
HAL Id: hal-04778971
https://hal.science/hal-04778971v1

Submitted on 15 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fairness of linear regression in decision making
Vincent Cohen-Addad, Surya Teja Gavva, C S Karthik, Claire Mathieu,

Namrata Namrata

To cite this version:
Vincent Cohen-Addad, Surya Teja Gavva, C S Karthik, Claire Mathieu, Namrata Namrata. Fairness
of linear regression in decision making. International Journal of Data Science and Analytics, 2024, 18,
pp.337 - 347. �10.1007/s41060-023-00423-7�. �hal-04778971�

https://hal.science/hal-04778971v1
https://hal.archives-ouvertes.fr


Fairness of Linear Regression in Decision Making

Vincent Cohen-Addad
Google Research

vcohenad@gmail.com

Surya Teja Gavva
Rutgers University

suryateja@math.rutgers.edu

Karthik C. S.∗

Rutgers University
karthik.cs@rutgers.edu

Claire Mathieu†

CNRS, Université de Paris, IRIF
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Abstract

Ranking systems conceived on historical data are central to our societies. Given a set of ap-
plicants and the information as to whether a past-applicant should have been selected or not,
the task of fairly ranking the applicants (either by humans or by computers) is critical to the
success of any institution. These tasks are typically carried out using regression methods and
considering the impact of these selection processes on our lives, it is natural to expect various
fairness guarantees. In this article, we assume that affirmative action is enforced and that the
number of candidates to admit from each protected group is predetermined. We demonstrate
that even with this safety-net, classical linear regression methods may increase discrimination
in the selection process, reinforcing implicit biases against minorities, in particular by poorly
ranking the top minority applicants. We show that this phenomenon is intrinsic to linear re-
gression methods and may happen even if the sensitive attribute is explicitly part of the input,
or if a linear regression is computed on each each minority group individually. We show that to
better rank applicants it might be needed to adapt the choice of the regression methods (linear,
polynomial, etc.) to each minority group individually.
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1 Introduction

Fair and efficient ranking of individuals based on their achievements is the lifeblood of an efficient
company, equitable school system, and more generally of a functioning democracy. Thanks to
their simplicity, explainability, and efficiency, regression methods are at the heart of both human-
and computer-based selection and ranking processes. For example, selecting candidates for a col-
lege [1–8], for a job [9–13], or for a loan [14–20], is often done (at least as an initial filtering process)
by computing a ranking of all the candidates based on a combination of the attributes of the can-
didates, so as to give a better score to the candidates who are the most likely to be successful. In
the above contexts, the application of a candidate is summarized by a set of features represent-
ing, for example, the academic achievements, the work experience, or the financial record of the
candidate. For both human- and computer-based decisions, the success prediction is performed
according to historical data: given the performance of previously selected applicants, the predictor
may give more weight to more informative features.

An iconic example is the use of weighted average of school grades to measure academic
achievement, so as to select students at various stages of their curriculum. Thus, for selecting
students to enroll in a biology program, the predictor should give more weight to scientific sub-
jects [21].

One advantage of such a method over more advanced machine learning methods is from
the viewpoint of transparency, that is, it can be easily explained, computed, and the rules can be
published. Here we ask: Is such a method fair?

1.1 State-of-the-Art

The above question has motivated research since the 60s and the seminal work of Cleary on grad-
uation tests [22], which states that a fair regression line should fit all minorities similarly (see
also [23], and the work of Guion [24]). In the 70s, Thorndike [25] objected that the above criterion
is neither sufficient nor necessary to achieve fairness, since different groups may have different
success rates and require different regression lines. Instead, he proposes that a fair application of
linear regression should imply a fair treatment of the students, in the sense that the ratio of the
true positive plus false positive to the true positive plus false negative is the same for all student
groups (see also the more recent work by Kleinberg et al. [26]). Later, Darlington [27] showed that
the above two fairness criteria are essentially incompatible. These results inspired various new
works from a variety of research areas ranging from psychology to philosophy, with the goal of
designing quantifiable fairness criteria, see [28–36]. One important outcome of this early research
was the distinction between the intrinsic fairness of the test (whether the test is fair to all the par-
ticipants), and the usage of the test as a fair predictor for ranking and selecting students. In this
paper, we focus on the latter.

