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Abstract
In this article, we are interested in the SALB3PM problem (Simple Assembly Line Balancing Problem with Power
Peak Minimization), a challenging optimization problem in manufacturing environments. We propose to solve
this problem by decomposing it as a sequence of (Satisfiability Problem) instances, each addressed by a specialized
SAT oracle. Through a series of experiments conducted on state-of-the-art SALB3PM instances, we empirically
validate the efficacy and relevance of our proposed methodology.
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1. Introduction

Assembly line balancing problems are important industrial issues, notably modeled by the SALBP
problems studied in the literature [1]. In particular, Boysen et al. [2] state that one could say that SALBP
is the pendant for the production domain what the traveling salesman problem is for the transportation
area. The SALBP problem considers a set of tasks, each task must be handled by one of the workstations
for a certain period of time. Within the SALBP problem, we can cite the most important variants:

• SALBP-F: Given the set of tasks, the workstations and the cycle time (the sum of the task times
assigned to a workstation must not exceed the cycle time), we want to know if it is possible
to assign each task to a workstation in order to respect each constraint (duration of the tasks,
precedence constraints, non-overlapping between tasks, ...). It is only a feasibility problem.

• SALBP-1: Given the tasks and the cycle time, we want to choose and minimize the number of
workstations such that the SALBP-F problem is feasible with that number of workstations.

• SALBP-2: Given the tasks and the workstations, we want to choose and minimize the cycle time
such that the SALBP-F problem is feasible with that cycle time.

• SALBP-E: Given the tasks, two feasible ranges for the number of workstations and the cycle time,
we want to minimize the line capacity (the number of workstations multiplied by the cycle time).

Example 1. We consider the following example with 4 tasks, 3 workstations and with a cycle time 𝑐 = 5.
The duration of each task is respectively 5 units of time, 2, 3 and 3. This instance is feasible for the SALB-F
problem, as proven in Figure 1.
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Figure 1: Feasible solution for the SALBP-F problem with 4 tasks, 3 workstations, a cycle time 𝑐 = 5

Due to climate change, new variants of SALBP problems have emerged, in order to take into
account the energy impacts of the choices made in the balancing of the assembly line. In this article,
we are interested in one particular variant, named the SALB3PM problem, which was proposed
in [3]. In this variant, each task requires a constant energy consumption throughout the duration
of its execution. The aim is now to minimize the maximum energy consumption per unit of time
(called Power Peak) needed to complete all tasks. For this problem, resolution methods using linear
programming were used in particular [3, 4]. Here we propose a new approach to solve this prob-
lem, based on the progress made in recent decades in solving the Boolean Satisfiability Problem (SAT) [5].

More precisely, we propose an algorithm to solve the SALB3PM problem, based on a sequence of
calls to a SAT oracle. Initially, we model the feasibility problem in the form of a propositional formula
in conjunctive normal form, without taking into account the energetic elements of the problem, and
we call an oracle capable of solving the SAT problem on this instance. Then, we gradually add new
constraints to take into account the energy impacts of our decisions and thus obtain better quality
solutions from the point of view of energy consumption.

The paper is organized as follows. Section 2 presents the SALB3PM problem. Section 3 describes an
existing integer linear program. Section 4 defines and introduce the SAT problem. Section 5 describes
our approach to solve the SALB3PM problem using SAT. Section 6 shows the execution of our approach
on an illustrative example. Section 7 talks about the computational experiments of our method. Finally,
we conclude in Section 8.

2. The SALB3PM Problem

The SALB3PM problem (Simple Assembly Line Balancing Problem with Power Peak Minimization) is
an optimization problem which consists, given a set of tasks and a set of workstations, of choosing how
to schedule the tasks on the workstations in order to minimize the power peak of the obtained schedule
[3, 4, 6, 7].

