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ABSTRACT 

This paper is concerned with the dynamic instability of 
an internally damped rotating composite shaft. A 

tridimensional homogenized finite element beam model, 

taking into account both internal damping and coupling 

effects, is developed and, then used to evaluate natural 

frequencies and instability thresholds of the rotating 

structure. The influence of laminate parameters: stacking 

sequences, fiber orientation on the natural frequencies and 

the instability thresholds of the shaft is analyzed. First, these 

parametric studies show that shaft instability thresholds can 

be very sensitive to laminate parameters. Then the influence 

of coupling effects on the instability thresholds is 
investigated. 
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INTRODUCTION  

Composite materials have interesting properties such as 

high strength to weight ratio, compared to metals, which 

make them very attractive for rotating systems. Attempts are 

being made to replace metal shafts by composite ones in 

many applications: drive shafts for helicopters, centrifugal 

separators, and cylindrical tubes for the automotive and 

marine industries (Zorzi and Giordano [1], Darlow [2], 

Gupta and Singh [3, 4, 5], Chatelet [6]). They also provide 

designers with the possibility of obtaining predetermined 
behaviours, in terms of position of critical speeds, by 

changing the arrangement of the different composite layers: 

orientation and number of plies (Bauchau [7], Gubran and 

Gupta [8], Chatelet [6] and Pereira [9]).  

On the other hand, these materials have relatively high-

damping characteristics. For a rotor made with composite 
materials, internal damping is much more significant than 

when associated with a metal rotor. Unfortunately, such 

damping may cause instability as shown by Wettergren [10].  

Accurate prediction of damping characteristics of rotor 

systems is therefore fundamental in the design of rotating 
machines as it provides estimations on safe-ranges of speeds 

of rotation. Over the last few years, many studies have 

focused on predicting critical speeds, natural frequencies, 

unbalance responses and, in particular, instability thresholds. 

Newkirk [11] observed that rotor-disk systems would 

undergo violent whirling at the first natural frequency at 

speeds above the first critical speed. Kimball [12] showed 

that internal damping destabilizes the whirling motion if the 

rotation speed of the rotor exceeds the first critical speed. In 

addition, Bucciarelli [13] showed that the instability 

criterion based on the ratio of energy dissipated between 
internal and external damping is inaccurate and that internal 

forces can produce instability by coupling spin and whirl 

motions.  

Classical results have been obtained and showed that 

rotor stability is improved by increasing external damping, 

whereas increasing internal damping may reduce the 

instability threshold. However, most of the published studies 

deal with metal rotating structures and remain exclusively 

numerical without precise estimations of internal damping. 

Several finite element formulations have been performed 

for the analysis of composite shafts. These formulations are 

based on homogenized beam and shell theories. The 
equivalent modulus beam theory (EMBT), which is widely 

used for the dynamic analysis of composite shafts, was 

firstly introduced by Tsai [14]. With this approach, 

equivalent longitudinal Young and in-plane shear moduli are 

identified by using laminate theory for symmetrical stacking. 

Then, classical beam theory can be used to model the shaft, 

see Pereira [9] and Singh and Gupta [4]. This approach has 

many limitations which are summarized by Singh and Gupta 

in [3]. They studied the natural frequencies and damping 

ratios in flexural modes of cylindrical laminate tubes and 

compared shell and EMBT models for symmetric laminate 
stacking, concluding that in the case of the tube 

configurations usually used in composite shaft applications, 

the differences in flexural frequencies between the two 

models are negligibly small.  
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Using shell theory in [15], the same authors, showed that 

the modal loss factors are more sensitive to parametric 

(laminate stacking, angle orientations, etc.) changes than 

frequency values. They also presented in [5] a comparison 

between EMBT theory and Layerwise Beam Theory (LBT) 

for symmetric and asymmetric stacking. They showed that 

LBT is more efficient that EMBT because it takes into 

account the effect of changed stacking, thickness shear 

deformation and bending-stretching coupling. However, 

LBT requires the development of a complex beam element 
with a high number of degrees of freedom dependent on the 

number of layers, making the method too expensive. 

Recently, Gubran and Gupta presented in [8] a modified 

EMBT method which takes into account the effects of a 

stacking sequence and different coupling mechanisms. They 

considered a Graphite/Epoxy shaft simply supported on rigid 

bearings and compared the first three frequencies with those 

obtained by using the LBT method. In spite of its simplicity, 

the natural frequencies obtained using modified EMBT 

excluding different coupling effects agree well with those 

obtained using LBT and those reported in the literature. In 
these cited works, the internal damping is not often taken 

into account, except in [3] where viscoelastic material 

damping is assumed. 

