
HAL Id: hal-04778558
https://hal.science/hal-04778558v1

Preprint submitted on 12 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Dichotomy for reachability and label synchronisation in
large version-controlled repositories

Laurent Bulteau, Pierre-Yves David, Florian Horn, Euxane Tran-Girard

To cite this version:
Laurent Bulteau, Pierre-Yves David, Florian Horn, Euxane Tran-Girard. Dichotomy for reachability
and label synchronisation in large version-controlled repositories. 2024. �hal-04778558�

https://hal.science/hal-04778558v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Dichotomy for reachability and label
synchronisation in large version-controlled

repositories

Laurent Bulteau1[0000−0003−1645−9345], Pierre-Yves David2[0009−0005−3618−3560],
Florian Horn3[0000−0001−8872−4705], and Euxane

Tran-Girard1,2[0009−0003−4190−7151]

1 LIGM, CNRS, Université Gustave Eiffel, France
{laurent.bulteau,euxane.trangirard}@univ-eiffel.fr

2 Octobus, France pierre-yves.david@octobus.fr
3 IRIF, CNRS, Université Paris Cité, France florian.horn@irif.fr

Abstract. DAGs are commonly used for modelling successive versions
of a project in systems such as Git or Mercurial, where each version
(node) is based on one or two former versions (with arcs from each node
to its former versions). Some specificities make these graphs unique: they
grow in “append-only” mode, i.e. nodes are created with in-degree 0, so
the out-degree of existing nodes remains constant. Also, several copies
of the graph grow in parallel, with synchronisation steps when an agent
sends their new nodes to other agents.
For the largest graphs, which can reach up to several million revisions,
sub-linear algorithms become necessary for recurring tasks, creating a
need for a pre-computed index that can grow and be shared along with
the graph nodes. In this paper we focus on the reachability problem
(deciding if a path exists between two nodes), as well as label discovery :
if each agent has a label attached to each node, determine the set of nodes
with distinct labels between two agents. Algorithms are to be designed
not only in a dynamic setting, i.e. allowing for node insertions, but also
with the multi-agent constraint that different agents, having received
different nodes and common nodes in different orders, may need to share
large sets of nodes among themselves. Very efficient reachability indices
exist in static DAGs, but they often do not apply well to rapidly-growing
graphs in a multi-agent model. We present a framework allowing for fast
algorithms for both tasks, using a compact index (with a few bytes per
node in practice) that can easily be updated when the graph grows and
nodes are shared. At the core of our approach lies the notion of ranges,
i.e. specific sets of nodes that admit a concise representation and can be
partitioned (split) into smaller ranges.
An implementation of our algorithms is available at https://doi.org/10.
5281/zenodo.10715742.

Keywords: Merkle Graph · Reachability · Version-control systems

https://doi.org/10.5281/zenodo.10715742
https://doi.org/10.5281/zenodo.10715742

2 L. Bulteau et al.

1 Introduction

Version-control systems are designed to help multiple developers work in parallel
on a common project, sharing their progress as seamlessly as possible. In modern
systems such as Mercurial or Git, this is achieved by using local revision graphs
on a shared repository : each time a developer wants to save their progress, they
add a new revision —a snapshot of their current version of the project— to their
own local revision graph, pointing to the previous revision(s) that served at the
basis for this new version. These revisions are then shared among developers,
often but not always through a server centralizing all data.

The data-structure for local revision graphs is a Merkle DAG, which is up-
dated from the sources: new revisions are sources with outgoing arcs to the re-
vision(s) from which they were derived. A global repository is a set of consistent
revision graphs: if two revision graph in the same repository share a common
node u, they also share the nodes upon which u is based and, recursively, all
reachable nodes from u.

Larger projects can involve hundreds of developers over many years with
many sub-projects being developed in parallel. Such repositories can grow to
millions of nodes, quickly leading to performance issues for complex operations
even when the underlying algorithms are linear in time. In this paper, we propose
a dichotomy framework which allows us to split sets of nodes to recursively
explore subsets without having to enumerate the whole graph. We explore two
concrete applications of this principle: the reachability test, which asks whether
there is a dependency path between two revisions; and label discovery, which
asks on which nodes two agents have added different labels, which are pieces of
data associated to nodes after their creation.

It is possible to get sub-linear complexity for reachability testing on a specific
graph by using a precomputed index, such as 2-hop. This is not enough for our
purposes as such an index could be obsolete as soon as a new node is inserted.
Also, there is no guarantee in general that two agents reaching the same revision
graph from different histories would get to the same index. Formally, we consider
that an index is a function that gives a value for each revision in a graph, and we
say that an index is coherent if the stored value for a specific node is constant
over time and over all graphs in a given repository.

Example 1 (Node Identifier). The simplest identifier for a node is its insertion
number. However it is not coherent since different agents may receive common
nodes in different orders. One can define a coherent hash identifier with a perfect
hash4 of its content, including the hash identifiers of the nodes on which it is
based. The consistency property of repositories ensures that each node has a
unique hash identifier shared by all agents. In Mercurial, both identifier systems
are maintained: the insertion numbers yield better local performances, and the
hashes are used whenever nodes are exchanged between agents.

4 Mercurial uses 160-bit hashes, so the chances of a collision are infinitesimal.

Dichotomy in version-controlled repositories 3

We also consider the label discovery problem as a test case for our dichotomy
framework. The idea is to compute, exchange, and cache hash values for the
labels of carefully chosen sets of nodes, so that only the modified sets need to
be exchanged between two successive synchronisations. For this application the
dichotomy algorithm must be able to pinpoint an edited label using as few cuts
as possible, and conversely all cached sets containing any given node must be
accessible easily in order to keep the cache up to date after label edits.

Previous Works Representing the causal history of revisions using a DAG struc-
ture has been suggested and formalised by Plaice and Wadge [14] and imple-
mented in current distributed version control systems (DVCS) such as Mercurial
[13] and Git [9] as Merkle graphs. Several problems specific to DVCS have been
studied in the literature. The problem of finding optimal search strategies using
the graph structure for the purpose of regression testing has been implemented
in Git and Mercurial and studied by Bendík et al. [3] and Courtiel et al. [7] using
a dichotomy approach (unrelated to this paper). The problem of graph discovery,
i.e. finding new nodes between two instances of a revision graph for the purpose
of synchronisation, has been formulated and studied by Bulteau et al. [4].

The problem of label discovery, i.e. finding the differences between two la-
bellings of a revision graph for the purpose of synchronisation, has not, to our
knowledge, been extensively studied before. An experimental implementation of
a restricted form of label discovery has been proposed in the Evolve extension
of Mercurial [8] for synchronising obsolescence markers attached to nodes. La-
bel discovery can be seen as a graph generalization of the file synchronisation
problem, cf. the rsync algorithm (Tridgell et al. [18]).

The problem of reachability (or path existence query) in unlabeled directed
graphs (acyclic or not) has been extensively studied and iterated upon [10] [21].
The main indexing approaches rely on chain cover (Jagadish [11], Chen and Chen
[5], both dynamic), tree cover with interval labelling (Agrawal et al. [2], Yildirim
et al. [20] (dynamic)), approximate transitive closure (Wei et al. [19] (dynamic),
Su et al. [17]), and 2-hop (Cohen et al. [6], Zhu et al. [22] (dynamic), Lyu et al.
[12] (dynamic)). The dynamic methods allow index updates under arbitrary node
addition and deletion, without coherence restrictions. In practice, reachability
tests for Merkle graphs have been implemented using chain cover in the Matrix
communication protocol [1], and as pruned DFS in Mercurial [15] and Git [16],
opportunistically using topological order, level and date information.

