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Reductions in atmospheric levels of non-
CO2 greenhouse gases explain about a
quarter of the 1998-2012 warming
slowdown
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Xuanming Su 1,2 , Hideo Shiogama 3, Katsumasa Tanaka 3,4, Kaoru Tachiiri1, Tomohiro Hajima 1,
Michio Watanabe 1, Michio Kawamiya 1, Kiyoshi Takahashi 2 & Tokuta Yokohata 3

Theobservedglobalmean surface temperature increase from1998 to 2012was slower than that since
1951. The relative contributions of all relevant factors including climate forcers, however, have not
been comprehensively analyzed. Using a reduced-complexity climate model and an observationally
constrained statistical model, here we find that La Niña cooling and a descending solar cycle
contributed approximately 50%and26%of the total warming slowdownduring 1998-2012 compared
to 1951-2012. Furthermore, reduced ozone-depleting substances and methane accounted for
roughly a quarter of the total warming slowdown, which can be explained by changes in atmospheric
concentrations. We identify that non-CO2 greenhouse gases played an important role in slowing
global warming during 1998-2012.

Observations implied a slower global temperature increase over
1998–2012 relative to 1850–1900 (ΔT) in comparison to the warming
from 1951–2012, despite the rapid growth in greenhouse gas (GHG)
emissions during the same period1. The difference of decadal trends
(DDT), that is, the decadal trend of 1998–2012 minus that of
1951–2012, indicated a negative value. Newer temperature records
with updated sea surface temperature (SST) datasets and the infilling
of missing data in places such as the Arctic showed greater positive
trends, implying that the slowing was not as severe as previously
thought2. For example, the latest Met Office Hadley Centre/Climatic
Research Unit global surface temperature anomalies, version 5
(HadCRUT5), used by default in this study, showed an apparently
less negative DDT (-0.011 ∘C per decade) compared to the older
version of HadCRUT4.6 (-0.055 ∘C per decade) (Supplementary
Fig. 1). Such a slowing trend may differ among independent obser-
vations. Nonetheless, there is no doubt that a warming slowdown
does exist3. The Sixth Assessment Report (AR6) of the Intergovern-
mental Panel on Climate Change (IPCC) referred to this phenom-
enon as a temporary event4, primarily due to internal variability5–10

and natural forcings such as volcanic and solar irradiance3,11–16. The
strengths of internal variability or natural forcings, however, are

uncertain1,4,17,18. Reductions in methane and ozone-depleting sub-
stances (ODS)19,20 or stratospheric water vapour21 may also have
contributed, but their respective impacts have not been explicitly
calculated. Furthermore, warming slowdown cannot be described by
a single factor; rather, it necessitates an integrated influence com-
bining multiple components, such as internal variability, forcing
changes, ocean heat uptake, and insufficient observational
coverage15,22–25. Quantifications of relative contributions from these
individual components are important to interpret the causes of the
warming slowdown.

Physical climate models may insufficiently capture the internal varia-
bilityorunderestimate the response to solar irradiance change3, resulting ina
higher-than-observed ΔT during the warming slowdown period4. Statistical
models, on theotherhand, cancaptureΔTvariationsbut stronglydependon
the chosen predictors and their time lags and usually use the whole
anthropogenic influence as an input3,11,26, hindering further attributions at
the emission level. A systematic and reliable assessment of the individual
contributing factors to the warming slowdown has not been conducted to
our knowledge. Here, we combined a reduced-complexity model (RCM)
used to quantify the ΔT trends caused by individual climate forcers with a
statistical regression model to reconcile the causes with the observed ΔT.
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Attribution of anthropogenic and natural ΔT
First, we applied a normalized marginal approach27–29 to an RCM, the
Simple Climate Model for Optimization version 3.3 (SCM4OPT v3.3)30–33,
to quantify the ΔT trends for respective climate forcers (Methods). Second,
we used a regression statistical model3,11,26 to decode the impacts of
anthropogenic and natural factors. This was a twofold approach: the
regression can correct the biases in themagnitudeof the simulatedΔT, while
the relative contributions of external forcing factors and internal variability
to the observed ΔT are decomposed. To avoid overfitting, we tested a group

