N
N

N

HAL

open science

DynSplit: A Dynamic Split Learning Scheme for
5G-Enpowered Metaverse
Yunmeng Shu, Pengwenlong Gu, Cédric Adjih, Chung Shue Chen, Ahmed

Serhrouchni

» To cite this version:

Yunmeng Shu, Pengwenlong Gu, Cédric Adjih, Chung Shue Chen, Ahmed Serhrouchni. DynSplit: A
Dynamic Split Learning Scheme for 5G-Enpowered Metaverse. 2024 IEEE International Conference
on Metaverse Computing, Networking, and Applications (MetaCom), Aug 2024, Hong Kong, China.
pp.214-221, 10.1109/MetaCom62920.2024.00043 . hal-04779140

HAL Id: hal-04779140
https://hal.science/hal-04779140v1
Submitted on 12 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04779140v1
https://hal.archives-ouvertes.fr

DynSplit: A Dynamic Split Learning Scheme for
5G-Enpowered Metaverse

Yunmeng Shu*f, Pengwenlong Guf, Cédric Adjih*, Chung Shue Chen® and Ahmed Serhrouchni¥

*Shanghai Jiao Tong University, Shanghai, China
TMINES Paris, PSL University, France
iInria, Saclay Center, 91120 Palaiseau, France
§Nokia Bell Labs, Paris-Saclay, 91300 Massy, France
ﬂLTCI, Telecom Paris, ENST, Institut Polytechnique de Paris, France

Abstract—The Metaverse is a virtual world based on numer-
ous technologies, which enables users to interact socially in a
persistent online 3-D virtual environment. To generate high-level
imaginary environments, extremely low latency data transmission
and learning-based sensor data analysis are required. With the
development of 5G techniques, processing and learning methods,
both the transmission delay and high-quality scene generation
have been significantly improved in meta-applications. However,
many Metaverse devices are battery-powered, and local processes
and learning are still too costly. To address this issue, in this
paper, by taking full architectural advantage of 5G networks,
we propose a novel dynamic split learning scheme for enabled
Metaverse systems. In our proposed scheme, each neural network
is split into two segments, and the upper segment is stored
at the base station (BS) side. Thus, between two segments,
multiple pathways are featured, each with distinct compression
ratios, accompanied by a gating mechanism that intelligently
guides the selection of paths for each input data. This design
excels in adapting to diverse Metaverse applications and network
conditions, enhancing both the learning and computing phases
of split models. Simulation results underscore the efficacy of
our proposed scheme, revealing that it does not impede the
convergence of split learning models. Furthermore, the scheme
demonstrates notable performance gains in terms of communica-
tion overhead, prediction accuracy, and adaptability to resource
constraints.

Index Terms—S5G, split learning, dynamic network

I. INTRODUCTION

The Metaverse is a virtual world based on numerous
technologies, which enables users to interact in a persistent
online 3-D virtual environment. As discussed in [1], sensing
is the foundation of Metaverse. The meta equipment needs to
intelligently sense and update users’ gestures, surrounding en-
vironments, and objects that users interact with. To generate a
high-level imaginary environment, it requires learning methods
to help analyze sensor data and enhance the augmented reality
(AR) scenes [2], and the data exchange among users should
be with extremely low latency. In the past few years, with the
help of developed 5G techniques and learning methods, both
the transmission delay and the scene generation have been well
improved in meta-applications.

This work was supported by the 5G-mMTC project which was funded by
the French government as part of the “Plan de Relance et du Programme
d’investissements d’avenir”.

Nevertheless, the constraints posed by computation capacity,
energy level, and storage, particularly for battery-powered
Metaverse devices, continue to present an important chal-
lenge when it comes to execute complex model training or
inferencing [3]. In the present landscape, numerous strategies
have arisen to alleviate the substantial computational burdens.
These methods can be broadly categorized into two groups: the
development of lightweight learning models tailored to match
the resource constraints of devices, and the offloading of cer-
tain segments of the learning model from devices, redirecting
them to cloud-based or edge servers. Among these various ap-
proaches, split learning stands out as a noteworthy solution [4]
[5]. It effectively tackles the computational limitations by
decoupling a learning model into two segments and offloading
one of them to a robust remote server. Simultaneously, split
learning can preserve the privacy of user data since only
smashed data is exchanged between segments, making it a
promising solution in this context. Especially for Metaverse
applications in the context of 5G Ultra-Reliable Low Latency
Communications (URLLC) [6], 5G base stations or edge
servers near the 5G core can act as reliable remote servers
and can provide information to help meta users sense better the
surrounding environment. However, within the realm of split
learning, the significant communication overhead between the
split segments remains a major challenge for the wireless
network’s capabilities.

To tackle the challenge of communication overhead, many
research efforts have been made in the past few years. One
straightforward solution is to reduce the total bits users trans-
fer in each round or the total number of rounds [7] [8],
which is used in both federated learning and split learning
schemes. One major drawback of this solution is that it does
not guarantee the convergence of model training [9]. Thus,
many efforts like local-loss-based training [10], gradient or
activation compression [11] and neural network structural
optimization [12] have been made to improve the training
convergence and latency in split or FedSplit learning meth-
ods. However, to adapt to rich meta-applications and various
network states, case-by-case model training and optimization
are normally necessary for the techniques mentioned above.
It encourages us to develop a widely suitable streamlined
architectural framework that can adapt to a wide range of

meta-applications under different network conditions.