The data of the SALB3PM problem are the following:

• A set 𝑂 of 𝑛 tasks, where:

– Each task 𝑗 ∈ 𝑂 has a processing time 𝑡𝑗
– Each task 𝑗 ∈ 𝑂 has a power consumption 𝑤𝑗 applied at each unit of time where this task

is running

• A set 𝑀 of workstations ordered from workstation 1 to workstation 𝑚



• A cycle time 𝑐: the length of the working time to accomplish every task. Time is discretized
into 𝑐 elementary periods numbered from 0 to (𝑐− 1), i.e. 𝑇 = {0, ..., 𝑐− 1}. All durations are
assumed to be multiples of periods and we will assume that the start of the execution of task
always coincides with the start of an elementary period. We note 𝑇 𝑗 = {0, ..., 𝑐− 𝑡𝑗} the set of
time units where it is possible to start task 𝑗 ∈ 𝑂 in order to end it before the cycle time end.

• A set of precedence constraints 𝑃 : if a task 𝑖 ∈ 𝑂 precedes a task 𝑗 ∈ 𝑂, which is noted 𝑖 ≺ 𝑗,
consequently:

– either task 𝑖 is running on a workstation whose number is strictly smaller than the worksta-
tion where task 𝑗 is running,

– or tasks 𝑖 and 𝑗 are running on the same workstation, but task 𝑖 is running before task 𝑗.

In the SALB3PM problem, we have to choose which workstation takes which task, and to choose the
order of running tasks on each workstation, in order to minimize the power peak of the solution.

Example 2. We consider the following example (similar to example 1 but with additional data) with 4
tasks, 3 workstations, a cycle time 𝑐 = 5 and lexicographic precedences 𝑜1 ≺ 𝑜2 ≺ 𝑜3 ≺ 𝑜4:

Table 1
Processing time and power consumption of each task

Task 𝑜1 𝑜2 𝑜3 𝑜4
Processing time 5 2 3 3

Power consumption 4 4 2 4

Let’s see below a feasible solution for the SALB3PM problem on Figure 2 (the power consumption by
unit of time of a task is represented by its height). At the beginning, tasks 𝑜1 (on workstation 1), 𝑜2 (on
workstation 2) and 𝑜4 (on workstation 3) are running at the same time, with a total power consumption of
4 + 4 + 4 = 12 at each time. Then, task 𝑜2 ends and task 𝑜3 starts (on workstation 2), now with a total
power consumption of 4 + 2 + 4 = 10 at each time. Finally, tasks 𝑜4 ends (on workstation 3), now with a
total power consumption of 4 + 4 = 8 at each time. The power consumption peak was on the beginning
with a power peak of 12, so the value of the solution is 12. Remark that this schedule is a semi-active one: on
each workstation, there is no downtime before the end of the execution on the last task on this workstation.
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Figure 2: Feasible solution for SALB3PM

Let’s see below an optimal solution for the SALB3PM problem. At the beginning, tasks 𝑜1 (on workstation
1) and 𝑜2 (on workstation 2) are running at the same time, with a total power consumption of 4 + 4 = 8
at each time. Finally, task 𝑜2 ends (on workstation 2) while task 𝑜3 (on workstation 2) and task 𝑜4 (on
workstation 2) start, now with a total power consumption of 4 + 2 + 4 = 10 at each time. The power
consumption peak was at the end with a power peak of 10, so the value of the solution is 10. This schedule
is no longer a semi-active one, because there is a downtime on workstation 3.
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Figure 3: Optimal solution for SALB3PM

3. Existing Integer Linear Program for the SALB3PM Problem

In [3], the SALB3PM problem is modeled using integer linear programming as in Figure 4. The decision
variables are the following:

• Assignment variables 𝑋𝑗,𝑘: Given a task 𝑗 ∈ 𝑂 and a workstation 𝑘 ∈𝑀 , variable 𝑋𝑗,𝑘 is equal
to 1 if and only if task 𝑗 is assigned to workstation 𝑘.

• Scheduling variables 𝑆𝑗,𝑡: Given a task 𝑗 ∈ 𝑂 and a time slot 𝑡 ∈ 𝑇 𝑗 , variable 𝑆𝑗,𝑡 is equal to 1 if
and only if task 𝑗 starts at time slot 𝑡.

• Power peak variable 𝑊𝑚𝑎𝑥: an upper bound on the power consumption peak.

The first line of the integer linear program is the optimization function while the other lines are
constraints:

1. Objective function : We have to minimize the power consumption peak.

2. Each task must be assigned to exactly one workstation.

3. The sum of the processing times of every task assigned to the same workstation can’t exceed the
cycle time.

4. Given a precedence constraint 𝑖 ≺ 𝑗, task 𝑖 can’t be assigned to a workstation whose number
exceeds the number of the workstation on which 𝑗 is assigned.

