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ABSTRACT 
 

Mouse models are broadly used to study the mechanisms of 

neuropsychiatric disorders and to test potential treatments. In 

these models, automation to monitor behavioural differences 

during social interactions is currently limited. We propose in 

the present study a new method to conduct automatic 

behavioural classification, using an original unsupervised 

machine learning. We applied the proposed method to mice 

mutated in Shank2, a gene associated with autism spectrum 

disorders. We validated our results by comparing 

automatically extracted results to rule-based classifier 

labelling. We discovered seven behavioural states matching 

from 80 to 95% previous rule-based classification, and two 

unsuspected behaviours. Interestingly, we also highlighted 

genotype-related differences in two behavioural categories, 

namely locomotion and facing the conspecific. 

 

 

Index Terms— unsupervised automated behavioural 

analysis, unsupervised classification, animal behaviour, 

autism spectrum disorder, mouse model, social behaviour 

 

 

1. INTRODUCTION 
 

Neuropsychiatric disorders such as autism spectrum 

disorders, schizophrenia, addiction or depression affect 

heavily the social life of patients. Monitoring their behaviour 

constitutes the main part of the diagnosis since physiological 

markers are still scarce. Mouse models are used to study the 

mechanisms behind these disorders as well as to test potential 

treatments. Investigations therefore concentrate on the 

behaviour –and more specifically social interaction- of these 

models. 

Currently, the characterization of the social 

behaviour of mouse models relies on a small subset of social 

events selected by previous studies. Examining the behaviour 

in a more exhaustive way will allow to unravel hidden effects 

of pharmacological treatments in order to refine these ones.  

 

To be able to process new quantitative 

measurements with less experimenter bias, behavioural 

studies are currently shifting toward computational analysis 

[1]. The emerging computer-vision techniques allow to track 

the animals, transforming video data into trajectories. In 

order to interpret behaviour, a description of its relevant parts 

-in an objective and quantitative manner- is needed. We 

therefore aim at developing an automatic behavioural 

classification. 

 

2. CONSTRAINTS 
 

To automatically extract behaviours, several unsupervised 

techniques have been developed since 2001 [2-6]. Among 

them, Braun et al [3] analysed blowfly behaviour. For this 

purpose, they used one global clustering, considering all 

features. This enables a less anthropomorphic labelling of the 

events in comparison with a manual human classification. 

But, as a drawback, this analysis is limited to describe the 

behaviour as a succession of events. It assumes that only one 

event exists at a given time, which is not adapted to the 

complexity of social behaviours. In our experiments, animals 

can perform several independent actions simultaneously. For 

instance, they can be moving or stopped and at the same time 

they can sniff or not their conspecific. 

The only methods able to describe those 

simultaneous events are called rule-based classifiers [7-9] as 

they are filtering the data with geometric clues extracted from 

trajectories, such as the relative position of the animals, their 

distances and their speed. Those rules, also called repertoire 

of events [8], enable to deal with simultaneous events, but 

extract only behaviours that have been previously defined by 

experts. Therefore, those classifiers depend also on the 

thresholds provided by those experts. This labelling is 

anthropomorphic and prevents the observer from finding 

unexpected behaviours that could be key in the differentiation 

of the social phenotype within groups of animals. 

In this paper, we propose to combine the advantages 

of both approaches: an unsupervised classification able to 

deal with simultaneous events, based on simple features 

extracted from the trajectory of the animals. 



3. UNSUPERVISED BEHAVIOURAL 

CLASSIFICATION 
 

We use a tracking method that provides the location of the 

head and of the tail base of the animals. We use those data as 

a legacy of our previous tracker [8] as it was designed to track 

specifically those parts of the animal which are known as key 

elements in the interaction of animals (the base of the tail is 

the ano-genital area). We nevertheless design the method so 

that it can include more detailed features. 

We first detail how we create the features. These 

ones are then processed by an independent component 

analysis (ICA) that extracts independent descriptors. Each 

independent component (IC) displays a linear combination of 

the features. We then use a one-dimensional Gaussian 

mixture model (GMM) to generate on each IC a different 

clustering of exclusive behaviours (such as animal in contact, 

or not in contact). 

