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Abstract

Water-hammer waves propagation is an important phenomenon arising in nu-

merous applications. It is also a long-standing topic in the fields of mechanics,

mechanical engineering and civil engineering. This review first presents the

basic mechanism associated with water-hammer waves as well as a brief histor-

ical survey of the topic. It then develops along the twentieth century progress

both regarding the Fluid-Structure-Interaction (FSI) influence and wave dissi-

pation modeling. The second part of the review presents recent developments

shading new lights on some aspects of the wave propagation with a fluid me-

chanical viewpoint. This review covers various aspects related to the influence

of visco-elastic properties of the pipe’s wall, asymptotic analysis as well as wave

propagation within networks. Albeit discursive in many places, this review also

tries to establish and derive many of the presented results from first principles,

as well as emphasize the theoretical understanding of the topic.

Keywords: Water-hammer, Fluid–Structure–Interactions, acoustic waves in

pipes, multiple time–scale analysis, asymptotic matching, dispersive waves,

visco-elasticity, water hammer, blood hammer, Lamé–Clapeyron equations,
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1. Introduction1

1.1. Context of water-hammer wave2

Water distribution networks, vascular system, irrigation networks, power-3

plant hydraulic circuits, geothermal extracting heat pipes, etc., are all com-4

plex hydraulic systems dedicated to flow distribution for their specific purpose.5

Within all these applications an incoming flow is needed to feed the needs.6

The incoming flow could be time-dependent so as to accommodate the possi-7

bly varying needs at various places, but the time-variation of the needs is not8

short compared to flow adaptation one. In other words, it is possible, in these9

systems to almost instantaneously adapt supply to demand. These systems are10

quasi-steady ones in normal use.11

Nevertheless, if, for some reasons, either expected or not, a sudden change12

arises in the supply flow (whether due to pipe breakage, operational valve open-13

ing, heart valve closure, gate operation, incidental junction damage, etc..) then,14

a fast transient pressure wave is generated from it (Cf figure 1 for a real water-15

hammer wave signature inside a water distribution network). Since liquid incom-16

pressibility imposes flow conservation, any adjustment of a sudden flow change17

can only be due to compressible effects. Because liquids are much less compress-18

ible than gases, these sudden changes in fluid flow are much faster and much19

more intense in liquids than in gases even though also existing in the later. The20

less compressible the liquid, the faster the pressure wave having the highest am-21

plitude. And since most liquids are very close to incompressible, the resulting22

pressure wave is very large in many cases, dramatic in some. This detrimental23

effect of water-hammer pressure waves has attracted interests in many applied24

areas in mechanical engineering and civil engineering [2, 3]. This is also why the25

first known scientists of the topic such as Résal [4], Michaud, [5], Korteweg [6],26

Joukowsky [7], belonged to the hydraulic’s community. But this is only one part27

of the water-hammer story. Next section will provide much more details about28

the various modelling and analysis of it, but, since we believe the reader is, at29

this point, juvenile on the topic, we will pursue this discursive introduction by30
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Figure 1: (a) Illustration of a the water distribution network of Toulouse’s town from [1] where

pressure sensors have been distributed. (b) Water-hammer wave front passage signature at

sensors placed in various locations.
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some basic issues to introduce a second important aspect. As just mentioned,31

not only the pressure amplitude increases from the low compressibility of liq-32

uids. Also the wave’s speed. In every fluid the isentropic compression law of33

fluid density variations ρ∗f with fluid pressure P ∗f is given by ∂ρ∗f/∂P
∗
f = ρ∗f/K∗f .34

In the limit of infinite liquid bulk compressibility coefficient, i.e K∗f → ∞, the35

incompressible limit, the water-hammer wave speeds goes to infinity. Never-36

theless, this velocity cannot be infinite even for almost incompressible liquids.37

It is not necessary to invoke light’s finite speed to avoid this inextinguishable38

sky, but another more down-to-earth fact that this pressure wave speed does39

not propagate freely into the liquid, being, on the contrary, confined within40

solid walls. Since the tube wall can expand —think of a blood vessel—, the41

pipe breathing resulting from the liquid over-pressure has a strong influence42

on the wave velocity propagation. Stress waves propagating within solids are43

known from a long-time to result from its elastic deformation. For pressure44

waves associated with compressive density waves inside one material, the speed45

is proportional to the elastic Young modulus. The harder the solid, the faster46

its compressive wave. Split-Hopkinson pressure tests are indeed using this ef-47

fect to deduce the material property from the wave-speed measurement [8, 9].48

Going back to the water-hammer pressure wave, since it is confined within solid49

walls, it can not move freely in the transverse direction of its propagation. The50

wave’s pressure is indeed deforming the solid walls. This results in a coupling51

between the liquid pressure wave, and the solid one. This is the second key52

aspect of the water-hammer waves : they result from a Fluid-Structure Inter-53

action (FSI) between the acoustic wave propagating within the fluid bulk and54

the elastic deformation of the solid surrounding the liquid. Furthermore, and55

not intuitively, FSI produces a double effect on water-hammer waves: first, as56

already mentioned, the propagating speed of the liquid pressure wave both de-57

pends on the liquid isentropic bulk modulus, i.e the compressibility coefficient58

of the fluid and the Young modulus of the solid. More precisely, on the ratio of59

both. Second, this water-hammer wave train hides another : a solid compressive60

elastic wave. Because it is faster in most cases, this secondary wave comes first,61
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and has been called the precursive wave [10, 11]. In some applications such62

as water distribution networks, and many other hydraulic contexts, this elastic63

wave is disregarded for being of small influence. This generally results from64

anchored mechanical conditions preventing the free-motion of the external solid65

wall (cemented, buried, or fit-in) weakening the elastic wave contribution. This66

is why most hydraulic modeling of water-hammer do not consider the coupled67

elastic wave. However, this coupling is very important when the solid walls are68

soft (e.g vascular system), when the conducts are free to move (e.g suspended),69

or when the solid walls are very thin.70

Having now set the scene of the two main mechanical effects rooting water-71

hammer, i.e liquid compressibility and FSI, it is now appropriate to provide72

an historical survey of how modern understanding has emerged. Nevertheless73

before this, it is important to mention that various interesting reviews have pre-74

viously discussed water-hammer [12, 13, 14, 15, 16, 17, 18]. Among those [12, 15]75

have focused their review on FSI aspects in simple pipes configurations. [14]76

has more focussed its interest into the historical perspective of the topic. On77

the other hand [13, 16] discuss hydraulic applications where FSI effects are gen-78

erally neglected, whilst concentrating on water distribution networks purposes.79

[18]’s review consider more specifically blood-hammer within the arterial sys-80

tem whereby issues related to the visco-elastic response of arteries are deepened.81

Finally, it is important to stress what material is covered by this review and82

the about-face. This review focuses on water-hammer wave propagation sur-83

rounded by possibly complex solids including visco-elastic ones. This topic is84

of major practical relevance, since water-hammer waves are strongly dependent85

on the solid visco-elastic response, because these solids are encountered in many86

contexts. Concerning the fluid, this review considers water-hammer waves aris-87

ing inside Newtonian compressive liquids, including viscous effects in the fluid.88

Nevertheless this review will not cover several aspects of water-hammer : cav-89

itation [19], water-hammer in non-Newtonian liquids (e.g [20]), condensation-90

induced water-hammer (e.g [21]), thermally coupled water-hammer waves (e.g91

[22]), arc-discharge induced water hammer (e.g. [23]). Also, this review is not92
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going to discuss transient-based defect detection and water-hammer use for in-93

verse problems which have been vivid areas of investigations over the last fifteen94

years, but deserve a review on their own. However it covers (some aspects) of95

water-hammer wave propagation in complex pipe networks. The specificity of96

this review, is to focus on water-hammer’s mechanics, so as to emphasize how97

modern understanding can help in modeling simplification, concepts generality,98

and also, questioning and/or revisiting practical use. This review does not have99

the ambition to be exhaustive in every aspect, reflecting that the author’s best100

knowledge of the topic is unfortunately neither objective nor complete. It also101

reflects the author’s subjective interests on the topic, oriented toward future102

research directions dedicated toward tackling and simplifying various aspects of103

water-hammer complexity.104

This review is organized as follows. Section (1.2) provides a brief historical105

description of the first understanding and modelling attempts of water-hammer.106

Section (2) then provides a summary of the twentieth’s century progress on107

the topic. Albeit discursive, this section also tries to establish many of the108

presented results from first principles.109

The two following sections are devoted to the review of more modern issues.110

Section 3 is mostly concerned about modeling the influence of pipe’s visco-elastic111

behavior onto the water hammer wave.112

Section (4) develops on the twenty first century advances in the field. It113

covers both time and spatial asymptotic analysis, giving new perspective to the114

underlying understanding of yet unsolved water-hammer’s specific aspects. Fur-115

thermore section (4) also covers recent modern issues associated with theoretical116

developments for water-hammer wave propagation within networks.117

1.2. A brief historical survey of first water-hammer understanding118

As previously mentioned the water-hammer research started from engineer-119

ing concerns and viewpoints, at the end of the nineteenth century. The first120

noteworthy contribution can be credited to L. Menabrea [24] reporting the joint121

influence of fluid bulk modulus K∗f , and the solid wall Young’s modulus E∗122
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in water-hammer waves. Thereafter Michaud [5] developed some protection de-123

vices guidelines for hydraulic systems. He focused his interest on plans for safety124

valves and water-hammer balloons but meanwhile, derives one of the first ex-125

pressions for the propagation speed of water hammer waves, c∗p (in the following126

all p subscript on all subsequent c∗p velocities refers to ”pulsed” wave speeds, not127

to be confused with possibly pipe’s one; this pulse wave speed is a bulk liquid128

pressure wave), the same year as Korteweg [6]. Considering the solid wall as a129

successive axially independent concentric elastic rings, these authors found that130

c∗p,K =
c∗0√

1 +
2K∗f
αE∗

, with c∗20 =
K∗f
ρ∗f
, (1)

c∗0 being the sound speed in the liquid bulk, α = e∗/R∗0 the dimensionless pipe131

wall thickness associated with solid tickness e∗ having inner radius R∗0 and ρ∗f132

the fluid density (∗’s quantities are dimensional in the following, whilst on the133

contrary, dimensionless quantities do not have ∗). The approximate theory (1)134

brings out for the first time the cornerstone contribution of the liquid’s bulk135

modulus to Young modulus ratio, i.e. Kf ∗/E∗, into water-hammer wave c∗p.136

Since (1)’s denominator is larger than unity, the water-hammer wave speed137

is lower than the sound speed in bulk liquid c∗0, as expected from the energy138

transfer of the wave into solid elastic deformation.139

It is interesting to discuss the comparison of Korteweg and Michaud predic-

tion with their contemporary Résal [4] who proposed a simpler expression for

this velocity being based upon the wall’s elastic wave speed
√
αE∗/2ρ∗f . As

discussed in [19, 25] reorganizing (1) leads to

1

c∗2p,K
=

1

c∗20

+
2ρ∗f
αE∗

. (2)

Result (2) can be interpreted as equivalent resistance of parallel electrical cir-

cuits or in a more mechanical frame, the equivalent stiffness of two sucessive

springs. Korteweg’s [6] wave velocity is the equivalent wave speed of the liquid

bulk sound speed c∗0, in parallel with the elastic wave speed
√
αE∗/2ρ∗f (this

point is discussed in more details in [25]). As mentioned in the introduction not
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only the wave speed, but also the pressure amplitude is of major engineering

importance. Few years after Korteweg, Joukowsky [7] focused on the mass equi-

librium occurring during a transient event, so as to find the maximal reachable

over pressure ∆P ∗, which is related to the longitudinal velocity variation ∆W ∗

associated with the flow sudden change ∆Q∗ = S∗∆W ∗ (in the following W ∗0

will denote the steady-state reference velocity and ∆W ∗ will be considered as

an order-one fraction of W ∗0 )

∆P ∗ = ρ∗fc
∗
p∆W

∗. (3)

This fundamental relationship permits to improve the security design efficiency

of water plants. The derivation of (3) is now discussed. Let us consider the mass

L

e

zR0 dz

V(z, t+ dt)V(z, t)

P
dR

σθθ

W (z, t)

Figure 2: Fluid mass conservation during a hydraulic transient

balance in the elementary volume V∗, having external surface S∗, as defined in

Figure 2

∂t∗
(
ρ∗fS

∗)+ ∂z∗
(
ρ∗fS

∗W ∗
)

= 0, (4)

Introducing Lagrangian derivative d/dt∗ ≡ ∂t∗+W ∗∂z∗ , (4) can be decomposed

into three terms

1

ρ∗f

dρ∗f
dt∗︸ ︷︷ ︸

Liquid compression

+
1

S∗
dS∗

dt∗︸ ︷︷ ︸
Pipe dilatation

+ ∂z∗W
∗︸ ︷︷ ︸

Velocity gradient

= 0. (5)
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Using the previously mentioned isentropic compression law, the fluid density

gradient are related to pressure ones

1

ρ∗f

dρ∗f
dt∗

=
1

K∗f
dP ∗

dt∗
. (6)

The pipe dilatation term of (5) requires a little more inspection. It is related to

what is called the pipe breathing phenomenon, i.e the deformation arising when

an axi-symmetric pressure wave propagates into a cylindrical solid, deforming

it radially and longitudinally whilst preserving the axi-symmetry. Considering

the instantaneous elastic solid response of the azymuthal normal stress, i.e the

hoop stress σ∗θθ, integrated along one pipe’s mid-plane section having normal

direction eθ and longitudinal length L∗, provides a contribution into the solid

region only, whose thickness is e∗, so that a an elastic force 2L∗e∗σ∗θθ is built to

balance the fluid pressure P ∗ integrated along the same pipe’s mid-plane section

2R∗0L
∗P ∗, so that

σ∗θθ =
R∗0
e∗
P ∗ =

1

α
P ∗. (7)

Furthermore, from elasticity theory, the relative strain of the pipe is proportional

to its stress such that

dσ∗θθ = E∗
dR∗

R∗
. (8)

From (7) in (8) and since, S∗ = πR∗2, one finds

1

S∗
dS∗

dt∗
=

2

αE∗
dP ∗

dt∗
. (9)

Finally, combining (6), (9) and (5), yields to the following mass conservation

equation

1

ρ∗f

dP ∗

dt∗
+

c∗20

1 +
2K∗f
αE∗

∂z∗W
∗ =

1

ρ∗f

dP ∗

dt∗
+ c∗2p,K∂z∗W

∗ = 0, (10)

consistently with (1) found by [6]. It is also important to stress that (10) leads140

to the Joukowsky’s scaling (3) for the pressure [7].141

Although sufficient for many engineering applications, these theoretical out-142

lines remain too limited in scope as they do not provide an in-depth compre-143

hensive understanding of hydraulic transients. The relation (8) highlights the144
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weaknesses of these early models. The solid rheology is highly simplified which145

results in a degraded representation of shear and strain distribution in the pipe146

(which however might turn-out to be enough for some engineering issues). Fur-147

thermore, the fluid is supposed inviscid and the long-time dynamics of the pres-148

sure trend thereby remains unknown. This is why this simplified picture has149

been dramatically improved during the twentieth’s century.150

2. Water hammer : a dual phenomenon intertwined with three cou-151

plings152

This section now presents the modern view of water-hammer progressively153

emerging from 20th century developments. This view is very synthetically pre-154

sented in [19, 25] resulting from the infusion of many previous studies as also155

discussed in [26] from which this section is inspired. Numerous deep analy-156

sis of great theoretical mechanics have progressively permit to understand that157

various fundamental mechanisms were acting together, on the water-hammer158

wave, in a subtle way. Moreover, and surprisingly enough, as the complexity159

increased, the ability to synthetically produce analytical results also permit-160

ted a more compact and clear presentation of the phenomenon to simplify its161

theoretical understanding. This back-and-forth (hopefully creative) competi-162

tion between tackling complexity and idealistic simplification is still present at163

the fore-front of the phenomenon’s understanding, as discussed in Section 4164

References [19, 25] discuss how, resulting from both compressibility and FSI165

effects, the water-hammer wave is influenced by by three, possibly intertwined,166

couplings:167

• Poisson’s coupling which refers to solid axial vibrations arising from radial168

ones. These couplings depend on the mechanical properties of the solid,169

as well as on the possibly complex vibrating modes (flexural, torsional,170

etc...). It is thus related to the possibly complex solid response to the171

fluid pressure wave.172
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• Junction couplings which refers to pipe’s ends couplings either resulting173

from connections with other pipes, or to boundary conditions imposed at174

pipe’s end. This effect thus results in the boundary conditions influence175

on the propagating waves and selected modes.176

• Friction couplings which refers to the shear stress couplings between the177

fluid and the solid, i.e. the viscous friction coupling, and between the solid178

and the surrounding medium, e.g. dry Coulomb’s friction if the pipe is179

buried.180

According to [27], Poisson and junction couplings are shaping the system’s dy-181

namics, i.e. determine the selected wave’s modes as well as their structure,182

whilst friction couplings induce wave’s attenuation due to energetic losses. Fur-183

thermore, from a mechanical viewpoint, any pipe’s degree of freedom is expected184

to interact with the fluid dynamics, generating non-trivial additional couplings,185

[27]. We now detail each coupling in the forthcoming sections.186

2.1. Poisson coupling and Fluid Structure Interaction (FSI) analysis187

FSI describes couplings occurring in liquid-filled pipe systems. Let us first188

consider an homogeneous, elastic and isotropic pipe having density ρ∗s. Let189

us denote the radial displacement ξ∗ and axial one ζ∗, being the two compo-190

nents of the displacement vector ξ∗ = (ξ∗, ζ∗) —the only relevant ones for axi-191

symmetric pipe breathing mode of deformation—, related to the strain tensor192

ε∗ = 1/2(∇ξ∗ + ∇ξ∗T ).193

One of the first major contribution to pressure wave propagation studies194

in pipes taking into account (FSI) can be attributed to [28]. Lamb extends195

[6]’s work from taking into account the Poisson’s coupling effect. Based on the196

second Newton’s law for the solid equilibrium, and a radial dependent pressure197

11



wave for the fluid, he found198

ρ∗se
∗∂2
t∗ζ
∗︸ ︷︷ ︸

Axial inertia

=
αE∗

1− ν2
s

(
νs∂z∗ξ

∗ +R∗0∂
2
z∗ζ
∗)︸ ︷︷ ︸

Axial tension

, (11)

ρ∗se
∗∂2
t∗ξ
∗︸ ︷︷ ︸

Radial inertia

= − αE∗

1− ν2
s

(
ξ∗

R∗0
+ νs∂z∗ζ

∗
)

︸ ︷︷ ︸
Radial tension

+ P ∗︸︷︷︸
Dynamic loading

, (12)

∂2
t∗P = c∗20

(
∂2
z∗ +

∂r∗

r∗
(r∗∂r∗)

)
P ∗. (13)

Under plane-wave long-wavelength framework assumption, Sr. H. Lamb deter-

mines the radial pressure variations from radial Bessel function. Furthermore,

ensuring the kinematic continuity conditions at the pipe’s inner wall, he spells

out a cubic (in c∗2) dispersion relation for the wave speeds

c∗2 − c∗20

c∗20

[
c∗4 −

(
1 +

λ∗2

4π2R∗20

)
E∗

ρ∗s (1− ν2
s )
c∗2 +

(
1− ν2

s

)
λ∗2

4π2R∗20

(
E∗

ρs (1− ν2
s )

)2
]

︸ ︷︷ ︸
Dispersion eq. for P = 0 in (12)

− 2D
α

λ∗2c∗2

4π2R∗20

(
c∗2 − E∗

ρ∗s (1− ν2
s )

)
= 0, (14)

with the density ratio

D =
ρ∗f
ρ∗s
, (15)

λ∗ being the wavelength. The cubic structure of the dispersion relation thus pro-

vides a set of three modes of propagation, being in increased order of frequency

(decreasing order of wavelength) comparable to corrections upon the fluid wave

speed, solid axial wave speed and solid radial wave speed, respectively. Under

the long wavelength hypothesis framework, i.e. λ∗/R∗0 � 1, an important set of

results can be found. If the dynamic loading term is neglected in (12), i.e. if P ∗

is set to zero, Lamb derives the compressible axial solid wave speed (Cf. terms

in brackets in (14))

c∗2s =
E∗

ρ∗s
, (Hyp: P∗ = 0). (16)