In this paper, we introduce a novel dynamic split learning
scheme DynSplit for 5G-enabled Metaverse systems, which
can dynamically adapt to diverse network conditions, enhanc-
ing both the learning and computing phases of split models.
Specifically, for one meta-application that requires user-side
learning, we split the neural network into two segments
and upload the upper segment to the BS. Then, multiple
pairs of autoencoders with different compression ratios are
implemented at the split layer, and a gating mechanism can
intelligently decide the compression ratio of each activation
and activate the corresponding autoencoder. The gating mecha-
nism and autoencoders are trained in a unified training process
to establish an efficient dynamic compression mechanism.
Simulation results demonstrate that our proposed scheme
maintains the original split learning model’s convergence rate.
Moreover, by dynamically compressing meshed data between
meta devices and the BS at varying rates, our proposed
scheme can substantially diminish communication overhead,
effectively optimizing the interaction between devices and the
BS and maintaining the quality of training and computation.

The rest of this paper is organized as follows. Some related
work is introduced and analyzed in Section II. We introduce
the system model and our dynamic split learning scheme
in Sections III and IV respectively. The performance of the
proposed schemes is evaluated via simulations in Section V.
Finally, conclusions are drawn for this paper in Section VI.

II. RELATED WORK

Some edge-cutting learning efficiency-improving techniques
for split learning are briefly discussed in the previous section.
Many great research efforts especially in recent years fall
into the following two categories: (i) gradient or activation
compression and (ii) dynamic neural network with early exits,
since they have the potential to adapt to heterogeneous highly
dynamic network environments.

Gradient compression techniques encompass four major
themes [13]: sparsification, quantization, low-rank approxima-
tion and gradient similarity. Sparsification aims to sparsify the
gradient tensor by setting values below a certain threshold to
zero. In this way, only the “top-k” [11] or a small portion of
randomly selected gradients [14] need to be transmitted to the
server side in each training round. Test results show that even
with a 99% sparsification ratio, a 99.42% learning accuracy
can be achieved [15]. With quantization techniques like Monte
Carlo quantization [16], nested dithered quantization [17] or
stochastic quantization [18], gradients can be compressed to
a fixed length, which can significantly reduce communication
bits and maintain a high learning accuracy. Low-rank approxi-
mation methods do the compression by factorizing the gradient
matrix into two low-rank matrices, typically smaller than the
original matrix. One representative method is PowerSGD [19],
with which the approximation is computationally light-weight
and can avoid prohibitively expensive Singular Value Decom-
position. Another method ATOMO [20] aims to minimize
the variance of quantized stochastic gradients to achieve a

low-rank approximation of the gradient. Gradient similarity
methods are designed for multiple-user scenarios, which focus
on correlations among gradients from different nodes. For
example, ScaleCom [21] proposed by Chen et al. leverages
similarity in the gradient distribution amongst learners to pro-
vide significantly improved scalability. Activation compression
can also significantly reduce the communication overhead in
split learning, typically achieved through the application of
autoencoders [22].

Besides the gradient and activation compression methods,
the dynamic neural network is another key technique that can
adapt the neural network’s structure to a particular task during
inference, ensuring high efficiency, adaptiveness, and general-
ity. Dynamics in neural networks include dynamic architecture
and dynamic parameters training. In terms of dynamic archi-
tecture, layer skipping [23], multi-task learning [24], channel
skipping [25] and dynamic routing [26] provide dynamic and
help reduce computation cost in learning procedures. Recently,
dynamic parameters training has been proposed to address the
geometric variation issue in object recognition. For example,
in [27], the convolutional weights are adjusted according to the
attention mask generated from the input feature at each layer.
And in [28] the authors instantiated one possible solution as
Deformable Kernels (DKs), which can sample weights within
the kernel space to modify the effective reception field (ERF)
while keeping the reception field unchanged.

In summary, we discussed two main solutions for enhancing
split learning efficiency: compressing intermediate data and
increasing neural network training dynamics. In the following
sections, we will explore combining these techniques to pro-
pose a dynamic compression scheme for smashed data, aiming
to improve model accuracy and reduce training complexity.

IITI. SPLIT LEARNING IN 5G METAVERSE

In this paper, we consider a simplified split learning scheme
for a 5G Metaverse system as given in Fig. 1, in which a
branch of Metaverse devices connects to a 5G BS via wireless
links. In real systems, the AR/VR headset, AR glasses, or
other types of battery-powered equipment like watches or
sensors are the most widely discussed Metaverse devices.
Thus, although with a split learning model, one major concern
is whether the battery life of the device is enough to support
long-term 5G data transmission.

ﬁ Device

-

@

i O=M{(X, 6f)
' GB=0Loss/ 00

iComputing

Result

0" =MEX, 0F)
‘

Fig. 1: Simplified 5G Metaverse communication model and an
overview of split learning and computing.