 

3.1. Features computation 
 

The tracking [8] outputs are the two-dimensional location of 

the head and of the tail base, for both mice, at each time point. 

The ICs, extracted by the ICA, are orthogonal. We thus 

maximize the information extracted from those outputs by 

selecting any features, without considering the correlations 

between them. 

These variables consist of distances and angles, 

measured at each frame or between consecutive ones for 

dynamic features. Table 1 displays the features extracted 

from head and tail location of both animals. Features are 

individual (1 to 4, i.e. length of the animal, speed), or social 

(5 to 13, i.e. distances, angles between animals). We then feed 

an ICA with the complete set of measured features. 

 

3.2. Extracting independent components 
 

Some of the computed features are highly correlated. We thus 

extract independent descriptors by processing a global ICA 

on all features, across all data points, of all experiments. We 

use the fastICA algorithm [10]. It performs an orthogonal 

rotation of prewhitened data that maximizes a measure of 

non-Gaussianity. 

In this analysis, the number of ICs extracted needs to 

be tuned. ICs should respect the two criteria of orthogonality 

and non-Gaussianity to be considered as reliable source 

descriptors of the behaviour.  Also, to get best ICs, we need 

to constrain the number of axis produced by the ICA by 

extracting less ICs than the original number of variables. 

Therefore, we need to find the correct range of ICs number 

that correspond to real sources. In such range, the extraction 

of a supplementary IC adds a new source, affecting only 

minimally the previously extracted ones. Above a certain ICs 

number, all or a part of these are thus rearranged to extract 

supplementary components. 

 

 

Table 1. Set of trajectory-based features, individual and social. 

 1  length of the A animal vector ‖Tt
A Ht

A⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ 

 2  speed of the head of the A animal ‖Ht
A Ht+1

A⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ 

 3  speed of the tail base of the A animal ‖Tt
A Tt+1

A⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ 

 4  directional change of the A animal vector Tt
A Ht

A⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   Tt+1
A  Ht+1

A⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗̂
 

 5  distance between A and B heads ‖Ht
A Ht

B⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ 

 6  distance between A head and B tail ‖Ht
A Tt

B⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ 

 7  distance between A tail and B head ‖Tt
A Ht

B⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ 

 8  distance between A and B tail ‖Tt
A Tt

B⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ 

 9  speed of the A toward the current position of the B 

‖
Tt

A+Ht
A

2
 
Tt

B+Ht
B

2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
‖ − ‖

Tt+1
A +Ht+1

A

2
 
Tt

B+Ht
B

2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
‖ 

10 speed of the A toward the next position of the B 

‖
Tt

A+Ht
A

2
 
Tt+1

B +Ht+1
B

2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
‖ − ‖

Tt+1
A +Ht+1

A

2
 
Tt+1

B +Ht+1
B

2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
‖ 

11 angle between the A vector and the vector from A middle to B

 head Tt
AHt

A⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ Tt+1
A +Ht+1

A

2
 Ht+1

B
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗̂

 

12 angle between the A vector and the vector from A middle to B

 tail Tt
AHt

A⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ Tt+1
A +Ht+1

A

2
 Tt+1

B
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ̂

 

13 angle between A and B vectors Tt
AHt

A⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ Tt
B Ht

B⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ̂
 

 

In the formulae, H and T refer to the head and base of the tail point, 

respectively. Indexes A and B indicate if the point belongs to the 

studied animal A or to its conspecific B, and t refers to the studied 

frame number. ||.|| is the Euclidian norm. 

 

We therefore aim at extracting the maximum number 

of ICs which preserves the components found when fewer 

ICs are extracted. 