In this paper, a three dimentional homogenized beam is 

introduced in order to be used to analysis frequencies and 

instability thresholds. In this approach, only beam theory 

assumptions are considered. Then coupling effects induced 

by the fiber orientations apprears in the equation of 

equilibrium. These coupling effects concern: longitudinal 

and torsion deformation and out of plane bending. In this 

approach, the orthotropic effect of the internal damping of 

each ply is taken into account. 

In the following, an outline of the formulation is 

presented. In section 2, equations of motion of 

rotordynamics with and without internal damping are 

presented and compared. In section 3, the orthotropic 

properties of a layer component of a composite shaft are 

presented, and are expressed in the beam coordinate system. 

A homogenized beam theory is developed; elastic energy 

and dissipative virtual work are given. Then, in section 4, 

the homogenized beam parameters are expressed as a 

function of the layer parameters. Numerical applications are 

presented in section 5. In the first one, the approach is 
validated via an isotropic metallic shaft presented in Lalanne 

[16]. The second application is that presented in the work of 

Pereira [9]. Shaft frequencies and instability thresholds 

regarding stacking order and fiber orientations are outlined. 

These results are also compared to those obtained from a 

classical equivalent modulus beam theory. The third 

application considering a symmetrical and balanced 

configuration illustrates the influence of coupling effects on 

the estimation of the instability threshold.  

ROTORDYNAMICS 

In the fixed frame, the following equations of motion 

are associated with a rotor made of an isotropic material 

(Lalanne [16]):  

  (1) 

Where [M] is the symmetric mass matrix, [C] the 

external damping matrix, [G(W)] is the global asymmetric 

matrix including an anti-symmetric gyroscopic matrix 

(function of W speed of rotation) and a frequently 

asymmetric matrix due to the characteristics of the bearings, 

[K] is the elastic stiffness matrix that is frequently 

asymmetric due to the characteristics of bearings, {F(t)} is 

the generalized force vector ,  and  are 

respectively nodal acceleration, velocity and displacement 

vectors. Taking into account the material’s dissipative 

effects gives two other matrices associated with internal 

damping, as shown in Sino [17]:  

	 (2)	

where [Ci] is the internal damping matrix and [Ki(W)] a 

stiffness matrix which depends on the internal damping and 

also on the rotational speed W. The anisotropic properties of 

composite materials and their lightness can be used to 

optimize composite shafts in order to improve their dynamic 

behavior. Compared to metals, composite materials have 

higher damping capacities which can induce a destabilizing 

effect on the rotor motion. When modeling composite rotors 

with the equivalent modulus beam theory, equation is 

considered directly. However, as mentioned earlier, this 

approach is based on symmetric stacking laminate theory 

and cannot take into account the influence of layer stacking 

order. In the following, a more general homogenized beam 

model is proposed.  

COMPOSITE ROTOR 

The shaft studied can be obtained by wounding several 

plies of embedded fibbers on a mandrel, as shown in figure 

1.  

 

Figure 1: Composite Rotor 

Each ply has an orthotropic mechanical behavior, as 

shown in figure 2.  

 

Figure 2: Plan of ply  
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The generalized Hooke’s law for an orthotropic material 

is written as follows:  

    or    (3) 

where { } and { } are respectively the stress and 

strain fields, [Q] and [S] are respectively the material 

stiffness and compliance matrices. Only the expression of 
the compliance matrix will be developed here. The stiffness 

matrix can be obtained by considering that [Q] = [S]-1. When 

linked to the orthotropic axis, Hooke’s law takes the 

following form:  

(4) 

where (1, 2, 3) are the orthotropic axes. 1 is the fiber 

direction, 2 is the direction transversal to the fibers in the ply 

and 3 is the perpendicular direction to the ply. The fiber 

direction 1 makes an angle F with respect to the x-axis. 

Considering transversaly isotropic material, the following 

parameters have to be identified for each ply: E1 and E2 = E3 

Young moduli in the orthotropic axes; G23, G13 = G12, 

transversal shear moduli, and n21 = n13 Poisson’s ratios.  