Furthermore, if the solid instantaneously responds to the fluid dynamic load,

i.e. neglecting time derivatives in (11)-(12), Lamb proves that his theory leads
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to [6]’s one (Cf. (1)) so that no proper (FSI) occurs then

c∗2p,Lamb = c∗2p,K , (Hyp: ∂2
t∗ξ
∗ = 0). (17)

If one considers a highly deformable tube, i.e. K∗f � E∗, Lamb’s theory merges

with the [4]’s one (Cf. (2))

c∗2p,Lamb =
αE∗

2ρ∗f
, and, c∗2s,Lamb =

E∗

ρ∗s (1− ν2
s )

, (Hyp: K∗f � E∗). (18)

Finally, Taylor-expanding the dispersion relation (14) with respect to the ra-199

dius per wavelength ratio, i.e. R∗0/λ
∗ –long-wavelength asymptotic limit— H.200

Lamb finds an analytical formulation for the fluid and axial solid wave speed201

corrections due to FSI202

c∗2±,Lamb =
1

2

c̄∗2Lamb ±
√√√√c̄∗4Lamb −

4 (c∗0c
∗
s)

2

1 +
2(1−ν2

s )K∗f
αE∗

 , (19)

c̄∗2Lamb =
c∗2s + c∗20

(
1 + 2D

α

)
1 +

2(1−ν2
s )K∗f

αE∗

, (20)

where the negative mode c∗− holds for the fluid wave speed correction, whilst

the positive mode c∗+ stands for the axial solid wave speed correction one. Half

a century later [10, 11] extends the brilliant contribution of [28]. In a sterling

paper, Skalak derives an in-depth analysis of the coupling mechanisms occurring

between an elastic shell pipe and the liquid. He considers both rotatory radial

inertia and the bending moment of the solid. Skalak’s shell model (hereby

slightly re-organized) reads as follows, [29, 30]

ρ∗se
∗∂2
t∗ζ
∗︸ ︷︷ ︸

Axial inertia

=
αE∗

1− ν2
s

(
νs∂z∗ξ

∗ +R∗0∂
2
z∗ζ
∗)︸ ︷︷ ︸

[28]’s axial tension

− αe∗2E∗

12 (1− ν2
s )
∂3
z∗ξ
∗︸ ︷︷ ︸

Bending axial tension

, (21)

and

ρ∗se
∗∂2
t∗ξ
∗︸ ︷︷ ︸

Radial inertia

− ρ∗se
∗3

12
∂2
z∗∂

2
t∗ξ
∗︸ ︷︷ ︸

Rotatory inertia

= − αE∗

1− ν2
s

[(
1 +

α2

12

)
ξ∗

R∗0
+ νs∂z∗ζ

∗
]

︸ ︷︷ ︸
[28]’s modified radial tension

(22)
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The continuity conditions at the fluid solid interface were ensured and Skalak

overcomes the system resolution by performing a conjugate Fourier (upon space)

and Laplace (upon time) analysis. The in-depth investigations of the radial solid

displacement field reveals a discrete infinite set of resonance frequencies governed

by a transcendental equation. As in [28], [10, 11] then analyzes the solution in

the long-wavelength asymptotic limit, i.e. when frequency goes to zero. In

this limit, two propagating modes remain and: ”a physical interpretation [...]

is that only these two lowest modes have finite phase velocities as the wave-

length increases indefinitely. The two wave speeds, in the infinite wavelength

framework, then converges toward the [28]’s one

lim
λ→∞

c∗2±,Sk ≡ c∗2±,Lamb. (23)

R. Skalak [10, 11] is nevertheless the first to mention the ”precursor wave”203

associated with the axial pipe dynamics, although the used of shell approxi-204

mation remained a limitation for practical analysis. Whereas it turns out that205

the precursor wave prediction was indeed a robust prediction out of the shell206

approximation context, Skalak’s model also neglects the wave speed dispersion207

arising from radial inertia. R. Skalak achieved the first known derivation of208

(FSI) four-equations of liquid-filled water-hammer209

1

K∗f
∂t∗P

∗ + ∂z∗W
∗ = − 2

R∗0
∂t∗ξ

∗, (24)

ρ∗f∂t∗W
∗ + ∂z∗P

∗ = 0, (25)

ρ∗se
∗∂2
t∗ζ
∗︸ ︷︷ ︸

Axial inertia

=
αE∗

1− ν2
s

(
νs∂z∗ξ

∗ +R∗0∂
2
z∗ζ
∗)︸ ︷︷ ︸

[28]’s axial tension

(26)

αE∗

1− ν2
s

[
ξ∗

R∗0
+ νs∂z∗ζ

∗
]

︸ ︷︷ ︸
[28]’s radial tension

= P ∗, (27)

The r.h.s of (24) results from kinematic boundary conditions associated with the

solid wall motion influence. It can be derived from Reynolds transport theorem,

as discussed in [13, 18] and mentioned in [31] that we now detail. Consider a

domain Ω(t), having boundary ∂Ω(t). Inside Ω(t) any field Ψ (scalar, vector,
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tensor) fulfills Reynolds transport theorem

d

dt

∫
Ω(t)

ΨdΩ =

∫
Ω(t)

∂Ψ

∂t
dΩ +

∫
∂Ω(t)

Ψvnd∂Ω, (28)

vn is the outer-normal velocity of the boundary ∂Ω(t) motion. This equality

can also be rewritten in a usefull way with the use of the divergence theorem

on the last term of (28) so that

d

dt

∫
Ω(t)

ΨdΩ =

∫
Ω(t)

(
∂Ψ

∂t
+∇ · (Ψv)

)
dΩ =

∫
Ω(t)

(
dΨ

dt
+ Ψ∇ · v

)
dΩ (29)

When considering the domain Ω(t) as the pipe section S∗(t) whose boundary is

the moving circle C∗(t) having radius R∗, and considering the unit scalar Ψ = 1,

then (28), associated with the kinematic boundary condition un = ∂ξ∗/∂t leads

to
d

dt
S∗(t) =

∫
C∗(t)

∂ξ∗

∂t
dC = 2πR∗

∂ξ∗

∂t
, (30)

Using (30) in (5) whilst using (9) leads to (24).210

These coupled first-order hyperbolic (FSI) four-equations receive a more211

compact formulation in the form of two coupled propagating waves operators212

∂2
t∗ −

c∗2p,Sk 0

0 c∗2s

 ∂
2
z∗ −

 0 2νsρ
∗
f c
∗2
p,Sk

νsc
2
s

αE∗ 0

 ∂z∗∂t∗

 P∗

∂t∗ζ
∗

 = 0, (31)

with

c∗2p,Sk =
c∗20

1 +
2K∗f (1−ν2

s )

αE∗

. (32)

Two years after, [32] followed up [10, 11]’s analysis by (i) integrating the trans-213

verse shear force contribution in the radial solid momentum conservation (27)214

(ii) considering the azymutal displacement. Using the same long-wavelength ap-215

proximation framework, they also carried out a frequency-domain analysis and216

converged toward [28] and [10, 11] results. Although precursor waves have been217

theoretically predicted for a long time, there were experimentally confirmed in218

1969 only [33] for elastic steel (aluminum alloyed) and visco-elastic (PE) pipes219

by Thorley. Whilst the predictive trend for the wave propagation speeds was220

inconclusive for visco-elastic materials, the order of magnitude for elastic solids221
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was consistent. Thorley attributed these discrepancies to the temperature sen-222

sitivity of visco-elastic rheology as illustrated in Figure 3. [34] carried out a

Figure 3: Experimental results of [33]. The upper curve represents the investigated elastic

material whilst the lower curve holds for the visco-elastic material.

223

complete study extending the analysis of [32] to viscous fluid. The kinematic224

continuity conditions at the pipe’s wall were spelled out and ensured, whilst225

the set of constitutive equations was analyzed under the scope of the plane226

wave framework. The authors then concluded that the: ”‘frequency dependence227

of the zeroth mode phase velocity is primarily a result of the tube constraint228

at high frequencies and viscosity at low frequencies.” Finally, [34] were able to229

propose an order of magnitude estimate for the transverse solid shear force,230

i.e (D/α) (c∗0/c
∗
s)

2
τ∗w proportional to the fluid wall shear-stress τw. [35] car-231

ried out experimental tests similar to those of [33] on polymer materials (ABS,232

PVC) and steel for flexible and rigid configurations, i.e. unstressed and axi-233

ally stressed pipes. Despite Thorley encountered difficulties in discarding the234
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effects of the junction coupling arising from his downstream solenoid valve, he235

clearly observed and identified the presence of precursor perturbations resulting236

from Poisson’s coupling. [35] further noted: ”that mechanical damping can be237

more important for water-hammer decay than viscous friction”. This remark238

is meaningful when the radial inertia of the pipe is preponderant or when the239

rheology is inelastic, as is the case for visco-elastic materials. [36, 37] delivered240

a complete work emphasizing the previous contributions from [28] to [38]. The241

authors242

considered the rigid, elastic and visco-elastic behavior of a pipe together with243

the viscous, or inviscid, behavior of the fluid. Their pipe model furthermore244

accounts for the radial thickness influence. [36, 37] derive a complete set of245

dispersion relations and studied the frequency dependence of the propagation246

wave speeds.247

[39, 40, 41] carried out an outstanding and complete analysis within solid’s248

shell approximation taking into account thermal and fluid viscosity effects.249

The work of [41] provides a comprehensive overview of the main models,250

assumptions and results of the early researches on hydraulic transients in pipes.251

For the solid, the momentum conservation equation is integrated in the ra-252

dial direction leading to an axial dependent problem, whilst the bending effects253

were neglected. [19]’s analysis is a breakthrough in the liquid-filled pipe re-254

search area. A. Tijsseling combined both the Navier-Stokes equations, averaged255

over the pipe’s section, with the solid momentum conservation equations (also256

called Lamé-Clapeyron equations, [42]) to derive a set of four-(FSI) hyperbolic257

equations [19]258 
 c∗20
K∗
f
c2∗
p,T

+
4ν2s

α(2+α)E∗ 0

0 1

 ∂t∗ +

 0 1

1
ρ∗
f

0

 ∂z∗


P∗

W∗

 =
2νs

E∗

∂t∗σ∗zz
0

−
 0

2τ∗w
ρ∗
f
R∗0

 , (33)

∂t∗ −
 0 E∗

1
ρ∗s

0

 ∂z∗

σ∗zz
ζ̇∗

 =
2νs

α(2 + α)

∂t∗P∗
0

+

 0
2τ∗w

ρ∗se
∗(2+α)

 ,(34)

with ζ̇∗ = ∂t∗ζ
∗ the longitudinal solid velocity and259

c∗2p,T =
c∗20

1 +
2K∗f
αE∗

(
2(1−ν2

s )
2+α + α(1 + νs)

) . (35)

As in [28, 10, 32] a set of two coupled wave speeds can be found from (33)-(34)

c∗2±,T =
1

2

[
c̄∗2T ±

√
c̄∗4T − 4c∗2s c

∗2
p,T

]
, with c̄∗2T = c∗2s +

(
1 +

4ν2
sD

α (2 + α)

)
c∗2p,T.

(36)
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The last term of the (33)’s r.h.s involves a dissipative (a sink term) associated260

with the wall shear-rate τ∗w the derivation of which can again be obtained us-261

ing the Reynolds transport theorem as further discussed in Section 2.3. An262

undamped simplified derivation of (33)-(34) neglecting wall shear rate τ∗w, thus263

neglecting dissipation, can also be found in [43]. Further information on the de-264

velopment of liquid-filled pipe models during the 20th century can also be gath-265

ered from the review of [12]. As also discussed in many places [12, 41, 18, 13]266

the influence of a body force (e.g gravity) can easily be added into those FSI267

four-equations. The wave speeds and the corresponding corrective coupled wave268

speeds, are depicted in Figure 4. The Skalak’s pulse wave speed model converges,269

in the limit α tends to one, to the D. Korteweg’s one, whilst as expected, the270

A.S. Tijsseling’s model differs for thick tubes (Cf. Fig. 4a&4b). In addition, for271

very thin pipes, the models strongly differ in the prediction of the coupled wave272

speeds as depicted in Figure 4d. To provide the pressure dynamic predictions273

the four-(FSI) equations system (33)-(34) nevertheless requires a closure wall274

shear stress model for τ∗w [44]. This necessitates a rather developed discussion275

which is postponed to section 2.3. Un-damped wave propagation, is nevertheless276

interesting to compute considering τ∗w = 0 in the coupled hyperbolic problems277

(33)-(34) which is strongly dependent on boundary conditions, an issue related278

to junction coupling which is now considered.279

2.2. Junction coupling280

2.2.1. Junction coupling within simple domains281

This section first considers the simple pipe’s configurations and later-on dis-282

cuss more complex ones, such as networks. Coupled FSI propagative hyperbolic283

problems are determined by their boundary conditions. Within simple config-284

urations, since these boundary conditions might differ, it is possible to propa-285

gate one formal, yet un-determined solution —satisfying one of the boundary286

conditions— to the other additional boundary conditions. This is how transfer287

function matrices are used in free oscillation theory. It is also the way Transfer288

Matrix Method (TMM) handles the influence of boundary conditions. One ad-289
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Figure 4: Pulse and (FSI)-corrective wave speeds deviation analysis for the models of [6, 10,

11, 43] for solid/fluid velocity ratio Cs = 4.93, and fluid/solid density ratio D = 0.126.

vantage of TMM is to be able to perform an explicit dependence of the solution290

to the prescribed boundary conditions for general sets of (linear) boundary con-291

ditions, either for FSI water-hammer [45, 46, 47, 48] or even in visco-elastic solid292

response [49]. TMM can either be expressed in time domain [50] or frequency293

domain [51, 52].294

TMM has permitted explicit analytical solutions in restrained configurations.295

Non exhaustively among a vast literature TMM solutions have been developed296

for single pipe [47, 53], single pipe with elastic constraints [54], series pipe system297

[55], curved circular pipe [56], curved pipe with various degrees of freedom298
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[57], extended blockage [58], simple tree-like metric graphs [59], single pipe of299

arbitrary transverse shape approximated by Euler beam theory [60, 61] with300

various degrees of freedom or with visco-elatic solids [62, 63] in Laplace domain.301

In this section we first discuss the explicit way a transfer matrix condition is set302

for general linear boundary conditions. In the following some useful notation is303

considered, such as the dimensionless elastic velocity ratio304

Cs =
c∗s
c∗p
. (37)305

The physical time t∗ is furthermore re-scaled with respect to the fluid acoustic306

advective time scale, i.e. τ = tL∗/c∗p, whereas the axial coordinate is non- dimen-307

sionalyzed by the pipe’s length, i.e. Z = z/L. The perturbed fluid pressure P ∗,308

and axial solid stress component σ∗zz, are re-scaled by the [64]’s over-pressure,309

i.e. O (ρfcpW0) where W0 is the flow variation applied within the pipes, so that310

their dimensionless counterparts are denoted311

P =
P ∗

ρ∗fc
∗
pW
∗
0

, and, σzz =
σ∗zz

ρ∗fc
∗
pW
∗
0

. (38)312

Note that, on the denominator of the right side of (38) the dimensionless stress313

σzz has been obtained from using Joukowsky’s overpressure, anticipating the314

normal stress continuity between the fluid and the solid compartment. The di-315

mensionless water-hammer four FSI hyperbolic equations can be recasted in the316

following two-wave coupled equation system (33)-(34) without friction coupling317

(i.e when τ∗w = 0)318 (
∂2
τ −C2

P∂
2
Z

)
P = 0, (39)319

where320

C2
P =

 1 2νsD
2νs

α(2+α)
4ν2
sD

α(2+α) + C2
s

 , and, P =

 P

σzz

 . (40)321

Off-diagonal terms of matrix C2
P are proportional to the Poisson coefficient νs322

so that the fluid pressure and the solid stress decouple as νs → 0. Furthermore,323

as νs → 0 the remaining diagonal terms are 1 and C2
s , the two eigenvalues of324

the resulting diagonal matrix. These eigenvalues are providing the two distinct325

wave-velocities of the uncoupled limit: 1 which is the dimensionless pressure326
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pulse velocity cp whereas C2
s is the dimensionless elastic wave solid one. When327

νs 6= 0 the eigenvalues of matrix C2
P provide the velocities of the coupled system.328

The vector homogeneous wave-equation resolution will be handled within the329

eigenvectors basis of C2
P as in [47]. The eigenvalues of C2

P, denoted c2± > 0,330

associated with diagonalized matrix C2
P correspond to the wave speed mode331

propagation. They are the solution of the following polynomial characteristic332

problem333

c4± −
[
1 + C2

s +
4ν2
sD

α(2 + α)

]
c2± + C2

s = 0, (41)334

the solutions of which are335

c2± =
1 + C2

s +
4ν2
sD

α(2+α) ±
√(

1 + C2
s +

4ν2
sD

α(2+α)

)2

− 4C2
s

2
. (42)336

(42) is the dimensionless version of (36). The asymptotic behavior with respect337

to α parameter of all dimensionless velocity is illustrated in figure (5) from [65].338

As α increases or νs → 0, the dimensionless positive and negative wave speed339

mode, c+ tend to Cs and c− tends to one. The various asymptotic limits of other340

dimensionless velocities are also reported for completeness in figure 5. The fluid341

pressure and the axial solid stress as well as their respective time-derivatives are342

assumed initially at rest so that343

P(Z, 0) = 0 , ∂τP(Z, 0) = 0. (43)344

In the diagonal base of matrix C2
P the system becomes345 (

∂2
τ − C2

P∂
2
Z

)
P = 0 , with, P(Z, 0) = ∂τP(Z, 0) = 0, (44)346

where the change of basis347

Π =

 2νsD
c2−−1

2νsD
c2+−1

1 1

 , C2
P =

c2− 0

0 c2+

 ≡ ΠC2
PΠ−1 , and, P = Π−1P, (45)348

has been used. The pressure-axial stress 2D-vector P = (P, σzz) is transformed349

into a linear combination of those in 2D-vector P from (45). The Laplace350

transform of (44) then leads to351 (
s2 − C2

P∂
2
Z

)
P̃ = 0, (46)352
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C2
P being diagonal given (45). A solution can be found for the spatial ODE353

system leading to354

P̃(Z, s) = E(Z, s)P̃D(s) + F(Z, s)P̃N (s), (47)355

with 2× 2 diagonal matrices356

E(Z, s) =

cos
(
is
c−
Z
)

0

0 cos
(
is
c+
Z
)
 , F(Z, s) =

sin
(
is
c−
Z
)

0

0 sin
(
is
c+
Z
)
 , (48)357

and P̃D(s), P̃N (s) 2D-vectors yet to be found. P̃D(s)/P̃N (s) provide the Dirich-

let/Neumann mode-dependent amplitude of P̃(Z, s) respectively associated with the

condition imposed at location Z = 0 because E(0, s) = I and F(0, s) = 0. A general

set of boundary conditions is stated as

N M 0 0

0 0 Q R


(4×8)


P(0)

∂ZP(0)

P(1)

∂ZP(1)


(4×1)

= 0, (49)

with N , M, Q, R 2 × 2 matrices associated with the Dirichlet/Neumann couplings358

at both ends. It is worth mentioning that condition 49 needs to be enlarged in the359

case where the applied boundary conditions depend on the velocity. Then, a four-360

dimensional wave vector including the fluid velocity and solid longitudinal acceleration361

needs to be considered as performed in [50]. Introducing notation C−1
P =

c−1
− 0

0 c−1
+

,362

from definition (48) one gets363

∂ZE(Z, s) = −isC−1
P F(Z, s), ∂ZF(Z, s) = isC−1

P E(Z, s) (50)364

Combining the expression of (47), (48) (50) with the Laplace transform of the bound-365

ary condition system (49) (into which the Laplace transform of the Dirac distribution366

δ(τ) equals one, i.e δ̃ = 1), one finds367 P̃D

P̃N

 (s) = B−1(s)S, (51)368

with S being a constant 4-vector depending on the precise set of boundary conditions369

(explicit examples are given in [53]) and370

B =

 N isMC−1
P

QE(1)− isRC−1
P F(1) QFk(1) + isRC−1

P E(1)

 . (52)371
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The inverse of (52) is then needed to find P̃ from solving (51). One can note that the372

general solution for arbitrary closure law can easily be deduced from solution (51) by373

multiplying the constant source term S by the Laplace transform of the closure law374

(which depends on s). Alternatively, in time-domain, the general closure law solution375

is found from a convolution product with the impulse response solution as detailed in376