Our results We propose several algorithms leading to efficient solutions for reach-
ability testing and label discovery through dichotomy. At the core of our ap-
proach lies the notion of range, i.e. a set of nodes that can be described con-
cisely. Ranges are sets that can be defined as the first k nodes seen in a specific
traversal of the reachable nodes from some node u, the stable-tail sort of u. We
prove sublinear bounds on the depth of the dichotomy search tree, as well as
other sublinear guarantees in specific cases (merge-free graphs). We evaluate the
performances of our algorithms on a large dataset of revision graphs, and in
particular for the reachability problem in a (single-agent) dynamic setting, we

4 L. Bulteau et al.

run comparisons against implementations of 2-Hop and BFL algorithms, where
our algorithm is competitive on large graphs with the advantage of having a co-
herent index. Due to space constraints, proofs and detailed experimental results
are deferred to the appendix.

2 Definitions, notations, and general properties

In this paper, we use the Python notation for lists to manipulate ordered sets:
elements are written within brackets separated by commas; the cardinal of L is
|L|; its i+1th element is L[i]; the concatenation of two disjoint lists K and L is
K + L. We also use usual set notations: x ∈ L means that x is an element of L
and L \K is the ordered set obtained from L by removing each element of K.

Definition 1 (Revision graph, Repository). A revision graph is a labeled
directed acyclic graph G = (V,E,num) with out-degree at most 2, where num is
an anti-topological bijection V → [1, . . . , |V |], i.e. num(u) > num(v) for each arc
u → v. Nodes of V are sometimes called revisions. A node u is an in-neighbour
of v and v is an out-neighbour of u if there is an arc u → v in E. A node v is
reachable from u if there is a path u →∗ v (possibly with u = v). A node without
in-neighbours is a source and a node without out-neighbours is a sink. A node
with two out-neighbours is a merge.

A repository is a collection of revision graphs where common nodes have the
same out-neighbours: if G and H are two revision graphs with common node u
and u → v ∈ EG, then u → v ∈ EH .

Remark 1. A source of confusion in the study of VCSs is that the dependency
order is opposite to the topological order: new nodes are sources with transitions
to existing nodes rather than sinks with transitions from existing nodes. Graph
theory uses the parent-child relationship according to the topological order (if
u → v, then u is the parent of v), while VCS studies use the terms parent and
child according to the dependency order (if u → v, then u is the child of v). To
avoid confusion, we do not use these terms, hence in- and out-neighbours.

We first introduce low-level concepts for nodes that give the necessary foun-
dations for our dichotomy algorithms. These concepts are presented in Figure 1.

Definition 2 (Node properties). For any node u, the reachable set of u,
denoted

−→
R(u), is the set of nodes that are reachable from u; the rank of u,

denoted rank(u), is the size of its reachable set: rank(u) = |
−→
R(u)|. Among out-

neighbours of u, the tail neighbour, denoted t(u), is the one with larger rank (or
lower hash identifier, cf. Example 1, in case of ties) and the exclusive neighbour
is the other one, if any, and is denoted x(u). The tail path of u, denoted tail(u),
is defined recursively as [u] if u is a sink and [u]+ tail(t(u)) if it has at least one
out-neighbour.

Dichotomy in version-controlled repositories 5

a221

b212

c191

d110 e174 f101

g101 h93

i83 j10 k71

l52 m30 n42 p31

q31 r21 s10t10

u10 v10 w10

a221

b212

c191

d110 e174 f101

g101 h93

i83 j10 k71

l52 m30 n42 p31

q31 r21 s10t10

u10 v10 w10

Fig. 1. A revision graph with 22 nodes. Arcs to the tail neighbour are doubled (red),
others (blue) are to the exclusive neighbour. Super- and sub-scripts are respectively the
rank and power of each node. Left: the switch list from a to p is [e, k] (the correspond-
ing path is outlined). Right: following dotted arcs, we have anc(a) = b, anc(b) = e,
anc(e) = ⊥. This yields the partition of

−→
R(a) into canonical sets C(a) = {a},

C(b) = {b, c, d, f} and C(e) =
−→
R(e) (see also Split Rule 1).

Revision graphs are growing by adding new sources to the graph, while ex-
isting nodes and arcs remain unchanged. In particular, the out-neighbours (tail
and exclusive) of a node, its hash id and rank stay constant after its creation.
These values are computed and stored when the node is first created (commit).

We now define the anchor of a node, a notion that is central to our dichotomy
algorithm, using a log-based power function.

Definition 3 (Power, anchor, canonical set). The power of a node u, de-
noted π(u), is the largest bit that changes between the binary representations
of rank(u) and rank(t(u)). Formally, by convention, if u is a sink, π(u) = 0.
Otherwise, π(u) is the largest integer such that there exists an integer x with:

rank(u) ≥ x · 2π(u) > rank(t(u))

The anchor of a node u, denoted anc(u), is the first node v of tail(u) \ {u}
such that π(v) ≥ π(u); if no such node exists, we write anc(u) = ⊥.

The canonical set of a node u is the set C(u) =
−→
R(u) \

−→
R(anc(u)) (using

−→
R(⊥) = ∅).

The definition of power ensures that the canonical set is very small for most
nodes, but grows exponentially as we follow chains of anchors (see Figure 1).

Finally, we introduce the notion of switch list, which helps us bound the
complexity of our enumeration algorithm and the depth of the dichotomy.

6 L. Bulteau et al.

Definition 4 (Switch list). Let u, v be a pair of nodes with v ∈
−→
R(u). The

switch list from u to v, denoted σ(u, v) is defined as follows:

– if u = v, σ(u, v) = [];
– if v ∈

−→
R(t(u)), σ(u, v) = σ(t(u), v);

– otherwise, σ(u, v) = [u] + σ(x(u), v).

The switch distance from u to v, denoted dS(u, v) is the length of σ(u, v).

The switch list can be seen as a characteristic of a specific path from u to
v: it always goes to the tail neighbour of the current vertex until it reaches the
first switch; in that case, it goes to the exclusive neighbour and discards that
switch. The fact that the tail neighbour has the larger rank allows us to bound
the switch distance between any two nodes.

Lemma 1. For any nodes u and v, v ∈
−→
R(u), the switch distance between u

and v is at most
√
2 rank(u).

3 Stable-tail sort and ranges

In order to allow dichotomy algorithms on sets of nodes, we introduce linear
orderings over nodes. The first constraint is to make them coherent (i.e. different
agents have the same view on common nodes), and as stable as possible, i.e.
node insertions in different revision graphs should not completely shuffle the
permutation. We thus introduce the stable-tail sort below, defined as a coherent
topological ordering of the reachable set of any node (in any repository, all
revision graphs having the same node u have the same STS(u)). See Figure 2
for an illustration.

Definition 5 (STS : Stable-Tail Sort). For a sink u we define STS(u) = [u].
If u has one out-neighbour t(u), then STS(u) = [u] + STS(t(u)). If u is a merge
then we write excl(u) = STS(x(u)) \

−→
R(t(u)) and STS(u) = [u] + excl(u) +

STS(t(u)). The lists excl(u) and STS(t(u)) are respectively called the exclusive
and tail parts of STS(u).

Remark 2. A node’s Stable-Tail Sort of its reachable set is not the projection of
a graph-wide order on

−→
R(u).