The behavior of a viscoelastic composite material in 

harmonic steady-state motion can be described by the 

complex constitutive relation. Assuming cyclic loading, the 
complex stress component is written as:  

  (5) 

with ,  is the damping matrix of the ply and j 

is the imaginary unit. The dissipative properties of a ply can 

also be expressed by using the specific damping capacities 

matrix [Y]. Usually energy dissipation in solids is 

characterized by the relative energy dissipation which is 

defined as the ratio of the energy losses DW in a unit volume 

of a body, to the elastic energy W under a given stress-strain 

state, Zinoviev [18]:  

  (6) 

where  is the damped compliance matrix. The 

composite ply has three main directions of specific damping 

capacity, which can be expressed by the following matrix.  

 (7) 

Here yii are the specific damping capacities associated 

longitudinal effects and yij are those associated with the 

transversal shear effect. These coefficients can be identified 

experimentally. The damping matrix [h] can be linked to the 

specific damping capacity as follows: 

  (8) 

Consequently, the damped material stiffness matrix  is 

expressed as a function of the specific damping capacity as 

follows: 

  (9) 

Consider the cylindrical coordinate system (x, r, q) as 

mentioned figure 1.  Each ply p is characterized by the angle 

Fp between the shaft axis x and the fiber axis 1 axes. The 

stress-strain relation in this chosen cylindrical coordinate 

system can be written as:  

  (10) 

Where the transfer matrix is given by: 

  (11) 

with c = cos(Fp) and s = sin(Fp). Then, the stiffness matrix 

takes the following form and coupling terms appear.  

  (12) 

Let’s consider a multilayered composite shaft made of N 

orthotropic layers. If the stacking sequence is symmetric the 

shaft has a typical beam behavior and can be modeled by 

using Timoshenko beam theory. If the stacking sequence is 

nonsymmetric, mechanical coupling effects such as bending-

stretching, twisting-stretching and shear-stretching will be 

present. In this cylindrical coordinate system, the beam 
theory assumption leads to the following equality: 

  (13) 

Thus, the stress strain relation can be written as follows: 

  (14) 

The components are easily obtained from the 

equation (11) by considering the above assumption. The 
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relation (12) can be written in the Cartesian coordinate 

system of the shaft as follows: 

 (15) 

With m=cos(q), m=sin(q), and the angle q is the second 

coordinate of the cylindrical coordinate system. 

Let’s consider a beam theory to model the composite 

rotor illustrated in figure 3. Thus the shaft is modeled as a 

beam with a constant circular cross-section. The finite 

element considered here has 6 degrees of freedom for each 

node: three translations u, v and w and three rotations qx, qy 

and qz. The continuous displacement field at material points 

along the rotor cross-section is described as follows:  

  (16) 

Hence, the deformation field has the following form:  

  (17) 

Consequently, for each ply k of the rotor cross-section, 
the stress-strain relation is written as: 

  (18) 

Where:  (19) 

The virtual elastic and dissipative work has the following 

expression: 

 (20) 

where S is the cross section. 

HOMOGENIZATION 

The rotor has constant geometric properties along its 

longitudinal x-axis. The homogenized mechanical 

characteristics are extracted from equations (16) to (20) by 

evaluating the integrals over the cross-section. We denote by 

the deformations associated to the x-axis such that: 

  (21) 

And by  the resulting forces and moments acting on the 

x-axis such that: 

  (22) 

Then the elastic and dissipatif energies can be written as 

follows: 

  (23) 

Where: 

  (24) 

  (25) 

  (26) 

With: 

  (27) 

Where  are the cofficient of the matrix for the kth ply. 
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the coefficients  are replaced by those of . The terms 
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The matrix  expresses the constitutive 

homogenized stiffness of the shaft. Notice the existences of 

coupling coefficients , which vanish when the materials 

are isotropic or when the stacking sequences of the shaft is 

symmetric. The matrix  expresses the damped 

stiffness; it is antisymmetric and will induce instability in 

the shaft. The matrix  expresses the damping effect. 

Using these matrices in the finite element formulation 

we derive the matrices [K], [Ki] and [Ci] in the formulas (2). 

In this paper we cannot details the finite element 

formulation, it will be included in a forthcomming paper. 

APPLICATIONS 

Metallic Shaft with 3 discs 

The objective of this paragraph is to validate the 

proposed method with a shaft made of identical metallic 

plies. The rotor, shown Figure 4, is described in Lalanne 

[16]). 

 

Figure 4: Rotor model with three rigid disks 

The rotor uses 13 shaft finite elements of the same 

length. The data are:  

L1 = 0.2m, L2 = 0.3m, L3 = 0.5m, L4 = 0.3m.  