[50]. The impulse response is thus a generic solution. Following notations of [53] by377

introducing the adjugate matrix of B, namely adj [B] one can write378

B−1(s) =
adj [B(s)]

detB(s)
, (53)379

Let us furthermore introduce the two matrices380

IO =

1 0 0 0

0 1 0 0

 , and, OI =

0 0 1 0

0 0 0 1

 , (54)381

vector P̃(s, Z) can then be found using (47), (51) and (53) to reach382

P̃(s, Z) = [E(Z, s)IO + F(Z, s)OI]
(adj [B])

detB(s)
S, (55)383

(55) is the formal solution for the 2D-vector P̃(s, Z) in the frequency domain. For384

specific sets of boundary conditions, this formal solution can be further developed into385

explicit analytical expressions. In [53] the complete analytical solutions of three fam-386

ilies of boundary conditions are detailed, thus not repeated here. Nevertheless, there387

is one salient and generic feature of this solution which is of distinct importance : it388

diverges for specific values of s called poles. It can be shown from applying inverse389

Laplace transform and Cauchy theorem [53] that these poles provide the specific nat-390

ural resonant frequencies of the wave system or, equivalently the specific oscillating391

modes of the time-domain solution. The ensemble of these discrete resonant frequen-392

cies is the solution’s spectrum. As discussed in [53], from solution (55) one can find393

that this divergent condition at poles is given by condition394

SP = {s ∈ C | detB(s) = 0}. (56)395

Condition (56) can be translated into a transcendental equation, the roots of which396

are denoted sk. One can find in [53] three configurations where the transcendental397

equation is explicitly given and for which, in each case, the root sk is purely imaginary,398

i.e.399

sk = iλk , with, λk ∈ R. (57)400
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Curiously, it is only recently that a formal one-to-one mapping between TMM Laplace

domain solutions and time domain ones has been clarified [50, 53]. One important

consequence of this one-to-one mapping between Laplace domain and time-domain

solutions is the appearance of discrete spectrum of λk, leading to sin(λkt) time oscil-

lation modes. If no friction model is taken into account in these FSI function coupling

solutions these modes are not damped. Including friction models produces damping

with a resulting time decay specific to each mode as discussed in 2.3. Let us now add

some aspects concerning time-domain solutions. Following notations of [50] the mode

decomposition of time-domain solutions is performed over the eigen-function based

Φk(Z) of the heterogeneous operator H based on C2
P defined as

HΦk(Z) ≡ C2
P · ∂2

ZΦk(Z) = −λ2
kΦk(Z), (58)

The eigenfunctions have been given in [50] as Φk = φk/‖φk‖

φk(Z) =

 cos
(
λkZ
c−

)
+ tan

(
λk
c−

)
sin
(
λkZ
c−

)
− c+
βc−

(
cos
(
λkZ
c+

)
+ tan

(
λk
c+

)
sin
(
λkZ
c+

))
 , (59)

with β defined as

β =
c+
c−

c2− − 1

c2+ − 1
. (60)

Furthermore one has to define a general scalar product,

∀Ψ,Ψ
′
∈ L2(R)× L2(R), 〈Ψ

′
,Ψ〉 =

2∑
j=1

ηj

∫ 1

0

Ψ
′
j(Z)Ψj(Z)dZ, (61)

with j = 1, 2 referring to the jth components of vector η ≡ (η1, η2) ∈ R2, a real vector

which is adapted to each specific problem, so that the operator 58 associated with

boundary conditions 49 is self-adjoint. More precisely, invoking the definition of H in

(58), the search for self-adjoint condition for operator H, equipped with scalar product

(61), performing a double integration by parts leads to

〈HΨ,Ψ
′
〉 = 〈C2

P · ∂2
ZΨ,Ψ

′
〉 = 〈Ψ,C2

P · ∂2
ZΨ

′
〉+

2∑
j=1

ηjc
2
j

([
∂ZΨj(Z)Ψ

′
j(Z)−Ψj(Z)∂ZΨ

′
j(Z)

]1
0

)
, (62)

where c2j are the jth diagonal terms of C2
P . From (62) self-adjoint property 〈HΨ,Ψ

′
〉 =

〈Ψ,HΨ
′
〉, is thus obtained from condition

2∑
j=1

ηjc
2
j

[
∂ZΨj(Z)Ψ

′
j(Z)−Ψj(Z)∂ZΨ

′
j(Z)

]1
0

= 0. (63)
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Eigenfunctions Φk(Z) are chosen of norm unity, i.e 〈Φk,Φk〉 = 1 [50]. OperatorH self-

adjointess is a prerequisite to get a discrete spectrum composed of distinct eigenvalues

as well as an orthogonal base decomposition. Using a proper choice of scalar product

weight η ≡ (η1, η2) satisfying 63 permit to write the general time-domain solutions for

the FSI problem to be decomposed into some homogeneous part and some particular

solution taking care of non-homogeneous boundary conditions at the edges

P(Z, τ) =
∑
Sp

ak(τ)Φk(Z) + Pp(Z, τ), (64)

where ak(τ) are the mode amplitudes and Pp is a particular solution lying in the

kernel of H, i.e

HPp = 0, (65)

so that, it can be decomposed as a linear and constant field

Pp(Z, τ) = ZP1
p(τ) + P0

p(τ), (66)

where P1
p and P2

p are two time functions used to map boundary conditions as well

as initial conditions as further detailed in [50]. Let us investigate further the homo-

geneous part of the time-domain solution in order to find how the spectrum solution

condition appears in this case, and how does it compares to the one obtained in fre-

quency domain. Transposing the TMM method in time domain one can propagate

the boundary value from Z = 0 to a solution of (58) at coordinate Z from chosing

Φk(Z) = E(Z, iλk)Φk(0)− 1

λk
CPF(Z, iλk)∂ZΦk(0) (67)

which is built, from (48) definitions, so that when using (50) and again, E(0, iλk) = I,

F(0, iλk) = 0 one gets self-consistent Φk(0) = Φk(0) both sides in (67). Similarly

from derivating (67) using (50) again one finds

∂ZΦk(Z) = λkC−1
P F(Z, iλk)Φk(0) + E(Z, iλk)∂ZΦk(0), (68)

so that once again ∂ZΦk(0) = ∂ZΦk(0) both sides in (68). Hence, using (67) and (68)

at Z = 1, it is possible to express boundary condition (49) as N M

QE(1, iλk)− λkRC−1
P F(1, iλk) − 1

λk
CP
[
QF(1, iλk)− λkRC−1

P E(1, iλk)
]
 Φk(0)

∂ZΦk(0)

 = 0

(69)

A non-trivial solution to (69) boundary condition is only possible if the matrix has a401

non-empty kernel, i.e if its determinant equals zero. Comparing (69) with 52 shows402
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that these two matrices have a determinant which is proportional, so that the zero403

determinant condition leads to the same spectrum. Hence the discrete spectrum solu-404

tion is identical either found from frequency domain or time domain. Furthermore, in405

time-domain, the homogeneous solution value and derivative at one node of the single406

pipe pertain to the null-space of a given matrix. We will find in the section 4.4.2 that407

the spectrum of vibrating modes into a network share a similar property, but for a408

distinct matrix.409

2.2.2. Junction coupling within complex domains410

Within pipe systems and networks, even in the case of linear boundary conditions,411

most of the literature analyze junction coupling using numerical methods. This is412

mostly because in this more complex context, analytical solutions are most often not413

possible to find. Nevertheless section 4.4 covers recent advances whereby some alge-414

braic analytical solutions are discussed in networks. Since dealing with an hyperbolic415

problem, classical numerical methods have been adapted and developed to solve water-416

hammer wave propagation using Method of Characteristics (MOC) [66, 67, 68, 69, 70],417

Finite Element Method (FEM) [71, 72, 73, 74, 75, 76, 77], Finite-Volume method (FV)418

[78, 79, 80, 81, 82, 83] or coupled MOC–FEM [84]. The respective pros and cons of419

these various methods have been discussed in several specific reviews [27, 15, 85], so420

that a similar meticulous discussion will not be be repeated here. When FSI’s ef-421

fects are ignored considering the pressure transient dynamics in hydraulic systems422

[13], MOC is one of the most popular methods. Rather than considering a pressure423

wave second order propagation operator, it is more precise and easier to consider424

the first order coupled hyperbolic problem associated with the pressure and velocity425

(82). Since for water-hammer wave propagation within pipes having elastic properties426

(such as metallic materials), the wave velocity is homogeneous along each pipe, MOC427

provides an easy to implement, very weakly dissipative integration method. MOC428

nevertheless has two intrinsic drawback/weakness. First, a Courant–Friedrichs–Lewy429

(CFL) condition (obviously not specific to MOC’s method) cpij∆tij/∆Zij < 1 has to430

be fulfilled along each pipe ij, connecting node i to node j whereby the wave velocity431

is cpij prescribing a constraint between time-step ∆tij and spatial discretization ∆Zij .432

Since the CFL condition has to be fulfilled in each pipe, the most restrictive time step433

enslaves all others so that the time step is ∆t = minij ∆tij . The CFL condition also434

prescribes the spatial discretization ∆Zij = cpij∆t in each pipe. This constraint con-435
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siderably enlarges the number of unknowns of the problem as well as imposes a small436

constant time-step (without the possible use of adaptative time-stepping). The sec-437

ond drawback is that even if MOC is well adapted to non-dispersive wave propagation,438

i.e propagation with constant wave speed, this framework is limited and not always439

relevant. For example, in the case of water-hammer within visco-elastic pipes, the440

wave-speed is not constant over time. In this case, MOC method is not well adapted441

even though some scheme and approximations have been developed to extent its ap-442

plication in this context [27, 15, 85]. On the contrary, FEM and FV methods permit443

the use of adaptative time stepping and/or implicit time integration schemes debili-444

tating the numerical cost of the CFL constraint. Both FEM and FV can be applied445

with stabilizing hyperbolic schemes (the most popular being the Godunov scheme for446

FV [78, 79, 86], and possibly the Streamline Upwind Petrov–Galerkin SUPG for FEM447

[87]). One distinct advantage of FE over FV is its ability to deal with FSI from solving448

the coupled solid elasto-dynamic problem. Furthermore, considering FEM method in449

more than one dimension in space (e.g non axi-symmetrical breathing varying along θ)450

also permit to handle much more general deformations (e.g yaw, torsion, etc..) than451

pipe breathing modes mostly considered in this review.452

2.3. Friction coupling with shear stress dissipation modeling453

As recently discussed in an authorized survey by A. E. Vardy [88], friction is454

one mechanism of water-hammer’s damping having attracted much attention, by the455

author himself but also many others as will be discussed just below. Many modeling ef-456

forts have indeed been dedicated to model the experimental damping of water-hammer457

waves, which turns-out to be a subtle, difficult, but also central issue in the topic. Let458

us start briefly from mentioning why this issue definitely owns a practical interest.459

From neglecting wave dissipation and dispersion, surge analysis is a current engineering460

computation which permits to localize the most dangerous spots, i.e locations where461

the water-hammer pressure can exceed security prescriptions into a given installation,462

resulting from a given operation/incident within the network (e.g. valve closing, hy-463

draulic motor tripping, check valve failure, pipe breakage, etc... ). Obviously this464

analysis can be overprotective, and possibly alarming. Hence more accurate predic-465

tions for water-hammer events is of interest for lowering the cost of water-hammer466

protection equipment and security design of a given installation. This is where friction467

modeling kicks-in. As for any modeling, two strategies can be pursued : on the one468
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hand, a practical one, dealing with developing specific, dedicated and accurate models469

able to describe observations. On the other hand, a more generic one trying to de-470

cipher which friction mechanisms are involved, and how they could be modeled in a471

generic way. Before entering into the details of friction model, we would first like to472

mention (for honesty and perhaps clarity) that this review is more oriented toward the473

second modeling effort. One motivation behind this tropism is the ability to quantify474

the respective contributions involving various superposed effects, so as to be predictive475

in different situations. Nevertheless, albeit many research efforts, this issue has not476

reached this level of maturity, as now detailed.477

Some wall-shear-stress models emerged from the hydraulic analysis of viscous flow478

in pipes, ignoring (FSI) effects. In many cases, the acoustic hypothesis is used for the479

fluid and the Poisson coupling is discarded, [89, 90, 91, 13, 92].480

481

Nevertheless before discussing the various dissipation models proposed in the lit-

erature, let us step out to properly derive how the wall shear-stress happens to be the

key ingredient in this issue. As previously mentioned in 2.1 the momentum balance

second equation of Tijsseling’s four-equation FSI model (34) can be deduced using

Reynolds transport theorem. Considering a flexible tube, i.e a tube whose radius and

section varies in time, where a velocity field u∗ flows, momentum balance in the fluid

(without body force) reads

ρ∗f
dv∗

dt∗
= ∇ · σ∗f , (70)

where the fluid stress-tensor of a Newtonian fluid is

σ∗f = −P ∗I + µ∗f (∇v∗ + ∇v∗T ) = σ∗f = −P ∗I + 2µ∗fe
∗
f , (71)

where the deviatoric part of σ∗f is related to the symmetric velocity gradient e∗f =

1/2(∇v∗ + ∇v∗T ) defined in (71). Let us first consider (70)’s r.h.s. Integrating (70)

into the infinitesimal volume Ω(t∗) = S∗(z∗, t∗)× εz, based upon the product between

the section S∗ with the infinitesimal thickness εz along z direction, whilst using the

divergence theorem leads to∫
Ω(t∗)

∇ · σ∗f =

∫
S∗(z∗+εz ,t)

σ∗f · nds+

∫
S∗(z∗,t)

σ∗f · ndS + εz

∫
C∗
σ∗f · ndC∗ (72)
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where C is again the contour of surface S∗(z∗, t). (72) gives482 ∫
Ω(t∗)

∇ · σ∗f = −S∗
(
P (z∗ + εz)− P (z∗)

)
ez + εz

∫
C∗
τ ∗wdC∗ (73)

+2µf

∫
S∗(z∗+εz ,t)∪S∗(z∗,t)

e∗f · ez,

where P denotes the surface average pressure, i.e P =
∫
S∗ Pds/S

∗. Let us now take

care of the integral of (70)’s l.h.s. For this we use the Reynolds transport theorem

(29) for vector field Ψ = ρ∗fv
∗ which leads to

d

dt∗

∫
Ω(t∗)

ρ∗fv
∗dΩ =

∫
Ω(t∗)

(
∂(ρ∗fv

∗)

∂t∗
+∇ · (ρ∗fv∗v∗)

)
dΩ (74)

Developing the r.h.s integrand term of (74) leads to

∂(ρ∗fv
∗)

∂t∗
+∇ · (ρ∗fv∗v∗) = v∗

(
∂ρ∗f
∂t∗

+∇ · (ρ∗fv∗)
)

+ ρ∗f (
∂v∗

∂t∗
+ v∗∇ · v∗) (75)

Since the local version of the integrated mass balance (4)’s reads

∂t∗ρ
∗
f +∇ · (ρ∗fv∗) = 0, (76)

this permits to simplify the r.h.s of (75), so that using (76) in (75) and (74) then leads

to the equality
d

dt∗

∫
Ω(t∗)

ρ∗fv
∗dΩ =

∫
Ω(t∗)

ρ∗f
dv∗

dt∗
dΩ (77)

Using now the domain Ω(t∗) = S∗(z∗, t∗)× εz, integrating (70)’s l.h.s using (77) and

(73) whilst dividing both sides by εz, projecting the vectorial equality along ez and

taking the limit εz → 0 leads to

d

dt∗

∫
S∗
ρ∗fw

∗ds = −S∗ ∂P
∂z∗

+

∫
S∗
µ∗f
∂2w∗

∂z∗2
ds+

∫
C∗
τ∗wdC∗. (78)

We now consider axi-symmetric wave perturbations (pipe breathing perturbations) for

which τ∗w is uniform along C∗. Furthermore, a core acoustic wave velocity for which

the longitudinal velocity field w∗ is uniform and denoted W ∗ is also considered. On

(78)’s l.h.s, there is small contribution of boundary layers where w∗ tends to zero near

the boundary, but these regions are small. More precisely denoting δR∗0 the boundary

layer thickness, as δ ≡
√

1/εRep with δ � 1, ε = R∗0/L � 1 and Rep = R∗0c
∗
p/ν �

1. The correction from these regions to (78)’s l.h.s are O(δ). Similarly, on (78)’s

r.h.s, a core acoustic perturbation having constant longitudinal velocity W ∗ is such
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that ∂2W ∗/∂z∗2 = 0, so that a non-zero contribution of the viscous dissipation term

∂2w∗/∂z∗2 is found only within the boundary layer. This leads to

d

dt∗
(S∗ρ∗fW

∗)(1 +O(δ)) = −S∗ ∂P
∂z∗

+ 2πR∗τ∗w(1 +O(δ)), (79)

Furthermore, from integrated mass-balance (4) one gets

d

dt∗
(ρ∗fS

∗) + ρ∗fS
∗∂z∗W

∗ = 0, (80)

so that, finally, using (80) in (79) leads to

ρ∗f∂t∗W
∗(1 +O(δ)) = − ∂P

∂z∗
+

2

R∗
τ∗w(1 +O(δ)), (81)

Since δ � 1, O(δ) corrections are generally neglected so that (81) is identical with

the second line of (33). (81)’s r.h.s thus involve a source term proportional to wall

shear stress and responsible for the wave damping. It is directly related to the vis-

cous dissipation arising within the liquid boundary layer. Hydraulic water-hammer

modeling has mainly been focused on dissipative viscous losses, whilst disregarding

(FSI) effects. More precisely, this means that most of the hydraulic literature ignores

the stress-acceleration equations (34) and only consider (33) discarding Poisson’s cou-

pling, i.e in the νs → 0 limit. In this limit, the set of four-(FSI) equations introduced

in (33)-(34), simplifies to two coupled first order hyperbolic equations for the fluid

pressure P and longitudinal velocity W ∗ [93, 94]∂t∗ +

 0 ρ∗fc
∗2
p

1
ρ∗
f

0

 ∂z∗

P ∗

W ∗

 = − 2τ∗w
ρ∗fR

∗
0

0

1

 . (82)

The coupled first order hyperbolic problem (82) can be re-casted into a second order

wave equation, in dimensionless form, using z∗ = ZL as quoted in [13, 95]

[
∂2
t − ∂2

Z

]
P = 2δ

∂τw
∂Z

. (83)

When viscosity effects are taken into account, one needs a wall shear-stress model.483

This issue turns out to be central, for a correct evaluation of the wave damping pre-484

diction and this is why it has attracted so many studies in the literature. But, as485

previously stated, it is a subtle issue, for which there is still surprisingly remaining486

open questions at the present state of the art, as will be discussed at the end of this487

section. Furthermore, the dimensionless pressure wave (83) shows that the dissipation488
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rate is slow since the r.h.s is small, i.e O(δ). This specific asymptotic property has489

nevertheless been used only recently, and will thus be discussed in section 4.1.490

A first intuitive empirical and popular wall shear-stress model is built from the

extension of the steady-state Darcy-Weisbach friction law (Cf. [19, 96, 13]) to hydraulic

transient. The use of the redesigned quasi-steady wall shear rate τqst

τ∗qst(z
∗, t∗) =

ρ∗ffDWW
∗(z∗, t∗)|W ∗(z∗, t∗)|

8
, (84)

through the dimensionless Darcy-Weisbach coefficient fDW , is nevertheless question-491

able for transient investigations. Poor experimental agreement is sometimes found492

using this dissipation model [97, 98, 99]. Furthermore, even if the extension of steady493

friction to quasi-steady one seems a plausible model at first sight, one should bear in494

mind that (84) has not been established within any rigorous derivation framework.495

Also, this wall-shear stress model considers that the rapid wave shear is coupled with496

the steady-state velocity. How such coupling between steady and transient happens497

for the shear stress is elusive. We will consider this issue in a much deeper way in498

section (4.2), so as to address the fluid mechanics behind a possible coupling between499

the steady-flow and the unsteady one, still not well understood at the present state of500

the art.501

This quasi-steady model has then been enriched to improve the experimental atten-

uation’s predictibility. Several classes of model, [16] have been established: (i) instan-

taneous material acceleration-based (IMAB) models and, (ii) weighting function-based

(WFB). Although conceptually different, these two approaches seek to account for the

same physical observation, that the near-wall dynamics does not instantaneously re-

spond to the core velocity variations. The energetic dissipation emerges from the time

response delay between the central part of the flow and its boundary layer. Finally,

these models are based on a decomposition of the total wall shear rate into a quasi-

steady component, via the use of the Darcy-Weisbach model (84), and a transient one

