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Abstract: We study modulational instability in a fiber system resembling a dispersion-managed
link where the sign of the group-velocity dispersion varies randomly according to a telegraph
process. We find that the instability gain of stochastic origin converges, for long fiber segment
mean length (the inverse of the transition rate between the two values), to the conventional values
found in a homogeneous anomalous dispersion fiber. For short fiber segments, the gain bands are
broadened and the maximum gain decreases. By employing correlation splitting formulas, we
obtain closed form equations that allow us to estimate the instability gain from the linearized
nonlinear Schrödinger equation. We compare the analytical to the numerical results obtained in a
Monte Carlo spirit. The analysis is proven to be correct not only for a fluctuating group-velocity
dispersion, but also including fourth-order dispersion (both constant or varying according to a
synchronous or independent telegraph process). These results may allow researchers to tailor
and control modulational instability sidebands, with applications in telecommunications and
parametric photon sources.

1. Introduction

Modulational instability (MI), i.e., the destabilization of a uniform wavepacket by exponentially
growing harmonic perturbations around its carrier frequency, is an ubiquitous phenomenon in
nonlinear dispersive wave physics [1]. The first studies emerged in electromagnetic waves [2]
and hydrodynamics [3, 4], and about two decades later the phenomenon was observed in optical
fibers [5]. The basic ingredients that yield MI in a one dimensional homogeneous system are
focusing cubic nonlinearity (like the Kerr effect in silica) and anomalous (negative) group-velocity
dispersion (GVD).

Nevertheless, MI exists also in normal GVD, provided that high-order dispersion [6] or
birefringence [7] are considered. Moreover, MI is observed in single-mode fibers in the normal
GVD region also if the GVD is varied along the propagation direction. If the variation is
periodic, the MI is equivalent to the destabilization of a harmonic oscillator subject to parametric
forcing and is denoted as parametric MI [8–12]. A resonance is found for every integer order to
correspond to a MI sideband: only a few of them are observable and their frequency separation
from the carrier scales as the square root of their order.

Random variations of GVD were also the subject of extensive study. In the late 90s, the white
noise process (an exactly solvable model) was considered [9, 13–15]. Only recently different
random processes were considered: localized GVD kicks [16] or coloured processes of low-pass
or band-pass type [17].

Up to this point, we mentioned only examples of (possibly large) GVD variations around a
nonzero average GVD. Actually, to prevent the competition with conventional MI, which usually
exhibits larger gain, normal average GVD is considered.

Conversely, systems with zero- or nearly zero-average GVD have attracted the attention of many
researchers, because dispersion-induced pulse-broadening is largely suppressed and nonlinear
propagation optimized [18,19]. This strategy is usually denoted dispersion management (DM)
and consists in alternating positive and negative GVD segments along the propagation direction.
A uniform distribution for fluctuation of segment length is studied in [20,21] for pulse propagation
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and MI, respectively.
Here we adapt part of the theory presented in Ref. [17] to DM-like random fluctuations modelled

as a telegraph process, i.e., a low-pass colored random process taking only two values alternating
at exponentially distributed distances. Thanks to correlation splitting formulas [22–27], the MI
equations (i.e. the linearized uni-directional propagation equation) are also solvable.

Our theoretical approach is quite general and flexible, and permits to account for additional
physical effects. As a relevant example, we explore the influence of the first higher-order effect
having an impact on MI, i.e., the fourth-order dispersion (FOD).

The rest of the paper is organized as follows. After presenting the model equations and detailing
the analytical approach for fluctuations of GVD and (possibly) FOD in Sec. 2, we compare the
analytical estimates to numerical results obtained in a Monte Carlo spirit in Sec. 3. Several
different examples are discussed, including no FOD, fixed or fluctuating FOD. Conclusions are
reported in Sec. 4.

2. Analytical approach

Fig. 1. Schematic representation of the GVD and FOD profiles in a typical fiber
realization. The random distances of sign changes are shown only for GVD.