Intuitively the STS is a variation of the depth-first traversal of the reachable
set, where instead of skipping nodes that have already been seen, one skips
nodes that will be seen again. Indeed, switching the exclusive and tail parts in
Definition 5 would define exactly the depth-first traversal. Our objective is, for
any two nodes, to have a large common suffix. In particular for merges with a
small exclusive part, a large suffix comes from STS(t(u)), which in turn has a
large common suffix with its own tail neighbour, etc.

Although we precisely aim at avoiding any exhaustive enumeration of sub-
sets of nodes, such enumeration is necessary in some cases, especially for short

Dichotomy in version-controlled repositories 7

STS(e) = e hkpsnt gjimrlwqvu
= e h kpsnt gjimrlwqvu

STS(t(e)) = gjimrlwqvu

STS(x(e)) = hjkpsntrw

(excl(e) = hkpsnt)

e

g h

i j k

l m n p

q r st

u v w

split2(STR(e, 17)) = { STR(e, 1) , STR(h, 1) , STR(k, 5) , STR(g, 10) }

Fig. 2. Top: construction of STS(e) from its out-neighbours: the whole STS(g) is used
as a suffix, while the exclusive part (bold nodes) is listed according to STS(h). Bottom:
when splitting the corresponding range, the exclusive part is greedily partitioned into
STR(h, 1) ∪ STR(k, 5).

prefixes of STS(u), and needs to be as efficient as possible. A straightforward im-
plementation would actually use a depth-first-search, remembering visited nodes
and entering a node only if all its in-neighbours have been visited. However, the
in-neighbourhood of a node is not stored explicitly in memory (it can be com-
puted in O(n), but this would be before the enumeration starts). Similarly, one
could also run a regular DFS starting with the tail neighbour and then swap
the exclusive and tail parts for each merge node, but again, this strategy would
require to visit the whole set

−→
R(u) before starting the actual enumeration.

For a more efficient enumeration of prefixes of the STS of a node, and also
have a faster access to any node by index, we pre-compute the leaps of u: all
intervals of nodes in STS(x(u)) that also appear in

−→
R(t(u)). Leaps can be stored

concisely as pairs of integers. Then, excl(u) can be obtained by (1) enumerating
STS(x(u)), (2) removing the positions contained in a leap of u and (3) applying
a cut-off at the correct length: |excl(u)| = rank(u) − rank(t(u)) − 1 (see Algo-
rithm 1). This straightforward algorithm can further be turned into an efficient
enumeration algorithm.

Theorem 1. Let u be a node. There exists an enumeration algorithm for STS(u)
using an index containing rank and leap data for all nodes, and taking time
O(1 + dp(1 + ℓp)) for each position p, where (denoting v = STS(u)[p]):

– dp = dS(u, v) is the switch distance from u to v,
– ℓp is the maximum number of leaps among switches of σ(u, v)

Although in the worst case ℓp can be linear and dp can grow in
√
n, most

merges have no leaps at all (excl(u) is a prefix of STS(x(u))), and enumerating
each position takes less than 2 look-ups in most cases.

Using the Stable-Tail Sort, we can move on to defining ranges (i.e., distin-
guished subsets) of nodes, and subsequent splitting rules.

8 L. Bulteau et al.

def STS(u):
if u = ⊥ then

return []
X ← STS(x(u))
foreach interval I in leaps(u) do

remove elements with index in I from X
X ← X[0 : rank(u)− rank(t(u))− 1]
return [u] +X + STS(t(u))

Algorithm 1: A recursive algorithm for STS, using rank and leap data
to build the exclusive part X = excl(u). We write x(u), t(u) = ⊥ if the
corresponding neighbour is undefined.

Definition 6 (STR: Stable-Tail Range). The stable-tail range (or range
for short) with head u and length k > 0, denoted STR(u, k) is the set of nodes
{STS(u)[i] | 0 ≤ i < k}. A range is called atomic if k = 1, full if k = |

−→
R(u)|,

canonical if k = |C(u)|. It is short if k ≤ |C(u)|, and long otherwise (in
particular, atomic and canonical ranges are short, full ranges are long unless
anc(u) = ⊥).

We now present range-splitting algorithms, i.e. we aim at partitioning the
nodes in a range into a (small) number of smaller ranges. We present below two
distinct splitting rules, combined into split(S) = split1(S) if S is a long range,
and split(S) = split2(S) if S is short.

Splitting Rule 1 (Long ranges). For any range S with head u, let split1(S) =
{S} if S is short, and split1(S) = {C(u)} ∪ split1(S ∩

−→
R(anc(u))) otherwise (cf

Figure 1).

The second splitting rule, stated below, uses the notion of longest range prefix
of some list L, which can be defined as the longest common prefix between L
and STS(L[0]) (it is indeed a range since it is a prefix of some STS).

Splitting Rule 2 (Short ranges). For a range S with head u, let X be the
prefix of excl(u) containing only nodes of S, and T = S∩

−→
R(t(u)) (in particular,

X = excl(u) whenever T is not empty, and S = {u} ∪ set(X) ∪ T). If X is not
empty, we define successive ranges X1, . . . , Xk such that Xi is the longest range
prefix of X \ (X1 ∪ . . . ∪Xi−1).

Overall, split2(S) = {{u}, X1, . . . , Xk, T} (cf Figure 2).

Intuitively, split1 cuts long ranges at successive anchors to produce few
ranges, all of them short (mostly even canonical). For short ranges, no anchor is
available, and split2 splits greedily to produce at least two ranges, short or long.

Definition 7 (Search-Tree and Dichotomy search). The Search Tree for
a range S, denoted TS, is the tree with root labelled with range S and, if S is not
atomic, the subtree TSi for each Si ∈ split(S). For a node u, we write Tu for the
tree T−→

R(u)
.

Dichotomy in version-controlled repositories 9

A dichotomy search for a node v ∈ S is the path from the root TS to the leaf
TSTR(v,1) (such a path always exists since the splitting function on non-atomic
ranges always yields a partition into strictly smaller ranges, so the leaves of TS

are exactly the nodes TSTR(v,1) for v ∈ S).

e

g h

i j k

l m n p

q r st

u v w

k p s n t
STR(k, 5)

g j i m r l w q v u
STR(g, 10)

e h k p s n t g j i m r l w q v u
STR(e, 17)

k p s g jn t i m r l w q v u
STR(i, 8)

p s m r l w q v u
STR(l, 5)

q v u

e h

k n t g j i

p s m r l w

q v u

Fig. 3. Search tree (right) for the range
−→
R(e) = STR(e, 17) from the revision graph

given on the left. Atomic ranges are shown in black, long ranges in blue and short ranges
in red. The range content is enumerated explicitly (in STS order), and the notation as
STR(x, i) is given as superscript for the longer ones. Here T−→

R(e) has size 27, depth 6
and degree 4.

Given a graph G, we are interested in the following metrics: the worst-case
depth is the maximum depth (or height) of Tu for u ∈ V . The worst-case degree
is the maximum number of sub-graphs of any node in these trees. The total range
count is the overall number of distinct ranges seen in these trees. Both degree
and depth need to be optimized, as the total time cost taken by a dichotomy
search is typically the sum of all degrees along the path, which can be bounded in
O(degree×depth). The total range count needs also to be minimized, in order to
optimize storage and caching: whenever meta-data needs to be stored for ranges
in internal nodes of the tree (e.g. in label discovery, see Section 4.2), the number
of cached ranges per node needs to be bounded on average in order to maintain
a linear space requirement.

Theorem 2. A graph with n nodes has worst-case depth O(
√
n log(n))

The worst-case degree can trivially be bounded by n. Function split1 can be
shown to have degree ≤ log2 n+ 1 but there is no theoretical bound for split2.