The published 3GPP Release 17 offers a solution, that
scales down the wideband 5G new radio (NR) design, reduces
the number of receive antennas at the device and limits

the duplexing mode and the modulation order during the
communication procedures. These reductions are expected to
achieve a 70% energy saving on the devices [29] for 5G
transmissions. Following the standard TR 38.875 [29], we
assume that each device is equipped with a single antenna
and the duplexing model between devices and the base station
is half-duplex FDD, which means that each device can either
transmit or receive in the one-time slot.

To implement split learning and computing within this
network, we employ a neural network architecture between
each device and the BS. In order to preserve data privacy,
the neural networks are trained locally. In this approach, each
neural network is divided into two distinct segments: the lower
segment is stored on the Metaverse device, and the upper
segment is situated at the BS. We assume that MP2 is the
device-side model and the vector §F represents its weight.
Consequently, every training iteration encompasses a device-
to-BS forward pass for transmitting the smashed data, followed
by a BS-to-device backward pass, which serves the purpose
of updating the gradients of the lower segment. This process
can be outlined as follows:

o Forward pass (inference and forward propagation): the
device first feeds the sample features X to its local model
MP and gets the intermediate output O = MP(X,08),
then transmits it to the remote model at the BS. Using
the intermediate output O, the remote model continues
and gets the final output Y.

o Backward pass (backpropagation): The BS calculates the
loss function Loss(Y,Y) and the gradients for both the
remote model GT and the local model GE. At last, G
will be transmitted back to the local model for update.

After the model training is completed, the split computing is
performed in the same way as the forward pass. Only this time,
the trained model MP is used to compute the intermediate
output O at the device side and then transmit it to the BS.
At last, the remote model at the BS continues to calculate the
result R and transmit it back to the device.

IV. DYNAMIC MULTIPATH SPLIT SCHEME

As stated in the introduction, 5G networks stand apart from
other use cases due to their distinctive focus on facilitating
sophisticated applications and accommodating an extensive ar-
ray of device types. Consequently, the adaptability of learning
methods to diverse Metaverse devices and network environ-
ments, while ensuring consistently high accuracy, emerges as
an enduring and paramount challenge.

In this section, we introduce a novel dynamic split learning
approach tailored for Metaverse devices. Our discussion is
structured to first delineate the DynSplit architecture, as refer-
enced in IV-A, followed by an exposition of our lightweight
auto-gating mechanism detailed in IV-B. Subsequently, the
manuscript will elucidate our proposed algorithm and elab-
orate on the training methodologies in the ensuing sections.

A. Dynamic Smashed Data Compression

The idea of using a dynamic deep neural network (DNN)
was first discussed for fast inferences by adding some side
branches and allowing certain test samples to exit early [12].
Thus, more features like dynamic architecture and parameters
have been discussed in the past few years [30]. However,
within the 5G Metaverse landscape, the constrained computing
capabilities of individual devices and the massive access of
Metaverse devices pose a significant challenge. Customizing
dynamic DNNs for each device independently would sub-
stantially escalate the intricacies of network configuration
and management. Consequently, the key hurdle in designing
dynamic DNN for the 5G Metaverse environment lies in es-
tablishing a versatile and streamlined architectural framework
that can seamlessly adapt to diverse applications and network
conditions.

/ Spiit model % N\

"\ mechanism /

Device side ‘Server side

\. /)

Fig. 2: The architecture of DynSplit. To adapt to diverse devices and
network conditions, we introduce two distinct models, each offering
varying options for training complexity: one with one compressless
path and one compress path (Scenario 1), while the other one is with
two compress paths with varying rates of compression (Scenario 2).
For each compress path in both models, we implement a pair of pre-
trained autoencoders, including encoders (AE) and decoders (AD),
strategically positioned at both the device and the BS sides.

Autoencoder-injection is considered a promising technique
to tackle this challenge since the bottleneck it introduces can
significantly reduce the communication overheads and help to
improve the performance of split models [31] [32] at the same
time. Even traditional autoencoders with lightweight convolu-
tional and transposed convolutional layers can contribute to
good results. We follow the setting of autoencoders as [33].
Thus, in this paper, we propose a dynamic multipath com-
pression split learning and computing scheme as illustrated in
Fig. 2. In our scheme, a DNN model is split into two parts
and stored on the device and the BS respectively. Between
these two parts, we implement multiple pathways, denoted
as pathway; for i-th paths, leveraging autoencoders with
different intermediate layers to establish an efficient dynamic
compression mechanism for both the learning and computing
phases. A gating mechanism, a module that takes a;, the
activation of [-th cut layer as input, decides which path to
take for a particular input data. Note that the path chosen by
the activation will also be used for the backpropagation.

More details about our proposed scheme including the
learning phase, the inference phase and the gating mechanism
will be presented in the following sub-sections.