τ∗tr, [13]

τ∗w = τ∗qst + τ∗tr. (85)

The τ∗tr component is then expected to fill the gaps between the model predictions502

and the experimental observations, when only a quasi-steady wall shear stress model503

is considered.504
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Instantaneous material acceleration-based (IMAB) model. IMAB relies on semi-empirical

observations and assumes a linear variation of the transient wall shear stress τ∗tr, with

respect to the mean flow acceleration ∂t∗W
∗. These models arise from the experi-

mental work of [100]. The author analyzed the turbulence structure in a pressurized

flow with or without orifices. [100] highlighted the time delay between the response

of boundary lines with respect to the mean flow variations. He then proposes the

following transient wall shear stress model

τ∗tr =
ρfk3R

∗
0

2
∂t∗W

∗, (86)

where k3 account for the boundary response deviation. When re-injecting the above

transient wall shear stress expression into the hyperbolic constitutive equation set (82),

it turns out that no energetic damping arises, [101]. Indeed, the time-derivatives of

both (82) and (86) can be factorized so that no source term remains in the hyperbolic

system r.h.s. However, the structure of the hyperbolic system, i.e. its eigenvalues

and eigenvectors, are modified by k3. The wave speed is thus modified by a 1/
√

1 + k3

prefactor. To account for energetic losses, the (IMAB) model was then later completed

by [102, 98]. The authors added a convective term to the transient shear-stress (86)

and proposed that

τ∗tr(x, t) =
ρ∗fk3R

∗
0

2

(
∂t∗W

∗ + c∗p · sgn(W ) |∂z∗W ∗|
)
, (87)

where sgn(W ) stands for the accelerating or decelerating transient flow phase. This

inertial contribution, similar to the Navier’s inertial terms, creates a source term in the

hyperbolic system (82). Consequently, the (IMAB) model intends to model both the

attenuation and the phase shift of overpressure waves. Some authors, [103, 104, 105],

also developed a slightly distinct model by using a second semi-empirical parameter

k
′
3

τtr(x, t)
∗ =

ρ∗fR
∗
0

2

(
k3∂t∗W

∗ + k
′
3c
∗
p · sgn(W ∗) |∂z∗W ∗|

)
(88)

and then distinguished the phenomenon of wave speed deviation from the damping505

one, [101]. When the single coefficient model is used in (87), an approximation arising506

from theoretical arguments is used to estimate the Reynolds number dependence of507

k3, [106]508

k3 =

√
0.00476

2
, if, Re ≤ 2000, (89)

k3 =
1

2

√
7.41

Re
log
(

14.3
Re0.05

) , else, (90)
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where Re = W0R0/νf is the Reynolds number, W0 is a reference axial fluid velocity509

magnitude and νf is the fluid kinematic viscosity. The review of [13] provides an510

excellent state-of-the-art of (IMAB) models. In addition to the use of semi-empirical511

models, some analytical developments relying on a weighting function-based (WFB)512

approach, have also been carried out.513

Weighting function-based (WFB) model. WFB seeks for an analytical description

of the viscous shear energetic losses. One of the first noteworthy contributions has

been provided by [107]. In the low-Mach number acoustic framework, i.e. neglecting

Navier’s inertial terms and decomposing the fluid variables into steady and perturbed

components, the authors performed a Laplace domain analysis of the fluid mass and

momentum conservation equations. They found a radial- Bessel-dependent solution

for the axial fluid velocity W ∗(r). The transient wall shear stress was then also derived,

directly from a direct computation of the shear

τ∗tr = ρ∗fν
∗
f∂
∗
rW

∗
∣∣∣∣
r=R0

. (91)

This theoretical approach is also consistent with [7] for the maximum overpressure

prediction. Furthermore, [13] highlighted the relevance of a previously defined dimen-

sionless parameter associated with the pressure waves damping, which is now known

as the water-hammer small parameter δ

δ2 =
ν∗fL

∗

c∗pR
∗2
0

=
ν∗f
R∗20

· L
∗

c∗p
≡ t∗c
t∗vis
≡ 1

εRep
, (92)

where t∗vis = R∗20 /ν
∗
f is the viscous diffusion time-scale within the boundary layer, and

t∗c = L∗/c∗p is the advective time-scale of the wave, ε = R∗0/L
∗ is the inner pipe’s

radius to its length ratio and Rep = R∗0c
∗
p/ν
∗
f is the pulse re-scaled Reynolds number.

This small parameter is the cornerstone of the asymptotic analysis of water hammer

as will be discussed in section 4.1. Approximatively at the same time as Holmboe,

Zielke [108, 109] delivered a famous analysis of fully developed laminar boundary layer

and derived a diffusion equation of the axial fluid velocity, forced by the longitudinal

pressure gradient [
∂∗t − ν∗f

∂∗r
r∗

(r∗∂∗r )

]
W ∗ = − 1

ρ∗f
∂z∗P

∗. (93)

Solving (93) in the Laplace domain, and then performing an inverse Laplace transform

using Cauchy’s residue theorem leads to a time-convoluted form of the wall shear stress
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τ∗w =
4ρ∗fν

∗
f

R∗0
W ∗︸ ︷︷ ︸

τ∗qst

+
2ρ∗fν

∗
f

R∗0

∫ t∗

0

ΘZielke(t
∗ − τ∗)∂∗τWdτ∗︸ ︷︷ ︸

τ∗tr

, (94)

where ΘZielke(t) is the convolution kernel. For practical use of this kernel Zielke has514

provided some approximate fitting of the form515

ΘZielke(t
∗) =

5∑
i=0

mi

(
t∗

t∗vis

) i−1
2

, if
t

tvis
≤ 0.02, (95)

ΘZielke(t
∗) =

4∑
i=0

e
−ni t∗

t∗
vis , if,

t∗

t∗vis
> 0.02, (96)

where ni,mi parameters can be found in [109]. The presence of the τqst term in (94)

arises form the fact that W. Zielke did not decompose his fluid velocity and pressure

fields into steady and perturbed components as its classically done in the low Mach

number acoustic framework. This point is highlighted here and will be discussed

further in section 4.1. It is interesting to point out that the W. Zielke’s kernel is

convoluted with the fluid mean acceleration. It then reflects that the underlying

physical phenomenon governing the energetic damping in the (WFB) models and in

the (IMAB) ones is the same (Cf. (86)), and relies on the non-instantaneous response of

the boundary layer with respect to the core acceleration. Whilst the (IMAB) assumes

a direct linear relation between the wall shear stress and the mean acceleration using

k3, the (WFB) embeds all the historic mean flow variations through a time convolution

with ΘZielke(t). The scaling of the W. Zielke convolution kernel is obtained regarding

both the first term of (95) and by setting up the characteristic advective time scale

τc = L∗

c∗p
, thus leading to

ΘZielke ≡ O
(

1

δ

)
, (97)

with δ as introduced in (92). The convolution kernel scaling thereby merges with

the conclusion of [107]. Finally, the author confronted his theory to the experimental

data of [107] and a very close agreement was found as revealed in Figure 6. [110]

extended W. Zielke’s work into an asymptotic analysis which supposes a near wall

inner concentrated laminar boundary layer, or a skin friction model. The flow in

the core area, bulk or outer region, is then considered as inviscid. The Figure 7a

provides a schematic representation of the [110]’s asymptotic model. During a transient

event, the authors supposed that: ”the fluid remains divided into a turbulent core and

laminary boundary layer and that, the boundary-layer thickness remains constant.” The
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Figure 6: [109]’s theoretical predictions compared to [107]’s experimental data. The following

notation are used: H the hydraulic head line, a the pulse wave speed.

(a) Laminar boundary layer concept, [110].

(b) Axial velocity matching at the fluid boundary layer interface, [110].

Figure 7: [110] boundary layer model for pressure waves energetic damping.

boundary layer thickness, and hence its dynamics, are thus governed by the preexisting

flow regime. The dimensionless steady boundary layer thickness δst, follows from the
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equilibrium of steady state viscous terms with the initial the pressure gradient

δst =
4

fDWRe
. (98)

Two approaches are then proposed to evaluate the attenuation of pressure waves.

The first one relies on solving the inner region problem associated with the diffusion

equation upon the axial velocity in the boundary layer. A velocity matching at the

boundary layer interface is then performed to ensure kinematic continuity conditions

(Cf. Fig.7b). The second method involves energy balance from taking into account

energy losses via the quadratic integral of the wall shear-stress over the boundary

layer thickness. [97] extended a similar asymptotic approach from designing a two-

dimensional model to describe the viscous losses in both the laminar and turbulent

regions. By considering the pipe as an in-extensible solid, i.e. without radial dilatation,

they decomposed the fluid into a succession of interconnected concentric ring of small

thicknesses. Each layer of fluid is coupled to others via momentum transfers, radial

kinematic and shear stress continuity, as depicted in Figure 8. Ensuring mass and

Figure 8: Momentum balance on a cylinder element, [97]

momentum conservation within each rings, [97] derive a coupled hyperbolic system

forced by the radial transfer. For turbulent flow regimes, a five-region model has

been adopted to model the shear rate. The authors found: ”pleasantly surprising that

Zielke’s expression is so successful even through his assumed (laminar) initial velocity

profile differs markedly from reality”. [113] extended the laminar framework of [110] by

taking into account the Reynolds-dependence of the flow in its convolution kernel. The

flow is again divided into two regions: (i) the acoustic outer (bulk) region where the

velocity field is radially uniform (ii) the inner boundary layer (annulus) where viscous

effects are concentrated. The dimensionless boundary layer thickness is once again set
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up to match with the preexisting flow conditions. Inspired by the experimental results

of [114], [110] highlights the effects of the initial Reynolds number upon the convolution

kernel structure as illustrated in Figure 9. In the boundary layer, a diffusion equation is

Figure 9: [113] discussion on the convolution kernel Reynolds-dependence according to the

experimental work of [114].

once again derived in [113], which merges with [109, 110] analysis. The improvement

and elegance of [113]’s model lies in the inner-outer asymptotic matching handling.

The authors finally yielded the derivation of a Reynolds-dependent transient wall shear

stress kernel expression (via the δst parameter)

Θ(t)Vardy et al. (1993) ≈
1

δst

∑
k∈N∗

e
−[ kπ
δst

]2 t∗
t∗
vis ≡ O

(
1

δst

)
. (99)

The experimental contributions of [115, 116] on the turbulent kinematic viscosity dis-

tribution in pipes, permitted [106] to extend [113] to account for higher Reynolds

numbers (Re � 105). This new model, valid in a smooth pipe, is based on an ide-

alized radial distribution of the turbulent kinematic viscosity in the boundary-layer

as shown in Figure 10a. In this work, a core viscosity νc to wall viscosity νw ratio is

introduced and used to characterize the turbulent kinematic distribution

νc
νw
≡ σVardy ≈ 0.173 (fDWRe)

1.12 , (100)

whilst a new dimensionless boundary layer thickness is set up to scale in

b

R0
= δst

uc
U

σVardy − 1

ln (σVardy et al.)
, (101)
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(a) Skin friction axial velocity distribution, [106]

(b) Idealized distribution of turbulent kinetic

viscosity, [106]

Figure 10: Idealized velocity and viscosity distribution for the skin friction model of [106].

where uc is the uniform core velocity, U the mean flow velocity per section and b

is the dimensional boundary layer thickness. In the limit σVardy tends to unity, the

dimensionless boundary layer thickness of [113], presented in (98), is recovered. A

similar asymptotic analysis as in [113] is carried out in [106] yielding to the derivation

of a modified convolution kernel

Θ(t)Vardy et al. (1995) =
A∗e

−B∗ t∗
t∗
vis√

t∗
t∗vis

, A∗ =
1

2
√
π
, B∗ = 0.135Re

log10

(
14.3
Re0.05

)
. (102)

For t ≡ O
(
L
cp

)
, one finds

Θ(t)Vardy et al. (1995) ≡ O
(

1

δ

)
. (103)

Under the hypothesis of constant transient acceleration, i.e. if ∂tW constant in (94),

[106] derived a straightforward relation between the semi-empirical deviation constant

k3, and their inertial shear coefficient B∗

k3 ≈
1

2
√
B∗

. (104)

This relation provides a plausible justification for the derivation of (89)-(90). [106]

point-out the Reynolds-dependence of parameter k3. Additional discussions concern-

ing the relations between [106]’s model and the (IMAB) ones are developed within
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[102]. Finally, it is important to mention that many expressions have been proposed

to model A∗ and B∗ from model (102) derived from several approximations. For exam-

ple, [117] extend their previous model by modifying both (i) their idealized turbulent

viscosity distribution (until then considered as infinite in the acoustic core) and, (ii)

considering the boundary-layer thickness as independent from Reynolds. [117] reached

a new convolution kernel via a modification of the B∗ coefficient

B∗ =
Re

log10

(
15.29

Re0.0567

)
12.86

, (105)

which appear seemingly valid over a wider range of Reynolds numbers, i.e Re ∈ [2 ·

103, 108]. Ref. [118] gives a final answer in order to take pipe’s roughness into account.

It is noteworthy discussing [117, 119, 118]’s assumptions. The authors indeed supposed

that the idealize turbulent eddy viscosity profile does not instantaneously respond to

the mean flow variations. Quoting the authors: ”The change in the effective viscosity

occurs during the period when the shape of the velocity profile is changing, not during

the earlier period when the velocity amplitude increases uniformly. That is, there is

a phase lag between the step change in mean velocity and the resulting change in the

effective viscosity.” This assumption is known in this literature as the ”frozen viscosity”

model and has been later-on analyzed by [120, 118, 13]. [120, 119, 118, 13] confirmed

the relevance of the ”frozen viscosity” approach as long as the shear pulse diffusion

through the viscous sub-layer time scale, i.e. τdiff,sublayer ≡
√

2R0
u∗

with u2
∗ =

fDWW2
0

8

the friction velocity, is smaller than the advective wave time scale, i.e. τadv ≡ L∗

c∗p
. A

validity condition then follows

4R0cp√
fDWLW0

� 1, (106)

or otherwise, invoking the definition of δ and δst in (92) and (98), respectively

δ2 �
√
fDW δst, (107)

It obviously follows from the condition (107), that it should not be expected close516

agreement between the [117, 119] model predictions and the experimental data, for517

observation times upper than τdiff,subayer. To test these models, comparisons between518

theoretical/semi-empirical predictions and experimental data were carried out in [98].519

The authors found excellent agreement for all the models herein presented. Other520

experimental validations were carried-out in [122, 99]. [122, 99] performed a series of521

experiments in an elastic copper pipe of length L = 98m, inner radius R0 = 8 · 10−3m522
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Figure 11: Friction coefficient fu, i.e. τtr ≡
ρf fuW |W |

4
for the characterization of transient

overpressure waves damping in pipes. Original chart of [121].

and wall thickness e = 10−3m for a wide Reynolds number range, Re ∈ [1100, 15800].523

Despite their conclusions merge those of [98], they highlighted that (WFB) models:524

”have to be singled out. These models predict almost superbly the wave front shape and525

preserve the frequency. However, it is symptomatic that for higher Reynolds number526

(over approx 105) the damping effect observed in the calculated courses is greater than527

in the experimental ones”. An observation also shared recently by [123, 124]. An528

overview of all damping models can be gathered from the work of [121] from which529

Figure 11 has been taken.530

Beside pipe wall’s boundary-layer related damping models, some analysis suggest that531

acoustic impedance discontinuities might also affect the phase as well as the damping532

of water-hammer waves [70, 111]. How to handle and model the wave interaction533

nearby discontinuities is still under debate [70, 111] and many possible improvements534

are suggested from a huge acoustic literature that this review does not cover. However,535

a recent asymptotic analysis [112] in complex geometries might help improving long-536

wavelength approximation models when impedance discontinuities have to be taken537

into account.538

Finally, it is worth mentioning that despite of all these modeling efforts, water-539

hammer friction models, are yet only partially successful when confronted with exper-540

imental observations. One possible explanation — maybe an optative one— is that541
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some issues might have been missed. As mentioned earlier, some researches evoked542

the possible influence of turbulence [106, 117] of the ”steady” flow to influence the543

water-hammer wave friction propagating through it. Also, at the roots of the quasi-544

steady Darcy-Weisbach approximation (84) is a coupling between the water-hammer545

wave and the steady flow underneath. In both cases, the friction model depends on546

the coupling arising between the steady base flow and water-hammer wave, but, to547

our knowledge, the mechanical origin of this coupling has not been clearly elucidated548

yet. A possible path toward clarifying this issue will be described in section 4.2 where549

a recent asymptotic study is discussed.550

3. Poisson coupling in more complex contexts551

3.1. More complex vibrating degree of freedom552

I should be pointed out that, depending on the system’s Degree Of Freedom553

(DOF), several additional vibrations must be taken into account (e.g. torsion, bending554

etc.). The recent reviews of [15, 17] provide insights into this modeling when all pipe’s555

DOF are considered, leading to an increasingly larger number of equations (e.g eight556

DOF leads to sixteen coupled equations [17]). Obviously, in this context of extended557

DOF analysis, only very simple pipe’s configurations have been considered without558

taking into account friction coupling.559

3.2. Visco-elastic FSI effects560

Water hammer pressure waves propagating into liquid filled pipes having visco-

elastic solid walls experience a strong attenuation both in hydraulic contexts [88]

as well as bio-mechanical ones [125, 126, 127, 128, 18]. By the last quarter of the

twentieth century, Rieutord et al. [129] demonstrated that visco-elastic stress-strain

response of a pipe wall has a strong influence on the water-hammer waves propaga-

tion. A few years later some experiments from the same team [130] complemented

with a 1D theoretical model [131] confirmed their first observations supported by a

theoretical understanding of it. As opposed to the case of a purely elastic solid, when

considering a visco-elastic wall, the water-hammer wave velocity becomes dispersive

[125, 40, 132], i e, the wave velocity depends on the considered frequency. Secondly,

the wave amplitude is exponentially damped because the wave velocity acquires an

imaginary component coming from visco-elastic dissipation [133, 31, 104, 134]. Both
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damping and dispersivity are related to the creep-functions J∗ defined as the strain

to stress ratio. More precisely considering the normal stress σ∗rr and the longitudinal

deformation ξ∗,

J∗ =
ε∗rr
σ∗rr
≡ ∂rξ

∗

σ∗rr
≡ 1

E∗
, (108)

where the strain tensor ε∗ and displacement gradients are related by

ε∗ =
1

2

(
∇∗ξ∗ + ∇∗T ξ∗

)
. (109)

A similar exponential damping is also present in water-hammer wave propagation561

within purely elastic pipes as discussed in 2.3. Nevertheless it results from a very562

distinct mechanism associated with the viscous dissipation within boundary layers563

[95, 135]. In many cases however, the visco-elastic damping dominates over the vis-564

cous one. This visco-elastic damping is filtering high-frequency oscillating elastic565

modes. Since water-hammer wave propagation has been found material dependent,566

the pioneering studies of [129, 130, 131] inspired many others, following the similar567

footsteps, combining experimental measurements with modeling associated with solid568

creep-functions displaying Kelvin-Voigt behavior (Cf [136, 137, 31, 104, 138] among569

many others). The applicative interest and the relevance of the topic motivated many570

further studies whereby one could enrich the Kelvin-Voigt model [139, 140] to better571

fit with observations. Alternatively, some authors also included both solid visco-elastic572

damping and fluid one, through time-convolution, shear-stress models [141, 142, 143].573

Because the modelling relies on many parameters, combined with time-convolution574

many approaches are possible to match experiments raising a number of questions575

including wave-speed calibration in visco-elastic pipes [138, 144]. The influence of the576

visco-elastic stress response has been more recently considered in a Fluid-Structure-577

Interaction (FSI) context as more extensively discussed in the recent review of [15].578

In this context Kelvin-Voigt solid responses of the creep function have also been used579

in FSI four-equations models [145, 146, 147] in order to improve the relevance of the580

modeling. Furthermore, for improving data fitting, a series of Kelvin-Voigt units are581

often considered [145, 148, 146, 147]. However, in these previous modeling efforts, the582

creep-function parameters are calibrated [149] not only to describe the visco-elastic583

properties of the solid but also the considered pipe configuration associated with a584

specific length, thickness, diameter and boundary conditions. Let us now first discuss585

in more details visco-elastic models without FSI effects.586
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3.2.1. Two-equations water hammer models within visco-elastic pipes587

When considering an acoustic fluid region whilst disregarding the influence of vis-588

cous boundary layer, the dimensionless low-Mach, long-wavelength mass conservation589

and momentum balance in the core fluid region (the outer region of the asymptotic590

framework) leads to the following two-equation hyperbolic problem [149, 43, 135, 65]591

∂τP + C2∂ZW = −2αC2∂τξ
∣∣
R=1

, (110)

∂τW = −∂ZP. (111)

In (110)-(111), as used in (38) a Joukowsky’s dimensionless pressure is chosen, i.e592

P ∗ = (ρfc
∗
pW
∗)P , built upon reference steady fluid velocity W ∗, also used for dimen-593

sionless velocity W defined as w∗ = W ∗W . As in section 2.2.1 dimensionless time594

is again based upon wave traveling reference time, i.e t∗ = (L/c∗p)τ , associated with595

the pulsed wave-speed c∗p and longitudinal reference length L∗, also used for dimen-596

sionless longitudinal length Z∗ = L∗Z. Finally the dimensionless longitudinal solid597

displacement ξ∗ = ξ∗0ξ is related to a reference length ξ∗0 = R∗0αW
∗/c∗p the origin of598

which comes from kinematic boundary conditions [135]. From the r.h.s of (110) and599

the long-wavelength approximation, continuity relations of the radial velocity at the600

wall ∂τξ
∣∣
R=1

is automatically satisfied. The dimensional version of (110)’s r.h.s was601

derived from Reynolds transport theorem using (30) in section 2.1 as resulting from a602

kinematic driven FSI coupling. Writing (110)-(111) in Fourier space leads to603

iωP̃ + C2∂ZW̃ = −2iαωC2ξ̃
∣∣
R=1

, (112)

iωW̃ = −∂Z P̃ . (113)

These equations are complemented with Fluid/Solid interface boundary conditions.