5. Each task must start one and only one time.

6. Given a precedence constraint 𝑖 ≺ 𝑗, if both tasks are assigned to the same workstation, then
task 𝑖 must start before task 𝑗.

7. It is not possible to have two different tasks running on the same workstation at the same time
(non-overlap constraint).

8. For each time slot, the peak energy consumption is greater than the total energy consumption of
the tasks scheduled in this time slot.
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Figure 4: Integer Linear Program for SALB3PM [3]

4. The SAT Problem

To solve the SALB3PM problem, we will use an approach based on the Satisfiability Problem (SAT).
For that purpose, we introduce SAT in this section before presenting our approach in Section 5. The
Satisfiability Problem (SAT) checks if a set of constraints can be satisfied or not [8]. The formalism
imposed by the SAT problem can be considered more restrictive than the formalism of Integer Linear
Programming (ILP). Indeed, both are using decision variables but SAT uses only boolean decision
variables. Also, both are using constraints but, in SAT, constraints are represented using boolean
expressions instead of linear constraints. Finally, unlike ILP, SAT does not contain any objective
function, even it there exists optimization versions of SAT to try to add objective functions such as
MaxSAT [9, 10, 11]. Hereafter a formal definition of SAT.

Let 𝑋 be the set of propositional variables. A literal 𝑙 is a variable 𝑥 ∈ 𝑋 or its negation 𝑥. A clause
𝑐 is a disjunction (or set) of literals, i.e., 𝑐 = (𝑙1 ∨ 𝑙2 ∨ ... ∨ 𝑙𝑘). A formula in Conjunctive Normal
Form (CNF) 𝜑 is a conjunction (or multiset) of clauses, i.e., 𝜑 = 𝑐1 ∧ 𝑐2 ∧ ... ∧ 𝑐𝑚. An assignment
𝐼 : 𝑋 −→ {0, 1} maps each variable to a Boolean value and can be represented as a set of literals. A
literal 𝑙 is satisfied (resp. falsified) by an assignment 𝐼 if 𝑙 ∈ 𝐼 (resp. 𝑙 ∈ 𝐼). A clause 𝑐 is satisfied by an
assignment 𝐼 if at least one of its literals is satisfied by 𝐼 , otherwise it is falsified by 𝐼 . A CNF formula 𝜑
is satisfied by an assignment 𝐼 , that we call model of 𝜑, if each clause 𝑐 ∈ 𝜑 is satisfied by 𝐼 , otherwise
it is falsified by 𝐼 . Solving the Satisfiability problem (SAT) consists in determining whether there exists
an assignment 𝐼 that satisfies a given CNF formula 𝜑. In the case where such an assignment exists, we
say that 𝜑 is satisfiable, otherwise we say that 𝜑 is unsatisfiable or inconsistent.

Example 3. We consider the CNF formula 𝜑 = (𝑥1 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2) ∧ (𝑥2 ∨ 𝑥3):

• This formula contains 3 variables 𝑥1, 𝑥2 and 𝑥3.
• This formula contains 3 clauses (or 3 constraints). First clause claims that variable 𝑥1 must be equal

to 0 or variable 𝑥3 must be equal to 1. Second clause claims that variable 𝑥1 must be equal to 1 or



variable 𝑥2 must be equal to 1. Third clause claims that variable 𝑥2 must be equal to 0 or variable
𝑥3 must be equal to 0.

• This formula is satisfiable, for instance with assignment 𝐼 = {𝑥1, 𝑥2, 𝑥3}, in other words 𝑥1 =
𝑥3 = 1 and 𝑥2 = 0. Indeed, in this situation, first clause is satisfied thanks to variable 𝑥3, second
clause is satisfied thanks to variable 𝑥1 and third clause is satisfied thanks to variable 𝑥2.

Despite the syntactic restrictions of the propositional formulas, SAT is an unavoidable problem in
Computer Science, both in theory and in practice. In theory, SAT is the first problem shown to be
NP-complete [12] and is at the center of the complexity theory. In practice, SAT is used to solve many
types of problems like model checking [13] or automated theorem proving [14]. This is due to the
progress made in the techniques used to solve the SAT problem [5, 15, 16].