The above research sparked a broad societal debate on whether school tests, employment
criteria, or other large scale one-size-fits-all evaluation framework were perpetuating racial dis-
crimination, and how to address it (see [37]). To that end, the United States Employment Services
started a strategy called race-norming, to balance the scores of minority races [38], but it was finally
banned because of accusations of reverse discrimination [39, 40].

The increase of automated decision processes in our lives has spurred various studies on
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the impact of machine learning methods on latent social discrimination and required a new level
of awareness on these problems (see the survey of [29]). Recent work has exhibited this phe-
nomenon at large scale in various settings including justice decisions (through e.g.: the ProPublica
scandal [41, 42]; see also [43–45]). A tempting way to address this issue is to hide the sensitive
attributes (such as race, gender, sexual orientation, etc.) from the predictor (e.g., a regression
method). However, various works (see e.g.: [46, Chapter 9] and references therein) have shown
that the sensitive information is often implicitly encoded in the other features that can thus serve
as a proxy to determine the sensitive attribute. In such cases, the predictor can recover the sen-
sitive attribute (intentionally or not) and in their prediction increase the discrimination against
disprivileged groups. Thus, the recommendation has become to explicitly take into account the
sensitive attributes, but to design selection methods that use the sensitive attributes only to obtain
more accurate predictions or to achieve affirmative action, the reader may refer to [47, 48].

1.2 Our Results

First, we consider a simple theoretical decision making model and mathematically prove that the
error of a predictor based on linear regression is sensitive to the geometry of the applicant data.
Therefore, if different groups have different geometries then, linear regression would be a better
predictor for certain groups over others, and so the choice of using a linear predictor as decision-
making tool may already favor certain groups over others.

Next, we analyze the performance of various regression methods on the 1988 NELS dataset
[49]. The main advantage of regression methods for regression processes is their explainability
which makes them possible to use for ranking applicants in practice. It is indeed possible to
explain which features have led to rank a given applicant higher than another, an arguably basic
requirement for public ranking systems. In fact, regression methods encompass several natural
and common grading systems, such as for example systems that give a grade resulting from a
weighted average of grades.

We show that the geometry varies between the data of the applicants of each type. Namely,
the probabilities of success of applicants of different types are different functions of the attributes.
Since regression methods are acutely affected by the geometry of the data, it immediately implies
that the choice of the regression method has to be adapted to each group of applicants. This
reinforces our aforementioned theoretical result.

In particular, using one regression method, say linear regression, for ranking all students will
achieve poor prediction, even if applied on each group independently. Applicants from differ-
ent groups require group-specific regression methods because of the group-specific correlation
between features and success.

In a broader context, our work fits in the qualitative study of implicit bias in society. While
social and cognitive psychologists have argued for the existence of implicit or automatic bias in
various domains and individual behaviours [50–65], in many important cases questions have been
raised as to how to measure and consequently reduce the implicit bias [66–68]. Moreover, in
certain scenarios, the extent of impact of implicit bias is unclear. A case in point is the concept
of microagression, which was coined by C. Pierce in 1970, later widely popularized in [69–71] and
recently criticized in [72, 73].

Thus, while it is argued in literature that implicit biases combine with subjective organiza-
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tional decision-making practices to perpetuate racial inequality [74], we argue further that even
when if the decision making is a simple and explainable automated process, the choice of the tools
used (in this case linear regression) may lead to biased decisions (against minority groups). More-
over, our findings of bias has the added benefit of being both qualitative and quantitative which
makes it easier to identify and consequently address.

1.3 Outline of the Article

First, we discuss the basics of our study and argue mathematically how the heterogeneity of the
geometries of the minority group impact regression methods (Section 2). Then, we provide details
of the dataset that is considered for all the experiments in this article (Section 3). Next, we dis-
cuss how linear regression is a decision making tool that is less favorable to minority students by
exploring the assumption of linear relationships between variables and quantitatively estimating
the disparity in the number of influential features for minority applicants (Sections 4 and 5). Then,
we discuss the importance of understanding the underlying geometry of the data for each type
(Section 6) and propose polynomial regression as a methodology to capture this aspect of the data
(Section 7).