ICA extracts a set IC(n) of n ICs. 𝐼𝐶𝑛
𝑖  denotes the 

element number i of IC(n). We need to estimate in which 

proportion the elements of IC(n-1) are preserved in their 

original form in IC(n). To consider that an IC of IC(n-1) is 

well preserved, it should be strongly correlated with one of 

IC(n) and the least possible with the other ones. For this 

purpose, we designed a criterion to evaluate the IC 

preservation. The preservation of an 𝐼𝐶𝑛−1
𝑖 ∈ 𝐼𝐶(𝑛 − 1) in 

IC(n) is estimated by the function: 

 

𝐹(𝑖, 𝑛) = [[2 𝑚𝑎𝑥
𝑗∈(1,𝑛)

(𝐶𝑜𝑟(𝐼𝐶𝑛−1
𝑖 , 𝐼𝐶𝑛

𝑗
))] − ∑

𝑛

𝑗=1
𝐶𝑜𝑟(𝐼𝐶𝑛−1

𝑖 , 𝐼𝐶𝑛
𝑗
)] 

 

We aim to select the number n of ICs preserving the most 

IC(n-1). For this purpose, the ICA is used to generate an 

increasing number of ICs, beginning with 2. The chosen 

number will be the first local maximum of the mean: 

 

          𝐶(𝑛) =
∑

𝑛−1

𝑖=1
𝐹(𝑖,𝑛)

𝑛−1
 

 

 



3.3. Gaussian mixture model based clustering 
 

We now process previously generated ICs separately. In 

order to describe qualitative behavioural expressions, all time 

points need to be clustered based on this quantitative 

descriptor. As an IC distribution is non-Gaussian, we choose 

a one-dimensional GMM based clustering [11], which 

ensures to model the IC by more than one Gaussian 

distribution (GD) and to generate more than one behavioural 

category. The GMM is fitted by maximizing the likelihood                             

ℒ = ∏
𝑇

𝑖=1

∑
𝑁

𝑗=1
𝑝

𝑗
𝒩(𝑥𝑖 , 𝜇𝑗 , 𝜎𝑗

2), where T and N are respectively the 

number of data-points and GDs and 𝑝𝑗𝑁 (𝑥𝑖, 𝜇𝑗, 𝜎𝑗
2) the 

weighted probability density of xi in the j-th GD. To perform  

this computation we use the expectation maximization 

algorithm. 

In order to prevent over-fitting of the data-set, we 

restrain the number of GDs mixed in the model. As the goal 

of the computed models is to allow a reliable clustering, we 

select the number of distributions that fits the best to the data 

while mixing the least possible the clusters. For this purpose, 

several GMM are fitted with an increasing number of GDs, 

beginning with 2. We select the processed model by 

maximizing the function ∏
𝑡

𝑖=1
𝑝𝑘(𝑖)𝑁 (𝑥𝑖, 𝜇𝑘(𝑗), 𝜎𝑘(𝑗)

2 ), where k(i) 

denotes the number of the GD which gives the highest density 

probability for xi. This penalizes the models with respect to 

the overlapping of these GDs, and constrains the number of 

GDs. For each IC, the GMM producing the first local 

maximum of this criterion will be used. 

The equality points of the probability of two GDs 

are defined as thresholds segmenting behaviours along the IC 

(Figure 1B). For each IC, all time points are clustered in a 

certain number of behavioural events. An animal will thus 

exhibit as many behavioural states at each time point as the 

automatically selected number of ICs. 

 

3.4. Segmented video editing 
 

Thanks to the results provided by the GMM, we retrieve the 

events that are exclusive, and therefore go back to the original 

footage to display the video corresponding to this axis of the 

classification. As those events can be very brief (less than a 

second to a few seconds), we created a program in Icy [12], 

that automatically edits the source video. This allows to 

display the final result of the classification. For each 

threshold of each IC, we perform two editing. The first one 

regroups all the sequences during which the value on the IC 

is inferior to the threshold. The second one regroups the rest, 

the ones with a value superior to the threshold. These videos 

are thus successions of numerous sequences where the 

animals are each time exhibiting the same behaviour. 

We put those two jumping-cut videos side by side 

(Figure 1C). to help an expert watching several times the 

same events in order to be able to affect a “humanly readable” 

label to each event found by the program. We also display the 

mix of features implied in the ICs (Figure 1A). 

  
 

Figure 1: A. Contributions of features relative to the first IC.  

B. Distribution density along the first IC. C. Auto-edited frame 

examples (2 mice – contrasted for printing purpose). 