5. Solving SALB3PM using SAT

We model the SALB3PM problem in the form of a SAT problem. As SAT is a decision problem but is
not an optimization problem, we only model first the real constraints of the problem, i.e. how to find a
feasible solution. Figure 5 shows the constraints of the problem under the form of boolean clauses.

Initial SAT model:⋁︁
𝑘∈𝑀

𝑋𝑗,𝑘 ∀𝑗 ∈ 𝑂 (1)

𝑋𝑗,𝑘1
∨𝑋𝑗,𝑘2

∀𝑗 ∈ 𝑂, 𝑘1, 𝑘2 ∈𝑀 : 𝑘1 < 𝑘2 (2)

𝑋𝑗,𝑘 ∨𝑋𝑖,ℎ ∀𝑖, 𝑗 ∈ 𝑂 : 𝑖 ≺ 𝑗, 𝑘, ℎ ∈𝑀 : 𝑘 < ℎ (3)⋁︁
𝑡∈𝑇 𝑗

𝑆𝑗,𝑡 ∀𝑗 ∈ 𝑂 (4)

𝑆𝑗,𝑡1 ∨ 𝑆𝑗,𝑡2 ∀𝑗 ∈ 𝑂, 𝑡1, 𝑡2 ∈ 𝑇 𝑗 : 𝑡1 < 𝑡2 (5)

𝑆𝑗,𝑡 ∀𝑗 ∈ 𝑂, 𝑡 ∈ 𝑇 : 𝑡 /∈ 𝑇 𝑗 (6)

𝑋𝑖,𝑘 ∨𝑋𝑗,𝑘 ∨𝐴𝑖,𝑡 ∨𝐴𝑗,𝑡 ∀𝑖, 𝑗 ∈ 𝑂 : 𝑖 ̸= 𝑗, 𝑘 ∈𝑀, 𝑡 ∈ 𝑇 (7)

𝑆𝑗,𝑡 ∨𝐴𝑗,𝑡+𝜖 ∀𝑗 ∈ 𝑂, 𝑡 ∈ 𝑇 𝑗 , 𝜖 ∈ [0, 𝑡𝑗 − 1] (8)

𝑋𝑖,𝑘 ∨𝑋𝑗,𝑘 ∨ 𝑆𝑖,𝑡1 ∨ 𝑆𝑗,𝑡2 ∀𝑖, 𝑗 ∈ 𝑂 : 𝑖 ≺ 𝑗, 𝑘 ∈𝑀, (9)

𝑡1 ∈ 𝑇 𝑖, 𝑡2 ∈ 𝑇 𝑗 : 𝑡1 > 𝑡2

Simplification constraints:

𝑋𝑗,𝑘 ∀𝑗 ∈ 𝑂, 𝑘 ∈𝑀 : 𝑖𝑝(𝑗, 𝑘) (10)

𝑋𝑗,𝑘 ∨ 𝑆𝑗,𝑡 ∀𝑗 ∈ 𝑂, 𝑘 ∈𝑀 : 𝑝(𝑗, 𝑘), 𝑡 ∈ 𝑇 𝑗 : 𝑖𝑝(𝑗, 𝑘, 𝑡) (11)

𝐴𝑗,𝑡 ∀𝑡 ∈ [𝑐− 𝑡𝑖, 𝑡𝑖 − 1] (12)

Optimization constraints:⋁︁
𝑗∈𝐶

𝐴𝑗,𝑡 ∀𝐶 ∈ C, 𝑡 ∈ 𝑇 (13)

Figure 5: Representation of SALB3PM as a propositional formula

Decision variables used by SAT are the following ones, where the two first set of variables were also
used as ILP variables. Remember that we use only boolean decision variables in SAT:

• Assignment variables 𝑋𝑗,𝑘: Given a task 𝑗 ∈ 𝑂 and a workstation 𝑘 ∈𝑀 , variable 𝑋𝑗,𝑘 is equal
to 1 if and only if task 𝑗 is assigned to workstation 𝑘.