of statistical models with different predictors and chose the one with the
lowest Bayesian information criterion (BIC) (Supplementary Table 1). The
monthly observed ΔT was then modelled as a multiple regression of
anthropogenic factors, natural forcings, El Niño and Southern Oscillation
(ENSO), and residuals, allowing for errors in simulations and observations
(Methods). As a result, we decomposed the observed ΔT into ΔT caused by
each anthropogenic factor, such as CO2, CH4, N2O, ODS, other fluorinated
gases, aerosols and pollutants, and land use albedo, as well as each natural
factor, such as volcanic eruptions, solar irradiance, and ENSO (Fig. 1). The
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Fig. 1 | Anthropogenic and natural ΔT. aAnthropogenic ΔT. The thick red solid
line and error bars indicate total anthropogenic ΔT. bΔT caused by natural
forcings. The thick purple solid line and range represent the total ΔT induced
by natural forcings. Colour ribbons in a & b show ΔT caused by individual
factors. cΔT caused by ENSO. d HadCRUT5 and the total summed ΔT. Pear-
son’s correlation between the total sum and HadCRUT5 is shown in d. The

inset in d depicts 15-year running trends. The error bar in a and ranges in
b–d are the one-sigma produced by the ensemble of statistical regressions. Note
that the range of uncertainty may be very narrow and not represented in the
figure; see Data availability for the details. See Methods for further information
on estimating uncertainty. The warming slowdown era from 1998 to 2012 is
shaded in light grey.
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modelled ΔT and the observed ΔT showed a strong positive correlation
(r = 0.94, 1951-2018). The 15-year running trends of both variables were
consistent, as shown in the inset of Fig. 1d. This suggests that our study
successfully captured most of the changes in the observed ΔT.

Results
Methane stabilization and ODS mitigation help slow global
warming
Figure 2a–l shows ΔT attributions by source, residuals, the total sum of all
sources, and the observed ΔT HadCRUT5 to aid comparison. Gradients
indicatedby the thin solid and solidwith extendeddashed lines representΔT
linear trends from 1951 to 2012 and from 1998 to 2012, respectively.
Accordingly, to the left of the junction, if the dashed line is above the solid
line, it implies that the growth rate is slowing, and vice versa. Methane,
ODS, solar irradiance, and ENSO negatively contributed to ΔT during
1998-2012 compared to 1951-2012. The emission attributions of ΔT
agree mostly with the AR6 forcing-based estimate34 (Supplementary

Fig. 2), except for halogenated ΔT, which is approximately twice as high
as AR6. This is because our method generated a small negative ODS-
induced stratospheric ozone radiative forcing (denoted as ΔF, referring
to forcing increases above the preindustrial level) (-0.05 ± 0.03 Wm-2,
1850-2012), consistent with previous studies (ranging from -0.03 to -0.1
Wm-2 35–39). Consequently, a minor ΔF was canceled from the GHG
impact of ODS (0.31 ± 0.01 Wm-2, 1850-2012), and the net ODS ΔF was
positively larger in our results. Other studies revealed a far higher can-
cellation rate, up to 80%40,41. In this instance, the resulting net ODS effect
will be smaller than in our study.

Based on the attributed ΔT, we computed the decadal trend (Supple-
mentary Fig. 3) andDDT (Fig. 2m) for each source. Note thatDDTwas also
affected by the referred historical period; selecting a shorter period of
1970-2012 would highlight such a slowdown more clearly because ΔT
increased more rapidly throughout 1970-2012 (Supplementary Fig. 1).
However, we examined 1951-2012 for a general case as suggested in the
IPCC reports1,4.
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ENSO contributed themost to the warming slowdown, with a DDT of
-0.063 ± 0.002 ∘Cper decade, followed by solar irradiance (-0.033 ± 0.002 ∘C
per decade). Anthropogenic ODS (-0.016 ± 0.007 ∘C per decade) and
methane (-0.014 ± 0.008 ∘C per decade) also contributed to the warming
slowdown. Specifically, ENSO and solar variations diminished warming
directly with a negative decadal trend, while ODS and methane emissions
simply exhibited a smaller decadal trend during 1998-2012 compared to
that of 1951-2012. Other sources, including CO2, N2O, other fluorinated
gases, aerosols and pollutants, land albedo, and volcanic activity, showed
positive DDT, meaning that they increased faster between 1998 and 2012
than they did between 1951 and 2012. It is worth noting that theΔT of total
GHG emissions increased steadily (DDT 0.012 ± 0.015 ∘C per decade,
Supplementary Fig. 4), masking the slowdown of ODS and methane ΔT
(Supplementary Fig. 5), which is likely why previous researchmissed them.
In addition, aerosols and pollutants and land albedo (see Supplementary
Fig. 6 for the forcing trends) contributed to negative warming over
1951–2012. However, during the warming slowdown period, their down-
ward tendencies slowed and contributed to a positive DDT (see Supple-
mentary Fig. 7).