To express them, one first needs to define the linear constitutive relation between the

solid stress tensor σ∗ and strain tensor ε∗. In frequency domain and dimensional form,

these constitutive visco-elastic solid equations read

σ̃∗ = λ̃∗s(ω
∗)Tr (ε̃∗) I + 2µ̃∗s (ω∗)ε̃∗ , with, ε̃∗ =

1

2

(
∇∗ξ̃∗ + ∇∗Tξ̃∗

)
. (114)

where Tr (ε̃∗) = ∇∗ · ξ̃∗ is the trace of tensor ε̃∗ which also equals the divergence604

of the displacement vector. λ̃∗s(ω
∗) and µ̃∗s(ω

∗) are the generalized Lamé coefficients,605

dependent on pulsation ω∗. These coefficients are usually found experimentally from606

using Dynamic Mechanical Analysis (DMA) measurements). Since dimensionless for-607

mulations are better for comparing various models in the same reference framework,608
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the Joukowsky pressure is used as a reference pressure, for dimensionless stress ten-609

sor σ∗ = ρfc
∗
pW
∗σ. Each Lamé coefficient is made dimensionless using the Young610

modulus, (λ∗e , µ
∗
e) = E∗(λe, µe), so that in dimensionless form, frequency domain and611

cylindrical coordinates the visco-elastic equation (114) reads612

σ̃rr = α

[
2

C̃µs(ω)
+

1

C̃λs(ω)

]
∂Rξ̃ +

α

C̃λs(ω)

[
∂Z ζ̃ +

ξ̃

R

]
, (115)

σ̃θθ = α

[
2

C̃µs(ω)
+

1

C̃λs(ω)

]
ξ̃

R
+

α

C̃λs(ω)

[
∂Z ζ̃ + ∂Rξ̃

]
, (116)

σ̃zz = α

[
2

C̃µs(ω)
+

1

C̃λs(ω)

]
∂Z ζ̃ +

α

C̃λs(ω)

∂R
R

(
Rξ̃
)
, (117)

ε2
C̃µs(ω)

α
σ̃rz = ∂Rζ̃ + ε2∂Z ξ̃, (118)

Ignoring external constraints applied in the solid radial direction (supposing a zero

external normal stress) whilst using σ̃rr defined in (115), the continuity of the normal

and tangential stress as well as axial velocity read (Cf [65] for more details)

σ̃rr = −P̃ , at R = 1 σ̃rr = 0 , at R = 1 + α (119)

σ̃rz = 0 , at R = 1 σ̃rz = 0 , at R = 1 + α (120)

Note that, for dimensionless radial distance r, since the dimensionless thickness of the

pipe is α, the outer wall is reached as R = 1 + α. Kinematic condition between the

solid and the fluid at R = 1 in Fourier space read

w̃ = αiωζ̃
∣∣
R=1

ũ = αiωξ̃
∣∣
R=1

(121)

It is noteworthy to mention that, the dimensionless form of the two-equation model

proposed by Covas et al. [31] reads

iωP̃ + ∂ZW̃ = − 2D
αCes2 iωĨCovP̃ , (122)

iωW̃ = −∂Z P̃ , (123)

(124)

having the very same terms as (112)-(113) but for introducing the creep function ĨCov613

in the r.h.s term of (122). Using the relation between normal stress and pressure614

obtained from normal-stress continuity boundary condition (119), since the normal615

displacement ξ̃
∣∣
R=1

in (112) is linearly related with the radial velocity of (121) which616

is also linearly related to the normal stress, and thus to the wall pressure, the r.h.s617
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term of (122) can be interpreted as resulting from some FSI effect. This is why the618

full FSI problem is now considered.619

3.2.2. Four-equations water hammer models within visco-elastic pipes620

The dimensionless form of the four-equation model proposed by Keramat et al.

[145] is (the dimensionless formulation of this model is derived in [135]’s Appendix)

iωW̃ = −∂Z P̃ , (125)

iωP̃ + ∂ZW̃ − 2iωανe∂Z ζ̃ = −
2D
(
1− ν2

e

)
αCes2 iωĨKerP̃ , (126)

iωσ̃zz − iω
νe
α
P̃ − iωαC

e
s

2

D ∂Z ζ̃ = −iωĨkerσ̃zz +
νe
α
iωĨKerP̃ , (127)

α

Dω
2ζ̃ + ∂Z σ̃zz = 0, (128)

where ĨKer is the Fourier transform of kernels proposed in Keramat et al. [145]). The

Covas et al. [31]’s model can be derived in the νe → 0 limit of the Keramat et al.

[145]’s one resulting in decoupling fluid axial dynamics to the solid’s one. Nevertheless,

it is important to stress that, in this limit the right-hand-side of (122) is non-zero,

resulting from kinematic continuity condition which produces a FSI term into (112)

already found in Skalak’s model (24), as previously mentioned. Both [31] and [145]

then consider Nkv Kelvin-Voigt elements to build their convolution kernel interpreted

as a creeping law, each having its own exponential times-decay τk, amplitudes Jk, to

model their convolution kernels, [148]

(
ĨCov, ĨKer

)
=

Nkv∑
k=1

EeJk

1 + iω
cepτk
L

. (129)

3.2.3. Generalized 3D visco-elastic rheology621

Various Kelvin-Voigt models have been previously considered in the literature [150,

149, 139, 140, 141, 146]. Nevertheless among those almost every model has used a 1D

scalar relationship between the stress and the strain. However, general visco-elastic

Kelvin-Voigt models can be formulated in 3D as provided by [151] for the stress-strain

relation

σ∗ = λ∗e (1 + τλ∂t∗) (∇∗ · ξ) I + µ∗e (1 + τµ∂t∗)
(
∇∗ξ∗ + ∇∗T ξ∗

)
, (130)
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having four parameters : two elastic Lamé coefficients λ∗e , µ
∗
e and two visco-elastic

times τλ, τµ. A more general 3D visco-elastic rheology can be formulated [135]

a (1 + τr∂t∗)σ
∗ = λ∗e (1 + τλ∂t∗) (∇∗ · ξ∗) I + µ∗e (1 + τµ∂t∗)

(
∇∗ξ∗ + ∇∗T ξ∗

)
,

(131)

where now, six constitutive parameters a, τr, τλ, τµ, λ
∗
e , µ
∗
e are considered, with again

(λ∗e , µ
∗
e) the elastic Lamé coefficients and (τr, τλ, τµ) visco-elastic characteristic times,

all independent of frequency ω∗. (131) general visco-elastic rheology encapsulates all

previous models used in the context of water-hammer analysis [126, 134, 152, 153, 154,

155, 156], as detailed in table 1. Among those parameters a might be chosen equal

to one if the elastic part of the visco-elastic response match with the purely elastic

one, since 1/a essentially appears as a visco-elastic rescaling of elastic parameters λ∗e

and µ∗e . Now, from the Fourier transform of (131) and identification with (114) the

a τr λ∗e τλ µ∗e τµ

Carcione et al. [152] X X X X

Eringen, Canic et al.[153, 126] X X X X

Kisilova et al. [134] X X X

Bland [154] X X

Ieşan [155] X X X X

Sharma et al. [156] X X X X

Table 1: Comparative table of 3D rheological parameters taken from literature.

generalized Lamé coefficients can be deduced for this rheology

λ̃∗s(ω
∗) = λ∗e

1 + iω∗τλ
a (1 + iω∗τr)

, and µ̃∗s(ω
∗) = µ∗e

1 + iω∗τµ
a (1 + iω∗τr)

. (132)

Generalized Poisson and Young modulus can also be found from these rheological

parameters

ν̃∗s (ω∗) = νe
1 + iω∗τλ
1 + iω∗τν

, and Ẽ∗s (ω∗) =
Ee(1 + iω∗τµ)(1 + iω∗τE)

a(1 + iω∗τr)(1 + iω∗τν)
, (133)

where the above introduced times-scale τν and τE are given by

τν =
λeτλ + µeτµ
λe + µe

, and τE =
3λeτλ + 2µeτµ

3λe + 2µe
. (134)
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In the following the dimensionless generalized Lamé coefficients are defined,

λ̃∗s(ω
∗) = λ̃(ω∗)λ∗e , and µ̃∗s(ω

∗) = µ̃s(ω
∗)µ∗e , (135)

as well as the dimensionless generalized Poisson and Young modulus

ν̃∗s (ω∗) = ν̃s (ω∗) νe , and Ẽ∗s (ω∗) = EeẼs (ω∗) . (136)

Also, the Fourier transform of the dimensionless creep function J̃s(ω) (108) reads from

(136)

J̃s(ω) =
1

Ẽs
= a

(
1 + iωτr

cp
L

) (
1 + iωτν

cp
L

)(
1 + iωτµ

cp
L

) (
1 + iωτE

cp
L

) . (137)

where dimensionless frequency ω is related to the dimensional one ω∗ = ωcp/L using622

the advective time-scale L/cp.623

3.3. FSI Rheology-based four-equations dimensionless visco-elastic water-hammer624

In [135], a rheology-based four-equations FSI model has been derived from the625

general visco-elastic rheology (131) hereby presented in dimensionless form626

iωP̃ + ∂ZW̃ − 2iωανe∂Z ζ̃ = −iωχeĨFP P̃ +
2Dνe
Ces2 iωĨFσ σ̃zz, (138)

iωW̃ = −∂Z P̃ (139)

iωσ̃zz −
2νe

α(2 + α)
iωP̃ − iωαC

e
s

2

D ∂Z ζ̃ = −iωĨSσ σ̃zz +
2νe

α(2 + α)
iωĨSP P̃ , (140)

α

Dω
2ζ̃ + ∂Z σ̃zz = 0, (141)

where the hereby introduced visco-elastic extra terms ĨFP , ĨFσ , ĨSP and ĨSσ read627

ĨFP =
1

Ẽs(ω)

1− ν2
e ν̃s(ω) + α(2+α)

2
(1 + νeν̃s(ω))

1− ν2
e + α(2+α)

2
(1 + νe)

− 1, (142)

ĨFσ =
ν̃s(ω)− 1

Ẽs(ω)
, (143)

ĨSP = −
(

1− ν̃s(ω)

Ẽ(ω)

)
, (144)

ĨSσ =
1− Ẽs(ω)

Ẽs(ω)
. (145)

It is important to stress the similarity between (138)-(141)’s model and Keramat et al.

[31, 145]’s ones. Considering [145]’s hypothesis that the generalized Young modulus

ν∗s equals the elastic one νe, i.e. ν̃s = 1, with small dimensionless tube’s thickness i.e.

α� 1, visco-elastic kernels (142)-(145) simplify to

ĨFP = ĨSP = ĨSσ = J̃s(ω)− 1 , and ĨFσ = 0. (146)
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As a matter of fact within ν̃s = 1 (ν̃∗s = νe) and α→ 0 hypothesis, one finds that the628

r.h.s of (139) displays a convolution product with the pressure only, as (126) when629

IFσ = 0 as provided by (146). Furthermore, the kernel associated with ĨFP , ĨSP and630

ĨSσ is the same, so that both r.h.s terms of (140) share the same kernel respectively631

applied to the pressure and the axial stress. The very same feature is satisfied by the632

r.h.s of (127). Hence, the visco-elastic rheological based model (138)-(141) is similar633

with Keramat et al. (2011) (125)-(128) when using the ν̃s = 1 and α → 0 i.e, in the634

limit of thin-wall and without visco-elastic contribution to the Poisson coupling, the635

[135]’s model directly matches with [31, 145] provided by the explicit rheology-based636

creep-function familly (137). In the more general case ν̃s 6= 1, [135] gives explicit637

derivations of visco-elastic extra-terms versus rheological parameters reading638

ĨFP = a

(
1 + iω τr

tc

)(
1 + iω τν

tc

)
(

1 + iω
τµ
tc

)(
1 + iω τE

tc

) ν2
e

1+iω
τλ
tc

1+iω τν
tc

− 1− α(2+α)
2

(
1 + νe

1+iω
τλ
tc

1+iω τν
tc

)
ν2
e − 1− α(2+α)

2
(1 + νe)

− 1,(147)

ĨFσ = a

(
1 + iω τr

tc

)(
1 + iω τν

tc

)
(

1 + iω
τµ
tc

)(
1 + iω τE

tc

) (1 + iω τλ
tc

1 + iω τν
tc

− 1

)
, (148)

ĨSP = −

1− a

(
1 + iω τr

tc

)(
1 + ω τλ

tc

)
(

1 + iω τν
tc

)(
1 + iω τE

tc

)
 , (149)

ĨSσ = −

1− a

(
1 + iω τr

tc

)(
1 + iω τν

tc

)
(

1 + iω
τµ
tc

)(
1 + iω τE

tc

)
 . (150)

where, again the convective time-scale is defined as tc = L/cp. As previously con-

sidered in (39) the wave system resulting from the visco-elastic FSI four equations

hyperbolic problem (138)-(141) can thus be recast into two coupled waves for the

two-component pressure/stress vector P̃ ≡ [P̃ , σ̃zz] following [65]

ω2P̃ + [c̃vp]2

 1 2νeD 1+ĨSσ+ĨFσ
1+ĨSσ

2νe
α(2+α)

1+ĨSP
1+ĨSσ

Ces2 1+χeĨFP
1+ĨSσ

+
4ν2eD
α(2+α)

1+ĨSP
1+ĨSσ

 ∂2
ZP̃ = 0. (151)

The characteristic equation associated with this propagating operator is(
c̃±
c̃vp

)4

−
(
c̃±
c̃vp

)2 [
1 + Ces2 1 + χeĨFP

1 + ĨSσ
+

4ν2
eD

α(2 + α)

1 + ĨSP
1 + ĨSσ

]
+

Ces2 1 + χeĨFP
1 + ĨSσ

+
4ν2
eD

α(2 + α)

1 + ĨSP
1 + ĨSσ

(
1− 1 + ĨSσ + ĨFσ

1 + ĨSσ

)
= 0, (152)
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Figure 12: Comparison to (a) Covas et al. [31]’s and (b) Keramat et al. [145]’s visco-elastic

convolution kernels for the experimental data of Covas et al. [137, 31]. Dimensionless time

τ = t∗c∗p,T /L
∗ has been used.

where the effective frequency-dependent corrective visco-elastic phase velocity c̃vp(ω)

found in [135] is

c̃vp(ω) =
1√

1 + χeĨFP −
4Dν2e

α(2+α)Ces2
ĨFσ

1+ĨS
P

1+ĨSσ

. (153)

The root of (152) can be found, generalyzing (42) to a general visco-elastic rheology639

c̃2± = [c̃vp]2
ĉ±

√
ĉ2 − 4

[
Ces2 1+χeĨFP

1+ĨSσ
+

4ν2eD
α(2+α)

1+ĨS
P

1+ĨSσ

(
1− 1+ĨSσ+ĨFσ

1+ĨSσ

)]
2

, (154)

ĉ = 1 + Ces2 1 + χeĨFP
1 + ĨSσ

+
4ν2
eD

α(2 + α)

1 + ĨSP
1 + ĨSσ

≡ c̃2+ + c̃2−

[c̃vp]2
. (155)

The various visco-elastic convolution kernels are compared in Figure 12 for the exper-640

imental data of [31] presented in Table 2. Figure 13 shows the least-squares difference641

fitting of the pressure solution (151) obtained in [65]. Even though in each case a642

fitting of the pressure signal is performed, it is nice to observe that the various models643

[31], [145] or [65] do not perform alike, in this fitting. This is expected since both the644

model and the fitting parameters differ. From the rheological fitting on the pressure645

signal, the visco-elastic kernels can be compared. Even though these kernel families646

present similar exponential decay types, ĨCov and ĨKer display faster attenuation than647

the various kernels IFP , IFσ , ISP , ISσ of [65] as can be observed in Fig 14c. Also, both648

IFP and ISσ are very similar for the obtained visco-elastic parameters. Concerning the649
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velocity dispersivity prediction provided in Figure 14, one should note that every650

model displays a similar trend for the norm of complex velocities: it varies from a651

minimum value at ω = 0 within a narrow low-frequency region (associated with a long652

time behaviour) so as to reach a constant plateau for large |ω| values.653

Hence, at short-time/large |ω| most dispersivity of the wave velocity is lost and654

the visco-elastic response is very much like the elastic one, [157, 158]. This allows to655

define a ’dispersive’ frequency gap band depicted within vertical orange dotted lines for656

which visco-elastic effects are important. The ’dispersive’ frequency gap band ∆ωv is657

more precisely defined as the 95% difference velocity region from the asymptotic high-658

frequency regime, as exemplified in the inset of figure 14a. The larger this dispersive659

gap-band, and the deeper the ω = 0 velocity, the larger visco-elastic effects are. One660

can observe in figure 14 that the dispersive gap is wider for Covas et al. [31] and661

Keramat et al. [145] models than for the hereby model (in black) for parameters662

obtained from the same data set [137, 31].663

4. Recent developments664

4.1. Two-time scale asymptotic analysis of water-hammer without FSI665

In this section more recent advances obtained from complementing the spatial

asymptotic analysis discussed in section 2.3 with a two-time scale asymptotic approach

are now presented. Indeed, not only the water-hammer small parameter δ (92) is useful

to define the dimensionless size of the wave perturbation boundary layer nearby the

solid wall. It is also relevant to define a long-time scale associated with the momentum

relaxation within it. More precisely, as provided in (92) since δ is related to the ratio

between advection time to viscous relaxation time δ2 = tc/tvis, and since, as found by

Zielke (95), Vardy (102) or others, the velocity time variations within the boundary

layer are controlled by tvis, one realizes that since momentum relaxation within the

boundary layer varies as t/tvis = δ2t/tc = δ2τ when chossing a dimensionless time

τ = t/tc. In other words, the time response of the wave perturbation within the

boundary layer is slow compared to the wave advection time. Approximated solutions

for water-hammer waves based upon this multi-time scale nature of the water-hammer

wave have been developed in several contributions [159, 160, 161, 162, 95, 163]. In

the following we will nevertheless first focus on the contribution of Mei & Jing [95]

which investigates how a two-time scale perturbation analysis permits to predict the
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exponential decay of the wave envelope. Introducing the slow time-scale T = δτ

permits to decompose time variations as

∂t∗ =
cp
L

(∂τ + δ∂T ) (156)

Either non-FSI or FSI effects can be considered within this multi-time scale approx-666

imation approach. Since, the latter requires much involved developments, we first667

consider the non-FSI problem analyzed in [95] for a single pipe.668

An asymptotic solution to the slowly damped pressure wave (83) is set up from669

evaluating the leading order wall-shear stress associated with damped propagation670

from solving the undamped problem first. The dimensionless pressure P , velocity W671

and wall shear-stress τw ≡ τf |R=1 are thus asymptotically expanded as672

P = P 0 + δP 1 + . . . , W = W 0 + δW 1 + . . . , τw = τ0
w + δτ1

w + . . . (157)

Using (157) and (156) in (83) provide the leading order undampted problem[
∂2
τ − ∂2

Z

]
P 0 = 0 (158)

which is solved together with mixed Dirichlet-Neumann boundary conditions673

P 0(Z = 0) = 0, ∂P0

∂Z
(Z = 1) = D(t) (159)

where D(t) is a closure law to be specified (and chosen as a triangular shape in [95]),

but we will simplify their result to either a general closure D(t) or a Dirac distribution

D(t) ≡ δ(t)). In Laplace domain, the solution (158) and (159) is

P 0(Z, s) =
sinh(sZ)

s cosh s
D(s) (160)

The time-domain solution can either be found from inverse Laplace transform, or direct

solution. The time-domain solution for the leading order pressure is reported in [95]

for a Dirac distribution closure D(t) ≡ δ(t), D(s) = 1 and reads

P 0(Z, t) = 2
∑
k∈N

(−1)k
sin(λkZ)

λk
sin (λkτ) & λk = π

(
1

2
+ k

)
. (161)

From (161), one realizes that boundary conditions (159) are satisfied. The same re-674

sult can also be obtained from (158) decomposing the pressure into an homogeneous675

component having homogeneous boundary conditions, as well as a particular solution676

dealing with the non-homogeneous r.h.s of (159) with D(t) ≡ δ(t)677

P 0(Z, t) = P 0
p (Z, t) + P 0

h (Z, t) with, P 0
p (Z, t) = Zδ(t), (162)
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In the following, it will be useful to define the spatial orthogonal basis such that

φλk (Z) =
√

2sgn(λk) sin(λkZ) &

∫ 1

0

φλkφλk′ dZ = 〈φλk , φλk′ 〉 = δλk,λk′ + δλk,−λk′ .