• Scheduling variables 𝑆𝑗,𝑡: Given a task 𝑗 ∈ 𝑂 and a time slot 𝑡 ∈ 𝑇 𝑗 , variable 𝑆𝑗,𝑡 is equal to 1 if
and only if task 𝑗 starts at time slot 𝑡.

• Activity variables 𝐴𝑗,𝑡: Given a task 𝑗 ∈ 𝑂 and a time slot 𝑡 ∈ 𝑇 , variable 𝐴𝑗,𝑡 is equal to 1 if and
only if 𝑗 is currently running in time slot 𝑡. These variables will be important to forbid some
tasks to be executed at the same time.

The first lines of the propositional formula are the constraints of the SALB3PM problem:

1. Each task must be assigned to at least one workstation.

2. Each task must be assigned to at most one workstation.

3. Given a precedence constraints 𝑖 ≺ 𝑗, task 𝑖 can’t be assigned to a workstation whose number
exceeds the number of the workstation on which 𝑗 is assigned.

4. Each task must start at least one time.

5. Each task must start at most one time.

6. A task can’t start if it can’t consequently finish before cycle time.

7. It is not possible to have two different tasks running on the same workstation at the same time.
(non-overlap constraint)

8. If a task starts its execution, it must then be active during its execution time.

9. Given a precedence constraint 𝑖 ≺ 𝑗, if both tasks are assigned to the same workstation, then
task 𝑖 can’t start after task 𝑗.

Notice how the propositional formula is bigger than the integer linear program in Section 3. For
example, the first set of constraints (line 2) of the ILP appears |𝑂| times in the model while the SAT-
equivalent constraints are constraints (1) and (2) and appear around |𝑂|2+ |𝑂| times. Therefore, we use
a preprocess technique to eliminate trivially infeasible solutions and useless constraints, which is useful
for space consideration (and has also small impact on the running time of our approach). This preprocess
technique adds constraints 10, 11 and 12 and when we add constraints 1 to 9, we immediately remove
it if there is a contradiction with these new constraints. In this preprocess technique, we compute an
earliest possible starting date and assigned workstation for each task. Naively each task can start at the
first time slot in the first workstation. Then, we explore the precedences constraints and we update
these two data, in order to eliminate trivially impossible decisions for each task. We apply the same
process computing latest possible starting date and assigned workstation for each task. We get the
following two set of constraints, plus a trivial one saying that long tasks are necessarily active in the
middle of the time horizon:

10 If a task 𝑗 can’t be assigned to a workstation 𝑘 because of precedence constraints, we prohibit
this decision (we note 𝑖𝑝(𝑗, 𝑘) = 1).

11 If a task 𝑗 can’t be assigned to a workstation 𝑘 at a time slot 𝑡 because of precedence constraints,
we prohibit this decision (we note 𝑖𝑝(𝑗, 𝑘, 𝑡) = 1).

12 If a task duration is more than half of cycle time, this task is necessarily active in the middle of
the time horizon.



Solving the SAT problem on the formula (excluding constraint (13)) makes it possible to find a
solution which respects all the constraints of the SALB3PM problem. It can be seen as an algorithm able
to solve the SALB-F Problem. To determine the scheduling with a minimum energy peak, we restart our
algorithm as many times as needed by integrating new constraints into the model. Indeed, each time
the SAT oracle returns a feasible solution, we analyze the computed solution to determine its energy
peak and what are the tasks executed at the same time causing an energy peak greater or equal than
the value of the currently best-known solution. Then, we introduce optimization constraints to forbid
these tasks to be executed at the same time. These optimization constraints correspond to line (13) of
the mathematical model where C contains the set of tasks that we no longer want to be active at the
same time. Set C is initially empty and gradually expands through to the analysis of solutions proposed
by the SAT oracle. Each time we add new optimization constraints, we call again the SAT oracle with
these new optimization constraints. When the SAT oracle returns that the feasible problem is no longer
feasible, the best solution computed from the beginning is an optimal solution for the SALB3PM problem.