The slowdown of methane ΔT can be explained by the associated
atmospheric concentrations (denoted as ΔC). Growth in methane ΔC is
reported to have slowed from the 1980s and to have stabilized between 1999
and 200642–47, owing to the notable methane reductions in the agriculture
sector in Europe andRussia, as well as in the energy sector in Europe, Japan,
theMiddle East andRussia, before or during thewarming slowdownperiod.
These reductionsmay, in part, offset the rapid growth inmethane emissions
inChina and India (Supplementary Fig. 8)48,49. As shown inFig. 3a, theDDT
of methane ΔC simulated by SCM4OPT v3.3 presented a negative value of
-52.4 ppb per decade, indicating that methane ΔC slowed prominently
during the warming slowdown period, which partly explains the slowdown
of methane ΔT at the same time.

ODS manifested consistent DDT between the simulated ΔC (-224.9
CFC-12 equivalent ppt per decade) and the observed ΔC (CMIP6 -212.5
CFC-12 equivalent ppt per decade) (Fig. 3b) because they are well
documented46,47,50; hence, ΔC can be well captured by the model. ODS have
been effectively mitigated under theMontreal Protocol since the late 1980s,
particularly for CFC-11, CFC-12 and CFC-113 (Supplementary Fig. 9)51,
resulting in a stabilizedmixing ratio in the atmosphere. Such a tendency can
also be used to interpret the negative DDT of ODS ΔT. The ΔC of other
GHGs, including CO2, N2O and other fluorinated gases, however, con-
tinued to rise, accelerating ΔT rather than slowing it during the warming
slowdown era (Supplementary Fig. 10).

Contributions of natural forcing factors and ENSO
As shown in Fig. 4a, our natural forcing ΔT is in line with results from
previous RCMs52 as well as more complex Earth system models (ESMs)53

(for GHGs and aerosols and pollutants, see Supplementary Figs. 5&11).
Figure 4b depicts volcanic ΔF and ΔT. Although volcanic ΔF had a negative
DDT (-0.045 Wm-2 per decade), recovery from the cooling caused by large
volcanic activities in the 20th century caused a long-term negative trend
(-0.012 ∘C per decade, 1951–2012), whereas weak volcanic activity in the
1998–2012 period caused a small positive trend (0.019 ∘C per decade,
1998–2012), resulting in a positive DDT. In the case of solar irradiance
(Fig. 4c), the decadal trends for both ΔF and ΔT became slower during
1998–2012 compared to 1951–2012. Thus, we can pin at least some of the
cooling on the descending solar cycle. Regarding volcanic aerosols, in
contrast to earlier studies12,14,15, which could balance out up to 30% of
anthropogenic ΔT3, our results suggest that volcanic forcing is not
responsible for the warming slowdown. Our result also implies a relatively
large contribution from the descending solar cycle, similar to Lean (2018)3,
which mitigated approximately 36% of anthropogenic ΔT from 2001 to
2011. However, Lean (2018) also showed a small 8% cut in anthropogenic
ΔT from volcanic aerosols at the same time, possibly due to the use of
stratospheric aerosol optical depth (AOD) to estimate volcanic ΔT in her
study, which is a proxy of volcanic aerosol ΔF. The volcanic ΔF actually

presented a relatively small negative decadal trend (-0.046Wm-2 per decade,
blue thin dashed line in Fig. 4b) from 1998-2012, which could produce the
small volcanic cooling effect reported by Lean (2018). From 1998 to 2012,
the decadal trend of volcanic ΔF was negative, but the decadal trend of
volcanicΔTwas estimated to be positive, possibly due to the ocean’s thermal
inertia16,54,55.

ENSO was a major contributor to the warming slowdown, which was
mainly led by strong La Niña cooling immediately after El Niño warming
prior to 19984,5 (Fig. 4d). Because of its seasonality, ENSO contributed to the
warming slowdown in the form of an annual pulse signal (Supplementary
Figs. 12–15), whereas the descending solar cycle, ODS, and methane had a
relatively continuous and stable influence on warming slowdown. Our
result is consistent with that of Lean (2018), which signifies the largest
contribution from ENSO, with a cooling decadal trend of -0.086 ∘C per
decade from 2001-2011 (cf. -0.065 ∘C per decade from 1998-2012 in this
study, see Supplementary Fig. 3). It should be pointed out that anthro-
pogenic forcing could affect LaNiña like SST trends, potentially influencing
ENSO56–58. Nevertheless, even with the utilization ofmore intricate ESMs, it
remains challenging to identify the inherent connection. This presents a
potential avenue for further research on this subject.