B. Gating Mechanism

The gating mechanism plays an important role in our
dynamic multipath split learning scheme since the ratio dis-
tributed to different paths directly decides the communica-
tion overheads and the learning accuracy. We formulate the
ratio = 950tretnuanl which indicates that the higher the
ratio the lower thoeacompression. Thus, inspired by [34] [35],
we design a gating mechanism to decide which route to go

through for a particular data, which can be defined as:
a1 =Y Ei(w) - gi(a), (1)
i=1

where g;(a;) € {0,1} is the output of gate g; for each path ¢
using the activation at the [-layer as input and Y .-, g;(a;) =
1. E; denotes the encoder for the i-th path. Thus, the gate
module determines the path selection by assigning to the
corresponding gate g;(a) a value 1, and to all other gates g, (a)
(where j # i) a value 0. In this way, the two paths scenario
can be considered as a hard attention mechanism.

This gating layer aims to make discrete decisions by con-
sidering the relevance scores, which will be extracted through
several layers of neural networks. Rather than opting for a
simplistic strategy of selecting the maximum relevance score
to determine a particular route to go through, we consider the
gate’s uncertainty to avoid encountering rapid mode collapse,
utilizing Gumbel distribution as its key property Gumbel-Max
trick [36]. Thus, as suggested in [30], we opt to use a repa-
rameterization method Gumbel SoftMax since it can convert
hard decisions into a continuous probability distribution.

A random variable Gu follows a Gumbel distribution if it
can be expressed as Gu = p — log(—log(U)), where p is
a real location parameter and U ~ U[0,1]. According to the
GumbelMax method, if we sample K Gumbel distributions
with location parameters {p4 }55_;, the highest result among
the K samples follows a softmax probability distribution based
on its location parameter:

th K oy__ e*
P(k*™ is the largest|{ui }1i—q) =

25:1 eHr’ '

This allows us to parameterize discrete distributions using
Gumbel random variables. More precisely, if there exists a
discrete random variable G with probabilities P(G = k) o< a
and a sequence of independent and identically distributed
(ii.d.) Gumbel random variables {Gug}reqi,.. .k} With a
location of p = 0. We can sample G using Gumbel random
variables as follows:

2)

G = arg kenlﬂaxK(log ay + Guyg). 3)

In our proposed method, the sampled pathway denoted as G
is the selected route for the inference during the forward pass.
Simultaneously, the corresponding path is assigned a value of
1, while the other paths are assigned a value of 0.

Subsequently, we introduce a continuous relaxation for
(3) [37] [38] by replacing the Argmax function with a softmax
function. In this way, a sample from the Gumbel-Softmax
relaxation can be obtained as follows:

“4)

~ 1
Gy — softmax <0gak+Gwc) 7

T

where ék is the k-th element in vector G, and 7 is the softmax
temperature parameter which controls randomness. The vector
obtained G, is subsequently employed in the pathway selection
process during backpropagation.

C. Split Learning and Computing algorithms

Detailed algorithms for both learning and computing phases
are presented in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1: Dynamic split learning algorithm
Knowledge: Client ¢ has the bottom model F, the
encoder part of the bottleneck module M g, raw data
(X,Y), gating mechanism G. Server s has the top
model F and decoder part of the bottleneck module
Mp.
Initialization: Model parameters of F, F., Mg,

Mp, G.
while [> ¢. do

Client Training Algorithm: round t

At F.(X);

9' =G(A");

Smashed' < Mg (A? - gt);

Send gt, Smashed', Yt to s;

Receive VSmashed® from s;

Compute gradient Vg: (VSmashed");
Update F., Mg and G: 017! = 0% — Vel

Server Training Algorithm: round t

Receive Smashed' from c;
Vi 4 ¢ Fso Mp(Smashed");

lt — LCE'(Y;atredﬂ Yt) +)\['ralio(gt);
Compute gradient Vg l*;

Send VSmashed" to c;

Update Fy and Mp : 6511 = 0! — Vgl

end

During the learning phase, at each round ¢, the client ¢
selects a batch of raw data (Xt Y?) for activation learning
with its local model F,.. The activation A’ is then passed to
the gating G who determines the pathway to the server for
this activation. Thus, using the corresponding encoder Mg,
the activation is compressed with a set ratio, and the smashed
data Smashed® is transmitted to the server side.

After receiving the smashed data Smashed® and labels Y
from the client ¢, the server s leverages M p to decompress
Smashed' and passes the result to the server-side model
F, to generate predicted labels Y;fred. This whole procedure
at the server side is denoted as Fy o Mp in Algorithm
1. Subsequently, it computes the cross-entropy loss Log.
Thus, Lo combined with the loss of ratio £, through the
coefficient \, are used to calculate the gradient F; and Mp

at the server side. Note that £,,;, is designed to make the
system’s gate mechanism trained to control the ratio of data
passing through each path.

Then the gradient of the smashed data VSmashed" is sent
back to the client ¢, and the client computes the gradient of
the local model parameters and updates the models. The whole
learning algorithm will stop when it reaches the convergence
condition, which means that the difference in loss is smaller
than a prefixed threshold e..

Algorithm 2: Dynamic split computing algorithm
Input: X

For the client:

A+ F.(X)

9=6(A)

Smashed < Mpg(A) - g
Send (Smashed) to s

For the server:
Receive Smashed from c
Y, rea < Fs 0 Mp(Smashed)

Output: Y,.q

For the computing phase, the data X as the input first passes
through the trained local model F,. Subsequently, the gating
module G determines which encoder of Mg each activation
should go through and transmit the smashed data Smashed to
the server. The server decodes Smashed with the decoder M p
and continues the inference with its model F to obtain the
predicted label Y),cq.