2 Our Message: Learning Geometry is Important!

In order to present our message in a broad and general way, we first establish some mathematical
notations.

For every d ∈ N, p ∈ R≥1 ∪ {∞} and x ∈ Rd, let ‖x‖p denote the pth-norm of x. Let
T = {T1, . . . , Td} be a set of types/attributes. Each type T ∈ T is a set which captures information
about the type. For example, T = [0, 100] if the type T represents an academic exam attribute,
or T = {male, female, non-binary} if the type T represents gender. Each candidate applicant is
thought of as a d-dimensional vector in T1 × T2 × · · · × Td, where the ith coordinate denotes the
attribute for the applicant on type Ti. Note that the attribute can represent academic grades, age,
or even membership to certain groups.

We denote the sensitive attribute types by T ∗ ⊆ T . Let T ′ := T \ T ∗ be the rest of (non-
sensitive) attributes. We further identify for every type T ∈ T ∗ a minority1 subgroup Tmin ⊂ T
with respect to the type T.

A predictor is trained on historical data, i.e., on a record of all the information (not just the
sensitive attributes) of applicants from the past and whether each of them were deemed successful
or not post the decision making process. For example, if the predictor was for determining a subset
of applicants to admit to a college, then the predictor is trained on the application information of
applicants from the past and whether each of the admitted applicants later did well in college.

Given a set of (current) applicants and a selection threshold fraction τ, a predictor – that has
no information on the future success of the given applicants – produces a ranking that aims at
maximizing the number of applicants in the top τ fraction applicants of the ranking that would

1We use the term minority group here to essentially include all subgroups that have been historically discriminated
against on the basis of type T, and does not reflect the quantitative representation of the subgroup in the total popula-
tion.
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succeed later on. The top τ fraction applicants of the ranking are then referred to as the selected
applicants.

A Type Aware mechanism is a collection of individual predictors, one for each possible col-
lection of sensitive types (i.e., consisting of one predictor for every group formed based on the
attributes in T ∗), and decisions for the subgroup of applicants whose sensitive attributes matches
the profile of the group is made by the corresponding predictor. On the other hand, a Type Blind
mechanism is a single predictor that does not have access to the entries of the sensitive types of
the applicants. For example, if race (with say 6 attributes) and gender (with say 3 attributes) were
the only sensitive set of attributes in consideration then, a type aware mechanism would have 18
individual predictors whereas a type blind mechanism would have just one single predictor.

Our Message. It has been argued in literature that Type Aware mechanisms are more fair towards
minority subgroups than Type Blind mechanisms (for example see [26]). Our main (theoretical)
message is that it is just not enough to use Type Aware mechanisms, but one should customize
each individual predictor in the Type Aware mechanism based on the features of the data of that
type. We introduce below a theoretical generating model for applicants in some decision making
process and show that the accuracy of linear regression based predictors are dependent on the
geometry of the attribute data on which they are trained. Thus, if two subgroups have different
geometry then linear regression based predictions will be more erroneous towards one subgroup.
If these subgroups have been historically discriminated against, then using linear regression only
adds to the bias against them. Indeed, in the subsequent sections, we analyze empirical data and
show that the geometry of the African-American applicants differs significantly from the rest of
the applicant pool. Moreover, we observe that linear regression is more erroneous to the subgroup
of African-American applicants (over other racial subgroups), thus reinforcing the theoretical mes-
sage in this section.

Setting. We now introduce a generative model of applicants from which a decision making pro-
cess would like to select the top 50% of the applicants (i.e., τ defined above is set to 1/2). We
assume that for all T ∈ T ′ we have T := [0, 1] and T ′ has m sets of attributes. For every fixing Γ
of the set sensitive attributes (in T ∗), we generate a corresponding population of applicants as fol-
lows. Sample N vectors in [0, 1]d uniformly and independently at random. Each of these vectors
corresponds to the non-sensitive attributes of a unique applicant who sensitive attribute profile is
fixed to Γ.

Our main theorem (proof deferred to Appendix) states that suppose the optimal predictor
(i.e., the predictor whose recall is 1) for the aforementioned group of applicants generated corre-
sponding to Γ is given by ranking the applicants based on the pth norm of their entries in T ′ (for
some p), then the error in prediction of linear regression increases with p. More formally, for any
applicant x, we assume that their success probability after selection is given by:

‖x|T ′‖p

d1/p .