Warming slowdown and other abnormal climate changes
Our approach is able to explain abnormal climate changes. We identified
five distinct troughs along the 15-year running trend in observedΔT (Fig. 5).
The 2005 trough, which occurred in the middle of the warming slowdown,
can be intuitively explained by factors with a clear downward trend, such as
methane, ODS, solar irradiance and ENSO. A weaker trough in 1994 was
likely driven by a combination of methane, ODS and ENSO, whereas a
remarkable 1987 trough was mostly produced by volcanic eruptions. In
addition, aerosols and pollutants, solar irradiance, volcanic activity, and
ENSO may have contributed to the observed ΔT troughs that occurred in
1959 and 1964, when it was deemed a global cooling phase59.

Discussion and conclusions
An important caveat is that we estimated a less negative DDT of methane
ΔC in this study (Fig. 3a),while the actualmethaneΔC (for instance,DDTof
CMIP6 ΔC -88.6 ppb per decade) might have contributed a more negative
DDT in methane ΔT. It is because we assumed that the increase in atmo-
spheric methane ΔC over the preindustrial level was mostly attributable to
the anthropogenic sources60–62. However, the methane emissions from
natural sources were not small63, and these natural sources and sinks might
also have contributed to themethaneΔCwhichwas not consideredhere due
to data availability. Furthermore, our calculations did not include the
methane emissions from ultraemitters in the oil and gas industry, which
contribute up to 12% of global methane emissions from oil and gas pro-
duction and transmission64. A more accurate study of anthropogenic and
natural methane emission budgets would help improve the reliability of the
estimates in this study.

The emission-based attribution takes chemical-physical changes in the
atmosphere into account. Methane ΔT, for example, includes ΔT produced
by atmospheric methane ΔC, stratospheric water vapour from methane
oxidation, the feedback on tropospheric ozone and on sinks of halogenated
gases, and CO2 from oxidized methane. Concerning ODS ΔT, their con-
tributions contain ΔT caused by ODS ΔC and its feedback on stratospheric
ozone and on methane sinks (Fig. 3b). A minor difference might exist
between the ΔT resulting from ΔC and the associated emissions, but their
major trends are consistent (Fig. 3, Supplementary Fig. 10). Therefore, the
slowdown of ODS and methane ΔT during the warming slowdown can be
robustly explained by their slowing trends in atmospheric ΔC. It is impor-
tant to note that the slowing trends for bothΔC andΔT inducedbyODSand
methane occurred earlier than 1998-2012, which also contributed to the
warming slowdown.

Additionally, the forcing-based attribution demonstrates that natural
forcing agents such as volcanic activity, solar irradiance, and ENSO tally
with the emission-based attribution (Supplementary Fig. 16). However,
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forcing agents from anthropogenic sources are redistributed among the
available components. For example, methane, ODS, tropospheric ozone,
and stratospheric water vapor from methane oxidation all had a negative
impact on DDT, whereas positive influences came predominantly from
CO2, N2O, HFC, stratospheric ozone, land albedo, BC on snow, aerosols,
and clouds. It should be highlighted that the forcing-based attribution for
anthropogenic sources is consistent with the emission-based approach.
Forcing-based CO2 contains contributions from both CO2 emissions and
CO2 from methane oxidation. For ODS, forcing-based attribution reflects
the effects as GHGs, whereas emission-based attribution includes both the