The elaborated training process is listed below:

Step 1: We implement our whole system accordingly on
both the Metaverse device and the cloud server. As in split
learning scenarios, we choose to use the joint training method
for 3 modules: split model, bottleneck layer and gating mech-
anism.

Step 2: Select the appropriate ratio according to the arith-
metic memory of the displayed device and the communication
conditions.

Step 3: We use the Cross-Entropy loss and the MSE loss
for the target ratio. The equation is as follows:

L=- Zyi log(9:) + (targetr — ug)? %)

where y; is the probability of class 7 in the true distribution,

y; is the probability of class ¢ in the model’s prediction, while
targetr and pug explain the set ratio and the batch-average
ratio observed in real training.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We test our proposed multipath dynamic split learning
scheme via simulations. In order to be as close to the IoT
environment as possible, we choose the ResNet model [39]
and use the Cifar-10 [40] data set for training and testing.

1750
1500
1250 |\
1000

750

Training Loss

500

250

Epoch
— ResNet18 M2 — ResNet50 M1
— ResNet101 M2 — ResNet50 M2

(a) Convergence for different models with ratio = 0.2.

1500

1000 |

Training Loss

500

Epoch

ratio = 0.0 ratio = 0.1 ratio = 0.2 ratio = 0.3

ratio = 0.4 ratio = 0.5 rato=06 —— ratio=0.7

rato=08 —— ratio=0.9

(b) Convergence of model with different ratios with ResNet50.

Fig. 3: Convergence analysis of different models in Scenario 2.

All training and testing are performed on an old server from
the year 2018 using PyTorch. Specifically, both models are
split at the second residual block following the guidelines
provided in [33] and [41]. Additionally, each model features
two pathways. In Scenario 1, Pathway 1 lacks an autoencoder,
whereas Pathway 2 incorporates an autoencoder with a single
intermediate channel. In contrast, Scenario 2 equips both
pathways with autoencoders: Pathway 1 is designed with
twelve intermediate channels and Pathway 2 with two inter-
mediate channels. Moreover, a quantization layer is appended
subsequent to the encoders in both pathways.

To ensure a rigorous comparison, we selected the original
split learning model devoid of compression and a recently
published split learning model equipped with a solitary autoen-
coder, as cited in [42], to serve as benchmark frameworks. The
forthcoming sub-section will detail the simulation results. Note
that non-pretrained ResNet models are consistently utilized,
except in analysis where the application of pre-trained models
is explicitly examined.

B. Performance Evaluation

Model convergence: First, we evaluate the learning conver-
gence of our proposed scheme. We conduct tests with various
models and ratios, training both models for 50 epochs. Results
are illustrated in Fig. 3. Firstly, we tested both Scenarios
with different ResNets with a fixed ratio ratio = 0.2, their
convergences are given in Fig. 3a. Then we trained the model

2.25—

2.00—

1.75-

1.50 =1

1.25—

1.00 -

0.75—

0.50

1 1 1 I 1
0.0 0.2 0.4 0.6 0.8 1.0

Ratio

Communication Overheads (bytes)

(a) Communication cost for inference.

1x108 —

5x107 =

Communication Overheads (bytes)

1 1 1 1 I 1 1 1 1 1
00 01 02 03 04 05 06 07 08 09

Ratio

(b) Communication cost for training.

Fig. 4: Communication cost for inference and training.

in Scenario 2 with ResNet50 and different ratios, ranging from
0.0 to 0.9. Their convergences are illustrated in Fig. 3b. In
Fig. 3b, the curve with ratio = 0 can be considered as a com-
plete compressed scenario (2 intermediate channels), which
confirms that our proposed dynamic multipath compression
method does not delay the convergence of a split learning
model.

Communication overheads: The communication overhead
at the splitted layer remains unaffected by variations in model
size, as it is solely associated with the number of intermediate
channels in each autoencoder. Therefore we modified the
intermediate channel setting in ResNet50, set Pathway 1 with
12 channels and Pathway 2 with 2 channels. Then we launched
tests with different ratios, results are given in Fig. 4. Fig. 4a
shows the communication cost for one inference and Fig. 4b
shows the total communication overheads during the training
procedure. We can see that communication overheads are
almost linear, but the slope of the overheads is larger at ratios
greater than 0.5 than at smaller ratios. This is due to the fact
that the model tends to use a more accurate path when it is
trained with a less stringent ratio setting.

Besides, we can also confirm that the added computation
or storage cost due to our added autoencoders and the gating
mechanism is extremely low, which is lower than 0.2% (Note:
AELICL = 0.0016, with |AE], |G|, and [M| denoting the
sizes of the autoencoder, gating module, and whole model,
respectively). It means our model can adapt well to battery-
powered Metaverse devices.

Prediction accuracy: Table I illustrates the accuracy perfor-
mance of different models with various model sizes. We tested

0.98

0.96
0.94
0.92
0.90-

Accuracy

0.88-

0.86-

T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Ratio
_____ .- ... AEAccuracy for AE Accuracy for
Original ResNet channel=12 channel=1
—— Total Accuracy —— Accuracy for Path2 ~—— Accuracy for Path 1

Fig. 5: Model performance for pre-trained ResNet in Scenario 1.