We consider the propagation of optical pulses ruled by the generalized nonlinear Schrödinger
equation (GNLSE) [18],

𝑖𝜕𝑧𝑈 − 1
2
𝛽2 (𝑧)𝜕2

𝑡 𝑈 + 1
24

𝛽4 (𝑧)𝜕2
𝑡 𝑈 + 𝛾 |𝑈 |2𝑈 = 0, (1)

where 𝑈 (𝑡, 𝑧) is the complex envelope of the optical field, (𝑡,𝑧) are time and propagation distance
in a frame moving at the group velocity of the fiber mode, 𝛾 the (constant) nonlinear coefficient,
𝛽2 (𝑧) = 𝛽2 + Δ𝛽2 (𝑧) is the GVD, and 𝛽4 (𝑧) = 𝛽4 + Δ𝛽4 (𝑧) is the FOD. Moreover, Δ𝛽2 and Δ𝛽4
are two telegraph processes. They can take only two values, ±𝛽M

2 , with 𝛽M
2 > 0, (resp. ±𝛽M

4 , with
𝛽M

4 ≥ 0). We consider either (i) synchronous or (ii) independent (asynchronous) processes. The
latter case is schematically illustrated in Fig. 1.

The samples of the dispersion profiles (GVD and FOD) are generated using the following
procedure [28]. The total length 𝐿 is fixed, then we extract for the 𝑖-th sample a positive integer 𝑁𝑖

from a Poisson distribution with rate 𝐿/𝐿̄𝑚, 𝑚 = 2, 4. We extract 𝑁𝑖 points 𝑤𝑛, 𝑛 = 1, 2, . . . , 𝑁𝑖

from a uniform distribution in [0, 𝐿], and order them in ascending order, to obtain the points 𝑧𝑖
where the sign changes occurs (in the case of asynchronous GVD and FOD two independent
sets of points are used). The lengths 𝐿𝑛 = 𝑧𝑛 − 𝑧𝑛−1 are independent, identically distributed
random variables of exponential probability distribution function with mean 𝐿̄𝑚, 𝑚 = 2, 4, thus
representing a telegraph process. The telegraph process is an example of lowpass colored noise,
as discussed in detail in [17]. The bandwidth is inversely proportional to the mean length,
𝐵𝑚 = 2

𝐿̄𝑚
.



A continuous wave (𝑡-independent) solution of Eq. (1) reads 𝑈0 (𝑧) =
√
𝑃 exp(𝑖𝛾𝑃𝑧), where

𝑃 is the carrier power. In order to study its stability, we insert in Eq. (1) the Ansatz 𝑈 (𝑧, 𝑡) =[√
𝑃 + 𝑥1 (𝑧, 𝑡) + 𝑖𝑥2 (𝑧, 𝑡)

]
exp(𝑖𝛾𝑃𝑧), where 𝑥1,2 are assumed to be small, linearize and Fourier-

transform the resulting equation with respect to 𝑡 (𝜔 is used as the associated angular frequency
detuning from the carrier 𝑈0). We obtain

d𝑥
d𝑧

=


0 −𝑔(𝑧)

ℎ(𝑧) 0

 𝑥, (2)

with 𝑥 ≡ (𝑥1, 𝑥2)T—𝑥1,2 are the Fourier transforms of 𝑥1,2, functions of 𝜔 and 𝑧, 𝑔(𝑧) =

𝛽2 (𝑧) 𝜔
2

2 + 𝛽4 (𝑧) 𝜔
4

24 = 𝑔0 + 𝛿𝑔(𝑧) and ℎ(𝑧) = 𝑔(𝑧) + 2𝛾𝑃 = ℎ0 + 𝛿𝑔(𝑧), with 𝑔0 ≡ 𝛽2
𝜔2

2 + 𝛽4
𝜔4

24 ,
ℎ0 ≡ 𝑔0+2𝛾𝑃, 𝛿𝑔 ≡ Δ𝛽2 (𝑧) 𝜔

2

2 +Δ𝛽4 (𝑧) 𝜔
4

24 . Eq. (2) is a system of stochastic differential equations
(SDEs) for each value 𝜔.