Theorem 1. If we use linear regression in any type aware mechanism to select 50% fraction of applicants
from the group of applicants generated corresponding to the fixing of the sensitive attributes Γ, then the recall
of this procedure for the group would be asymptotically (as the number of attributes, applicants grows) equal
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Figure 1: A plot of the error predicted by Theorem 1, with increasing values of p on the x-axis and
the recall of the predictor on the y-axis.
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In Figure 1, we notice that for a subgroup of applicants, if the optimal predictor aligns with
the `p-norm predictor for some large p then the error of the linear regression based predictor
approaches 50% as p increases in our generative model (in fact for p = ∞, i.e., when the optimal
predictor ranks based on the maximum entry of an applicant, the error of the linear regression
predictor in our model is exactly 50%, i.e., linear regression simply makes a uniformly random
decision!).

A decision making would be particularly harmful to society if many or all of the minority
subgroups Tmin (for some sensitive type T) have their optimal predictors ranking aligning with
high `p-norms. One may interpret this supposition that in minority groups optimal predictors
prioritize exceptionalism in certain types/features over well-roundedness (see Section 6 for ad-
ditional exposition). Indeed one may argue that for applicants in minority groups, there is not
adequate grooming to make them well-rounded and balanced. On the other hand, exception abil-
ities in certain areas is mainly related to talent and can be argued is spread across groups roughly
uniformly. However, our theorem above indicates that linear regression would simply disregard
this information and would instead try to prioritize selecting balanced individuals across groups.

3 Data

The experiments in this article are based on the public-use version of the United States of Amer-
ica Department of Educations National Education Longitudinal Study of 1988 dataset [49]. This
dataset contains information for a nationally representative sample of students who entered the
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eighth grade in the fall of 1988, with a follow-up in the years 1990, 1992, 1994, and finally in
2000. More precisely, the dataset contains surveys of students reporting on school, work, home
experiences, educational resources and support, the role of parents and peers in education, neigh-
borhood characteristics, educational and occupational aspirations, and other student perceptions.

The decision that we focus on is college admission, specifically whether to admit a student
to a four-year college or university. The admit decision is only based on the predicted student
performance (college grade point average). Therefore, we limit our analysis of the dataset only
to the samples (i.e., records of students) for whom we know their college GPA at the time of
college graduation. We focus on three ethnic groups: Caucasian, Hispanic, and African American
students. The goal is to admit a certain fraction of the student applicants of each race (explicit
threshold fraction will be specified later) such that we maximize recall2 for each race.

We define a student to be successful after graduating from college if their GPA at graduation
is greater than or equal to 3.25. After this thresholding, we note that the percentage of successful
students in our sample set is higher for Caucasian students than African American students and
Hispanic students (48.62% versus 30.88% and 39.14% respectively).

4 On Assuming Linear Relationships

We would like to now understand if linear regression is biased to be a better predictor for a par-
ticular race. To address this question in the simplest manner possible, we restrict the predictor to
only access the grades extracted from the ninth grade transcripts for Math. The set of grades that
can be obtained is {3, . . . , 10}, and Grade 10 is the highest possible grade, whereas Grade 3 is the
lowest possible grade3. As part of the cleaning process, we have removed all samples which have
a missing grade in Math, after which we are left with 4,173 many Caucasian, 506 many Hispanic
and 442 many African American students in our sample set.

In Figure 2, we have a data plot capturing the fraction of successful students of each race
obtaining a particular Math grade. For example, the blue point (6, .395) with label 0.087 means
that among the Caucasian students whose Math grade in ninth grade was equal to 6 (which is
8.7% of the set of all Caucasian students), 39.5% ended up being successful in college. (The same-
color labels do not sum to exactly 1 due to rounding error.) Additionally, we included the best line
that fits the data points for each race.

The natural intuition before looking at the data is that a candidate with a higher Math grade
is more likely to succeed in college. The first observation that one might make from Figure 2 is
that this is flat out wrong for Hispanic students, and that the line fit to Hispanic students is very
poor. Any predictor using a linear relationship will be highly erroneous for Hispanic students.
Moreover, although the intuition is correct for the bulk of Caucasian students, particularly those
with grades in [7, 10], that relationship is less strong for African American students in the dataset.
Thus, linear regression carried out on this single feature will have smaller error for Caucasian
students than for Hispanic or African American students.