4 Algorithms for Mercurial

4.1 Range-based reachability algorithm

The dichotomy framework defined in Section 3 can be used as a search-tree
for reachability tests. We use an approximate, constant-time oracle for range

10 L. Bulteau et al.

containment, i.e. a function that, given a node x and a range S returns yes
(x ∈ S), no (x /∈ S) or maybe. We run the oracle on range S =

−→
R(x): we can

have an answer if it returns yes or no. Otherwise, we continue recursively on
each subrange in split(S) until either a yes is found, or no range remains (in
which case the query is negative). For a range S with head u and candidate node
x, the oracle applies the following rules in order, using pre-computed values for
rank and minrank (where minrank(u) = min{rank(v) | v ∈ C(u)}) :

1. If u = x, return yes;
2. If rank(x) ≥ rank(u) or num(x) ≥ num(u), return no 5

3. If S is short and rank(x) < minrank(u), return no;
4. Otherwise, return maybe.

The complexity of this reachability algorithm depends heavily on the shape
of the graph. In the worst case, a large fraction of canonical ranges have nodes
with ranks spanning an interval containing rank(x), which would lead to a linear
look-up time. We can however give a better bound on merge-free graphs.

Theorem 3. The index of the range-based reachability algorithm is coherent. If
G is a merge-free graph, then the index is linear and has query time O(log2(n)).

4.2 Label discovery

In the label discovery problem, two agents have revision graphs with the same set
of nodes V , but not necessarily the same revision order. Furthermore, each agent
has a label function, denoted respectively ℓ1 and ℓ2, assigning a label of some
discrete type to each node. The goal is to determine the set ∆ ⊆ V of nodes
where ℓ1 is different than ℓ2. We want to minimize the number of exchanges
between the agents as well at the total amount of information exchanged, as a
function of |∆|, the number of differences between the two agents.

For each agent i we write Li(S) for a hash mixing all labels of all nodes in
some range S6; such values are assumed to be pre-computed whenever needed.
We compute the deviations by maintaining a set of candidate ranges. Initially,
the candidate ranges are the reachable sets of the sources of the graph. Then,
we process the ranges in the candidate set successively as follows:

– If L1(S) = L2(S), nothing (there are no differences in S);
– otherwise, if S is atomic, we add the single revision in S to ∆;
– otherwise, we add each range in split(S) to the set of candidate ranges.

Theorem 4. Consider a single-source revision graph with worst-case depth H
(H = O(

√
n log n) by Theorem 2) and worst-case degree D. The number of

round-trips of the algorithm is at most H, and the total number of exchanged
values is at most DH|∆|.
5 the second condition uses the non-coherent num function, although we do not count

it as part of the index since it is already part of the input graph
6 we assume that the hash values are large enough to ignore collisions: L1(S) = L2(S)

if and only if ℓ1(u) = ℓ2(u) for all nodes u ∈ S.

Dichotomy in version-controlled repositories 11

In practice, computing the hashes of many different ranges is time-consuming,
and we obtain a better balance between network exchanges and computation
time with the two following modifications:

– long ranges are not exchanged, they are immediately split instead;
– for a short range S with head u, S ⊆ C(u), exchange L(C(u)) instead of L(S)

The second modification leads to transient false positives (some ranges may have
different exchanged hash value although the labels are identical): they are elim-
inated in subsequent rounds, when the partitioned is refined to smaller ranges.
This allows us to use an index containing L(S) for canonical and atomic ranges
only, so ≤ 2n hashes in total.

5 Experimental evaluation

We evaluate our algorithms in two phases. First, we run implementation-independent
versions of our STS and STR algorithms in order to estimate, in real data, various
statistics influencing our algorithms performances. Then, we compare running
times and memory usage for our reachability algorithms with literature algo-
rithms on largest graphs.

First, for our dichotomy algorithm, when visiting a search tree for
−→
R(u),

we have a typical height of 1.3 log(rank(u)), and each sub-range S has degree at
most 2 log(|S|). Moreover, we use less than 2n distinct subranges in most graphs,
allowing efficient caching for range-relative data. Reachability tests use an index
of size typically 2n and answer with 2 log n oracle calls, although this value can
be multiplied by 100 for the most complex graphs. Similarly, Label Discovery
is performed in less than 2 log(n) round-trips on average. See Appendix D.1 for
detailed statistics.

Reachability Algorithms. As noted in the Previous Works section, most known
reachability algorithms use non-coherent indexes, which can be a major draw-
back in our context for external reasons (e.g. node insertion, but also data com-
pression or cache management). We nonetheless compare our reachability algo-
rithms with two literature algorithms that can be implemented to support node
insertions in sublinear time: 2Hop (specifically the TOL algorithm [22]), and
BFL [17]. (See Appendix D.3 for details).

The results are given in Figure 4. A simple DFS gives optimal results for
many instances, but some instances yield prohibitively high costs. BFL behaves
similarly. Our range algorithm and 2Hop give comparable asymptotic behavior
for processing the graph. However, this test only evaluates node insertions on
a single graph. When synchronising nodes between agents, the coherent STR
index can be shared along with node data without any additional computation,
which is a major advantage (although hard to quantify) for this algorithm in our
setting.

12 L. Bulteau et al.

Processing time
Range 212n1.20

DFS 23n2.22

BFL 20n2.04

2Hop 213n1.19

Index size
Range 23n0.97

DFS 0
BFL 2−1n1.00

2Hop 23n1.13

Positive query time
Range 218n0.05

DFS 29n0.82

BFL 29n0.81

2Hop 29n0.13

Negative query time
Range 218n0.04

DFS 2−1n1.3

BFL 22n0.98

2Hop 210n0.16

Fig. 4. Processing time for tested reachability algorithms as a function of the graph
size. Right: typical trends for time and memory over the whole benchmark, obtained
using min-square linear regressions in log scale (drawn with dashed lines on the corre-
sponding graphs for processing times).

6 Conclusion

We presented a dichotomy framework tailored for revision graphs, based on
stable orderings of reachable sets for each nodes. This framework requires only
a light-weight, coherent index, and allows to perform several tasks in sub-linear
time. In particular we obtain a competitive algorithm for reachability queries,
even against state-of-the-art algorithms that are not bound by the coherence
constraints.

In future works we aim at extending this framework to other applications, as
well as investigating the many problems related to Version-Control Systems that
remain mostly unexplored from a theoretical viewpoint, starting with efficient
data-structures to store, retrieve or exchange any set of nodes.

Bibliography

[1] Synapse internal docummentation: State resolution: The auth chain differ-
ence algorithm. https://matrix-org.github.io/synapse/v1.98/auth_chain_
difference_algorithm.html#chain-cover-index, 2021.

[2] Rakesh Agrawal, Alexander Borgida, and Hosagrahar Visvesvaraya Ja-
gadish. Efficient management of transitive relationships in large data and
knowledge bases. ACM SIGMOD Record, 18(2):253–262, 1989.

[3] Jaroslav Bendík, Nikola Benes, and Ivana Cerna. Finding regressions in
projects under version control systems. arXiv preprint arXiv:1708.06623,
2017.

[4] Laurent Bulteau, Pierre-Yves David, and Florian Horn. The problem of
discovery in version control systems. Procedia Computer Science, 223:209–
216, 2023.

[5] Yangjun Chen and Yibin Chen. An efficient algorithm for answering graph
reachability queries. In 2008 IEEE 24th International Conference on Data
Engineering, pages 893–902. IEEE, 2008.