(163)

where δλk,λk′ is the Kronecker symbol associated with the equality of λk and λk′ .

Given λk = π
(

1
2

+ k
)

for k ∈ Z, the resulting λk ∈ R can indeed lead to ±λk as

possible eigenvalues, and since φλk = φ−λk there are indeed two possible non-zero

contributions to the base decomposition, i.e ±λk. Since the Laplace transform of the

particular solution defined in (162) is P̃ 0
h (Z, s) = Z, it decomposes into the φλk base

as follows

P̃p =
1

2

∑
λk∈R

〈Z, φλk 〉φλk , & 〈Z, φλk 〉 =
(−1)k√

2λ2
k

. (164)

Decomposing the Laplace transform of the homogeneous part as

P̃ 0
h (Z, s) =

∑
λk∈R

ã0(s)φλk , (165)

whilst using (158), (164) and (165) leads to∑
λk∈R

(s2 + λ2
k)ã0(s)φλk = −s2P̃p =

−s2

2

∑
λk∈R

〈Z, φλk 〉φλk , (166)

the projection of which over φλk , leads to678

ã0
λk (s) + ã0

−λk (s) = − s2

s2 + λ2
k

〈Z, φλk 〉 = (
λ2
k

s2 + λ2
k

− 1)〈Z, φλk 〉 (167)

ã0
λk (s) + ã0

−λk (s) = [
λk
2i

(
1

s− iλk
− 1

s+ iλk

)
− 1]〈Z, φλk 〉 (168)

so that, given the condition ã0?
λk

= ã0
−λk one finds

ã0
λk = −1

2
[
±iλk
s∓ λk

+ 1]〈Z, φλk 〉. (169)

Using the Laplace transform of sinus function L(sin (λkτ) = λk/(s
2 + λ2

k), (161) can

be rewritten using (164) as

P̃ =
∑
k∈N

λ2
k

s2 + λ2
k

φλk 〈Z, φλk 〉 =
∑
k∈N

[1− s2

s2 + λ2
k

]φλk 〈Z, φλk 〉 (170)

which can now easily be identified with

P̃ 0
h (Z, s)+P̃ 0

p (Z, s) =
∑
λk∈R

ã
0

λk (s)φλk+
1

2

∑
λk∈R

〈Z, φλk 〉φλk =
∑
k∈N

[1− s2

s2 + λ2
k

]φλk 〈Z, φλk 〉.

(171)
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Momentum balance into the core acoustic domain for leading order reads

∂W 0

∂τ
= −∂ZP 0. (172)

From which one finds,679

W 0(Z, t) = 2
∑
k∈N

(−1)k
cos(λkZ)

λk
cos (λkτ) (173)

The wall shear-stress is furthermore obtained in [95] from solving the boundary-layer

problem. In the boundary-layer, i.e, the inner domain of the asymptotic analysis,

one needs to solve the dimensionless momentum conservation (93), which includes the

viscous contribution related to dimensionless pipe radius R = R∗/R∗0, i.e

∂W 0

∂τ
= −∂ZP 0 +

δ2

R
∂R(R∂RW

0). (174)

Defining the inner boundary-layer transverse coordinate,

y = (1− r)/δ, (175)

as well as inner boundary-layer pressure p and longitudinal velocity w, (172) leads to

a boundary-layer momentum diffusion dynamics according to(
∂

∂τ
− ∂2

∂y2

)
w0(y, τ) = −∂Zp0 (176)

(176) is a diffusion problem driven by the longitudinal pressure gradient associated

with no-slip boundary condition

w0(y, t)|y=0 = 0. (177)

The Laplace transform of (176) reads(
s− ∂2

∂y2

)
w̃0 = −∂Z p̃0. (178)

The solution for w̃ with boundary condition (177) is

w̃0 = −1

s

(
1− e−

√
sy
)
∂Z p̃

0. (179)

From, (179), one can evaluate the shear-rate

∂w̃0

∂y
= −
√
s

s
e−
√
sy∂Z p̃

0, (180)

which, evaluated at y = 0, gives the wall shear-stress

τ̃0
w =

∂w̃0

∂y
|y=0 = −

√
s

s
∂Z p̃

0 = −
√
s

s
∂Z P̃

0, (181)
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since the outer pressure P 0 and the inner one p0 match together, and since neither

depends on the transverse coordinate, i.e P 0 = p0. From (181), the r.h.s of (83) can

be evaluated, feeding the first order pressure field

[
s2 − ∂2

Z

]
P̃ 1 = −2

√
s

s
∂2
Z P̃

0(s, Z) = −2

√
s

s
∂2
Z P̃

0
h (s, Z) (182)

since, ∂2
Z P̃

0
p (s, Z) = 0. In [95], P 1 solution in time-domain is explicitly solved from the680

inverse Laplace transform performing some heavy computations. Among the obtained681

complicated expressions, a specific one is linearly diverging with time. The so-called682

”secularity” condition is then introduced so as to zeros these diverging terms. In683

fact, this secularity condition happens when ”resonant modes” are triggered by the684

slow-time perturbation. The resulting secularity condition then provides the envelope685

attenuation of the leading order, which is the main useful result of the two-time scale686

asymptotic analysis.687

Realizing that the precise solution of P 1 is not needed in order to evaluate the

secular condition [65] gives a short-cut to avoid cumbersome developments, and pro-

vides it from realizing that secularity is related to double poles in the inverse Laplace

transform of P̃ 1. This comes from the following result : given any analytical function

φ(s) in the complex plane, the inverse Laplace transform of the double poles through

Cauchy’s residue theorem effectively leads to a linear divergence in time

L−1

(
φ(s)

(s± iλk)2

)
(τ) = lim

s→±iλk
∂s[φ(s)esτ ] = [φ(±iλk)τ + ∂sφ(±iλk)]e±iλkτ . (183)

Here we adapt the approach of [65] for the simpler case treated in [95] so as to better

emphasize the origin of resonance modes. At order one, the solution for P̃ 1 only

has an homogeneous part for the particular one is zero since homogeneous boundary

conditions apply at this order. Hence, P̃ 1(Z, s) can be decomposed into the orthogonal

base

P̃ 1 =
∑
k∈Z

ak1(τ)φλk (Z) (184)

Using this decomposition in (182) whilst using the leading-order pressure solution

(161)leads to

∑
λk∈R

(
s2 + λ2

k

)
ã1
λk (s)φλk (Z) = −

√
s

s
2
√

2
∑
k∈N

(−1)k
s2

s2 + λ2
k

φλk (Z) (185)

where the Laplace transform of (158) have led to ∂2
Z P̃

0(s, Z) = ∂2
Z P̃

0
h (s, Z) = s2P̃ 0

h (s, Z),

and where L(sin (λkτ) = λk/(s
2 + λ2

k) has been used. When projecting (254) on φλk
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modes one finds in (254)’s r.h.s a term proportional to 1/(s2 + λ2
k)2 i.e proportional to

1/(s+ iλk)2(s− iλk)2 having two double poles in s = ±iλk. From (183) one realizes

that these double poles lead to a linear divergence with time, which is inconsistent with

the fact that each perturbative ak1(τ) term has to keep being O(1) so as the order-one

correction δP 1 is also kept O(δ). To remove this divergent term, the leading-order

solution has to be enriched with some slow-time scale envelope, so that P 0
h (165) is

re-written

P 0
h (Z, s, T ) =

∑
k∈Z

A0
λk (T )ã0

λk (s)φλk (186)

with T = δτ and the normalization condition A0
λk

(T ) = 1 for each k ∈ Z. Using (186)

and (156) in (83) using (181) then leads to[
∂2
τ − ∂2

Z

]
P 1 + 2∂T ∂τP

0 = −2

√
s

s
∂2
Z P̃

0 (187)

In Laplace domain, (187) becomes[
s2 − ∂2

Z

]
P̃ 1 = −2∂T sP̃

0
h − 2

√
s

s
s2P̃ 0

h (188)

so that using decomposition (186) and (184), in (188) one gets∑
k∈Z

(
s2 + λ2

k

)
ã1
λk (s)φλk (Z) =

∑
k∈Z

2s[−∂TA0
λk −

√
sA0

λk ]ã0
λk (s)φλk . (189)

Projecting (189) over φλk whilst using (169) leads to688

ã1
λk (s) + ã1

−λk (s) =
s

λ2
k + s2

∑
±

2[−∂TA0
±λk −

√
sA0
±λk ]a0

±λk (190)

=
s〈Z, φλk 〉
(λ2
k + s2)

∑
±

[∂TA
0
±λk +

√
sA0
±λk ][

±iλk
s∓ λk

+ 1], (191)

so that the double poles are canceled if the two secularity conditions

lim
s→±iλk

[−∂TA0
±λk (T )−

√
sA0
±λk (T )] = 0, (192)

are met. Hence, slow time-scale amplitude dependence has to be chosen so as to cancel

this term, so that

A0
±λk (T ) = e−

√
±iλkT = e−

1±i
2

√
|λk|T (193)

Then, using the slow amplitude solution (193) in (186) whilst using (169) and inverse

Laplace transform leads to the final damped solution

P (Z, t, T ) = 2
∑
k∈N

(−1)k
sin(λkZ)

λk
e−
√
λk
2
T sin

(
λkτ −

√
λk
2
T

)
, & λk = π

(
1

2
+ k

)
,

(194)
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with again, T = δτ . This solution has been compared with several experimental689

recordings in [65], and will be illustrated in section 4.3. We will discuss in section690

4.3 how most of the foot-steps detailed in this section can be extended when FSI691

effects are taken into account. Nevertheless before entering into this matter, let us692

now discuss how a systematic asymptotic derivation of water-hammer four-equation693

FSI models can be handled so as to better understand what are the constraints on the694

dimensionless parameter for water-hammer formulation (33)-(34) to hold.695

4.2. Asymptotic analysis of water-hammer with FSI696

Most of water-hammer studies are given, performed and analyzed with the implicit697

hypothesis or possibly the explicit measure of small Mach number. Nevertheless, how698

precisely small the Mach should be for water hammer wave modeling (33)-(34) to699

be valid has remained mostly uninformed until recently. More generally, a systematic700

derivation of water-hammer waves from constitutive equations (Solid Lamé’s equations701

coupled with compressible Navier-Stokes ones) has only been recently achieved in [65].702

This section discusses some aspects of this derivation which sheds new light into the703

mechanism underpinning the wave propagation model, and noteworthy the possible704

couplings between the wave and the underlying flow’s steady-state.705

The outer/inner fluid pressure P ∗f /p
∗
f , axial velocity W ∗f /w

∗
f , and radial velocity

U∗f /u
∗
f , are split into steady, denoted with subscript st, and unsteady components

(without subscript) following classical acoustic approach, ([164])

P ∗f = P ∗(r, z, t) + P ∗st(r, z), p∗f = p∗(r, z, t) + p∗st(r, z), (195)

W ∗f = W ∗(r, z, t) +Wst(r, z), w∗f = w∗(r, z, t) + w∗st(r, z), (196)

U∗f = U∗(r, z, t), u∗f = u∗(r, z, t). (197)

As the steady–state is assumed unidirectional, the outer/inner radial velocity compo-706

nents U∗f /u
∗
f , are unsteady. Finally, the fluid stress tensors are σ∗f = σ∗st + σ∗707

σ∗st = (−P ∗st + λf∂zW
∗
st) I + µf


0 · · · ∂rW

∗
st

· · · 0 · · ·

∂rW
∗
st · · · 0

 , (198)

σ∗ =

(
−p∗ + λf

[
∂r
r

(ru∗) + ∂zw
∗
])

I + 2µf


∂ru
∗ · · · ∂rw

∗+∂zu
∗

2

· · · u∗

r
· · ·

∂rw
∗+∂zu

∗

2
· · · ∂zw

∗

 ,(199)
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where the volume viscosity λf has been used. In the following the dimensionless

ratio Γ of volume viscosity to dynamic viscosity will also be used :

Γ =
λf
µf

(200)

4.2.1. Dimensionless numbers setting708

Two dimensionless numbers (similar to Cauchy’s number) are introduced

CG =
ρ∗fc
∗2
p

G∗
≡

2ρ∗fc
∗2
p (1 + νs)

E∗
, & Cλs =

ρ∗fc
∗2
p

λ∗s
≡ CG(1− 2νs)

2νs
, (201)

where

G∗ =
E∗

2(1 + νs)
, & λ∗s =

νsE
∗

(1 + νs)(1− 2νs)
, (202)

are the solid shear modulus and the second Lamé-Clapeyron coefficient, respec-

tively. The overpressure wave velocity c∗p,T , given in (35), is thus a corrective

formulation of c∗0 due to the tube elastic constraints. By introducing parameter

χ =
2K∗f
αE∗C2

(
2(1− ν2

s )

2 + α
+ α(1 + νs)

)
≡ 2νsCλs + (1 + α)2CG

α(2 + α)
, (203)

the dimensionless version of (35) is defined as the dimensionless wave speed

cp = c∗p,T /c
∗
0 and fulfills

c2p =
1

1 + χC2
, with C =

c∗0
c∗p,T

(204)

where 1 + χC2 is a corrective fluid pulse–wave speed factor. Regarding cp defi-

nition in (204), it should be noted that C2 > 1 implies cp < 1 ([6, 10, 19, 165]).

Dimensionless parameters associated with boundary layer thickness δ (92), as-

pect ratio ε = R∗0/L
∗, Reynolds number Re, pulsed Reynolds number Rep and

Mach number M are related as

Rep =
cpR0

νf
� 1, Re =

W0R0

νf
=MRep, (205)

δ2 =
νfL

cpR2
0

=
1

εRep
� 1, M =

W0

cp
� 1. (206)

Low–Mach number i.e. M� 1 and long–wavelength, i.e. ε � 1 ([28, 32, 166,

43]), are generally considered for water-hammer validity [13, 167]. But, much
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more precisely, they have been asymptotically established in [65] within the

following condition

δ2 �M >
M
C2
, δ � ε2, δ � αM, 1� ε� αM. (207)

We now provide some supplementary details of this asymptotic analysis, es-709

pecially those related to O(δ) corrections which were considered in the previ-710

ous section but also other possible corrections/contributions such as O(M/δ),711

O(MεRe) and O
(MεRe

δ

)
.712

4.2.2. Navier–Stokes equations713

Taking Wst as the reference dimensionless velocity for the steady- longitudi-

nal flow, and as previously W ∗0 for the disturbance, and since long–wavelength

assumption implies that the radial fluid velocity component is ε smaller than

the axial one, dimensionless pressure and velocity fulfill

P ∗st = ρf0W
∗2
0 Pst(R,Z), W ∗st = W ∗0Wst(R,Z), (208)

P ∗ = ρf0cpW
∗
0 P (R,Z, τ), p∗ = ρf0cpW

∗
0 p(y, Z, τ), (209)

W ∗ = W ∗0W (R,Z, τ), w∗ = W ∗0w(y, Z, τ), (210)

U∗ = εW0U(R,Z, τ), u∗ = εW0u(y, Z, τ), (211)

where capital letters have been used to define the outer variables, and lower

case has been chosen for inner variables. Note that the perturbed velocity and

the steady state both scale as W ∗0 since the perturbation is supposed to arise

from an order-one fraction of the steady state velocity. From (208)-(211) it is

also useful to define dimensionless stress and shear as

τ∗f = −
ρ∗fν
∗
fW

∗
0

δR∗0
τf (y, Z, τ), τf = ∂yw(y, Z, τ), (212)

σ∗ = ρ∗f0c
∗
pW
∗
0σ, σ∗st = ρ∗f0W

∗2
0 σst, (213)

with,714

σst =

(
−Pst + Γ

(εδ)2

M ∂ZWst

)
I +

εδ

M


0 · · · −∂yWst

· · · 0 · · ·

−∂yWst · · · εδ∂ZWst

 , (214)
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σ =

(
−p+ Γ (εδ)2

(
−∂y [(1− δy)u]

δ (1− δy)
+ ∂Zw

))
I +

εδ


−2ε∂yu · · · −∂yw + ε2∂Zu

· · · 2εδ u
1−δy · · ·

−∂yw + ε2∂Zu · · · 2εδ∂Zw

 . (215)

Integrating the fluid isentropic compression law (6) the fluid density is subjected to

pressure variations following

ρ∗f (r, z, t) = ρ∗f0e

P∗f (r,z,t)

Kf = ρ∗f0e
P∗(r,z,t)+P∗st(r,z)

Kf , (216)

so that by introducing the dimensionless density ρf = ρ∗f/ρ
∗
f0

whilst using scalings

(208)–(211) yields

[1,∇, ∂τ ] ρf = e
M
C2

(P+MPst)

[
1,
M
C2

∇ (P +MPst) ,
M
C2
∂τP

]
, (217)

with ∇ the dimensionless nabla operator, C2 define in (204) and M/C2 � 1. Obvi-

ously, in the inner region (217) holds from replacing P by the inner pressure p. The

Navier–Stokes equations, which follow from fluid mass and momentum conservations,

are (
∂t +W ∗f ∂z + U∗∂r

)
ρ∗f + ρ∗f

(
∂zW

∗
f +

1

r
∂r (r∂rU

∗)

)
= 0, (218)

ρ∗f
(
∂t +W ∗f ∂z + U∗∂r

)
W ∗f = −∂zP ∗f

+ ρf0νf

(
(1 + Γ) ∂z

[
∂zW

∗
f +

∂r
r

(rU∗)

]
+

(
∂r
r

(r∂r) + ∂2
z

)
W ∗f

)
, (219)

ρ∗f
(
∂t +W ∗f ∂z + U∗∂r

)
U∗ = −∂rP ∗f

+ ρf0νf

(
(1 + Γ) ∂r

[
∂zW

∗
f +

∂r
r

(rU∗)

]
+

(
∂r
r

(r∂r)−
1

r2
+ ∂2

z

)
U∗
)
, (220)

where Γ definition (200) has been used. They are now decomposed into steady-state716

and perturbations.717

4.2.3. Dimensionless steady–state fluid equations718

At steady–state, the fluid unsteady components vanish, so that the dimensionless

steady version of (218)–(220) reads(
M
C

)2

Wst∂ZPst + ∂ZWst = 0, (221)
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Me(
M
C )2PstWst∂ZWst = −M∂ZPst + (εδ)2 (2 + Γ)∂2

ZWst + δ2 ∂R
R

(R∂R)Wst, (222)

M
ε2
∂RPst = (1 + Γ)δ2∂R∂ZWst, (223)

From (221), the leading–order dimensionless steady solution
(
W 0
st, P

0
st

)
fulfills

∂ZW
0
st = 0. (224)