 

 

4. EXPERIMENTAL RESULTS 
 

4.1. Biological data 
 

We studied the social behaviour of 13 Shank2-/- and 16 wild-

type female mice. Behavioural experiments were approved 

by the ethical committee CETEA Institut Pasteur n°89. The 

subject mouse was placed in a test cage 30 minutes before an 

unknown female was introduced [13-14]. Their 4-min 

interaction was video-recorded from the top. Mice were then 

tracked using Mice Profiler [8]. We obtained the (x,y) 

location of the head and base of the tail of the two mice at 15 

frames per second. 

 

4.2. Implementation 
 

The ICA and the GMM were conducted with R software, 

using respectively the icafast function from ica package and 

the Mclust function from mclust package. 

Based on the previously described constraints, we 

used ICA to extract n=7 ICs, each of which segmented by 1 

to 2 thresholds. We focus on behavioural components 

frequently expressed, by neglecting thresholds that isolate 

less than 2,5% of the frames. 

We also perform a cross-validation, on 10 sub-

sampling of the original data-set. The algorithm provided sets 

of 7 ICs, similar to the one generated with the complete data-

set, each clustered by the same number of thresholds in the 

same ranges of values. 

 

 

 



Table 2. Set of behavioural events defined by the new method. 
behaviour name according to editing IC cluster 

contact 1 <T1 

intermediate distance 1 ∈ [𝑇1, 𝑇2] 
long distance 1 >T2 

A behind B 2 <T 

A faces B 3 >T 

A goes away from B 4 <T 

A comes toward B 5 <T 

parallel head to tail axis same way 6 <T1 

parallel head to tail axis opposite ways 6 >T2 

parallel trajectories same direction 7 <T1 

parallel trajectories opposite directions 7 >T2 

 

A refer to the subject animal and B to its conspecific, for each IC the 

threshold T or the two thresholds T1 and T2 allow to locate the 

clusters which are either below or above them. 

 

4.3. Method validation: comparison to Mice Profiler 
 

We found 7 behaviours homologous to the elementary events 

present in the repertoire of Mice Profiler [8]. (correlation rate 

in brackets) Contact (95%), A behind B (93.2%), A faces B 

(92.9%), A escapes B (87.2%), A follows B (80.7%), beside 

same way (85.9%) and beside opposite ways (83.3%). 

Two additional behaviours were detected with the 7th 

IC (Table 2), see biological results. The algorithm thus 

allowed to discriminate between behaviours that were not 

previously expected. 

 

4.4. Biological results 
 

Significant genotype-related differences were observed in 4 

behavioural events (table 2). Shank2-/- females spent 

significantly: more time at intermediate distance of the 

conspecific; less time facing it; more time going toward it; 

and more time going away from it in comparison with wild-

type littermates (Wilcoxon tests, with Bonferroni correction 

for 13 tests, with respective P-values: 0.033; 0.016;          
1.7×10−5;  6.2×10−3). The increase in movement behaviour 

is coherent with the diagnosed hyperactivity [13] and the 

reduced facing to the conspecific matches with the lack of 

social interest [14]. 

We also unrevealed a new behaviour: animals 

walking in parallel trajectories, with or without contact. The 

behaviours related to parallel trajectories do not have any 

homologous events described in Mice Profiler. These 

behaviours were thus unsuspected before we used the 

unsupervised algorithm to discover them, and will be further 

investigated. 

 

5. CONCLUSION 
 

In this paper, we detailed a new algorithm able to classify 

social behaviours without human supervision. Compared to 

previous work, we added the capability for the classifier to 

label several different independent behaviours occurring 

simultaneously. More complex behavioural states can now be 

described by the co-occurrence of those behaviour. 

We also showed that the classifier revealed new 

events that were not labelled before, such as the “parallel 

trajectories” event.Those new behaviours can now be used as 

new indicator of restoration of social behaviour in Shank2-/- 

female mice, and their study in other models of 

neuropsychiatric disorders is likely to be informative.  

In our future work, we will increase the number of 

features to reveal more behaviours. We also hope that this 

method will benefit from being applied to other data set 

consisting of other kind of features, especially future tracking 

extracting more detailed outputs. 
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