effects as GHGs and the effects caused by stratospheric ozone depletion,
specifically those estimated using equivalent effective stratospheric chlorine
(EESC). Furthermore, forcing-based aerosols only involve the direct effects
of sulfate, nitrate, primary organic aerosols (POA), secondary organic
aerosols (SOA), black carbon (BC), and dust. However, emission-based
aerosols cover not only the direct effects, but also the effects on tropospheric
ozone and methane lifetime with regard to the OH sink, as well as the
indirect effects from aerosol-cloud interaction (see Table S5 in ref (Su et al.
2022), SPM.5 in ref (IPCC 2013) for the relationship between emitted
compounds/emissions and forcing agents).
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Fig. 3 | Annual increase of methane and ODS ΔC and the induced ΔT. a and
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value added in the current year over the previous year. The SCM4OPT v3.3
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(Supplementary Table 2). Uncertainty is not considered in ODS ΔC because it is an
equivalent value combining a collection of compounds of ODS47. CMIP647 and
SCM4OPT v3.3 contain data for the entire evaluation period. Mean values from
1951 to 2012 and 1998 to 2012 are illustrated by thin horizontal solid and dashed
lines, respectively. The warming slowdown era from 1998 to 2012 is shaded in
light grey.
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The conception ofDDT gives ameasurable indicator of themagnitude
of change in the decadal trend. UsingDDT, we captured both direct cooling
contributions and slowing trends of ΔT in the warming slowdown. How-
ever, the DDTmay be sensitive to the chosen reference period or endpoints,
particularly if there is striking annual volatility. First, if a shorter reference
period, such as 1970-2012, or a longer reference period, such as 1951-2018,
was utilized, the amount of DDT for each factor may differ slightly. How-
ever, their contributions to the warming slowdown are robust (Supple-
mentary Figs. 17–18). Second, the 15-year running trends (Fig. 5) implied
that, for certain factors with considerable annual changes, such as volcanic
activity, solar irradiance andENSO, their annual signals are so powerful that
they may control the trend of the warming slowdown. However, for rela-
tively slow-response components suchasmethane andODS, aswell as other

anthropogenic causes, trends are consistent and persistent. As a result, the
warming slowdown is a combination of fast and slow responses driven by
both anthropogenic and natural factors.

We utilized ENSO to depict internal variability, as it exerts a greater
impact on globalΔT compared to othermodes of variability3,11,26,65. The total
sum of the DDT of individual factors converged on the observation
(Fig. 2m), explaining almost all of the ΔT slowdown during the warming
slowdown period. The use of different independent observations (Supple-
mentary Figs. 19–21) or ENSO indices (Supplementary Figs. 22–24) gave
similar results, implying that our analysis is quantitatively robust. On the
other hand, we tested other modes of variability, such as the Atlantic
Multidecadal Oscillation (AMO), the Pacific Decadal Oscillation (PDO),
the North Atlantic Oscillation (NAO), and the Dipole Mode Index (DMI)
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(Supplementary Figs. 25–28; see Data availability for the data sources). The
other modes demonstrated inferior goodness-of-fit, with lower R-squared
values in the regressions and a lower correlation between the estimated and
observed values (Supplementary Tables 4–7). Furthermore, calculations
using multiple modes such as MEI, AMO, PDO, and NAO, or two modes
with prominent impacts like MEI and AMO, showed that different modes
would alter the warming trend between 1998 and 2012 to varying degrees
(Supplementary Figs. 29–30). The multiple- or two-mode regression pro-
duced a larger residual term, although the BIC was lower (Supplementary
Table 1). The modes other than MEI implied smaller contributions to the
DDT.Our analysis suggests that the ENSO index is a better indication of the
primary annual perturbation in observed global ΔT.

Despite the presence of noticeable annual variations in the residuals,
the overall deviation from the expected values (as indicated by the DDT of
the residuals in Fig. 2) was minimal and would not impact our conclusion.
The uncertainties may result from the autocorrelation of chosen predictors
and cross-correlation among the predictors, as well as observational errors
or inaccurate depictions of the real processes3. The correlation between
simulated ΔT and observed ΔT here is higher than Lean’s (2018) statistical
method (r= 0.91 for space-based model during 1979-2017), most likely due
to the full consideration of all available factors, which were derived from a
physical RCM. This is also due to the use of the latest temperature record,
while the older versionmay overmeasure the warming slowdown, resulting

in larger residuals and lower goodness-of-fit (lower R-squared values) in the
regression (Supplementary Fig. 31, Supplementary Tables 4-7). Therefore,
our causal explanation of the warming slowdown is sound.