Our approach is resumed in Algorithm 1 after. At the beginning, we compute the initial SAT model
including the initialization of the empty set of optimization constraints C (line 1) and we note that we
currently know no solution (lines 2 and 3). Then, we call the SAT oracle for the first time, in order to
compute a solution to the feasibility problem (line 4). If the feasibility problem is not feasible, we end
with no solution (lines 5 to 7 ). Otherwise, we start the main loop of our algorithm, running as long as
the SAT oracle is able to find a feasible solution (line 8 to 16). At each iteration of the loop, we compute
the energy peak of the current solution (line 9) and we save it if it is the best solution ever met (lines
10 to 13). We analyze the current solution to get at least one (possibly more) set of tasks executed at
the same time in the current solution and causing a power peak greater or equal than the value of the
currently best solution known. For each of these set of tasks, we add a set of clauses to prohibit this set
of tasks from being active at the same time, i.e. we add new optimization constraints to the model by
the enlargement of set C (line 14). Then, we call again the SAT oracle to get a new feasible solution.
If the SAT oracle returns a new feasible solution, we make another round of the loop, otherwise we
return the best known solution as an optimal solution (line 17 ).

Algorithm 1 SALB3PM problem solving method using SAT
Require: Instance 𝑖 of the SALB3PM problem
Ensure: Optimal solution of 𝑖 with its value

1: 𝑚𝑜𝑑𝑒𝑙← compute_initial_model(𝑖)
2: 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛← ∅
3: 𝑏𝑒𝑠𝑡𝑉 𝑎𝑙𝑢𝑒← +∞
4: (𝑠𝑡𝑎𝑡𝑢𝑠, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛)← solve_SAT_problem(𝑚𝑜𝑑𝑒𝑙)

5: if status = "UNFEASIBLE" then
6: return ("NO FEASIBLE SOLUTION", bestSolution, bestValue)
7: end if
8: while status = "FEASIBLE" do
9: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 𝑎𝑙𝑢𝑒← compute_value_of_solution(𝑖, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

10: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 𝑎𝑙𝑢𝑒 < 𝑏𝑒𝑠𝑡𝑉 𝑎𝑙𝑢𝑒 then
11: 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
12: 𝑏𝑒𝑠𝑡𝑉 𝑎𝑙𝑢𝑒 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 𝑎𝑙𝑢𝑒
13: end if
14: 𝑚𝑜𝑑𝑒𝑙← add_new_constraints(𝑚𝑜𝑑𝑒𝑙, 𝑖, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
15: (𝑠𝑡𝑎𝑡𝑢𝑠, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛)← solve_SAT_problem(𝑚𝑜𝑑𝑒𝑙)

16: end while
17: return ("OPTIMAL SOLUTION", bestSolution, bestValue)



6. Illustrative example

In this section, we show how our approach works on an example. To this end, we consider example 2
with 4 tasks, 3 workstations, a cycle time 𝑐 = 5 and lexicographical precedences 𝑜1 ≺ 𝑜2 ≺ 𝑜3 ≺ 𝑜4:

Table 2
Tasks, processing time and power consumption

Task 𝑜1 𝑜2 𝑜3 𝑜4
Processing time 5 2 3 3

Power consumption 4 4 2 4

We start by the creation of the initial SAT model as described in Section 5. In particular, there is no
restriction about tasks that should not be allowed to be active at the same time, i.e. C = ∅. Then, we
call the SAT solver for the first time in order to find a feasible solution. At the first iteration, the SAT
solver returns that there exists the following feasible solution:

workstation 1

workstation 2

workstation 3

𝑜1

𝑜2 𝑜3

𝑜4

time
0 1 2 3 4 5

energy

0

4

8

12

time
0 1 2 3 4 5

Power peak: 12

Figure 6: Feasible solution computed by the first SAT oracle call

The proposed solution has a power consumption peak of 12, because tasks 𝑜1, 𝑜2 and 𝑜4 are executed
at the same time. We consequently add the following new constraints, in order to prohibit these tasks
to be executed at the same time:

𝐴𝑜1,𝑡 ∨𝐴𝑜2,𝑡 ∨𝐴𝑜4,𝑡 ∀𝑡 ∈ 𝑇

Now, tasks 𝑜1, 𝑜2 and 𝑜4 can no longer be active at the same time, i.e. C = {{𝑜1, 𝑜2, 𝑜4}}. We call again
the SAT solver for the second time in order to find a feasible solution. At the second iteration, the SAT
solver returns that there exists the following feasible solution:
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𝑜2 𝑜3