The shaft cross-sectional radius is 0.05m. The discs are 

given in Table 1. 

Table 1: Discs Data 

Disks D1 D2 D3 

Thickness      m 0.05 0.05 0.06 

Inner radius   m 0.05 0.05 0.05 

Outer radius  m 0.12 0.2 0.2 

The discs and the shaft are made of steel (E = 2e11 

N/m², r = 7800 kg/m3, n = 0.3). To respect isotropy of steel, 

the rotor is constituted by 10 identical plies of same 

thickness, with fiber orientation F0°. 

The two bearings are assumed to be similar and 

characterized by: 

kyy=5 107 N/m , kzz= 7 107 N/m, 

cyy = 5 102N/m/s, czz = 7 102N/m/s. 

The Figure 5 presents the Campbell diagram obtained 

thanks to the three dimensional proposed method. This 
graph shows the evolution of the thirteen first frequencies as 

function of the speed of rotation. As we can see, gyroscopic 

effects are only noticeable for the bending modes (solid 

lines). Frequencies of Torsion (-. Lines) or Longitudinal (._. 

lines) modes stay constant whatever the rotation speed W. 

Only the first order line corresponding to the first engine 

order is represented.  

 

Figure 5: Campbell Diagram  

The Table 2 compares the frequencies calculated with a 

one dimensional in-house code Rotorinsa® [19] with those 

obtained with the 3D method at 25 000 rpm. Here FW 

means Forward Whirl; BW backward Whirl. Contrary to 

Rotorinsa® (considering only a beam element with only four 

degrees of freedom (2 translations and two rotations)), the 

proposed method allows to identify torsion and 
traction/compression modes.  

Table 2: Identified Frequencies at 25000 rpm. 

frequencies Nature Rotorinsa 3D 

Model 
e(%) 

1 1BW 55.41 55.67 0.47 

2 1FW 67.19 67.01 0.27 

3 2BW 157.90 158.45 0.34 

4 2FW 193.64 193.45 0.10 

5 3BW 249.87 251.07 0.47 

6 1T - 254.01 - 

7 3FW 407.53 406.31 0.29 

8 4BW 446.85 450.53 0.83 

9 5BW 623.11 627.42 - 

10 1L - 636.73 0.69 

11 4FW 715.22 710.14 0.71 

12 2T - 712.84 - 

  

The example illustrates with very good accuracy the 

capabilities of the method. Now, it can be applied to a real 

composite structure. 

Composite Shaft with 2 rigid discs 

In rotordynamic analysis, in order to emphasize the 

influence of internal damping and coupling effects on the 

instability thresholds, the Campbell diagram and instability 

thresholds are determined for a rotor made of a wounding 

shaft for any configuration of the stacking sequence. The 
structure, proposed by Pereira [9], is a composite shaft with 

two rigid steel rigid disks supported by two bearings at the 

ends as represented in Figure 6. 
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• Rotor : L=1.2m, Do=0.096m, e=0.008m 

• Disc	:	Di=0.096m,	Do=0.3m,	h=0.05m	

• Composite	:	8	layers	carbon/epoxy	

	

Figure 6: Rotor in wounding shaft with two rigid disks 

Anisotropic bearings stiffness characteristics are 

described in Table 3 (considered without external damping). 

The material proprieties of each ply (carbon/epoxy) are 

summarized in Table 4 

 

Table 3: Stiffness data of the anisotropic bearings 

 Kxx 

(N/m) 

Kzz 

(N/m) 

Kxz 

(N/m) 

Kzx 

(N/m) 

Anisotropic 

bearings 

1.107 1.108 0 0 

 

Table 4: Material data of the shaft 

Material E1 

(GPa) 

E2 

(GPa) 

G12 

(GPa) 
n12 r 

(kg/m) 

y1 

(%) 

y1 

(%) 

y12 

(%) 

Carbon/  

Epoxy 

172.7 7.20 3.76 0.3 1446.2 0.45 4.22 7.05 

• Validation of the method without couplings effects 

configuration [ 75°]8 

The first studied composite rotor configuration is 

[ 75°]8. The results obtained by the proposed method are 

compared with those calculated by an equivalent modulus 

beam theory (EBMT) developed by Tsai [14]. Here no 

couplings effects are taken into account as both two other 

methods don’t consider them.  Table 5 compares the two 

first frequencies of bending calculated by the 3 methods.  