Combining a physical RCM and an observationally constrained
statistical model, we comprehensively evaluated the relative contribu-
tions to the warming slowdown from 1998-2012. Our results show that
carbon dioxide, aerosols and pollutants and erupting volcanoes princi-
pally accelerated global ΔT during the warming slowdown period com-
pared to 1951-2012, whereas La Niña cooling and a descending solar
cycle strongly offset the increased ΔT, accounting for approximately 50%
and 26% of the total warming slowdown during 1998-2012 compared to
1951-2012. In particular, we identified that the reduced ODS and
methane emissions also contributed approximately 13% and 11% of the
total warming slowdown, which can be explained by the recorded
atmospheric ΔC. Various factors superimposed on the timeline, slowing
ΔT between 1998 and 2012, while the ENSO alone was insufficient to
offset the warming trends caused by anthropogenic and natural forcings.
The contribution of reduced ODS and methane was comparable in scale
to La Niña cooling and the descending solar cycle, as well as the overall
downward trend exhibited by the temperature records (Fig. 2m), all of
which can be detected with instruments, either directly or indirectly.
Thus, our findings provide practical evidence for preventing global
warming by reducing GHG emissions.
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Methods
ΔT simulations
We used an RCM - SCM4OPT v3.330–33 to simulate global ΔT trends
resulting from anthropogenic factors (such as CO2, CH4, N2O, halogenated
gases (16 ODS and 23 other fluorinated gases), carbon monoxide (CO),
nitrogen oxide (NOx), volatile organic compounds (VOCs), sulfate (SOx),
black carbon (BC), organic carbon (OC), and land albedo) and natural
forcings (such as volcanic and solar irradiance). SCM4OPTv3.3was created
by updating an older version, SCM4OPT v3.233. We present a new para-
meterization for CH4 forcing

66. The methane ΔT trend in this study was
estimated using a hybrid of the new Etminan parameterization and a tra-
ditional technique as in AR567, and the associated processes and parameters
were used in the Monte Carlo simulation as below. The Etminan’s method
showeda25%higherCH4 forcing than theAR5’s one (1750-2011), resulting
in a lower DDT level of -0.015 ± 0.008 ∘C/decade (cf. -0.012 ± 0.007 ∘C/
decade using AR5’s estimation) in the final attribution (Supplementary
Figs. 32–33).

A normalizedmarginal method27,28,68,69 was applied to SCM4OPT v3.3
forΔTquantifications of climate forcers.ΔT trends inducedbynonemission
factors such as natural forcings including volcanoes and solar irradiance, as
well as human factors such as land albedo resulting from land-use change,
were quantified using a residual method: (1) one historical emulation with
all emissions and nonemission factors as input; (2) one “exclusive”
experiment for estimating land-use albedo ΔT trends with constant pre-
industrial land cover levels, and two “exclusive” experiments for estimating
natural forcing ΔT trends by deleting volcanic or solar forcings from his-
torical emulations. We compared ΔT obtained from historical and “exclu-
sive” experiments, and thedifferencesbetween the twoexperimentswereΔT
trends caused by these nonemission factors. For the remaining ΔT, the
normalizedmarginalmethodwasused toquantify the emission-inducedΔT
trends33. We assumed that the ratio of a emission’s (e) ΔT to overall ΔT,
defined as αte, is proportional to the marginal effect of e divided by the total
marginal effect. To estimate αte, two simulations were carried out for each
species: (1) one historical simulation as above and the resulting ΔT denoted
asΔTall; and (2) another identical simulation except emission e reduced by a
fraction of ϵ = 0.001 to calculate the ΔT termed as ΔTe,ϵ. Therefore, the
relative contribution αte can be obtained:

αte ¼
ΔTall � ΔTe;ϵ

P
e0 ΔTall � ΔTe0;ϵ

� � ð1Þ

ΔTe resulting from emission e can be calculated as follows:

ΔTe ¼ ΔTall � αte ð2Þ

After calculatingΔT inducedby emissions andnonemission factors,we
classified the resulting ΔT as CO2, CH4, N2O, ODS, other fluorinated gases,
aerosols and pollutants, land albedo, volcanoes, and solar irradiance, con-
sidering their inherent characteristics and annual increases since the pre-
industrial revolution.

To estimate ΔT trends induced by GHGs ΔC (Fig. 3, Supplementary
Fig. 10), we again used the above normalized marginal method for the
forcing-driven mode of SCM4OPT v3.3. We calculated the associated ΔF
fromΔC and applied ϵ = 0.001 to ΔF to obtain the trend of ΔC-induced ΔT.
The same βGHG (as below) was multiplied to estimate the final ΔT induced
by the GHG ΔC.

It is worth noting that the numbers of ODS or other fluorinated gases
used in this study differ from the compiled data or observations (Supple-
mentaryTable 2, SupplementaryFig. 9). For example, a fewODSgases (such
as CFC-13, CH2Cl2 andCHCl3) and other fluorinated gases (such as SO2F2,
C7F16, C8F18 and C2Cl4) were not included in our simulation due to data
availability. However, the warming effects from these gases are relatively
small, and our results retained almost the same total equivalentΔC trends as
the observations (Fig. 3, Supplementary Fig. 10). Therefore, our conclusions
are unaffected.

