slowly varying sea bottom
relies on normalizing the vertical coordinate by the total water depth (including the
wave amplitude at the free surface), which obviously cannot be used here since the
water depth is a discontinuous function. To overcome this problem, we introduced a
new three-scale analysis framework that enables consistent navigation using matching
conditions between a macroscopic scale (the incident wavelength), a mesoscopic scale
(the water depth at rest or the boundary layer thickness near the discontinuity), and
a microscopic scale (the wave amplitude or the boundary layer thickness at the free
surface). The asymptotic expansion of the solutions up to the third-order in this
three-scale framework led to the Boussinesq equations, supplemented by jump con-
ditions at the depth discontinuity. These jump conditions involve 5 boundary layer
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coefficients that depend only on the water depth ratio and for which the (semi-)-
analytical formula has been provided.

Some extensions of the present study are straightforward, others less so. On the
one hand, the extension of the present analysis to variants of the classical Boussinesq
equations [29, 6, 7] is almost immediate, by adapting the procedure for construct-
ing a single model in section 5, including the jump conditions. Also, the derivation
of the jump conditions in three-dimensional geometry or for a more general abrupt
discontinuity profile present no additional difficulties, since the same asymptotic pro-
cedure can be carried out. On the other hand, the theoretical and numerical analysis
of the coupled model “Boussinesq and jump conditions” is a more tedious challenge.
It would be interesting, for example, to find analytical solutions to Boussinesq-type
equations (e.g. solitary waves) in the presence of an abrupt depth transition using
these jump conditions. We may think to scattering problems, of solitons by adapting
the present model to a Korteweg-de Vries-like form [15, 31, 32], or of shock waves in
shallow water [17], and to assess the effect of the boundary layers which has not been
considered thus far. It also remains to establish appropriate numerical discretization
schemes for these jump conditions. This is a necessary step before considering valida-
tion of the jump conditions by comparison with direct numerical simulations or with
experimental data.

Appendix A. Effective parameters entering the jump conditions.

A.1. Variations of effective parameters as a function of depth ratio.
The effective parameters entering the jump conditions (2.6) depend only on the depth
ratio v = 1+ h,/hy. They can be calculated by numerically solving the elementary
problems (4.24), (4.33) and (4.46) and using their definitions (4.26), (4.35), (4.48)
and (4.40), (4.52). We give below approximate expressions that are good estimates,
as shown in figure 6.

(A1) B, ~ —0.2v(1 —v),

and
1
(A.2) C,=B,+ g(l —v),  Cy~—0.04402(1 — )%
Note that the expression for B, id exact and is due to [55], Eq. (2.12) in this reference,

and the relation between C, and B, is proved in the next section.

A.2. Relations between the parameters. The effective parameters B, and
B; defined in (4.35) and (4.48) can be determined from knowledge of @, only, which
is given by (4.24). Indeed, for a step, we have the following relations

1 B,
(A'3) 32=C1+§(ﬁ+—ﬂ,), 63:g1_€<6++67)a
with (B;,C,) given by (4.26) and (4.52) and G, defined by
“+o0 0
gl = - Q+(xm) dxm _/ Q*(Im)2 dxm'
0 —o00
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F1a. 6. Variations of effective parameters, By, n = 1,2,3 and Cn, n = 1,2 entering jump
conditions (2.6), as a function of v =1 — hy/hg. Solid blue lines from direct numerical calculations
of elementary solutions Qn in (4.24), (4.33) and (4.46); dashed black lines from (A.1) and (A.2).

with

Qs(.)

~ @G0 - (

T B.\?
Zmog T
wey)

To prove (A.3), simply note that using (4.24), (4.33) and (4.46) for ¢ = 2,3 we have

0= /Qm (QUAQ; — QAQ.) = —/8

QO

(QIVQi - QiVQl) - .

Applying the boundary conditions on (@, @, @;) and using the decomposition (4.25),
(4.34) and (4.47) we obtain after a few calculations

0= / (QIVQZ - Q2VQ1)
O0m

1
n=0_C, + -
n —|—3

By —B-)

_627

0=/ @VQ.-Q.vQ) n=6,- 23 +5) B,
O
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