Table 5: Mechanical characteristics of the shaft and 

Results 

Stacking 

sequence 

[ 75°]8.   

1BW 

(Hz)  

 

1FW 

(Hz)  

 

2BW 

(Hz)  

 

2FW 

(Hz)  

 

Instability 

threshold  

(rpm) 

EBMT 17.2 17.4 66.3 72.3 1020 

SINO [17] 16.4 16.6 59.4 60.7 1110 

3D method 16.1 16.6 60.95 62.3 1003 

Such results are in perfect agreement with those obtained 

by Sino[17] and Pereira [9]. The Campbell diagram shown 

in Figure 7 illustrates instability that occurs just after the 

second critical speed.  

 

Figure 7: Campbell diagram and instability regions 

for a laminate q = 75° with anisotropic bearings 

• Validation of the method with couplings effects  

The second composite rotor, in a balanced and 

symmetrical configuration [902, 45, 0]S was studied thanks 
to the one dimensional homogenized finite element beam 

model developed by Sino[17]. As observed, the coupling 

effects have not a major influence on the first bending 

modes even if they generate apparition of other types of 

modes (longitudinal and torsion modes).  

 

Figure 8: Campbell diagram and instability regions 

(noted by +) with anisotropic bearings [902,45,0]S 

 

Figure 8 presents the associated Diagram Campbell; 

torsion modes are symbolized by “-.” lines.  Bending modes 

are symbolized by “- -“ lines and instability is associated 
with “+” symbol. 

The table 6 lists the bending frequencies and instability 

thresholds calculated without and with internal damping 

with coupling effects taken into account. For information, 

instability thresholds is determined thanks the real part of 

complex eigenvalues. For comparison, results calculated by 

Sino are given too.  
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Table 6: Frequencies and instability threshold for a 

balanced and symmetrical configuration [902,45,0]S 

Stacking sequence 

[902,45,0]S 

1BW 

(Hz)  

 

1FW 

(Hz)  

 

Instability 

threshold  

(rpm) 

SINO [17] 

with internal damping 

without coupling effects 

 

37.28 

 

39.94 

 

5750 

3D method 

without internal damping 

with coupling effects 

 

38.78 

 

41.81 

 

stable 

3D method 

with internal damping 

with coupling effects 

 

40.21 

 

43.14 

 

2900 

 

As we can see, the coupling effects have a major 
influence on the instability threshold as its value diminishes 

about 50 %. Finally, Figure 9 shows the shape mode 

associated to the first bending mode. It can be noticeable the 

influence of coupling effects as the mode is not anymore in a 

single plane, but have components out of plane.  

 

Figure 9 : Out of plane bending mode due to 

coupling effects in configuration [902,45,0]S 

CONCLUSIONS 

This work deals with the stability analysis of an 

internally damped rotating composite shaft. A three 
dimensionnal homogenized beam is developed and 

compared to the classical Equivalent Beam Modulus Theory 

(EMBT) and the Simplified Homogenized Beam Theory 

developped in [17]. The method developed avoids the main 

drawbacks associated with EMBT formulation that considers 

only symmetrical and balanced stacking sequences and does 

not take into account the distance of composite layers from 

the neutral axis. It also takes into account internal damping 

by using the specific damping capacity of each ply of the 

composite assembly, and coupling effects induced by the 

fiber orientation. 

First this approach is validated via an isotropic metallic 

shaft. A second application concerns a composite Shaft. Two 

different stacking sequences are analysed. In the first one, 

the critical speeds as well as the instability threshold 

obtained by the 3D method developed here are in good 

agreement with those obtained in literature (Equivalent 

mudolus beam theory and simplified homogenized theory). 

 

frequencies and instability thresholds regarding stacking 

order and fiber orientations are outlined. These results are 

also compared to those obtained from a classical equivalent 

modulus beam theory. The third application considering a 

symmetrical and balanced configuration illustrates the 

influence of coupling effects on the estimation of the 

instability threshold. 

The study highlights that EMBT simplifications may 

lead to significant discrepancies in terms of frequencies. 

These discrepancies appear to be greater for instability 

thresholds. A qualitative study of the effects of various 

parameters on frequencies and instability thresholds was 

carried out. The analysis shows that although transversal 
shear has a minor influence on the first frequencies, its effect 

is much more significant for the following ones, thereby 

directly influencing instability thresholds.  

However, this method requires some improvements to 

take account of the coupling effects induced by 

nonsymmetrical stacking. These improvements will be the 

subject of a forthcoming paper. 
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