On the other hand, ε2δ2/M = ε/Re � 1 follows from the definition of δ, ε and M in

(205)–(206) so that using (224) in (223) leads to find that the steady–state leading–

order pressure field is uniform per section

∂RP
0
st = 0. (225)

Finally, the steady–state leading–order axial mass conservation equation (222) results

in equalizing a R–dependent function to a Z–dependent one

M∂ZP
0
st = δ2 ∂R

R

(
R∂RW

0
st

)
, (226)

yielding the steady-state velocity Wst719

W 0
st =

M
4δ2

∂ZP
0
st

[
R2 − 1

]
=
M
4δ
∂ZP

0
st [δy − 2] y, (227)

since R = 1 − δy. Note that, in the core region e.g. R = 0, W 0
st ∼ M/δ2 = εRe720

which results from the steady-state balance between the inertial pressure with viscous721

dissipation. Furthermore, from (227), one can evaluate the steady-state leading order722

shear stress723

∂yw
0
st ≡ τ0

st =
M
4δ
∂ZP

0
st [δy − 2] +

M
4
∂ZP

0
sty, (228)

which is thus found τ0
st ∼ O(M/δ). From (228) one can now compare the relative724

contribution of the steady to transient friction in (85). Since τtr = τf = ∂yw(y, Z, τ) ∼725

O(1) in (212) it is easy to find that the relative steady-state shear stress contribution726

compared to unsteady one is O(M/δ). It first means that decomposition (85) is727

meaningful only if M/δ is not too small, but also that if M/δ ∼ δ, then, there is a728

need to take into account the steady-state shear, when considering viscous dissipation729

for the unsteady contributions arising at O(δ). In section 4.2.5 it is shown that such730
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condition, i.e M/δ ∼ δ also necessitates to take care of perturbed shear-stress radial731

convection, a task not yet achieved in the literature. Last but not least, as done in732

the next section, since the transient can always be written as the superposition of a733

perturbation over a pre-existing steady-state both in the fluid and the solid, every734

aspect of the steady-state including normal stress and shear-stress at the liquid/solid735

interface can be subtracted from the analysis. In other words, decomposition (85)736

cannot involve the steady shear τst for transient analysis, and this is why a quasi-737

steady τqst is used. However, even if a Darcy-Weisbach quasi-steady shear (84) is738

sometimes successfully used in engineering applications, to the best of our knowledge,739

it is still lacking for theoretical basis. As a possible path for future investigation we will740

however provide the conditions for steady-state and transient to be coupled together741

from inertial non-linearities in the following sections.742

4.2.4. Dimensionless unsteady bulk fluid equations743

Subtracting the steady–state relations (221)–(223), from (218)–(220) whilst using

scalings (208)–(211), the outer region dimensionless mass and momentum conservation

equations read

∂τP +M ([W∂Z + U∂R] (P +MPst) +Wst∂ZP ) + C2

[
∂ZW +

1

R
∂R (RU)

]
= 0,

(229)

e
M
C2

(P+MPst) (∂τW +M ([W∂Z + U∂R] (W +Wst) +Wst∂ZW )) =

− ∂ZP + (εδ)2 (1 + Γ)∂Z

[
∂ZW +

1

R
∂R (RU)

]
+ δ2

(
∂R
R
R∂R + ε2∂2

Z

)
W, (230)

e
M
C2

(P+MPst) (∂τ +M [(W +Wst) ∂Z + U∂R])U = − 1

ε2
∂RP

+ δ2(1 + Γ)∂R

[
∂ZW +

1

R
∂R (RU)

]
+ δ2

(
∂R
R

(R∂R)− 1

R2
+ ε2∂2

Z

)
U, (231)

The steady–state contributions into the unsteady fluid equations (229)–(231) appear744

to be driven by the Mach number, i.e are O(M). More precisely, from (227) one745

finds that the outer steady-state contributions in (229)-(231) are O(MεRe), thus not746

significant as far as δ �M(εRe). Following the asymptotic framework of [65], since747

δ2 �M, no steady–state contributions arise into the outer region (core region of the748

pipe). What happens in the unsteady boundary-layer is now discussed.749
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4.2.5. Dimensionless unsteady fluid boundary-layer equations750

In the inner viscous zone, using rescaled coordinate y defined in (175) dimensionless

Navier–Stokes equations are

∂τp+M
([
w∂Z −

u

δ
∂y
]

(p+MPst) + wst∂Zp
)

+C2

[
∂Zw −

1

δ

1

1− δy ∂y ((1− δy)u)

]
= 0,

(232)

e
M
C2

(p+MPst)
(
∂τw +M

([
w∂Z −

u

δ
∂y
]

(w + wst) + wst∂Zw
))

= −∂Zp+ (εδ)2 (1 + Γ)∂Z

[
∂Zw −

1

δ

1

1− δy ∂y ((1− δy)u)

]
+

(
∂y

1− δy ((1− δy)∂y) + (εδ)2 ∂2
Z

)
w, (233)

e
M
C2

(p+MPst)
(
∂τ +M

[
(w + wst) ∂Z −

u

δ
∂y
])
u =

1

δε2
∂yp

− (1 + Γ)∂y

[
δ∂Zw −

1

1− δy ∂y ((1− δy)u)

]
+

(
∂y

1− δy ((1− δy)∂y)− δ2

(1− δy)2
+ (εδ)2 ∂2

Z

)
u. (234)

(233) can be expanded and simplified to

e
M
C2

(p+MPst)
(
∂τw +M

(
(w + wst) ∂Zw −

u

δ
(τf + ∂ywst) + w∂Zwst

))

= −∂Zp+ (εδ)2 (1 + Γ)∂Z

[
∂Zw −

1

δ

(
∂yu− δ

u

1− δy

)]
+ ∂2

yw − δ
τf

1− δy + (εδ)2 ∂2
Zw, (235)

where dimensionless shear-rate τf = ∂yw defined in (212) has been used. From (235),751

one finds that various possible dissipation term can arise752

• O
(M
C2
)

and O
((M
C

)2)
fluid density compressibility effects (217);753

• O
(
ε2δ
)

radial flow compressibility effects within the inner region;754

• O
(
ε2δ2

)
and O

(
ε2δ
)

axial diffusion and radial flow compressibility;755

• O (M) and O (MεRe), axial inertial corrections;756

• O
(M
δ

)
and O

(MεRe
δ

)
radial inertial transport of viscous shear;757

• O (δ) radial diffusion transport of viscous shear.758

759
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This very last effect is the only one been analyzed by [65] reaching to the ”classi-760

cal” four equation FSI (33)-(34) model (more precisely a perturbative version of it, as761

further detailed in 4.2.6). Furthermore, since the leading-order steady dimensionless762

inner velocity field (227) is wst ∼ O(M/δ2) ≡ O(εRe) the steady-state/perturbation763

couplings terms in (235) are either O(MεRe) or O (MεRe/δ). As already mentioned764

in (207), [65] have considered the asymptotic setting (207) for which all these contri-765

butions are not significant, so that transient and steady-state are decoupled. Never-766

theless, (235) shows that there is a possible non-trivial one-way coupling between the767

steady-state and the perturbation when the steady-state inertia rises, i.e for εRe > 1,768

whenMεRe/δ ∼ δ, i.e δ2 ∼MεRe (keeping with the largest perturbative term only).769

This asymptotic regime has not yet been analyzed in the literature but it might result770

in a deeper understanding of why, as inertia increases, there is a need for changing the771

friction model depending on the steady flow inertia as already mentioned in section772

2.3.773

4.2.6. Dimensionless boundary condition and FSI perturbative two-wave formu-774

lation775

From (198)-(199) and (195) it has been shown in [65] that dimensionless stress776

boundary conditions at the solid-fluid interface settled at R = 1 +O(αM) and at the777

solid external boundary at R = 1 + α+O(αM) read778

σrr
∣∣
R=1+O(αM)

= −p
∣∣
y=O(αMδ ) +O (αεM) , & σrr

∣∣
R=1+α+O(αM)

= O (αεM) ,(236)

σrz
∣∣
R=1+O(αM)

= −δτw
∣∣
y=O(αMδ ) +O (αεM) , & σrz

∣∣
R=1+α+O(αM)

= O (αεM) ,(237)

It is important to note that the transient shear-stress coupling between the solid779

and the fluid found in (237) appears as an O(δ) correction. At leading order, the780

solid response is independent from the fluid dissipation. This very small detail is the781

corner-stone of the perturbative approach of [65], since it implies that FSI can only782

occur perturbatively and should be derived as such. Nevertheless, including O(δ) then783

also necessitates, for asymptotic consistency, to take care of small time-scale variations784

from (156) also providing O(δ) corrections.785

Using fluid pressure/longitudinal stress vector P previously defined in (40), a per-

turbative expansion of P is considered as

P0 + δP1 =

 P 0 + δP 1

σ0
zz + δσ1

zz

 . (238)
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Inlet/outlet boundary conditions are also needed for the wave problem to be closed.

For a single pipe, having dimensionless length unity, they read as follows (Cf [65] for

more information)

∂ZP
0
∣∣
Z=1

= δ(τ) , and, ∂ZP
1
∣∣
Z=1

= 0, (239)

where δ(τ) is the Dirac distribution. Upstream, the homogeneous Dirichlet condition

applied on the pressure trivially leads to

P 0
∣∣
Z=0

= P 1
∣∣
Z=0

= 0. (240)

In the solid, the upstream and downstream conditions are

∂Zσ
0
zz

∣∣
Z=0&1

= 0 , and, ∂Zσ
1
zz

∣∣
Z=0&1

= − 2

α(2 + α)
τ0
w

∣∣
Z=0&1

. (241)

[65] establishes a perturbative coupled waves equation reading

(
∂2
τ −C2

P∂
2
Z

) [
P0 + δP1

]
= −2δ

∂T ∂τP0 − ∂Zτ0
w

 1 + 2νsD
α(2+α)

1
α(2+α)

[
2νsD + C2

s +
4ν2sD
α(2+α)

]
 ,
(242)

where matrix C2
P defined in (40) has been used. (242) is the dimensionless786

perturbative version of (33)-(34), and the strict equivalence between the wave787

operator has been shown in [65]. Note that the limit νs → 0, (242) degener-788

ates to the non-FSI dissipative pressure wave (83). The leading–order of (242)789

displays a parabolic form without dissipation associated with a fast time–scale790

wave propagation already analyzed in section 2.2.1, as opposed to the additional791

slow–time scale damping that arises when O(δ) corrections are considered. This792

short–time behavior appears because the dissipation in the fluid boundary layer793

does not have time to develop, and the coupled system remains purely conser-794

vative. We now present how this perturbative FSI couple wave can be analyzed795

within a two-time scale asymptotic analysis similar to section 4.1.796

4.3. Two-time scale asymptotic analysis of water-hammer with FSI797

The Laplace transform of the transient wall shear-stress has been derived in

[65] and reads

∂Z τ̃
0
w = −s

√
s

([
1− (1− 2νs)

2νsD
αC2

s (2 + α)

]
P̃ 0 + (1− 2νs)

D
C2
s

σ̃0
zz

)
. (243)
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The axial gradient of the fluid wall shear stress is thus a linear combination of798

P̃ 0 and σ̃0
zz. The Laplace transform of (242) then reads799

(
s2 −C2

P∂
2
Z

)
P̃0 = 0, (244)(

s2 −C2
P∂

2
Z

)
P̃1 = −2s

[
∂T +

√
sE
]
P̃0, (245)

where matrix E has been introduced

E =
1

2νs

(1− (1− 2νs)
c2−1
C2s

)(
1 + 2νsD

α(2+α)

)
2νsD(1−2νs)

C2s

(
1 + 2νsD

α(2+α)

)
(

1− (1− 2νs)
c2−1
C2s

)
c2−(1−2νs)
α(2+α)

2νsD(1−2νs)
C2s

c2−(1−2νs)
α(2+α)

 .

(246)

(244) and (245) are the FSI generalization of (158) and (188). 2 × 2 matrix E800

(246) then permits to find the damping rate from following the very same foot-801

steps as in section 4.1. Using previously defined base change (45) associated with802

diagonal base P = Π−1P, and decomposing P over eigenfunctions (58)-(59),803

then leads to804

P̃0(Z, s, T ) =
∑
λk∈R

ã0
λk

(s)Aλk(T )Φλk(Z) + P̃0
p (Z), (247)

P̃1(Z, s) =
∑
λk∈R

ã1
λk

(s)Φλk(Z) + P̃1
p (Z, s), (248)

with particular solution associated with non-homogeneous boundary conditions805

(239)-(240) and (241)806

P̃0
p (Z) =

Z

det (Π)

 1

−1

 , (249)

P̃1
p (Z, s) =

1

α(2 + α)
√
s

 Z2

1− c+
c−β

 1
−c+
c−β

− 4νsD
(
Z2

2
− Z

)
c2− − 1

1 0

0
c−β
c+

 ∂ZP̃0
∣∣
0

 ,(250)

The Laplace transform of (244) leads to∑
λk∈R

(
s2 −H

)
ã0
λk

(s)Φλk(Z) = −s2P̃0
p (Z), (251)

where operator H has been defined in (58). Using (244), (247) and the orthog-

onality of the eigenfunction basis one gets

ã0
λk

(s) + ã0
−λk(s) =

[
λk
2i

(
1

s− iλk
− 1

s+ iλk

)
− 1

]
〈P̃0

p (Z),Φλk(Z)〉. (252)
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leading to

ã0
±λk(s) = −1

2

[
±iλk
s∓ iλk

+ 1

]
〈P̃0

p (Z),Φλk(Z)〉. (253)

a result which generalizes (169). At next order, the Laplace transform of (245)

is

∑
λk∈R

(
s2 + λ2

k

)
ã1
λk

(s)Φλk(Z) = −
(
s2 −H

)
P̃1
p (Z, s)− 2s

√
sEP̃0

p (Z, s)

+ s
∑
λk∈R

[
∂T +

√
sE
]
Aλk(T )

[
iλk

s− iλk
+ 1

]
〈P̃0

p (Z, s),Φλk(Z)〉Φλk(Z). (254)

where E = Π · E · Π−1 is the base-transform of matrix E with, again the

base change matrix Π defined in (45). As previously detailed in section 4.1,

the secularity condition is found from suppressing resonant modes of ã1
λk

(s)

solutions. Defining the 2-component vector function

Jλk(Z, s) =
λk

α(2 + α)
(

1− c−β
c+

)

(
s2
(
Z2

2 − Z
)
− c2−

) tan
(
λk
c−

)
c−

−
(
s2
(
Z2

2 − Z
)
− c2+

) tan
(
λk
c+

)
c+

 , (255)

[65] found that the FSI secularity condition reads

lim
s→±iλk

(
∂T +

√
s〈EΦλk(Z)− Jλk(Z, s)

s2
,Φλk(Z)〉

)
A±λk(T ) = 0. (256)

This leads to the FSI slow-time attenuation amplitude807

Aλk(T ) = e
−
√
iλk

T
Tλk , (257)

T −1
λk

= 〈EΦλk(Z) +
Jλk(Z, s = iλk)

λ2
k

,Φλk(Z)〉, (258)

More explicit (and rather cumbersome) computation of Tλk are detailed in [65]’s808

Appendix. [65] found that the limit νs → 0 of (258) tends to (193). This FSI809

theoretical prediction has been compared to experimental results as well as810

non-FSI attenuation in [65]. More precisely, the pressure signature is compared811

at two distinct locations in Figure 15 from ([99])’s data set. The special case812

νs → 0 or that of ([95]) is again depicted. Each analytical solutions exhibits813

excellent agreement for both amplitude and phase for every considered pipe’s814
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Table 2: Physical and geometrical properties for the analysis of the reservoir pipe anchored

valve system. (?) refers to unavailable data in the original article. They were estimated in

[65] based up available properties of pure copper tube and water.

Article
Density Elasticity νf νs Geometry

(kg ·m−3) (109Pa) (m2 · s−1) (m)

([107])

ρ∗f0 = 998.3 K∗f = 2.1 3.967 · 10−5 0.34? R = 0.0127

ρ∗s0 = 8935.0 E∗ = 127.0 e = 0.001651

L = 36.088

([99])

ρf0 = 1000.0 Kf = 2.1 9.493 · 10.0−7.0 0.35 R = 0.008

ρs0 = 8890.0 E = 120.0 e = 0.001

L = 98.11

([98])

ρ∗f0 = 1000.0 K∗f = 2.1 1.182 · 10−6.0 0.3? R = 0.01105

ρ∗s0 = 8960.0 E∗ = 130.0 e = 0.00163

L = 37.23

([168])

ρ∗f0 = 1000.0 K∗f = 2.1 10−6.0 0.3? R = 0.01

ρ?s0 = 8960.0 E∗ = 130.0 e = 0.001

L = 15.22

locations with experimental observations. No parameter fit is used. The vari-815

ety of observed patterns of the pressure signal depicted in Figure 15 and the816

surprisingly precise predictions provided by the theory results from the com-817

plex mode decomposition Φλk(Z), each with its own phase. In Figure (15a), a818

deeper analysis of the pressure signature reveals that ([95])’s theory leads to a819

better agreement with experimental data in the early times, i.e. τ � O (1/δ).820

At longer times, both models correctly describe the attenuation, ([95])’s theory821

under–attenuating, whilst the hereby developed one slightly over–attenuating.822

In Figure (15b) however, the present analysis shows excellent agreement with823

experimental data at long time, ([95])’s theory again under–attenuating. It is824

worth noting that these differences are minor in both configurations as the (FSI)825

coupling has little influences in this experimental data set.826

To deepen the analysis of the new prediction for (FSI) damping, Figures (16a)–827
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(16d) then focus on the damping envelope of the first exponential mode. A828

comparison with four sets of experiments is provided. For each experiment, the829

pressures of the envelope peaks are extracted, non–dimensionalized, and com-830

pared with the theoretical damping trend. Figures (16a)–(16d) reveal a very831

good agreement between the predictions and experiments for laminar and tran-832

sitional Reynolds numbers. As the first mode damping is dominant over others833

at long time, the match between predictions and observations becomes better834

with time, as expected.835

Last, but not least, the asymptotic analysis of the FSI water-hammer wave836

[65] has permitted to derive the FSI transient wall shear-stress which indeed837

differs from the non-FSI one (181). In frequency domain, both transient shear-838

rate and wall-shear stress have been found equal to839

τ̃0
f = ∂yw̃

0 = −
√
s

[
1

s
∂Z P̃

0 + sαζ̃0

]
e−
√
sy, (259)

τ̃0
w = −

√
s

[
1

s
∂Z P̃

0 + sαζ̃0

]
. (260)

where ζ̃0 is the leading order longitudinal solid displacement at the fluid-solid in-840

terface R = 1 whose relation with P0 =

P 0

σ0
zz

 components (and their Laplace841

transform) are842

αC2
s

D
∂Z ζ̃

0 = σ̃0
zz −

2νs
α(2 + α)

p̃0 (261)

Comparing (260) with (181) reveals that a supplementary FSI term associated

with the solid longitudinal displacement should be included in the wall shear

stress. [65] also found that re-writing (260) in time-domain in a form similar

with Zielke’s one in [109] leads to

τ0
w =

1√
π

∫ τ

0

∂τ ′
[
W 0 − α∂τ ′ ζ0

]
√
τ − τ ′

dτ
′
. (262)

(262) shows that the supplementary FSI term leads to consider the relative ac-843

celeration of the fluid to that of the pipe’s wall, rather than the fluid acceleration844

only (chosen by Zielke in [109]) as previously suggested in [44]. This result with845

simple physical interpretation however necessitates to solve for the FSI problem846
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in order to find the wall longitudinal acceleration. This has been solved in [65]847

where the relative FSI contribution to the wall shear-stress has been analyzed848

as illustrated in figure (19) and (20). Figure (19) displays the time variations of849

the transient wall shear-stress, showing huge peaks synchronized with the wave850

front’s passages. When comparing the FSI and non-FSI results for two distinct851

density ratio D, one finds that the FSI relative contribution increases as D rises852

to O(1) (more precisely [65] have analyzed the case D = 1). Figure 20 analyzed853

further the relative FSI contribution to the wall shear-stress. It shows that this854

relative contribution can become as large as 50% for a relative wall thickness of855

10% and Poisson modulus νs = 0.3. These results suggest that for the in-vivo856

biomedical context of blood pressure pulse wave propagation within vascular857

network, the FSI contribution to transient wall-shear stress cannot be ignored.858