As a consequence, if linear regression was used as a predictor to admit students based simply

2Recall for a race is defined as the ratio of successful students admitted of that race to the total number of successful
students of that race in the pool of applicants.

3In [49], the order of the grades are reversed, i.e., Grade 3 is the highest possible grade and Grade 10 is the lowest
possible grade. We have however reversed this order for clarity of presentation.
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on the Math grade, it would reinforce the misconception that the racial minority students cannot
compete with Caucasian students. For example, consider admitting the top 10% of students of
each race. The predictor would simply then choose for each race from the pool of students who
obtained grade 10. While this selection is optimal for Caucasian students, the best strategy for the
Hispanic (resp. African American) race would have been to choose from the pool of students who
obtained grade 6 (resp. grade 8). We tentatively explain this phenomenon in the next session.

5 Quantitative Analysis of Influential Features

Here we show that the African American and Hispanic datasets have quantitatively more influ-
ential features than the Caucasian dataset. To that end, we now look at more features from the
dataset of [49]. We include grades from ninth and eleventh grade transcripts, standardized test
scores, proficiency test results, and hours spent (and accomplishment levels) of various extracur-
ricular activities. In all, we now consider 68 different features, and since the measure of perfor-
mance in each of these features were different from one another, we normalized all the scores to be
in the interval (0, 10], where 10 corresponded to the highest possible score. Furthermore, as part
of the clean-up of the dataset we set any missing information to 0.

We performed linear regression separately for each of the three groups, Caucasians, Hispan-
ics, and African Americas and learnt the coefficients of each feature for each race. The magnitude
of the coefficient of a feature represents the importance of that feature for predicting success in col-
lege, or in other words, if the absolute value of the coefficient of a particular feature (say f ) is high,
then it significantly influences the success prediction between two students who have identical
scores in all features except f .

In Figure 3, we have a plot of the number of features for each race whose coefficient (in
absolute value) given by the regressor exceeds a threshold value. For example, the coefficient of
18 features exceed .015 for Caucasians, but that number of coefficients is 38 for Hispanics and 37
for African Americans.

We observe that for any threshold value, the number of features that influence the success of
an African American or a Hispanic student is more than that for a Caucasian student, i.e., Figure 3
emphasizes that the predictors of minority students rely on a more diverse set of features. Addi-
tionally, as we demonstrated in Figure 2, linear regression is more erroneous for minority students,
and the observation that minority students also have a larger number of influential features only
adds to the total error in their prediction.

6 Geometric Interpretation of Data

Next, one might wonder about the performance of simple criterion for ranking (and admitting)
students. Consider the following two policies.

(i) For each student consider their average grade over all subjects. Rank and admit the top stu-
dents based on this average grade. This admission policy favors students with a balanced
academic record.

(ii) For each student consider their maximum grade over all subjects. Rank and admit the top
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students based on this maximum grade. This admission policy favors students who are
excellent in at least one subject.

In order to understand which of these two policies perform well, we designed the following
experiment. Let the overall set of grades of each student be represented as a d-dimensional vector,
where d is the total number of features (i.e., subjects), and each coordinate entry of the vector
represents the grade awarded to the student for that feature. For every p ≥ 1, we define the
pth score of a student as the pth norm of the vector representing the overall set of grades. Under
this representation ranking students based on the pth score where p = 1 corresponds to policy (i)
above and ranking students based on the pth score where p is infinity corresponds to policy (ii).
The transition in the pth norm of a vector from p = 1 to ∞ (or any large constant) is smooth and
therefore through this experiment we can determine which of the two policies perform better.

We perform the above experiment by focusing on four specific features of the dataset – the
Math, Science, English, and History grades extracted from the ninth grade transcripts (i.e., d = 4
above). We have cleaned the data and removed the records of all students with a missing grade
in these specific four features for this part of the experiment. As a result, we are left with 3,559
many Caucasian, 419 many Hispanic and 345 many African American students in our sample set
of which 49.76%, 40.81%, and 32.17% are successful respectively. We shall use this cleaned sample
set for the rest of the experiments in this article. Finally, we note that we did not consider the
extensive set of 68 features as in Figure 3 mainly because there is a lot of missing information in
the 68 features which we had set to 0 by default and while this fix was fine to estimate the number
of influential features, it would introduce a lot of noise for performing predictions.