3 different-sized models: ResNet18, ResNet50 and ResNet101.
It can be observed that for all models, a trade-off exists
between the communication overhead and prediction accuracy.
Hence, the allocation ratio among different paths remains
subject to optimization.

Table III illustrates the accuracy performance among differ-
ent algorithms. “Org” refers the original split learning scheme
and “12-C” denotes the single autoencoder scheme with 12
intermediate channels. As expected, the prediction accuracy
increases as the ratio increases. Next, we compare the predic-
tion accuracy with the same bandwidth constraint. Our target
bandwidth is consistent with the single autoencoder scheme
with 4 intermediate channels. Thus, in our proposed Scenario
2, we set one path with 12 intermediate channels and the other
path with 2 intermediate channels. The same bandwidth is

TABLE I: Model Accuracy for Different Non-pretrained Models of
Scenario 2

Acc Model
Ratio ResNetl8 | ResNet50 | ResNetl01
0.0 0.727 0.735 0.738
0.2 0.743 0.767 0.755
0.5 0.784 0.769 0.777
0.7 0.800 0.787 0.782
0.9 0.811 0.804 0.797
1.0 0.828 0.818 0.800

TABLE II: Model Accuracy for Different Algorithms for Non-
pretrained ResNet50

Ac Algorithms
Ra Org Scenario 1 | Scenario 2 12-C 4-C 2-C
0.0 0.735 0.735
0.2 0.767 0.765
0.5 0.828 0.769 0.778 0.793 | 0.753 | 0.715
0.7 0.787 0.789
0.9 0.804 0.798

TABLE III: Model Accuracy for Different Algorithms for Non-
pretrained ResNet50

Ac Algorithms
Ra Org Scenario 2 12-C 4-C 2-C
0.0 0.735
0.2 0.765
0.5 0.828 0.778 0.793 | 0.753 | 0.715
0.7 0.789
0.9 0.798

Discrepancy between setting ratio and result

0.08 1

o 6]
2 rer s

0.04 4
0.034

0.024

Error in Result

0.014

0.001

00 01 02 03 04 05 06 07 08 09
Ratio

Fig. 6: Data distribution ratio error.

achieved at a ratio of 0.2 (note: 12 x 0.2 4+ 2 x 0.8 = 4). Our
proposed method surpasses the single autoencoder scheme by
0.012 in terms of prediction accuracy, from 0.753 to 0.765.

A notable enhancement in prediction accuracy is evident in
Fig. 5, particularly where Scenario 1’s Pathway 2 incorporates
a single intermediate channel. Remarkably, even with a ratio
close to 0, our proposed scheme consistently outperforms the
single autoencoder scheme (0.912 compared to 0.88). This
implies that even a small portion of data passing through
Pathway 1 without compression contributes to an improvement
in the overall system’s prediction accuracy. Moreover, when
the ratio distributed to Pathway 1 increases, the total prediction
accuracy experiences a proportional increase. This substantial
improvement highlights the significant benefits stemming from
the joint training of two paths in our model.

Gating mechanism efficiency:

In our proposed scheme, we set a gating mechanism to
decide the path of each inference. Its efficiency decides
directly if our scheme can dynamically adapt to the resource
constraints in IoT scenarios. We test the efficiency of the gating
mechanism by manually changing the ratio between the two
paths, results are given in Fig. 6.

The analysis reveals that the trained model exhibits infer-
ence results wherein the distribution of data through each
path closely mirrors the predefined proportions. The maximum
observed error is approximately 5%.

We also study cases that penalize exceeding the set ratio.
We considered a loss function with an added overflow value
exceeding the set ratio, which can be represented as:

L = CrossEntropyLoss + max(ug — targetgr,0)* (6)

Fig. 7 shows the real ratio for every epoch. We can see
that most of the final restricted ratios are close to the target
ratio, with some small fluctuations possibly decreasing with
the number of epochs. That is because the penalty term added
in the loss function forces the real ratio to approach the set
one. Fig. 8 shows the training accuracy with this new loss
function. A larger fluctuation can be observed because we
jointly considered the cross-entropy loss and the penalty to

1.0
"~
0'8_\/—\/\/\/\/\/_/\/\/\/\/\/\/\—*\/\/\/
2
T i
ST AV SV Y,
©
2 044
3]
<
0.2
0.0 e
0 20 40
Epoch
ratio = 0.0 ratio =0.1 ratio =0.2 ratio = 0.3
ratio=0.4 ratio=05 —— ratio=06 —— ratio=07
— ratio=08 —— ratio=09
Fig. 7: Real ratio wave with penalty loss.
0.9
>
o 0.8
g /Ww
%] 0.7
O .
<
2 o6/
£
©
£ 0.5-
0.4+
0 20 40
Epoch
ratio = 0.0 ratio = 0.1 ratio = 0.2 ratio=0.3
ratio = 0.4 ratio =0.5 rato=0.6 —— ratio=0.7
— ratio=08 —— ratio=0.9

Fig. 8: Accuracy with loss penalty.

the exceeded ratio, which may extend the number of rounds
required for convergence.

