Personalized bundle recommendation using preference elicitation and the Choquet integral - Archive ouverte HAL
Article Dans Une Revue Frontiers in Artificial Intelligence Année : 2024

Personalized bundle recommendation using preference elicitation and the Choquet integral

Résumé

Bundle recommendation aims to generate bundles of associated products that users tend to consume as a whole under certain circumstances. Modeling the bundle utility for users is a non-trivial task, as it requires to account for the potential interdependencies between bundle attributes. To address this challenge, we introduce a new preference-based approach for bundle recommendation exploiting the Choquet integral. This allows us to formalize preferences for coalitions of environmental-related attributes, thus recommending product bundles accounting for synergies among product attributes. An experimental evaluation of a dataset of local food products in Northern Italy shows how the Choquet integral allows the natural formalization of a sensible notion of environmental friendliness and that standard approaches based on weighted sums of attributes end up recommending bundles with lower environmental friendliness even if weights are explicitly learned to maximize it. We further show how preference elicitation strategies can be leveraged to acquire weights of the Choquet integral from user feedback in terms of preferences over candidate bundles, and show how a handful of queries allow to recommend optimal bundles for a diverse set of user prototypes.
Fichier principal
Vignette du fichier
frai-07-1346684 (1).pdf (2.04 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-04778933 , version 1 (12-11-2024)

Licence

Identifiants

Citer

Erich Robbi, Marco Bronzini, Paolo Viappiani, Andrea Passerini. Personalized bundle recommendation using preference elicitation and the Choquet integral. Frontiers in Artificial Intelligence, 2024, 7, ⟨10.3389/FRAI.2024.1346684⟩. ⟨hal-04778933⟩
7 Consultations
2 Téléchargements

Altmetric

Partager

More