By letting 𝛽M
2 = 𝛽M

4 = 0, Eq. (2) is reduced to a system of linear autonomous ordinary
differential equations (ODEs) [6, 29]. Provided that 𝛽2 and 𝛽4 are not both positive, there exist
intervals in 𝜔 for which the eigenvalues of the matrix in Eq. (2) are real and the MI gain thus
reads

𝐺 (𝜔) = max
Re


√︄
−

(
𝛽2

𝜔2

2
+ 𝛽4

𝜔4

24

) (
𝛽2

𝜔2

2
+ 𝛽4

𝜔4

24
+ 2𝛾𝑃

)
 . (3)

It is easy to verify (directly or by nonlinear phase-matching arguments) that this expression has
maxima in

𝜔2 = −6𝛽2

𝛽4

(
1 ±

√︄
1 − 2𝛾𝑃

3
𝛽4

𝛽2
2

)
, (4)

(provided that 𝜔2 > 0 ) at which, remarkably, 𝐺 achieves the same value, 𝐺max = 𝛾𝑃, obtained
in conventional MI. There exist three possible combinations of signs of 𝛽2 and 𝛽4 which lead to
MI gain. For anomalous GVD and 𝛽4 < 0 a single sidelobe appears, which is a deformation of
the conventional MI gain. If, instead, 𝛽4 > 0 and 𝛾𝑃

𝛽4
𝛽2

2
≪ 1, two MI sidelobes appear: the first

is a slight variation of the conventional MI sidelobe in the absence of FOD, i.e., 0 ≤ 𝜔 ≤ 2
√︃

𝛾𝑃

𝛽2

and the second occurs at 𝜔 ≈
√︂

12
��� 𝛽2
𝛽4

���. Around this same value a single MI sidelobe appears

for normal GVD and 𝛽4 < 0. For the sake of precision, we notice that the high frequency
narrow MI sidebands are slightly different in anomalous vs. normal GVD for the same |𝛽4 |, as
it is apparent from Eq. (4). Equations (3) and (4) will be important as limits of the analytical
estimates presented below.

In the following we assume vanishing average GVD 𝛽2 = 0 (unless we refer to conventional
MI, where 𝛽2 = −1); the average FOD 𝛽4 can take any positive or negative value.

In [30] a precise discussion of multiplicative noise (the fluctuation of the natural frequency of
a harmonic oscillator, assumed non null) is presented. Its application to Eq. (2) was discussed
in [17]: the unperturbed system is stable and the first moments ⟨𝑥⟩ cannot provide any hint on
the stability of the perturbed system. The equations for the second moments of the distribution of
𝑥, which are directly related to the fiber output power, need studying.

We let 𝑋1 = 𝑥2
1, 𝑋2 = 𝑥2

2, and 𝑋3 = 𝑥1𝑥2 and derive from Eq. (2)

d
d𝑧

𝑋 =


0 0 −2𝑔(𝑧)

0 0 2ℎ(𝑧)

ℎ(𝑧) −𝑔(𝑧) 0


𝑋, (5)



with 𝑋 ≡ (𝑋1, 𝑋2, 𝑋3)T. The following discussion relies only on Eq. (5). We first study the effect
of fluctuations of GVD (with fixed average FOD), next we study the fluctuations of both GVD
and FOD.