C. Rationality Analysis

The fundamental idea driving our motivation revolves
around the concept of “simplicity” to predict with deep
learning models within certain data. The rationale behind our
choice of a gating mechanism is grounded in the principle that
“simpler” data opt for traversing a more compressed route.

The entropy of the outcome is not solely dependent on
data complexity, but also on the model’s performance. To
gauge this, we employ the average entropy computed for
the original ResNet50 as the complexity indicator for each
dataset. The average entropy values for both paths of Scenario
1 are presented in Table IV. The complexity of the data
through Pathway 2 is significantly lower than that of Pathway
1 (about half), indicating that simpler data has chosen a more
compressed path, which validates the rationality of DynSplit.

VI. CONCLUSION AND FUTURE WORK

Deploying deep neural networks in 5G Metaverse environ-
ments faces challenges due to computational capacity, energy

TABLE IV: Rationality entropy

Entropy for path
0.0021
0.0019

Complexity for data
0.0006
0.0003

Data for Pathway 1
Data for Pathway 2

consumption, and storage limitations, especially for battery-
operated devices. Existing methods like split learning and split
computing only partially address these constraints. We propose
a dynamic multipath split learning scheme for the 5G-enabled
Metaverse, featuring multiple pathways with distinct compres-
sion ratios and a gating mechanism for intelligent activation
routing. This approach leverages autoencoders for an efficient
dynamic compression framework, adaptable to various meta-
applications and network conditions. Simulations show that
our scheme maintains split learning model convergence and
significantly improves communication overhead, prediction
accuracy, and resource adaptability in 5G Metaverse scenarios.
Future research will focus on optimizing performance and
communication, potentially by integrating multiple dynamic
networks and split points to find optimal solutions within a
broader optimization landscape.

ACKNOWLEDGEMENT

A part of the work has been carried out at the Laboratory
for Information, Networking and Communication Sciences
(www.lincs.fr) and INRIA-Nokia-Bell-Labs common lab. Part
of this work has been conducted in the context of the BPI
project 5SG-mMTC; and also the Inria Challenge FedMalin.

REFERENCES

[1] F. Tang, X. Chen, M. Zhao, and N. Kato, “The Roadmap of Com-
munication and Networking in 6G for the Metaverse,” IEEE Wireless
Communications, vol. 30, no. 4, pp. 72-81, 2023.

[2] Z. Zhang, F. Wen, Z. Sun, X. Guo, T. He, and C. Lee, “Artificial
intelligence-enabled sensing technologies in the Sg/internet of things
era: from virtual reality/augmented reality to the digital twin,” Advanced
Intelligent Systems, vol. 4, no. 7, p. 2100228, 2022.

[3] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “JointDNN: An
Efficient Training and Inference Engine for Intelligent Mobile Cloud
Computing Services,” Jan. 2018.

[4] C. Thapa, M. A. P. Chamikara, S. Camtepe, and L. Sun, “SplitFed:
‘When Federated Learning Meets Split Learning,” Feb. 2022.

[51 Y. Matsubara, M. Levorato, and F. Restuccia, “Split Computing and
Early Exiting for Deep Learning Applications: Survey and Research
Challenges,” Mar. 2022.

[6] X. Lin, “An Overview of 5G Advanced Evolution in 3GPP Release 18,”
IEEE Communications Standards Magazine, vol. 6, no. 3, 2022.

[71 J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtérik, A. T. Suresh, and
D. Bacon, “Federated Learning: Strategies for Improving Communica-
tion Efficiency,” 2017.

[8] L. Li, D. Shi, R. Hou, H. Li, M. Pan, and Z. Han, “To Talk or
to Work: Flexible Communication Compression for Energy Efficient
Federated Learning over Heterogeneous Mobile Edge Devices,” in [EEE
Conference on Computer Communications (INFOCOM), pp. 1-10, 2021.

[9] L. Wang, W. Wang, and B. Li, “CMFL: Mitigating Communication

Overhead for Federated Learning,” in IEEE 39th International Confer-

ence on Distributed Computing Systems (ICDCS), pp. 954-964, 2019.

D.-J. Han, D.-Y. Kim, M. Choi, C. G. Brinton, and J. Moon, “SplitGP:

Achieving Both Generalization and Personalization in Federated Learn-

ing,” in IEEE Conference on Computer Communications (INFOCOM),

pp. 1-10, 2023.

J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient Sparsification

for Communication-Efficient Distributed Optimization,” in Advances in

Neural Information Processing Systems, vol. 31, 2018.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

(33]

[34]

[35]

S. Teerapittayanon, B. McDanel, and H. Kung, “BranchyNet: Fast
Inference via Early Exiting from Deep Neural Networks,” in 23rd
International Conference on Pattern Recognition (ICPR), Dec. 2016.
L. Abrahamyan, Y. Chen, G. Bekoulis, and N. Deligiannis, “Learned
Gradient Compression for Distributed Deep Learning,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 33, no. 12,
pp- 7330-7344, 2022.