[6] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability
and distance queries via 2-hop labels. SIAM Journal on Computing, 32(5):
1338–1355, 2003.

[7] Julien Courtiel, Paul Dorbec, and Romain Lecoq. Theoretical analysis of
git bisect. Algorithmica, pages 1–35, 2023.

[8] Pierre-Yves David. Hg evolve: Obsolescence marker discovery implementa-
tion. https://repo.mercurial-scm.org/evolve/file/11.1.1/hgext3rd/evolve/
obsdiscovery.py, 2017.

[9] Junio C Hamano. Git–a stupid content tracker. Proc. Ottawa Linux Sym-
posium, 1:385–394, 2006.

[10] Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Recent ad-
vances in fully dynamic graph algorithms–a quick reference guide. ACM
Journal of Experimental Algorithmics, 27:1–45, 2022.

[11] HV1093244 Jagadish. A compression technique to materialize transitive
closure. ACM Transactions on Database Systems (TODS), 15(4):558–598,
1990.

[12] Qiuyi Lyu, Yuchen Li, Bingsheng He, and Bin Gong. Dbl: Efficient reach-
ability queries on dynamic graphs. In Database Systems for Advanced Ap-
plications: 26th International Conference, DASFAA 2021, Taipei, Taiwan,
April 11–14, 2021, Proceedings, Part II 26, pages 761–777. Springer, 2021.

[13] Olivia Mackall. Towards a better SCM: Revlog and mercurial. Proc. Ottawa
Linux Symposium, 2:83–90, 2006.

[14] John Plaice and William W Wadge. A new approach to version control.
IEEE transactions on Software Engineering, 19(3):268–276, 1993.

[15] Georges Racinet. Mercurial lazy ancestor iterator rust implemen-
tation. https://repo.mercurial-scm.org/hg/file/6.6.3/rust/hg-core/src/
ancestors.rs#l123, 2018.

 https://matrix-org.github.io/synapse/v1.98/auth_chain_difference_algorithm.html#chain-cover-index
 https://matrix-org.github.io/synapse/v1.98/auth_chain_difference_algorithm.html#chain-cover-index
 https://repo.mercurial-scm.org/evolve/file/11.1.1/hgext3rd/evolve/obsdiscovery.py
 https://repo.mercurial-scm.org/evolve/file/11.1.1/hgext3rd/evolve/obsdiscovery.py
 https://repo.mercurial-scm.org/hg/file/6.6.3/rust/hg-core/src/ancestors.rs#l123
 https://repo.mercurial-scm.org/hg/file/6.6.3/rust/hg-core/src/ancestors.rs#l123

14 L. Bulteau et al.

[16] Derrick Stolee. Git mailing list: [RFC] generation number v2. https://lore.
kernel.org/git/6367e30a-1b3a-4fe9-611b-d931f51effef@gmail.com/, 2018.

[17] Jiao Su, Qing Zhu, Hao Wei, and Jeffrey Xu Yu. Reachability querying: Can
it be even faster? IEEE Transactions on Knowledge and Data Engineering,
29(3):683–697, 2016.

[18] Andrew Tridgell, Paul Mackerras, et al. The rsync algorithm. 1996.
[19] Hao Wei, Jeffrey Xu Yu, Can Lu, and Ruoming Jin. Reachability querying:

An independent permutation labeling approach. Proceedings of the VLDB
Endowment, 7(12):1191–1202, 2014.

[20] Hilmi Yildirim, Vineet Chaoji, and Mohammed J Zaki. Dagger: A scal-
able index for reachability queries in large dynamic graphs. arXiv preprint
arXiv:1301.0977, 2013.

[21] Chao Zhang, Angela Bonifati, and M Tamer Özsu. Indexing techniques for
graph reachability queries. arXiv preprint arXiv:2311.03542, 2023.

[22] Andy Diwen Zhu, Wenqing Lin, Sibo Wang, and Xiaokui Xiao. Reachability
queries on large dynamic graphs: a total order approach. In Proceedings of
the 2014 ACM SIGMOD international conference on Management of data,
pages 1323–1334, 2014.

 https://lore.kernel.org/git/6367e30a-1b3a-4fe9-611b-d931f51effef@gmail.com/
 https://lore.kernel.org/git/6367e30a-1b3a-4fe9-611b-d931f51effef@gmail.com/

Dichotomy in version-controlled repositories 15

A Material for Sec. 2, Definitions, notations, and general
properties

The following proposition is an important observation following directly from
the definition of power (Definition 3).

Proposition 1. If anc(u) ̸= ⊥, then π(anc(u)) > π(u).

Proof. By the definition of power, for any node v, rank(v) ≥ xv2
π(v) with xv

some integer. Note that xv is odd, since otherwise we could write rank(v) ≥
xv

2 2π(v)+1, and π(v) would not be maximal. Similarly, we have

rank(v) < (xv + 1)2π(v)

since otherwise we could write rank(v) ≥ xv+1
2 2π(v)+1.

Consider a node v ∈ tail(u) \ {u} = tail(t(u)) with π(v) = π(u) = p. We
show that v cannot be anc(u). From the definition of π, we have rank(u) ≥
xu2

p, rank(t(u)) < xu2
p and rank(v) ≥ xv2

p. Since v ∈
−→
R(t(u)), we have

rank(v) < xu2
p so xv < xu. Since both xv, xu are odd, there is an integer x′

such that xv < 2x′ < xu. Write X = {w | w ∈ tail(u), rank(w) ≥ x′2p+1}. Set
X is a prefix of tail(u) (since the rank is decreasing along the tail path). We
have u ∈ X (using xu > 2x′) and t(u) ∈ X (using π(u) = p) but not v (using
xv < 2x′ and rank(v) < (xv + 1)2π(v) by the previous paragraph).

Let w be the node in X with minimum rank. Then t(w) ∈ tail(u) and t(w) /∈
X, so rank(t(w)) < x′2p+1 and π(w) ≥ p + 1. Overall, w appears before v in
tail(u) and it has a strictly larger power: v cannot be the anchor of u, and
π(anc(u)) > π(u).

Definition 8 (Switch-Successor List). For v ∈
−→
R(u), with switch list σ(u, v) =

[s1, . . . , sk], the switch-successor list of v wrt. u is the list of nodes [x(v), t(v), t(sk), . . . , t(s1)]
(from which non-existing nodes are removed).

Proof (Proof of Lemma 1). For a merge node s, we write
Let σ(u, v) = [s1, s2, . . . , sk] be the switch list from u to v, with k = dS(u, v).

We write pi = t(si), and define sets Xi =
−→
R(x(s)) \

−→
R(pi) and Pi =

−→
R(pi) \−→

R(x(si)). Note that by definition of x(si) and t(si), we have |Pi| ≥ |Xi|.
By definition of switch list, for each 1 ≤ i ≤ k, we have v ∈ Xi and sj ∈ Xi

for i < j ≤ k, so |Xi| ≥ k − i+ 1, which gives |Pi| ≥ k − i+ 1.
For 1 ≤ i < j ≤ k, nodes in Pj are reachable from x(si) (they are reachable

from pj , which is an out-neighbour of sj , which is itself reachable from x(si)).
Thus, sets Pi and Pj are pairwise disjoint for each pair i < j, and they are all
reachable from u. Furthermore, nodes sj and v are not part of any set Pi and

16 L. Bulteau et al.

are also reachable from u. We thus get a lower-bound on the size of
−→
R(u) :

rank(u) ≥
k∑

i=1

|Pi|+ |{s1, . . . , sk, v}|

≥ k + 1 +

k∑
i=1

((k − i) + 1)

=

(
k + 2

2

)
≥ k2

2
, and

dS(u, v) = k

≤
√
2 rank(u)

We note that the bound rank(u) ≥
(
dS(u,v)+2

2

)
is tight: for any k > 0, one

can build a graph with a pair of nodes u, v satisfying dS(u, v) = k and rank(u) =(
k+2
2

)
, as can be seen in Figure 5.

v

sk

sk−1

sk−2

s2

u = s1

pk •

pk−1

•

•

pk−2

•

•

•

•

•

•

•

•

p1

...
...