2.1. Fluctuations of GVD, 𝛽M
4 = 0

Let us consider a constant FOD (Δ𝛽4 = 0), therefore 𝛿𝑔 = Δ𝛽2 (𝑧) 𝜔
2

2 . The telegraph process
allows for a particularly simple closure of the moment equations [25,26]. We apply to Eq. (5) the
Shapiro-Loginov formula [24]

⟨Δ𝛽2
d𝑋𝑖

d𝑧
⟩ =

(
d
d𝑧

+ 𝐵2

)
⟨Δ𝛽2𝑋𝑖⟩. (6)

Two steps are required: (i) directly average Eq. (5), (ii) multiply each row by Δ𝛽2 and average.
Three auxiliary variables are introduced 𝑋3+𝑖 ≡ Δ𝛽2𝑋𝑖 , for 𝑖 = 1, 2, 3. Taking into account the
property of telegraph processes, ⟨Δ𝛽2

2𝑋𝑖⟩ = 𝜎2
2 ⟨𝑋𝑖⟩, with 𝜎2

2 ≡ (𝛽M
2 )2, we obtain a sixth order

system of ODEs,

d⟨𝑋⟩
d𝑧

=


𝐴4 𝐶2

𝜎2
2𝐶2 𝐴4 − 𝐵2I

 ⟨𝑋⟩, (7)

with

𝐴4 =


0 0 −2𝑔 (4)

0

0 0 2ℎ (4)0

ℎ
(4)
0 −𝑔 (4)

0 0


,

𝐶2 =


0 0 −𝜔2

0 0 𝜔2

𝜔2

2 − 𝜔2

2 0


,

(8)

with 𝑔
(4)
0 ≡ 𝛽4

𝜔4

24 , ℎ (4)0 = 𝑔
(4)
0 + 2𝛾𝑃 and I is the identify matrix. Eq. (7) is, mutatis mutandis,

identical to Eq. (21) in [17].
The gain for the second moments is 𝐺2 (𝜔) ≡ Re 𝜆̃/2, with 𝜆̃ the eigenvalue of largest real part

of the 6 × 6 matrix in Eq. (7). Recall that, for deterministic GVD [14], the gain associated to
every moment is identical, thus 𝐺 in Eq. (3) can be considered equivalent to 𝐺2. By symbolic
manipulations, it is easy to verify that, in the limit of 𝐵2 → 0, we obtain again the conventional
MI gain, i.e., Eq. (3) with ±𝛽M

2 in lieu of 𝛽2.

2.2. Synchronous fluctuations of GVD and FOD

Let us now consider a zero average FOD, but non-zero oscillations (𝛽4 = 0, 𝛽𝑀𝑚 ≠ 0 for both
𝑚 = 2, 4). First, we consider synchronous fluctuations, i.e., a single process defined by a sample
{𝑧𝑛} and 𝛽M

4 = 𝜌𝛽M
2 , therefore 𝛿𝑔 = Δ𝛽2 (𝑧) ( 𝜔

2

2 + 𝜌 𝜔4

24 ). Following the same procedure and same
variable definition of Sec. 2.1, we obtain

d⟨𝑋⟩
d𝑧

=


𝐴0 𝐶24

𝜎2
2𝐶24 𝐴0 − 𝐵2I

 ⟨𝑋⟩, (9)



with

𝐴0 =


0 0 0

0 0 4𝛾𝑃

2𝛾𝑃 0 0


,

𝐶24 =


0 0 −𝜔2 − 𝜌 𝜔4

12

0 0 𝜔2 + 𝜌 𝜔4

12
𝜔2

2 + 𝜌 𝜔4

12 − 𝜔2

2 − 𝜌 𝜔4

12 0


,

(10)

Consider the limit 𝐵2, 𝐵4 → 0: by symbolic manipulation, it is easy to verify that we obtain
again Eq. (3) with ±𝛽M

𝑚 in lieu of 𝛽𝑚, for 𝑚 = 2, 4, respectively. Thus, for 𝜌 > 0 we obtain a
single MI sideband, while for 𝜌 < 0 we obtain also secondary sidelobes.

In contrast with the analysis of Eq. (7), there are different sign combinations that give MI
gain, so we expect a combination of different MI sidelobes corresponding to different nonlinear
phase-matching conditions to appear in 𝐺2, at least in the limit of 𝐿̄2, 𝐿̄4 → ∞.