We computed for every p ranging from 1 to 15 (increments of 0.05) the pth score of each stu-
dent and used it to rank them4. Then for each p, we computed the fraction of successful students
ranked in the top 50% of students for each race. We plot below the relative percentage change in
this fraction when compared to the fractional value computed using the pth score when p = 1. We
report our findings in Figure 4.

In Figure 4, we notice that policy (i) is better than policy (ii) for African American students
and the reverse is true for Hispanic students. On the other hand for Caucasian students policy
(i) is marginally better than policy (ii). Notice however that p ≈ 9 gives the optimal ranking
for African American students in this experiment, with a gain of about 3.25% in the recall. In
other words, quantitatively speaking, about 4 additional successful African American students
would benefit by using the pth score at p = 9 instead of p = 1. Therefore informally, one may
conclude that interpreting the data points of African American students in the `9-normed space
is better than in the `∞-normed space, which is in turn better than in the `1-normed space. On
the contrary, it is better to interpret the data points of Caucasian and Hispanic students in the
`1-normed space. Another conclusion that one may draw is that Caucasian students are not as
sensitive to geometric interpretation (i.e., their relative increase or decrease in recall is smaller than
the students of other races). Therefore we need to be extra careful while handling the applications
of minority races. These empirical inferences support the claims made in Theorem 1, but how may
we use this observation for decision making?

4Given the grade set is {3, . . . , 10} and that we have four subjects, it is easy to very that the ranking given at p0 = 15
is the same as as the ranking given at any p ≥ p0. In other words, the ranking at p0 is the same as the ranking at p = ∞.
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7 Polynomial Regression

Below we make a connection between algebraic tools for regression and geometric insights in
ranking to provide a better way for decision making.

Notice that given a vector x ∈ Rd, the pth norm of x can be interpreted as (pth root of) the
evaluation of the power sum symmetric polynomial of degree p in d variables on the point x.
Therefore, we can generalize the ranking experiment based on the pth scores to design a ranking
based on polynomial regression (with no interaction terms).

We perform polynomial regression (where the degree p of the polynomial varies) on the same
cleaned dataset as described in the experiment on pth score. We plot our findings in Figure 5,
where we randomly split the (cleaned) dataset into training set (50% of the dataset) and test set
(remaining 50% of the dataset). The polynomial regressor is then trained on the training set and
then we use it to predict the success probability of students in the test set. Based on this predicted
success probability of students in the test set, we admit the top 50% of the students of each race in
the test set.

Qualitatively, the findings in Figure 5 broadly agree with Figure 4. The shift in the value of p
between the two figures (from p = 9 to p = 6) which maximizes the recall for African American
students can be attributed to the following two differences between polynomial regression and pth

score based ranking. First, note that the coefficients of the monomials in polynomial regression
are not 1 but learnt from the training set (to potentially improve the ranking predictions). Second,
note that the polynomial regression we performed not only included all monomials of degree p
with no interaction terms but also lower order monomials (excluding interaction terms).

We further note that if we extrapolated back to p = 0, then we would obtain the mechanism
of just randomly ranking students (as all students would be tied with same predicted success
probability in college). A final side remark is that Figure 5 is not as smooth as Figure 4 because we
ran the regressor only on integral values of p.

8 Conclusion

Prior to our work, it was known in the community that it is fairer to use separate predictors for
each sensitive type (for example, see [26]) and we deepen the current understanding by showing
that not only should each sensitive type have its own predictor, but even the methodology needs
to be different for each type to guarantee good prediction across types. Case in point, we have
demonstrated above that polynomial regression (where the degree of each polynomial regressor
is chosen individually for each race) performs better than simply using a linear regressor for all
races.

References

[1] Brent Bridgeman, Judith Pollack, and Nancy Burton. Predicting grades in college courses:
A comparison of multiple regression and percent succeeding approaches. Journal of College
Admission, 199:19–25, 2008.