4.4. Theoretical analysis of junction coupling within complex networks859

This section covers how wave propagation within networks can be formulated860

within a pipe network described by a graph. Most of the content of this section861

discusses the success toward an ”algebraic” (a wording to be clarified later on862

in section 4.4.2) formulation of water-hammer wave propagation within graphs.863

Section 4.4.1 discuss the frequency domain approach whereas section 4.4.2864

reviews time-domain one. In the following we denote usual graphs G(V, E)865

having vertex set V and edge one E the cardinal of which are respectively denoted866

V and E. The graph adjacency matrix is denoted A. In section 4.4.2 the concept867

of metric graph denoted G(V, E) will also be introduced.868

4.4.1. Discrete graph-wave solutions for wave propagation within networks869

One of the first generalizations of the TM method to networks has first been

performed into simple networks such as those analyzed by S. Kim 21. The

looped network along with its spectrum, i.e. linear network admittance system

for [169, 170]’s analysis is depicted in Figure 21. [171] develop a frequency-

domain network admittance formulation (from Laplace transform) to solve the

first order coupled hyperbolic pressure/velocity problem (82) (expressed as a
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pressure/flux in [171]) within general water distribution networks. A series

impedance approach leads to a graph-node spatial discretization of the one-

dimensional gradients, and also to some analytical node-to-node relation along

each pipe-line similar to TMM’s solutions (47)-(48) (except for being related to

pressure/flux vector rather than pressure/stress since (47)-(48) are related to

FSI’s TMM). More explicitly following [172, 173], the Laplace transform of (82)

for each network link eij joining nodes i and j, parametrized by dimensionless

coordinate Z, leads to a parametric linear relation between the pressure pij , the

flux qijand their gradients

Zij(Z, s)qij(Z) = −∂Zpij(Z) , Yij(Z, s)pij(Z) = −∂Zqij(Z), (263)

defining the shunt admittance per unit-length Yij related to the compressibility

in the flow produced by pressure variations, and Zij the impedance per unit

length. These quantities permit to evaluate the ”propagation operator” Γij =√
YijZij [172, 173]. [171] has found the frequency-domain graph admittance

matrix Y related to the adjacency matrix A as

Yij = −δij

 ∑
m∈N(i)

Aim
1

Zij(s)tanh(Γij(s)))

+Aij
1

Zij(s) sinh(Γij(s))
. (264)

Introducing the pressure field at each node of the network as vector φ whose

components are φj for j in the vertex set of the graph, i.e j ∈ [1, V ], Matrix Y

relates each pressure/flux at network’s nodes as

Y(s)φ = Q. (265)

In [171] (265) is used to build a frequency domain network transfer matrix870

for transient computation inside network, when including boundary conditions.871

[174] consider the extension of [171]’s framework, supplementing the ”passive”872

graph nodes with ”compound nodes” for which a dynamical behavior with non-873

linear (more precisely quadratic non-linearities) relations between input/output874

is specified. These ”compound nodes” are modeling complex hydraulic compo-875

nents —such as junctions, air vessels, valves — in water distribution networks.876
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There are taken care-off in [174] from an expansion of the graph nodes with sup-877

plementary nodes associated with the new degree of freedom of each ”compound878

nodes”. When linearizing the ”compound nodes” [174] provides an extension of879

[171] from generalizing the frequency-domain graph admittance matrix Y (264).880

[174] also provides direct comparison between time-domain numerical computa-881

tion of the complete non-linear transient problem solved with the MOC method882

and the frequency-domain graph admittance matrix method. The numerical883

results of [174] illustrate that the higher the pressure, the higher the error as-884

sociated with non-linearities, as expected. They also suggest that, for realistic885

pressure range of water-hammer within water distribution networks, neglecting886

the compound nodes’s non-linearities does not produce a large error. This obser-887

vation should obviously be strengthened in order to more precisely know under888

which precise conditions these non-linearities have to be taken into account.889

[176, 175] have developed a numerical Inverse Laplace Transform (NILT) pro-890

cedure allowing a time-domain numerical evaluation of the previously described891

frequency-domain network admittance formulation for networks, as illustrated892

in Figure 22. Figure 22 shows that the low-frequency components of the pres-893

sure signal can be well approximated by the (NILT) method. [177] recently used894

the NILT method [176, 175] to investigate the transient behavior of an Y-pipe895

experimental setup. In the following section, we now describe how time-domain896

graph’s solutions can also be developed.897

4.4.2. Spectral quantum graph method for solving wave propagation within net-898

works899

Quantum graphs is the name for operators equipping a metric graph, i.e

a graph whose one-dimensional edges have a physical length. This theoretical

concept has been used to study vibrations and spectrum structure of metric

graphs [178], quantum chaos e.g [179, 180], wave scattering [181, 182], and more

recently wave propagation in networks [183, 184, 185]. Even if the applica-

tion of this method for water-hammer propagation modeling is still very recent,

since it is a promising one (because it opens future theoretical advances to be
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made into wave’s propagation within complex networks, where most previous

investigations could only address them from direct numerical simulation, —e.g

with MOC method—), it is hereby discussed in more details following the time-

domain approach proposed in [185]. The interest of quantum graph method

over traditional numerical modeling already discussed in section 2.2.2 is that

the wave solution is searched as a decomposition onto a continuous base de-

fined over the entire metric graph. Each element of the base is denoted Ψλ.

It generalizes into a network the eigenfunction of the Laplacian operator previ-

ously considered in (58). On the contrary to traditional approaches this base,

does not need to be discretized along each edge eij joining vertex i and j of

the graph since it displays an analytical shape along those, i.e it is a spectral

base. Such spectral discretization along each network’s edge can save a huge

numerical cost for large networks as discussed in [184]. The approach is never-

theless yet restricted to address linear wave operators solutions. Furthermore

on the contrary to traditional numerical discrete approaches, a quantum graph

formulation permits to establish general results, as the ones found in [185], that

numerical computations can only illustrate. Before describing more theoreti-

cally this concept, let-us first illustrate it on a simple 3-star graph depicted in

figure 23. Figure 24 shows the first two eigenmodes Ψλ1
and Ψλ2

onto the 3-star

metric graph of figure 23. One can observe in figure 24 that each eigenmode

is continuous along each internal node of the graph (i.e in this example, only

node O), and also that the sum of the derivatives on each node is zero, which is

precisely why these modes are called Kirchhoff eigenmodes. Let-us now provide

more information about eigenmode Ψλ, denoting Ψij(x) its component along

each edge eij of length `ijjoining vertex i and j of the graph. Each Ψij(x) fulfills

to be an eigenfunction of the one dimensional Laplacian

− d2

dx2
Ψij(x) = λ2Ψij(x). (266)

Furthermore, inside any vertex, there is a Dirichlet continuity at vertex i and j

Ψij(0) = φi Ψij(`ij) = φj . (267)
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Denoting Aij the components of the graph adjacency matrix A, boundary con-

ditions at each vertex i reads

−
∑
j<i

Aij
d

dx
Ψij(`ij) +

∑
j>i

Aij
d

dx
Ψij(0) = hiφi. (268)

Condition (268) is called a Kirchhoff-Robin condition. For hi = 0, it degenerates

into a Kirchhoff condition. In the limit hi →∞, it provides a Dirichlet condition

at vertex i where it imposes φi = 0. Given continuity conditions (267), the

spectral base Ψij(x) is

Ψij(x) =
Ai,j

sin(λ`ij)
(φi sin(λ(`ij − x)) + φj sin(λx)) . (269)

The restriction of Ψλ over the vertex set V i.e Ψλ|V defines a V -component

vector denoted φλ having φj amplitudes with j ∈ [1, V ] where V is the cardinal

of V. Furthermore parameter λ not yet specified, needs to be set so that the

operator boundary conditions (268) at each vertex are satisfied. It can be shown

(Cf [186, 187, 188, 189, 185] for more information) that specific values of λ

called the quantum graph operator spectrum permits these conditions to arise.

Defining secular matrix A as

Aij(λ,h) = −δij

 ∑
m∈N(i)

Aimcot(λ`im) +
hi

λ

+Aij
1

sin(λ`ij)
. (270)

where N(i) = {m\Aim 6= 0} being the neighbors of vertex i associated with

non-zero components of adjacency matrix A. The analogy between the secular

time-domain matrix (270) and the frequency domain one (264) should be pointed

out. Matrix A is built so that (268) is equivalent to

V∑
j=1

Aijφj = Aφλ = 0, (271)

where, again, φλ is the V -component vector of amplitudes φj . (271) can have

a non-trivial solution different from zero when the so-called secular condition is

met

detA(λ,h) = 0. (272)
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(272) provides an algebraic formulation for the wave’s spectrum. It is very900

nice to observe that this condition generalizes to any metric graph the one901

used for a single pipe for FSI TMM solutions (56) or the time-domain ones902

(69). There is indeed a deep mathematical reason for this, since the associate903

operator having linear boundary conditions, they can be expressed as resulting904

from the action of a matrix acting on the field value (and possibly its gradient).905

It results in the common feature that the discrete possible frequencies called the906

spectrum is found from an algebraic zero determinant condition. (272) provides907

the spectrum of (infinite) discrete set of values of positive ordered λ such that908

0 ≤ λ1 < λ2 . . .. Let-us illustrate more precisely this concept on the 3-star909

graph illustrated in figure 23 whose adjacency matrix is910

A =


0 1 0 0

1 0 1 1

0 1 0 0

0 1 0 0

 . (273)

Using definition (270) the secular matrix reads in this case911

A(λ,h) =


− cot(`21λ) 1

sin(`21λ) 0 0

1
sin(`21λ) −hmλ − cot(`21λ)− cot(`32λ)− cot(`24λ) 1

sin(`32λ)
1

sin(`24λ)

0 1
sin(`32λ) − cot(`32λ) 0

0 1
sin(`24λ) 0 − cot(`24λ)

 ,(274)

whose determinant is

detA(λ,h) =

[
((

hm

λ
cot(`24λ)− 1) cot(`23λ)− cot(`24λ)) cot(`21λ)− cot(`23λ) cot(`24λ)

]
.

(275)

Numerically solving for detA(λn,0) = 0 gives the eigenvalues λn of the Kirchhoff

modes. This spectrum is complemented with the vertex vector φλn of quantum

graph modes n (269) obtained from computing the one dimensional null-space

of matrix A(λn,0) (here a 4-vector) which then sets Ψλn . [185] provides tables

with λn and φλn values of the first twenty Kirchhoff modes. Figure 24 illustrates

the first two Kirchhoff mode Ψλ1
and Ψλ2

, showing as expected an increasing
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number of minimum and maximum as λn increases. The spectral base of the

quantum graph then permits to find the time-domain pressure-wave solution

as decomposed into it. In [185] the two-time scale analysis has furthermore

been used to analyze the damped wave pressure problem (83) within the entire

network. Following the very same steps as in section 4.1, the pressure solution

is decomposed into

PG = P0
G + δP1

G + . . . (276)

In [185] each term of the expansion (276) is then decomposed into an homoge-912

neous and a particular solution similarly as (162) and (186)913

P0
G =

∑
n∈N

(
An(T )ane

iλnτ +An(T )?a?ne
−iλnτ

)
Ψλn + Pp

P0
G =

∑
n∈N

(
An(T )ane

iλnτ + cc
)
Ψλn + Pp, (277)

where cc stands for complex-conjugate, and where Ψλn is the Kirchoff quantum-

graph base for which the vertex boundary condition (268) is a Kirchoff one, i.e

hi = 0 for every vertex i ∈ V . The Kirchoff spectrum given by condition (272)

results from the intrinsic graph structure of the network. Furthermore, the

particular solution Pp has been computed in [185] for a given time-domain trig-

gering event arising at a given origin vertex vO of the graph where a closure law

PO(t) is imposed so that there is locally a non-zero flow acceleration (typically

related to a valve opening or closure) leading to∑
ek

∂P0
G

∂x
(xvO , τ) = PO(τ), (278)

[185] found that the particular solution Pp can also be decomposed into a dis-

tinct quantum graph base being a Kirchoff-Robin-Fourrier one denoted Ψp
λm

that will not be detailed here. At first order one gets (83)(
∂2

∂τ
− ∂2

∂x2

)
p1
k = 2

(
∂τ0
w

∂x
− ∂

∂T

∂

∂τ
p0
k

)
, (279)

where within each edge, the pressure leading order and first order are respec-

tively denoted p0
k and p1

k for k ∈ E. Since, the first order problem is then
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decomposed into the Laplacian eigenfunctions

P1
G =

∑
n∈N

[a1
n(τ) + cc]Ψλn +

∑
m∈N

[a1p
m (τ) + cc]Ψp

λm
. (280)

From (277), one can evaluate the right-hand-side of (279) in the Laplace domain914

which reads, using the Laplace transform of the wall-shear-stress (243)915

2

(
∂τ̃0
w

∂x
− ∂

∂T
sP̃0
G

)
= 2

(∑
n∈N

[
a0
n

s− iλn
(A0

n

√
s

s
λ2
n − s

∂A0
n

∂T
) + cc]Ψλn

+
∑
m∈N

[
a0p
m

s− iλpm
(A0

m

√
s

s
λp2m − s

∂A0p
m

∂T
) + cc]Ψλ

p
m

)
.(281)

Writing (279) in Laplace domain whilst using (281), the first-order problem916

written on G reads917

(
s2 −∆G

)
P1
G = 2

(∑
n∈N

[
a0
n

s− iλn
(A0

n

√
s

s
λ2
n − s

∂A0
n

∂T
) + cc]Ψλn+

∑
m∈N

[
a0p
m

s− iλpm
(A0p

m

√
s

s
λp2m − s

∂A0p
m

∂T
) + cc]Ψλpm

)
.(282)

Projecting (282) over Ψλn permits to find the secularity solution to cancel the918

resonant double poles, [185] found919

lim
s→iλn

(
An

√
s

s
λ2
n − s

∂An
∂T

)
= 0,

lim
s→−iλn

(
A?n

√
s

s
λ2
n − s

∂A?n
∂T

)
= 0, (283)

leading to the same consistent secularity solution

An(T ) = e−
√
−iλnT = e

−( 1−i√
2

)
√
λnT , (284)

Now, using (284) in (277) leads to the damped leading-order solution for the920

wave solution921

P0
G =

∑
n∈N

e−
√

λn
2 T
(
a0
ne
i
√

λn
2 T eiλnt + cc

)
Ψλn

+
∑
m∈N

e−
√
λ
p
m
2 T

(
ap0m e

i

√
λ
p
m
2 T eiλ

p
mt + cc

)
Ψλpm . (285)

It is noteworthy to mention that (285) generalizes for a network the damping922

analysis described in section 4.1 and 4.3 for a single pipe. Nevertheless, one923
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deep relation between the presented results is that the homogeneous spectrum924

results from the applied boundary conditions.925

5. Conclusion and perspectives926

This review dedicated to the mechanics underpinning water-hammer waves927

has provided both a short historical survey as well as the author’s state-of-the-928

art of the current understanding of this complex topic. Since water-hammer929

involves both wave propagation within the solid and the fluid, it does involve930

FSI at the liquid-solid interface and necessitates to take into account both the931

influence of non-stationary boundary layers and inlet/outlet FSI boundary con-932

ditions.933

The first two sections of this review have emphasized and summarized the934

crucial role of three couplings (Poisson, junction, friction) as already stressed935

in previous reviews [12, 13, 15, 16, 18]. This review has not only covered the936

established sets of equations for water-hammer modeling, their possible deriva-937

tion from first principles, but also, their possible theoretical solutions. This938

viewpoint is perhaps the most original stance since previous ones most often939

discussed water-hammer’s numerical computation.940

Furthermore recent developments related to the influence of visco-elastic941

properties of the pipe’s wall, asymptotic analysis of water-hammer, as well as942

the theoretical analysis of wave propagation within networks have also been943

discussed. Concerning the visco-elastic solid, this review has emphasized that944

even though Kelvin-Voigt models for the creep-functions are widespread in the945

literature (and indubitably operational) it is interesting to consider rheological946

visco-elastic models for providing an intrinsic description which does not depend947

on the specific water-hammer test (since, as opposed to Kelvin-Voigt models,948

visco-elastic models do not depend on the water-hammer test detail, i.e closure949

law, pipe thickness, length, diameter, etc...).950

In the future the rheological visco-elastic parameters might possibly be esti-951

mated from Dynamical Mechanical Analysis (DMA) independently of the water952
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hammer test, so that one could try to model visco-elastic water-hammer without953

parameter fitting (as opposed to the traditional Kelvin-Voigt model’s approach).954

This is indeed an interesting perspective to mention.955

Concerning the asymptotic analysis of water-hammer this review has tried to956

emphasize the relationship between previous contributions in the literature ad-957

dressing traditional boundary layer asymptotic matching, two-time scale anal-958

ysis, or both. Recent advances have permitted the asymptotic perturbative959

derivation of the four equation FSI model. They have also permitted to bring960

to the fore that some distinct asymptotic regimes could happen, as emphasized961

in this review. In the future, some further developments could maybe permit962

a deeper understanding of the couplings between the steady-state flow and the963

water-hammer wave, perhaps leading to the derivation of a quasi-steady shear964

stress model alternative to the quasi-steady Darcy-Weisbach model. The use965

of asymptotic analysis might also be useful in the future to approximate reflec-966

tion/transmission coefficients resulting from the presence of singularities (e.g967

sudden diameter changes, blockages, etc.) within networks in order to provide968

improved long-wavelength approximation models for water-hammer waves.969

Last but not least, this review has covered the theoretical analysis of water-970

hammer propagation within networks. This topic is stimulating since a modern971

viewpoint recently brought new concepts and results in this interesting area.972

Among those, the notion that the wave spectrum within networks can be found973

from an algebraic condition related to the secular matrix (which is related to the974

graph adjacency matrix) has been emphasized. There is much to develop in this975

area, in order to progress along water-hammer modeling in complex networks.976

We believe this research topic will grow in the future. It might also impact the977

related growing topic of transient-based defect detection methods.978
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274 (1972) 1963–1966.1340
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(f)

Figure 13: Comparison between the rheology-based model of [65] (referred to as ”Visco-elastic

theory”) and [31] and [145] ones for the pressure signal at various location for the reservoir-

pipe-anchored valve configuration. Dimensionless pulsation ω = ω∗L∗/c∗p,T using (35) have

been used in (a) and (b), dimensionless time τ = t∗c∗p,T /L
∗ in (c), (d), (e) and (f).
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Figure 14: Comparison of frequency domain dependence of dimensionless visco-elastic veloc-

ities obtained from fitting parameters to the experimental data of [137, 31]. (a) c̃vp(ω) (153),

(b) c̃+ (154), (c) c̃− (154). Dimensionless pulsation ω = ω∗L∗/c∗p,T have been used.
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Figure 15: Pressure signature compared with experimental data of ([99]). Experimental data

are depicted with black dotted lines while theoretical results from [65] are depicted with con-

tinuous lines. ([95])’s solution (no-FSI) is provided with dashed line. Dimensionless numbers

are M = 7.2 · 10−4, ε = 8.2 · 10−5, α = 0.125, δ = 3.3 · 10−2 and D = 0.11.
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Figure 16: First exponential damping mode comparison with experimental dimensionless

pressure peaks, Ppeaks. The present theory is depicted with a continuous line while ([95])’s

theory (νs → 0) is depicted by a dashed line.
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Figure 19: Dimensionless fluid wall shear stress τ0
w at middle’s pipe location. ([99])’s data

from Table 2 are used with (a) D = 0.11, (b)D = 1.
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Figure 20: Relative difference Er between (FSI) and no–(FSI) (νs → 0) fluid wall shear rate.

([99])’s data from Table 2 are used with (a) density ratio D = 0.11, (b) D = 1.
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Figure 21: Hydraulic looped network and its associated network admittance linear system

studied by S. Kim [170].
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(a) 51-pipes test network studied by Zechin et

al.[175]

(b) Example of pressure signature for the

(NILT) method, in dotted line, compared with

the Method Of Characteristic (MOC) predic-

tions, in continuous lines.

Figure 22: Investigation of the pressure dynamic within a complex network using the numerical

inverse Laplace transform (NILT) procedure from Zechin et al. [176, 175]
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Figure 23: 3-star metric graph having length `21 = 2.211, `23 = 3.111 and `24 = 4.711.
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(a) Kirchhoff mode Ψλ1
. (b) Kirchhoff mode Ψλ2

.

Figure 24: First two Kirchhoff eigenmode of the 3-star graph 23.
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