2.3. Independent fluctuations of GVD and FOD

Let us consider again a zero average FOD, but non-zero independent oscillations (𝛽4 = 0, 𝛽𝑀𝑚 ≠ 0
for 𝑚 = 2, 4, ⟨Δ𝛽2Δ𝛽4⟩ = 0 for all 𝑧).

The Shapiro-Loginov formula must be generalized, as in [17, 27, 31], to two independent
random processes, as follows

⟨Δ𝛽2Δ𝛽4
d𝑋𝑖

d𝑧
⟩ =

(
d
d𝑧

+ 𝐵2 + 𝐵4

)
⟨Δ𝛽2Δ𝛽4𝑋𝑖⟩. (11)

The derivation of a closed system of ODEs consists of four steps: (i) average directly Eq. (5), (ii)
multiply each row of Eq. (5) by Δ𝛽2 and average, (iii) multiply by Δ𝛽4 and average; (iv) multiply
by Δ𝛽2Δ𝛽4 and average. If we assume as above that we can factor the variance out if the same
process occurs twice inside an angle bracket, take statistical independence into account, and
define 𝑋3+𝑖 ≡ Δ𝛽2𝑋𝑖 , 𝑋6+𝑖 ≡ Δ𝛽4𝑋𝑖 , and 𝑋9+𝑖 ≡ Δ𝛽2Δ𝛽4𝑋𝑖 , 𝑖 = 1, 2, 3 we obtain

d⟨𝑋⟩
d𝑧

=



𝐴0 𝐶2 𝐶4 0

𝜎2
2𝐶2 𝐴0 − 𝐵2I 0 𝐶4

𝜎2
4𝐶4 0 𝐴0 − 𝐵4I 𝐶2

0 𝜎2
4𝐶4 𝜎2

2𝐶2 𝐴0 − (𝐵2 + 𝐵4)I


⟨𝑋⟩, (12)

with 0 the null matrix,

𝐶4 =


0 0 − 𝜔4

12

0 0 𝜔4

12
𝜔4

24 − 𝜔4

24 0


; (13)

the matrices 𝐴0 and 𝐶2 are as in Eqs. (8) and (10), and 𝜎2
4 ≡ (𝛽M

4 )2. The MI gain is now given
by the eigenvalue of largest real part of the 12 × 12 matrix in Eq. (12).

We consider the limit 𝐵2, 𝐵4 → 0. By symbolic manipulation, it is easy to verify that we
obtain again Eq. (3) with ±𝛽M

𝑚 in lieu of 𝛽𝑚, for 𝑚 = 2, 4, respectively.
A multi-sidelobe MI gain spectrum is expected as above in Sec. 2.2, because every possible

combination of GVD and FOD signs occurs in any realization.



The comparison to numerical results in the next section will show the correctness of this
estimates.

3. Numerical results

In order to validate our analytical results, we generate an ensemble of 𝑁𝑠 = 1×106 different GVD
(and FOD if applies) profiles and solve equation Eq. (2) exactly for each realization by means
of the transfer matrix method [18]. The initial sign of GVD (FOD) is randomized. Telegraph
processes are generated according to the method described in Sec. 2. For the sake of definiteness,
we take 𝛾𝑃 = 1 and 𝛽M

2 = 1, which is equivalent to defining a nonlinear length 𝑧nl ≡ (𝛾𝑃)−1 and

a characteristic time 𝑡0 ≡
√︃
𝛽M

2 𝑧nl and to normalizing the propagation distance 𝑧/𝑧nl → 𝑧, time
𝑡/𝑡0 → 𝑡, field 𝑈/

√
𝑃 → 𝑈, and FOD 𝛽M

4 /((𝛽M
2 )2𝑧nl) → 𝛽M

4 .
The domain length is set to 𝐿 = 20, initial conditions are chosen to be (𝑥1 (0), 𝑥2 (0))𝑇 = (1, 0).