𝑜4
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Power peak: 10

Figure 7: Feasible solution computed by the first SAT oracle call

The proposed solution has a power consumption peak of 10, because tasks 𝑜1, 𝑜3 and 𝑜4 are executed
at the same time. We consequently add the following new constraints, in order to prohibit these tasks
to be executed at the same time:

𝐴𝑜1,𝑡 ∨𝐴𝑜3,𝑡 ∨𝐴𝑜4,𝑡 ∀𝑡 ∈ 𝑇



Now, tasks 𝑜1, 𝑜3 and 𝑜4 can no longer be active at the same time, i.e. C = {{𝑜1, 𝑜2, 𝑜4}, {𝑜1, 𝑜3, 𝑜4}}.
We call again the SAT solver for the third time in order to find a feasible solution. At the third iteration,
the SAT solver claims that it is no longer possible to compute a feasible solution.

Consequently, among all the computed solutions, the solution providing the minimum power con-
sumption peak is an optimal solution. In this example, the best solution was proposed at the second
iteration with a power consumption peak of 10. Consequently, the optimal power consumption peak is
10 in this example, and the proposed solution is optimal.

7. Experiments

We experimented our algorithm on several instances from the literature, with for each instance the
results obtained by implementing the existing model on CPLEX [3] and the results obtained with
our algorithm. The experiments are performed on Dell computer with Intel(R) Core(TM) i5-8400T
processor (clocked at 1.70 GHz) under Windows 10. The underlying SAT problem is solved using the
Sat4j optimization library [17] which includes the SAT Solver Glucose [18]. We give, for each instance,
the number of tasks 𝑛, workstations 𝑚, the cycle time 𝑐 and, for each method, the energy peak of the
best solution computed, the execution time (at most 1 hour) and its status (optimal or not).

Table 3
Comparison of ILP and SAT approaches on some instances

Instance Data ILP Results SAT Results
𝑛 𝑚 c Peak Time Status Peak Time Status

mertens-1 7 6 6 104 0.01 s Optimal 104 0.23 s Optimal
mertens-2 7 2 18 49 0.09 s Optimal 49 0.24 s Optimal
bowman-1 8 5 20 164 0.05 s Optimal 164 0.23 s Optimal
jaeschke-1 9 8 6 248 0.02 s Optimal 248 0.21 s Optimal
jaeschke-2 9 3 18 78 0.16 s Optimal 78 0.28 s Optimal
jackson-1 11 8 7 179 0.08 s Optimal 179 0.25 s Optimal
jackson-2 11 2 94 65 1.05 s Optimal 65 0.50 s Optimal
mansoor-1 11 4 48 145 0.69 s Optimal 145 0.38 s Optimal
mansoor-2 11 2 94 77 5.03 s Optimal 77 0.56 s Optimal
mitchell-1 21 8 14 221 1.44 s Optimal 221 0.60 s Optimal
mitchell-2 21 3 39 85 427.94 s Optimal 85 9.88 s Optimal
roszieg-1 25 10 14 254 104.36 s Optimal 254 7.80 s Optimal
roszieg-2 25 4 32 117 163.59 s Optimal 117 5.65 s Optimal

heskiaoff-1 28 8 138 ≤ 290 ≥ 3600 s 251 196.69 s Optimal
heskiaoff-2 28 3 342 ≥ 3600 s ≤ 107 ≥ 3600 s

buxey-1 29 14 25 ≤ 292 ≥ 3600 s ≤ 292 ≥ 3600 s
buxey-2 29 7 47 ≤ 350 ≥ 3600 s 172 137.46 s Optimal
sawyer-1 30 14 25 395 157.00 s Optimal 395 2.04 s Optimal
sawyer-2 30 7 47 ≥ 3600 s 214 257.92 s Optimal
gunther-1 35 14 40 394 2297.00 s Optimal 394 2.13 s Optimal
gunther-2 35 9 54 ≥ 3600 s 295 6.08 s Optimal

We see in the Table 3 that our approach finds the optimal solution on more instances (19 instances
out of 21) than with the known ILP approach (15 out of 21). In particular, ILP is better than our approach
on trivial instances (because the time to write the ILP model is smaller than the time to write the SAT
model). On the other hand, on non-trivial instances, our approach is better than the studied ILP model.