13



R
el

at
iv

e 
%

 c
ha

ng
e 

in
 r

ec
al

l f
ro

m
 p

=
1

p
1 3 5 7 9 11 13 15

−
10

−
8

−
6

−
4

−
2

0
2

4

African Americans

Caucasians

Hispanics

Figure 5: A plot of the relative change in recall for students of the three races as we vary the degree
p while performing polynomial regression.

14



[2] Julie Noble and Richard Sawyer. Predicting different levels of academic success in college
using high school gpa and act composite score. act research report series. 2002.

[3] Alyssa Nguyen, Brianna Hays, and Matthew Wetstein. Showing incoming students the cam-
pus ropes: Predicting student persistence using a logistic regression model. Journal of Applied
Research in the Community College, 18(1):11–16, 2010.

[4] Eric L Dey and Alexander W Astin. Statistical alternatives for studying college student reten-
tion: A comparative analysis of logit, probit, and linear regression. Research in higher education,
34(5):569–581, 1993.

[5] Roy D Goldman and Barbara Newlin Hewitt. Predicting the success of black, chicano, orien-
tal and white college students. Journal of Educational Measurement, pages 107–117, 1976.

[6] Joshua D Angrist and Miikka Rokkanen. Wanna get away? regression discontinuity estima-
tion of exam school effects away from the cutoff. Journal of the American Statistical Association,
110(512):1331–1344, 2015.

[7] Salvatore Corrente, Salvatore Greco, and Roman SłOwińSki. Multiple criteria hierarchy pro-
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A Proof of Theorem 1

Suppose the linear regression predictor tries to fit the population to the equation A~β = ~y, where
each row of A corresponds to the non-sensitive attributes of an applicant (i.e., each row of A is a
uniformly random vector in A) and the ith coordinate of y is given by the pth norm of the ith row
of A. Note that ~β is the vector that minimizes the least square error, ‖A~β−~y‖2.

First, we show below that ~β must have (almost) the same entry in all coordinates.

Theorem 2. As n→ ∞, with high probability 1− o(1), the optimal vector ~β = (b, . . . , b) + o(1) for some
b ∈ R .

Proof. The error ‖A~β−~y‖2
2 is equal to

n
∑

i=1
|Ai · ~β− yi|2, where yi is equal to the (scaled) pth norm

of the row vector Ai. So we have a sum of N independent identically distributed copies which by
large of large numbers tends to ∼ N · E(|Ai · ~β− yi|2). The expected value E(|Ai · ~β− yi|2) is a
quadratic form in ~β given by:

E(|Ai · ~β− yi|2) = E((
(
~βT · AT

i − yi

) (
Ai · ~β− yi

)
) = E(~βT AT

i Ai~β)− 2E(yi Ai · ~β) + E(y2
i ).

Because the form Q(~β) = E(|Ai · ~β − yi|2) = E(~βT AT
i Ai~β) − 2E(yi Ai · ~β) + E(y2

i ) is non-

negative, it has a unique minimum ~β which satisfies gradient condition dQ(~β+tv)
dt = 0 for every

vector v.
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Q(~β + tv) = E((~β + tv)T AT
i Ai(~β + tv)− 2E(yi Ai · (~β + tv)) + E(y2

i )

= Q(~β) + t
(

vTE(AT
i Ai)~β + ~βTE(AT

i Ai) · v− 2E(yi Ai) · v
)
+ O(t2).

Therefore for every v, we have

vTE(AT
i Ai)~β + ~βTE(AT

i Ai)v− 2E(yi Ai) · v = 0

⇒ 2E(AT
i Ai)~β− 2E(yi Ai) = 0.

Hence the minimizer ~β satisfies

E(AT
i Ai)~β = E(yi Ai).

If yi is any symmetric function of the coordinates of Ai (like pth norm in this case), we have
that yi Ai is vector with identically distributed coordinates, so the vector E(yi Ai) has all equal
coordinates.

If we use that Ai is vector with iid coordinates from [0, 1], then E(AT
i Ai) is given by a matrix

M with the (r, s) entry given by Mr,s = E(XrXs), where Xi are iid uniform variables on [0, 1].