Statistical model
ENSO has larger influences on the global ΔT than other internal
variabilities3,11,26,65. We used ENSO to reflect the main changes due to
internal variability. SCM4OPT v3.3 does not replicate ENSO.We employed
a statisticalmodel to correct the biases in themagnitude of the simulatedΔT,
and distinguish ENSO influences from the observedΔT3,11,26.We tested a set
of statistical models with various predictors because the trends and mag-
nitudes of the individual factors vary and can lead to overfitting of certain
factors. Themodelwith the lowestBayesian information criterion (BIC)was
selected to prevent overfitting (Supplementary Table 1). Therefore, we
hypothesized that the observed ΔT consists of ΔT induced by categorized
elements such as anthropogenic GHG emissions, other anthropogenic
factors such as aerosols andpollutants and land albedo, natural forcings, and
ENSO. Accordingly, the observed ΔT is defined as a multiple regression
among the time series of these elements plus a residual component allowing
for errors resulting from simulations and observations:

ΔTobsðtÞ ¼ βGHGðΔTCO2
ðtÞ þ ΔTCH4

ðtÞ þ ΔTN2O
ðtÞ þ ΔTODSðtÞ

þ ΔToFGSðtÞÞ þ βnon�GHGðΔTaeroðtÞ þ ΔTlccðtÞÞ
þ βnatðΔTvolcðtÞ þ ΔTsolarðtÞÞ þ β1MEIMEIðt � τ1Þ
þ β2MEIMEIðt � τ2Þ þ β3MEIMEIðt � τ3Þ þ ResiðtÞ þ T0

ð3Þ
where ΔTobs(t) is the observed ΔT. ΔTCO2

ðtÞ;ΔTCH4
ðtÞ;

ΔTN2O
ðtÞ;ΔTODSðtÞ;ΔToFGSðtÞ;ΔTaeroðtÞ;ΔTlccðtÞ;ΔTvolcðtÞ andΔTsolar(t)

indicate the simulatedΔT causedbyCO2,CH4,N2O,ODS,otherfluorinated
gases, aerosols and pollutants, land albedo, volcanoes and solar irradiance,
respectively. βGHG, βnon−GHG and βnat are fitted coefficients for the asso-
ciated factors.MEI(t) indicates themonthlymultivariateENSO index (MEI)
taken from existing literature70. Before applying theMEI, we eliminated the
linear trend from it. βiMEI and τi (i = 1, 2, 3) represent the fitted coefficients
and the delayed months for the MEI, respectively, which were selected to
maximize the variance explained (SupplementaryTables 4-7).Resi(t) andT0
are the residuals and intercept, respectively. The time series of theΔT values
estimated from SCM4OPT v3.3 are bimonthly data, which we linearly
interpolated into monthly values before employing in the statistical model.
We applied multiple regression to the data from 1951 to 2018. The fitted
coefficients, R2 values and correlation coefficients are shown in Supple-
mentary Tables 4-7.

Uncertainties
This study considered uncertainties in historical emissions, climate model
uncertainties, and uncertainties found in various observation records. First,
four emission datasets, i.e., the Community Emissions Data System
(CEDS)48, Emission Database for Global Atmospheric Research (EDGAR)
v7.0_GHG 1970-2021 and EDGAR v6.1_AP 1970-201871,72, ACCMIP73,
and BB4CMIP74 were used to represent uncertainties resulting from esti-
mates of historical emissions. Hence, our results reflect the warming caused
by the release of GHG emissions, as well as aerosols and pollutants from
various sectors such as agriculture, commercial and residential, energy,
industrial, transport, andwastemanagement. Furthermore, the temperature
changes resulting fromaerosols andpollutants emitted by agriculturalwaste
burning, residential biomass burning, or large-scale forest and grassfires are
also incorporatedbased on the data available in these datasets.We compiled
and processed the data in the same way as in Su et al.33. When a certain
species was not available, we used equivalent emission data from a
separate dataset. These emissions were used to generate the atmospheric
ΔC and the associated ΔF, and then to estimate the global ΔT. Second, we
performed a Monte Carlo simulation with n = 1000 (see Table S4 in the
forcing study33 for the parameter sets) for the climate system to calculate
the climate model uncertainties. Third, we carried out regressions for
individual temperature records or the representative record HadCRUT5
with different ENSO indices, considering that ENSO effects and residuals
are somewhat sensitive to the temperature records and ENSO indices.
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The statistical regression was also performed using the Monte Carlo
method with n = 1000. For example, the observed value was randomly
chosen from the available dataset ensemble (for HadCRUT5 n = 200),
while the predictor variables were randomly selected from the ensemble
of SCM4OPTv3.3 simulations.