In the Table 4, we detail the results obtained by our approach with, for each instance, the number
of tasks 𝑛, workstations 𝑚, the cycle time 𝑐, the number of decision variables #𝑉 𝑎𝑟, the number of
constraints #𝐶𝑜𝑛𝑠𝑡 (in the initial model), the energy peak of the best solution calculated (Peak), the



Table 4
Details about our SAT approach on some instances

Instance Data SAT Results
𝑛 𝑚 c #Var #Cons Peak Status #Sol #SolBB Time

mertens-1 7 6 6 126 578 104 Optimal 9 9 0.23 s
mertens-2 7 2 18 266 2844 49 Optimal 3 3 0.24 s
bowman-1 8 5 20 360 2601 164 Optimal 3 3 0.23 s
jaeschke-1 9 8 6 180 586 248 Optimal 2 2 0.21 s
jaeschke-2 9 3 18 351 4049 78 Optimal 19 18 0.28 s
jackson-1 11 8 7 242 1454 179 Optimal 2 2 0.25 s
jackson-2 11 3 21 495 9 798 65 Optimal 33 31 0.50 s
mansoor-1 11 4 48 1100 23 549 145 Optimal 5 5 0.38 s
mansoor-2 11 2 94 2090 70 925 77 Optimal 4 1 0.56 s
mitchell-1 21 8 14 756 8 189 221 Optimal 100 43 0.60 s
mitchell-2 21 3 39 1701 50 041 85 Optimal 121 114 9.88 s
roszieg-1 25 10 14 950 27 090 254 Optimal 883 562 7.80 s
roszieg-2 25 4 32 1700 62 749 117 Optimal 120 116 5.65 s

heskiaoff-1 28 8 138 7952 1 025 654 251 Optimal 866 865 196.69 s
heskiaoff-2 28 3 342 19 236 3 875 781 ≤ 107 82 81 ≥ 3600 s

buxey-1 29 14 25 1856 76 114 ≤ 292 8720 2523 ≥ 3600 s
buxey-2 29 7 47 2929 169 279 172 Optimal 53 52 137.46 s
sawyer-1 30 14 25 1920 93 520 395 Optimal 114 114 2.044 s
sawyer-2 30 7 47 3030 204 757 214 Optimal 63 63 257.92 s
gunther-1 35 14 40 3290 260 795 394 Optimal 156 156 2.13 s
gunther-2 35 9 54 4095 372 766 295 Optimal 60 51 6.08 s

status after at most one hour (optimal or not), the number of different solutions computed, the iteration
in which the approach found the best one and the execution time (at most 1 hour). Notice that the
number of iterations is usually limited, because our approach can eliminate an exponential number
of feasible solutions at each iteration. Among the two instances on which our approach fails to prove
optimality in one hour, the instance called heskiaoff-2 contains more than one million constraints and
the approach finds less than one hundred solution in one hour while the instance called buxey-1 has the
line capacity (number of workstations multiplied by cycle time) which is a little bit oversized for this
instance, allowing too many different patterns of feasible solutions compared to buxey-2 which is the
same instance with a different line capacity.

8. Conclusion

In this article, we examined the SALB3PM problem, which is a variation of the well-known SALBP
problems. This particular problem incorporates an energetic component to address challenges prevalent
in the industrial sector, a significant consumer of energy and emitter of greenhouse gases [19, 6].
To solve this problem, we proposed an approach that iteratively uses the SAT problem to solve this
optimization problem. This approach has been compared with an existing integer linear programming
approach, and provides promising results.

The immediate future work is about increasing the performances of our SAT-based approach and
experiment a Max-SAT approach. In particular, it may be possible to upgrade the performances of our
approach, in term of time and space, thanks to the existing work about the encoding of cardinality
constraints [20, 21, 22]. An other direction is about encoding the objective function as a set of soft
clauses as in the MaxSAT Problem [23, 24]. Finally, more distant future work are about using other
formulation like the CSP problem [25] and trying to hybridize these approaches with each other or
with other heuristic approaches.
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