· · ·

Fig. 5. Worst case for the number of switches between two revisions: the graph has(
k+2
2

)
vertices for a pair of nodes with switch distance k. We use notations u, v, si, pi

from the proof of Lemma 1; tail neighbour is directly below each node, and each exclu-
sive neighbour is in diagonal to the left (the rank is equal for all pairs of neighbours, and
we assume that the tie-breaking rule gives the desired property). Thus, the switch list is
indeed σ(u, v) = [s1, . . . , sk] and dS(u, v) = k. In other words, dS(u, v) = Ω(

√
rank(u))

in this example.

Dichotomy in version-controlled repositories 17

B Material for Sec. 3, Stable-tail sort and ranges

B.1 Proof of Theorem 1

Before proving Theorem 1, we first give several useful observations for Stable-Tail
Sorts, including the formal definition of a leap (Definition 9).

Proposition 2. STS(u) is a topological sort of
−→
R(u)

Proof. By induction, this is clear for out-degree 0 and 1 nodes. For a degree-2
node u and any arc x → y with x ∈

−→
R(u), either x = u (in which case x is the

first node, so before y), either x and y are both in the exclusive or both in the
tail parts (in which case x is before y by induction), either they are in different
parts but then only y can be in the tail part (if x ∈

−→
R(t(u)), then y ∈

−→
R(t(u))),

in which case x is before y by construction.

Proposition 3. For any u and v ∈ tail(u), STS(v) is a suffix of STS(u).

Proof. By induction on u. This is trivial for u = v, and follows directly from
the definition for v = t(u). For any other v ∈ tail(u), we have v ∈ tail(t(u)), so
STS(v) is a suffix of STS(t(u)) and of STS(u).

Proposition 4. Let v ∈
−→
R(u) with switch-successor list [w1, . . . , wk] wrt. u (cf

Definition 8), and let Z be the suffix of STS(u) starting at v. Then Z can be
written as a concatenation Z = [v] + Zw1 + . . . + Zwk

where each Zwi , if non
empty, is a subsequence of STS(wi) starting with wi. Moreover, sets Zwi

and
−→
R(wj) are disjoint for any i < j.

Proof. By induction on v, starting with v = u. STS(u) = [u]+Zx(u)+Zt(u) where
Zx(u) = excl(u) and Zt(u) = STS(t(u)). Also, Zx(u) is disjoint from

−→
R(t(u)).

For any v ∈
−→
R(t(u)), the suffix T of STS(u) starting at v is identical to the

suffix of STS(t(u)) starting at v, and σ(u, v) = σ(t(u), v), so the same decom-
position of Z holds for t(u) and u.

Otherwise, v ∈
−→
R(x(u))\

−→
R(t(u)). Let Z ′ be the suffix of STS(x(u)) starting

at v. By construction Z = (Z ′ \
−→
R(t(u))) + STS(t(u)). We have σ(u, v) = [u] +

σ(x(u), v), so, writing [w1, . . . , wk] for the switch-successor list of v wrt. x(u),
the switch-successor list of v wrt. u is [w1, . . . , wk, t(u)]. By induction Z ′ =

[v]+Z ′
w1

+. . .+Z ′
wk

. Write, for each i ≤ k, Zwi
= Z ′

wi
\
−→
R(t(u)). So Zwi

is indeed
a subsequence of STS(wi). Moreover, if Zwi

is not empty, then
−→
R(wi) ̸⊆

−→
R(t(u))

and wi /∈
−→
R(t(u)). So since Zwi

starts with wi, Z ′
wi

also starts with wi. Overall
Z = [v] + Zw1

+ . . . + Zwk
+ STS(t(u)), which gives a correct decomposition.

Disjunction follows by induction, except for Zwi
and

−→
R(t(u)) that are disjoint

by definition of Zwi
.

Definition 9 (leap). We say that u has an ℓ-leap at position p (with ℓ ≥ 1 and
2 ≤ p ≤ |excl(u)|) if, for some integer q, we have excl(u)[p − 2] = STS(x(u))[q]
and excl(u)[p− 1] = STS(x(u))[q + 1 + ℓ]

18 L. Bulteau et al.

We use elements excl(u)[p − 2] and excl(u)[p − 1] since they correspond re-
spectively to STS(u)[p − 1] and STS(u)[p], and the leap modifies the “expected
value” of STS(u)[p], that would have been STS(x(u))[q + 1] otherwise.

Proof (Proof of Theorem 1).
The algorithm is based on the following observation: for any two successive

nodes v, w in STS(u), i.e. with v = STS(u)[p] and w = STS(u)[p + 1], we have
w ∈ {x(v), t(v), t(s1), . . . , t(sk)} with the switch list σ(u, v) = [s1, . . . , sk]. This
is a direct corollary of Proposition 4. Thus, in addition to the current node v,
the algorithm maintains the current switch list σ(u, v), as well as the current
position pi of v in STS(pi) for each level i.

In order to compute the next element w, we update pi (to a new value
denoted p′i) for each level. If STS(si)[p′i] = t(si), then the next element is t(si).
This condition is easily verified using the rank, since for any node x, t(x) is at
index rank(x) − rank(t(x)) in STS(x). Otherwise, w ∈ excl(si), and we move
on to the next level with si+1 ∈ STS(x(si)). By definition of leaps, p′i+1 =
pi+1 + (p′i − pi + L), where L is the sum of all leap lengths for leaps of si with
positions between pi (excluded) and p′i (included). We repeat this step for all
levels (i.e., all switches si), until either w = t(si) for some i, or we reach the
end of the switch list: then the computed value of p′k+1 corresponds to the index
of w in STS(v). This index is then sufficient to distinguish between x(v) and
t(v). Finally, we update the switch list as follows: if w = t(si) for some i, then
si (and all subsequent nodes in the switch list) is no longer a switch to w, and
σ(u,w) = [s1, . . . si−1]. Conversely, if w = x(v), then v becomes an additional
switch in the list, and σ(u,w) = σ(u, v)+[v]. Finally, if w = t(v), then the switch
list remains unchanged.

Remark 3. With small modifications, the above algorithm can be adapted to
automatically skip subsets of the form

−→
R(v) for any arbitrary node v (use a

reachability query for each generated node, and truncate the pile whenever a
node in

−→
R(v) should have been output). We can moreover evaluate the number

of skipped nodes, which allows to compute the rank and the leaps of any new
merge node u in roughly |excl(u)| steps.

B.2 Proof of Theorem 2

In order to bound the depth of our dichotomy trees, we first need to make
several observations on STS and STR. The overall strategy is to prove that the
pair (Σ(S), Π(S)), defined below, decreases lexicographically between a range
and its subrange when split.

Definition 10. For a range S with head u, we say that S has power value
Π(S) = max(π(v) | v ∈ tail(u) ∩ S), and switch value Σ(S) = max(dS(u, v) |
v ∈ S).