To estimate the uncertainty of aerosols presented in Supplementary
Fig. 2,we summedthe aerosols’ΔT fromAR6,namely,NOx,VOC, SO2,OC,
BC and NH3. Their uncertainties were propagated by assuming that the
individual ΔT values are independent variables that are normally dis-
tributed. Thus, their sum was also normally distributed. For example, from
X � NðμX ; σ2XÞ and Y � NðμY ; σ2Y Þ, we obtained the uncertainty of
Z=X+Y:Z � NðμX þ μY ; σ

2
X þ σ2Y Þ. A similar estimationwas used in the

AR6 calculation (https://github.com/sarambl/AR6_CH6_RCMIPFIGS).

Data availability
The data used in this analysis can be accessed online (last access for all, 22
May 2023): Coupled Model Intercomparison Project 6 (CMIP6)
(https://esgf-node.llnl.gov/projects/cmip6/); Community Emissions Data
System (CEDS) (https://esgf-node.llnl.gov/search/input4mips/); Emission
Database for Global Atmospheric Research (EDGAR) v7.0 (Global
GreenhouseGas Emissions) (https://edgar.jrc.ec.europa.eu/dataset_ghg70);
EDGAR v6.1 (Global Air Pollutant Emissions) (https://edgar.jrc.ec.europa.
eu/dataset_ap61); Coupled Model Intercomparison Project Phase 6
(CMIP6) emissions from the Integrated AssessmentModeling Consortium
(IAMC) (https://esgf-node.llnl.gov/search/input4mips/); The Atmospheric
Chemistry and Climate Model Intercomparison Project (ACCMIP)73

(https://tntcat.iiasa.ac.at/RcpDb); Carbon emissions from land use
and land-cover change75,76 (http://www.globalcarbonatlas.org/en/CO2-
emissions); Land-use change emissions from ref. 77 (https://cdiac.ess-
dive.lbl.gov/ftp/Smith_Rothwell_Land-Use_Change_Emissions/); Land-
Use Harmonization (LUH2) (https://luh.umd.edu/); Historical green-
house gas concentrations for climate modelling (CMIP6) (https://doi.org/
10.5194/gmd-10-2057-2017); National Oceanic & Atmospheric Adminis-
tration Carbon Cycle Greenhouse Gases (atmospheric concentrations of
CO2, CH4 and N2O) (https://gml.noaa.gov/ccgg/); The NOAA Ozone
Depleting Gas Index (https://gml.noaa.gov/odgi/); Advanced Global
Atmospheric Gases Experiment (AGAGE) (https://agage.mit.edu/data/
agage-data); The Global Carbon Project (GCP)78 (https://www.
globalcarbonproject.org); Global Methane Budget (https://www.
globalcarbonproject.org/methanebudget/); Hadley Centre/Climatic
Research Unit Temperature (HadCRUT) v5.0 (https://www.metoffice.gov.
uk/hadobs/hadcrut5/); Berkeley Earth (Global Temperature Data) (https://
berkeleyearth.org/data/); NOAAGlobalTemp v5.1 (https://www.ncei.noaa.
gov/products/land-based-station/noaa-global-temp); GISS Surface Tem-
perature Analysis (GISTEMP v4) (https://data.giss.nasa.gov/gistemp/);
NOAA MEI70 (https://psl.noaa.gov/enso/mei.old/mei.html); MEI from
NCEP-NCAR (https://www.webberweather.com/multivariate-enso-index.
html); Cold Tongue Index (CTI) (https://github.com/ToddMitchellGH/
Cold-Tongue-Index); “BEST" ENSO Index79 (https://psl.noaa.gov/people/
cathy.smith/best/). Atlantic Multidecadal Oscillation (AMO) (https://
www1.ncdc.noaa.gov/pub/data/cmb/ersst/v5/index/ersst.v5.amo.dat).
Pacific Decadal Oscillation (PDO) (https://www.ncei.noaa.gov/pub/data/
cmb/ersst/v5/index/ersst.v5.pdo.dat). North Atlantic Oscillation (NAO)
(https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nao.long.data). Dipole
Mode Index (DMI) (https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmi.
had.long.data). The detailed results are available to download from
(10.5281/zenodo.12514221).

Code availability
All code used in this study is available from the corresponding author upon
reasonable request.
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