For each realization, at the end of the—now deterministic—propagation, we compute 𝑃out =
𝑥2

1 (𝐿) + 𝑥2
2 (𝐿). The mean gain is defined as

𝐺2 (𝜔; 𝑁) ≡ 1
2𝐿

ln
〈
𝑃out
𝑃in

〉
, (14)

where the average is performed on the ensemble and has to be compared to 𝐺2.

3.1. Fluctuations of GVD only, 𝛽4 = 0
As a first example, we consider the effect of an ideal random DM without any FOD contribution,
i.e., 𝛽M

4 = 𝛽4 = 0. In Fig. 2(a) we show a quite short mean length 𝐿̄2 = 0.2 (large 𝐵2 = 10),
comparable to the values studied in [17]. The MI gain consists of one single sidelobe centered
around 𝜔 ≈ 2 and much broader than the conventional MI in anomalous GVD (shown as a dotted
black line for comparison), with a maximum about 50% of it. The very large ensemble yields a
very smooth 𝐺2 (solid blue line) that fits almost perfectly to the corresponding 𝐺2 (dashed red
line), apart from small 𝜔, due to finite size effects, as explained at length in [17, 21]. If a larger
length 𝐿̄2 = 1.2 is used, see Fig. 2(b), the MI sidelobe resembles to the conventional MI one, the
maximum occurs around 𝜔 =

√
2, but for a smooth tail beyond the convectional cutoff at 𝜔 = 2

and a smaller maximum value (about 70% of the convetional one).
To thoroughly assess this properties, we show in Fig. 3 the maximum point 𝜔max (a) and its

value 𝐺max (b) as a function of 𝐿̄2. We notice that both converge for 𝐿̄2 → ∞ to the conventional
MI values. The convergence of 𝜔max is much faster than that of 𝐺max. The discrepancies of this
latter at large 𝐿̄2 depend on the limited domain length.

3.2. Fluctuations of GVD only, 𝛽4 ≠ 0
As a second example, we consider the impact of constant FOD on the ideal random DM, i.e.,
𝛽M

4 = 0 but 𝛽4 ≠ 0. We take 𝐿̄2 = 1.2, as in the example reported in Fig. 2(b).
We show in Fig. 4 the impact of a positive, 𝛽4 = 0.25 in panel (a), or negative, 𝛽4 = −0.25

in panel (b), FOD. As expected, beyond the conventional low-frequency sidelobe, which stems
from the anomalous GVD segments, the nonlinear phase-matching condition in Eq. (4) leads
to the appearance of an additional MI sidelobe. In Fig. 4(a) this correspond to the position of
the high frequency sidelobe predicted by Eq. (3), by substituting 𝛽2 → −𝛽M

2 , i.e., the phase-
matching by the segments of anomalous GVD gives rise to a second sidelobe at 𝜔 ≈ 6.77, which
achieves a smaller value of 𝐺2 and is broader than in a homogeneous fiber. Moreover, the
primary (baseband) sidelobe attains a larger gain than the secondary one, at variance with the
homogeneous counterpart (compare the blue solid to the dotted black line). A similar effect is
observed in Fig. 4(b), where by substituting 𝛽2 → 𝛽M

2 in Eq. (3), we can explain the secondary



Fig. 2. MI gain as a function of detuning 𝜔 for a random GVD distribution with two
different average lengths (a) 𝐿̄2 = 0.2, (b) 𝐿̄2 = 1.2. The numerical results (solid blue
curve) are compared to the numerical estimate of Eq. (7) (red dahsed curves) and to the
conventional MI gain in a uniform anomalous GVD fiber with 𝛽2 = −1 (black dotted
curve).

sidelobe appearing at 𝜔 ≈ 7.06 (dash-dotted line). The impact of the different FOD sign on the
primary MI sidelobe and on the imbalance between the two is negligible.