N. Strom, “Scalable distributed DNN training using commodity GPU
cloud computing,” in Interspeech, 2015.

A. F. Aji and K. Heafield, “Sparse Communication for Distributed
Gradient Descent,” in Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 440-445, 2017.

G. Mordido, M. Van Keirsbilck, and A. Keller, “Monte Carlo Gradi-
ent Quantization,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pp. 3087-3095, 2020.

A. Abdi and F. Fekri, “Nested Dithered Quantization for Communication
Reduction in Distributed Training,” CoRR, vol. abs/1904.01197, 2019.
D. Alistarh, D. Grubic, J. Z. Li, R. Tomioka, and M. Vojnovic, “QSGD:
communication-efficient SGD via gradient quantization and encoding,”
in Advances in Neural Information Processing Systems, 2017.

T. Vogels, S. P. Karimireddy, and M. Jaggi, PowerSGD: Practical low-
rank gradient compression for distributed optimization. Red Hook, NY,
USA: Curran Associates Inc., 2019.

H. Wang, S. Sievert, Z. Charles, S. Liu, S. Wright, and D. Pa-
pailiopoulos, “ATOMO: Communication-Efficient Learning via Atomic
Sparsification,” in Proceedings of the 32nd International Conference on
Neural Information Processing Systems, pp. 9872-9883, Dec. 2018.
C.-Y. Chen, J. Ni, S. Lu, X. Cui, P-Y. Chen, X. Sun, N. Wang,
S. Venkataramani, V. Srinivasan, W. Zhang, and K. Gopalakr-
ishnan, “ScaleCom: scalable sparsified gradient compression for
communication-efficient distributed training,” in Proc. of the 34th Inter-
national Conference on Neural Information Processing Systems, 2020.
I. Manakov, M. Rohm, and V. Tresp, “Walking the Tightrope: An
Investigation of the Convolutional Autoencoder Bottleneck,” 2020.

X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez, “SkipNet:
Learning Dynamic Routing in Convolutional Networks,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018.

J. Ma, Z. Zhao, X. Yi, J. Chen, L. Hong, and E. H. Chi, “Modeling
Task Relationships in Multi-task Learning with Multi-gate Mixture-of-
Experts,” in Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, p. 1930-1939, 2018.

W. Hua, Y. Zhou, C. M. De Sa, Z. Zhang, and G. E. Suh, “Channel
Gating Neural Networks,” in Advances in Neural Information Processing
Systems, 2019.

Y. Li, L. Song, Y. Chen, Z. Li, X. Zhang, X. Wang, and J. Sun, “Learning
Dynamic Routing for Semantic Segmentation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

H. Su, V. Jampani, D. Sun, O. Gallo, E. Learned-Miller, and J. Kautz,
“Pixel-Adaptive Convolutional Neural Networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

H. Gao, X. Zhu, S. Lin, and J. Dai, “Deformable Kernels: Adapting
Effective Receptive Fields for Object Deformation,” 2020.

“Study on support of reduced capability NR devices,” Technical Report
(TR) 38.875, 3rd Generation Partnership Project (3GPP), Mar. 2021.
Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang, “Dynamic
Neural Networks: A Survey,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 44, pp. 7436-7456, Nov. 2022.

T. Guo, “Cloud-Based or On-Device: An Empirical Study of Mobile
Deep Inference,” in IEEE International Conference on Cloud Engineer-
ing (IC2E), pp. 184-190, Apr. 2018.

Y. Matsubara, R. Yang, M. Levorato, and S. Mandt, “SC2 Benchmark:
Supervised Compression for Split Computing,” Transactions on Machine
Learning Research, Mar. 2023.

J. Shao and J. Zhang, “BottleNet++: An End-to-End Approach for
Feature Compression in Device-Edge Co-Inference Systems,” June 2020.
X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez, “SkipNet:
Learning Dynamic Routing in Convolutional Networks,” in Proceedings
of the European Conference on Computer Vision, 2018.

A. Veit and S. Belongie, “Convolutional Networks with Adaptive
Inference Graphs,” May 2020.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

E. J. Gumbel, “Statistical Theory of Extreme Values and Some Practical
Applications,” Journal of The Royal Aeronautical Society, vol. 58,
no. 527, p. 792-793, 1954.

E. Jang, S. Gu, and B. Poole, “Categorical Reparameterization with
Gumbel-Softmax,” CoRR, vol. abs/1611.01144, 2017.

C. J. Maddison, A. Mnih, and Y. W. Teh, “The Concrete Distribu-
tion: A Continuous Relaxation of Discrete Random Variables,” CoRR,
vol. abs/1611.00712, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770-778, 2016.

A. Krizhevsky, “Learning multiple layers of features from tiny images,”
tech. rep., University of Toronto, 2009.

C.-Y. Hsieh, Y.-C. Chuang, An-Yeu, and Wu, “C3-SL: Circu-
lar Convolution-Based Batch-Wise Compression for Communication-
Efficient Split Learning,” July 2022.

A. Ayad, M. Renner, and A. Schmeink, “Improving the Communication
and Computation Efficiency of Split Learning for IoT Applications,” in
1IEEE Global Communications Conference, 2021.