Proposition 5. Consider a range S with head u and v ∈ S ∩ tail(u), v ̸= u.
Then sets S1 = S \

−→
R(v) and S2 = S ∩

−→
R(v) are both ranges with heads u and v

Dichotomy in version-controlled repositories 19

respectively, and STS(u)[|S1|] = v. Moreover, Π(Si) ≤ Π(S) and Σ(Si) ≤ Σ(S)
for each i ∈ {1, 2}.

Proof. Let k such that S = STS(u, k), and p such that STS(u)[p] = v. Since
v ∈ S, we have p < k. With Proposition 3, STS(v) is the suffix of STS(u)

starting at p, so STS(u)[q] is in
−→
R(v) iff q ≥ p. Thus, S1 = STR(u, p) and

S2 = STR(v, k − p).
Moreover, Π(Si) ≤ Π(S) since tail(v) is a subsequence (actually, a suffix) of

tail(u). For the switch value, this is clear for S1 (since only a subset is considered
in the max). For S2, we need to first note that, for w ∈ S2, dS(u,w) = dS(v, w).
Indeed, since w ∈

−→
R(v), by the recursive definition of σ) we have σ(u,w) =

σ(v, w), hence the first switch (and thus, all subsequent switches) is on the same
node for both paths.

Proposition 6. The canonical range with head u is exactly C(u), and, given a
range S, the following are equivalent:

– range S is short
– S ⊆ C(u)
– anc(u) /∈ S.

Proof. This is a direct consequence of Proposition 5 with v = anc(u). Indeed,
C(u) =

−→
R(u)\

−→
R(v) is a range with head u of size |C(u)|. Also, STS(u)[|C(u)|] =

anc(u) so STR(u, k) contains anc(u) iff k > |C(u)|.

Proposition 7. For a long range S with head u, split1(S) is a set of ranges
{S1, . . . , Sk} with heads respectively h1, . . . , hk such that

1. k ≥ 2 and sets Si form a partition of S.
2. Each Si is a short range
3. Π(Si) ≤ Π(S) and Σ(Si) ≤ Σ(S)
4. k ≤ log2(rank(u)) + 1

Proof. Sets Si are ranges by Proposition 5, since they are obtained by splitting S

with sets of the form
−→
R(v) with v ∈ tail(u) and they are short by Proposition 6.

We have k ≥ 2 since S is long. Proposition 5 also implies that Π(Si) ≤ Π(S),
and Σ(Si) ≤ Σ(S).

Finally, with Proposition 1, the power of successive heads increases strictly at
each step (π(hi) < π(hi+1)). Starting at 0 in the worst case, since the maximum
power in

−→
R(u) is at most log2(rank(u)), k is bounded by log2(rank(u)) + 1.

Proposition 8. For a non-atomic range S with head u, let split2(S) = {{u}, X1, . . . , Xk, T}

– {u} and each Xi are ranges. T is a range if it is not empty.
– {{u}, X1, . . . , Xk, T} is a partition of S with at least 2 non-empty sets.
– For each i ≤ k Σ(Xi) < Σ(S)

20 L. Bulteau et al.

– If T is not empty, then Π(T) ≤ Π(S). The inequality is strict if S is short.
– If T is not empty, then Σ(T) ≤ Σ(S)

Proof. Set {u} is the atomic range STR(u, 1). Sets Xi are ranges by the defini-
tion. If T is not empty, then t(u) ∈ S, and T is a range by Proposition 5.

A first partition of S is {u}∪ (set(excl(u))∩S)∪ (
−→
R(t(u))∩S). The partition

proposed here is a refinement where set(excl(u)) ∩ S is further partitioned into
X1, . . . , Xk. It cannot contain a single non-empty set, since this set would then
be {u}: this is not possible since |S| > 1.

Consider Xi with head h for some i ≤ k. In order to show Σ(Xi) < Σ(S),
we aim at proving that σ(u, h) is a prefix of σ(u, v) for any v ∈ Xi. Let s
be any swtich of σ(u, h). First note that for any v ∈ Xi, we have v ̸= t(s).
Indeed, otherwise h would be in the exclusive part of s with t(s) ∈

−→
R(h), hence

rank(x(s)) ≥ rank(h) > rank(t(s)): a contradiction. Thus, by Proposition 4, Xi

may not intersect
−→
R(t(s)) (since otherwise it would also contain t(s)), so v ∈

excl(s), and s is also a switch in σ(u, v). More precisely, σ(u, v) = σ(u, h)+σ(h, v)
and dS(u, v) = dS(u, h) + dS(h, v). Since h ∈ excl(u), σ(u, h) contains at least u
and dS(u, h) ≥ 1. Thus, dS(h, v) < dS(u, v) and overall, Σ(Xi) < Σ(S).

Assume now that T is not empty. We have Π(T) ≤ Π(S) and Σ(T) ≤ Σ(S)
by Proposition 5. Furthermore, if S is short, then S does not contain anc(u), so
all nodes in (tail(u)\{u})∩S have power at most π(u)−1 (since otherwise they
would be anchors for u). Thus, Π(T) ≤ π(u)− 1 < π(u) = Π(S).

Lemma 2. For a range S with switch value Σ(S) and head rank r, the tree TS

has height at most 2Σ(S) log(r) + 3.

Proof. Consider the list of ranges [S1, . . . Sk] in a maximum-length dichotomy
search from S to some node v, and write hi for the head of range Si (with
hk = v). With propositions 7 and 8, we have the following properties:

– Σ(Si+1) ≤ Σ(Si)

– If Si is long, then Si+1 is short and Π(Si+1) ≤ Π(Si)

– If Si is long, then Π(Si+1) < Π(Si) or Σ(Si+1) < Σ(Si)

Combining two consecutive steps, if Si is short, then some S′ among Si+1, Si+2

is also short, and either Σ(S′) < Σ(S′); either Σ(S′) = Σ(Si) and Π(S′) <
Π(Si). Overall the pair (Σ(Si), Π(Si)) decreases strictly for the lexicographical
order over one or two splits. Moreover Π(Si) is upper bounded by max(π(v) |
v ∈ S) ≤ ⌊log2(r)⌋. Counting up to one extra step to reach the first short range,
and up to two more steps to reach the last atomic range Sk = STR(v, 1), we
obtain a total of 2Σ(S) log(r) + 3 in the worst case.

Proof (Proof of Theorem 2). This is a direct application of Lemmas 1 and 2,
using rank(u) ≤ n.

Dichotomy in version-controlled repositories 21

C Material for Sec. 4, Algorithms for Mercurial

Lemma 3. A revision graph of size n with no merge node has worst-case degree
≤ max(log(n), 2) and worst-case depth ≤ 2 log(n) + 2.

Proof. We use n as an upper bound for rank(u) for any u. Function split1 has
degree at most log(n), and split2 has degree 2 for a non-merge node. For the
depth, note that a dichotomy search never visits 2 long ranges consecutively,
and that the value Π(S) decreases strictly (by Propositions 7 and 8) between
successive short ranges. Since 0 ≤ Π(S) ≤ log(|V |), we get a depth of 2 log(n)+2
overall.

Proof (Proof of Theorem 3). First note that the required index for the oracle
are rank and minrank, and split further requires tail and exclusive parents and
anchors of all nodes, as well as leap data: such an index is indeed coherent. In
the case of merge-free graphs there are no leaps, so the index is linear as well.

We show that the algorithm always keeps a single candidate range after a
split+pruning step. This is clear for Rule 2: since all exclusive parts are empty,
split2(S) = {{u}, S \ {u}}. Since {u} is atomic it never yields maybe so it is
never split any further. Thus, only S \ {u} remains after applying this Rule.