So we have M = 1
3 I + ( 1

4 J − 1
4 I) = 1

12 I + 1
4 J, where J is the all ones matrix, and thus we see

that ~β satisfies ~β = (b, b, · · · , b), where b
12 +

db
4 = E(yiXr).

Thus, we have that the minimizer of this quadratic form is of the form ~β = (b, b, · · · , b) for
some b ∈ R. Therefore with probability 1− o(1), the minimizer ~β = (b, b, · · · , b) + o(1) (Because
the quadratic form is very close to this expectation quadratic form with high probability, and the
minimizer doesnt change under slight perturbations to the form)

Therefore, informally, we may conclude that linear regression simply selects the top 50% of
the applicants based on their `1 norm.

Thus ranking applicants using regression is equivalent to ranking according to Ai · ~β which
is proportional to the ∑d

j=1
~βAi(j) which essentially the `1 norm of Ai. (We are going to rank

according to ~β = (b, b, · · · , b) + o(1), so the ranking which is determined by the volumes of the
region ~β · X > τ is essentially equal to the volumes (b, b, · · · , b) · X > τ- which corresponds to the
rank by `1 because in this case (non-negative entries) ‖X‖1 = (1, 1, · · · , 1) · X.)

Let Sp be a ranking of vectors in [0, 1]d based on their `p-norm. Let Sτ
p be the restriction of the

ranking to the top τ fraction of applicants. The value of |Sτ
1 \ Sτ

p| gives us the recall of the theorem
statement and this is calculated below.

Theorem 3. Let S be a uniformly random sample of N points in [0, 1]d. Let p ∈ R≥1 ∪ {∞}. After
ranking the points in S by their `1-norm (resp. `p-norm), let S1 ⊂ S (resp. Sp ⊂ S) be all points in S
ranked in the top half (breaking ties randomly). Then for large enough d, n we have that

|Sp ∩ S1|
|S1|

∼ 1−
tan−1

(√
(p+2)2

6p+3 − 1
)

π
.
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Proof. By taking n large enough, it is enough to consider the case where you pick a point x ran-
domly from [0, 1]d and compute the following probability:

Pr
x∼[0,1]d

[
‖x‖1 ≥ m1 and ‖x‖p ≥ mp

]
,

where m1 (resp. mp) is the median of the distribution of ‖x‖1 (resp. ‖x‖p). Asymptotically, for large

d, we have mp ∼ p
√

d
p+1 . If x := (x1, . . . , xd) then the above probability is essentially the following:

Pr
x∼[0,1]d

[
x1 + · · ·+ xd ≥ m1 and xp

1 + · · · x
p
d ≥ mp

p
]

.

For every i ∈ [d], let yi := (xi, xp
i ). Then the probability can be seen as:

Pr
x∼[0,1]d

[y1 + · · ·+ yd ∈ R] , (1)

whereR := [m1, ∞)× [mp
p, ∞). Also note that for every i ∈ [d], we have

E
x∼[0,1]d

[yi] =

(
d
2

,
d

p + 1

)
∼ (m1, mp

p).

Thus, applying central limit theorem to all the yis, as d→ ∞, we have:

1√
d
· ∑

i∈[d]
(yi −E [yi])→ N (0, Σ),

where Σ is the covariance matrix of yis given by E[yi
Tyi]. We can thus compute Σ to be:

Σ = E

[
x2

i xp+1
i

xp+1
i x2p

i

]
=

[
1/3 1/p+2

1/p+2 1/2p+1

]
.

So the probability in (1) converges to

Pr
Y∼N (0,Σ)

[Y ∈ [0, ∞)× [0, ∞)].

Note that the distribution of N (0, Σ) is given by

exp
(
− 1

2 (Y
TΣ−1Y)

)
2π · |det Σ|

Moreover, we have the inverse of Σ is:

Σ−1 =
1

1
3(2p+1) −

1
(p+2)2

[
1

2p+1 − 1
p+2

− 1
p+2

1
3

]
.

Thus, using the integral
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∫ ∞

0

∫ ∞

0
exp(ax2 + bxy + cy2) dx dy =

1
2
√

4ac− b2

(
π + 2 arctan

(
b√

4ac− b2

))
,

we can compute probability to be the expression given in the theorem statement.
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