3.3. Synchronous fluctuations of GVD and FOD, 𝛽4 = 0
As a third example, we let both GVD and FOD vary around a null mean value, 𝛽2 = 𝛽4 = 0, in a
synchronous way. We take 𝜌 = −0.25 to facilitate the comparison with the previous example in
Fig. 4.

We consider two different mean lengths 𝐿̄ = {0.2, 1.2}. Therefore, Fig. 5 is compared directly
to Fig. 2. For both mean lengths, the primary sidelobe at small 𝜔 is indistinguishable if FOD is
present or not, like in Fig. 4. A pair of secondary sidelobes appear and turn out to exhibit nearly
the same gain of the primary, around 50% and 70% of the conventional one, respectively, as
shown above. This is consistent with the discussion in Sec. 2: the sidelobe at 𝜔 ≈ 6.77 (along
with the primary one, see dotted black line) originates from anomalous GVD segments predicted
by Eq. (3) by substituting 𝛽2 → −𝛽M

2 , the sidelobe at 𝜔 ≈ 7.06 (dash-dotted black line) from
normal GVD segments, as predicted by Eq. (3) by substituting 𝛽2 → 𝛽M

2 . Each segment in
the link gives thus rise to an independent phase matching condition and the corresponding MI
sidelobe. The choice of 𝜌 ≥ 0 (not shown) gives obviously only the primary one. As in Fig. 2,
the sidelobes are broader for smaller 𝐿̄2.



Fig. 3. Comparison of maxima of 𝐺2 and 𝐺2 as a function 𝐿̄2: (a) the maximum points
(b) the maximal values. Dashed red lines correpond to the analytical estimates, blue
crosses to numerical results. The black dotted line in (a) represents the conventional
MI value 𝜔 =

√
2. In panel (b) this limit is 𝐺2 = 1.

3.4. Independent fluctuations of GVD and FOD, 𝛽4 = 0
We finally let both GVD and FOD vary independently around a null mean value, 𝛽2 = 𝛽4 = 0.
We take 𝛽M

4 = 0.25 to facilitate the comparison with the previous example in Fig. 5. We assume
𝐿̄2 = 𝐿̄4 ≡ 𝐿̄. We consider again two different mean lengths 𝐿̄ = {0.2, 1.2}. Therefore, Fig. 6 is
compared directly to Fig. 5. The primary sidelobe at small 𝜔 is again indistinguishable if FOD is
present or not, apart from the tails connecting it to the secondary sidelobes (in the 3 < 𝜔 < 5
range). These latter, stemming from the fluctuations of FOD, exhibit instead several peculiar
properties, quite different from those found for synchronous fluctuations. For 𝐿̄ = 0.2, a small
sidelobe occurs at 𝜔 ≈ 6.92 and is about 6 times smaller than the first one. For larger 𝐿̄ = 1.2 the
secondary sidelobe splits into two—we verify that they start to be distinughible at 𝐿̄ = 0.8 (not
shown). By comparing to the MI gain given by every possible homogeneous limit, i.e., every
combination of (𝛽2 → ±𝛽M

2 , 𝛽4 → ±𝛽M
4 )—dotted (dash-dotted) black lines for 𝛽2 < 0 (𝛽2 > 0),

respectively—it is apparent that the pair of secondary sidelobes correspond to the same nonlinear
phase-matching conditions discussed above in reference to Fig. 4(a) and 4(b), respectively, and to
Fig. 5. The independent oscillations of GVD and FOD give rise, effectively, to all the possible
phase-matching conditions being satisfied and thus to three independent maxima of 𝐺2. The
secondary lobes achieve a smaller 𝐺2 in Fig. 6(b) (54% of the value of the primary one) than in
Figs. 4 and 5(b), on account of the FOD stochasticity. As discussed in [17], larger 𝜔 are more



Fig. 4. MI gain as a function of detuning 𝜔 for a random GVD distribution with
intermediate 𝐿̄2 = 1.2 and fixed FOD. As in Fig. 2, the numerical results (solid blue
curve) are compared to the numerical estimate of Eq. (7) (red dahsed curves). The
dotted lines show the MI gain in a uniform anomalous GVD fiber with 𝛽2 = −1 and
positive (negative) FOD in (a) [resp. (b)], while the additional dash-dotted line in
panel (b) shows the MI gain in a uniform normal GVD fiber with 𝛽2 = 1 and negative
FOD. Chosen values of FOD are (a) 𝛽4 = 0.25, (b) 𝛽4 = −0.25.

sensitive to lowpass random fluctuations, because the associated wavelength is smaller and thus
comparable to the mean length. Combining random fluctuations on two parameters amplifies
this effect.

4. Conclusions

We studied a specific (lowpass) colored stochastic process, the telegraph process, as a fluctuation
of group-velocity dispersion around a zero mean value. This resembles a random dispersion-
manged fiber link. We show how the modulational instability sidebands behave as a function of
the mean waiting length between sign changes: for a short mean length the MI sidelobes are
broader and smaller than their conventional counterpart, but they converge to them for a long
mean length (several times the nonlinear length). We included also, as an additional refinement,
the effect of a constant or variable FOD. A constant FOD (pertinent if the operation point is close
to zero-dispersion point) yields an additional sideband, centered around an easily predictable
detuning. Fluctuating FOD may give rise to a pair of closely separated secondary lobes, which
correspond to the set of all the sidelobes in normal or anomalous GVD, with different FOD signs.
Similarly to the MI gain in a homogenous fiber, where even-order (2𝑛) high-order dispersion
yields a family of up to 𝑛 sidelobes of equal maximum gain, the stochastic counterpart shows



Fig. 5. Same as in Fig. 4 for random and synchronous GVD and FOD with (a) 𝐿̄ = 0.2,
(b) 𝐿̄ = 1.2. The dotted lines correspond here to the gain in a homogeneous fiber with
𝛽2 = −1, 𝛽4 = 0.25, the dash-dotted lines to 𝛽2 = 1, 𝛽4 = −0.25. The MI sidelobe
𝛽2 = −1, 𝛽4 = −0.25 is almost identical to the conventional MI shown in Fig. 2 and is
omitted.

balanced sidelobes for synchronous fluctuations. This is not the case for GVD variations around
constant FOD or independent GVD and FOD variations, where the baseband is larger than the
high-frequency sidelobes. For short correlation lengths, a single merged high-frequency sidelobe
appears for independent GVD and FOD variations. In every example, the analytical estimates
obtained by the analytical approach we employ here (after M. Gitterman’s work) match almost
perfectly with the numerical data.

A few other combinations of GVD and FOD could be analyzed, but for the sake of brevity
we decided to focus on just four of them, which we find of more practical interest. A pure
FOD fluctuation will yield a negligible MI gain, as in Ref. [17] for pure GVD, if 𝛽4 ≠ 0 or else
converge to the FOD gain profile [6], i.e., a quadratic growth for small 𝜔. Fluctuations of GVD
around 𝛽2 = 0, associated to 𝛽4 ≠ 0 and 𝛽M

4 ≠ 0 yield a proliferation of MI sidebands, satisfying
all the admissible nonlinear phase-matching conditions as explained in the present work.

We limited ourselves to the linearized NLSE, which models the initial growth of unstable
sidebands. The nonlinear stage which takes place as soon as enough energy is converted from the
pump 𝑃 to sidebands is not considered here. Several studies are devoted to nonlinear oscillators
with multiplicative noise, see for example [32, 33]. Their application to optical fibers will be the
object of a future study.

Our results may permit to tailor MI gain sidebands in optical fibers by means of stochastic
GVD fluctuations and suggest the regimes to achieve that. For example, such discrete fluctuations



Fig. 6. Same as in Fig. 5 for random and independent GVD and FOD with (a) 𝐿̄ = 0.2,
(b) 𝐿̄ = 1.2.

can be implemented by means of fiber splicing.
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