For Rule 1, we use the following property of merge-free graphs: minrank(u) >
rank(anc(u)). Indeed, all nodes in C(u) are also in tail(u), so they are comparable
with anc(u). Since they are not descendants of anc(u), then they must have a
strictly greater rank. It follows that if the pruning oracle returns maybe for some
range Si in split(S), then it returns no for each Sj with num(j) < num(i) (by
criterion 3) or num(j) > num(i) (by criterion 2).

The running time thus follows from the degree and depth of the search-tree:
since both are in O(log n) by Lemma 3, we get a O((log n)2) running time with
an index containing the rank, minrank and leaps for each node.

Proof (Proof of Theorem 4). For each node v ∈ ∆, the hash of all ranges
in the dichotomy search for v from

−→
R(h) are exchanged into successive rounds,

yielding the upper bound of H round-trips. Furthermore, all siblings of these
ranges in the search tree are also exchanged, yielding the upper bound of DH
exchanged values per node with distinct labels.

D Material for Sec. 5, Experimental evaluation

D.1 Graph and STS statistics

We compute statistics on two sets of repositories (cf Table 6). The first (denoted
DB1) is an extraction of 18350 repositories from the Bitbucket public Mercurial
archive[oct20], having at least 16 nodes, and with forks (smaller “subgraphs”)
excluded, for a total of 6976003 nodes. The second (denoted DB2) is a set of
11 hand-picked repositories from large open-source projects (Mozilla, Netbeans,
PyPy, Mercurial, Evolve, OpenJDK, NetBSD), for a total of 7374214 nodes. For

22 L. Bulteau et al.

DB1 DB2

Value Normalization avg 5% 95% avg 5% 95%
Graph statistics

Graph size n 380 17 650 6.7E5 6.9E3 2.8E6
Number of merges /n 0.03 0.00 0.14 0.10 0.00 0.30
Reachability ratio 0.96 0.78 1.00 0.82 0.43 1.00
Graph width /n 0.05 0.01 0.12 0.02 0.00 0.10

STS statistics
Number of leaps per merge 0.02 0.00 0.10 0.11 0.01 0.29
Cost of STS over excl(u) /|excl(u)| 1.17 1.00 1.85 1.09 1.00 1.50
Common tail misses /|Xuv| 6.7E-3 0.00 0.00 1.8E-2 0.00 5.2E-2
Breakpoints /|Xuv| 4.3E-3 0.00 0.00 3.5E-4 0.00 1.5E-3

STR and dichotomy statistics
Ranges of interest /n 1.51 1.25 1.75 1.87 1.74 2.01
|split1(S)| for long S / log2(|S|) 0.68 0.33 1.26 0.68 0.33 1.26
|split2(S)| for short S / log2(|S|) 1.36 0.40 2.00 1.32 0.43 2.00
Height of search tree of

−→
R(u) /lr(u) 1.31 0.13 3.25 2.20 0.10 5.64

Worst-cost dichotomy search /lr(u)2 0.75 0.75 0.75 1.34 0.73 3.93
Reachability and label discovery

STR reachability: oracle calls / log2(n) 1.58 1.15 2.18 54.55 2.27 260
STR index size /n 2.00 2.00 2.01 2.02 2.00 2.07
LD round-trips (1 edit) / log2(n) 1.26 1.09 1.47 1.09 1.01 1.15
LD exchanged values (1 edit) / log2(n) 3.22 2.65 4.13 12.5 4.61 71.34
LD round-trips (100 edits) / log2(n) 1.92 1.76 2.10 1.84 1.62 2.22
LD exchanged values (100 edits) / log2(n) 53.6 27.1 116 321 135 864

Fig. 6. Statistics on graphs of both databases (Bitbucket-Mercurial and hand-picked),
with average, 5th and 95th percentiles. We write lr(u) for log2(rank(u)) + 1. Other
notations are detailed in the corresponding paragraphs. See also appendix D.2 for
detailed results for DB2.

each graph, we compute the number of merges, the reachability ratio (number of
arcs in the transitive closure /

(
n
2

)
), and the width (longest antichain, obtained

by a greedy algorithm). See Figure 6 for the resulting values.

STS Statistics. The complexity of STS is measured using the quantity
1 + dp + ℓp defined in Theorem 1: this quantity is computed over all positions
p corresponding to a point in the exclusive part of all merges of the graph. The
main goal of STS, given any two nodes u and v, writing Xuv =

−→
R(u)∩

−→
R(v) for

the nodes reachable both from u and v, is to have a common suffix (common tail)
between STS(u) and STS(v) containing almost all nodes of Xuv. The common
tail misses are nodes of Xuv not in the common tail, and breakpoints are nodes
of Xuv that are followed by different nodes in each STS. Values are averages for
100 random pairs.

STR and dichotomy statistics. We build the search-trees from all ranges
of the form

−→
R(u). All non-atomic ranges appearing in any such tree are called

range of interest, we compute the average degree of split over all ranges S of
interest. Finally we evaluate the cost of a dichotomy search as the sum of the

Dichotomy in version-controlled repositories 23

degrees of the ranges along the path. The largest possible cost is retained over
the whole graph.

Reachability and label discovery. We pick random pairs of nodes (u, v)
to perform reachability queries, and evaluate our algorithm on these tests (we
retain the average for each graph over 100 runs). More precisely, we evaluate the
number of oracle calls, and the index size as a number of stored integers. For
label discovery, we simulate our label discovery protocol with a single random
label difference: we count the number of round-trips and the total number of
exchanged values (and retain the average over 100 runs). We also evaluate the
number of exchanged values with 100 random editions, with 10554 repositories
excluded due to not having enough candidates.

Results. Revision graphs are particular in that they are mostly linear, with
high reachability ratio and relatively low graph width (50% of our dataset graphs
contain a single path). The first goal of Stable-Tail Sorts is to have a stable or-
dering of reachable nodes: this is attained since, for any two nodes, the respective
STSs have a large common suffix (representing typically more than 99% of the
nodes reachable from both). The index needed to retrieve efficiently the STS
(leap and rank tables) takes in practice less than 2 integers per node on average,
which is largely within acceptable bounds.

Regarding our dichotomy algorithm, on average, any range S is split in less
than 1.4 log2(|S|) ranges, and we reach any singleton after up to 1.8 log2(|S|)
splitting steps. This gives the desired framework in which we can run sublinear
dichotomy searches.

D.2 Detailed STS statistics for hand-picked large graphs

24 L. Bulteau et al.

V
al

ue
N

or
m

al
iz

at
io

n

ev
olv

e merc
ur

ial moz
illa

-ce
nt

ra
l

moz
illa

-tr
y

moz
illa

-u
nifi

ed

ne
tb

ea
ns ne

tb
sd

-p
kg

src

ne
tb

sd
-sr

c ne
tb

sd
-xs

rc
op

en
jdk py

py
G

ra
p
h

st
at

is
ti

cs
G

ra
ph

si
ze

n
6k

50
k

46
3k

5M
62

4k
31

6k
38

8k
36

4k
7k

54
k

10
6k

N
um

be
r

of
m

er
ge

s
/
n

0.
14

0.
05

0.
05

0.
18

0.
04

0.
33

0.
00

0.
00

0.
00

0.
26

0.
09

R
ea

ch
ab

ili
ty

ra
ti

o
0.

92
1.

00
0.

97
0.

30
0.

90
0.

97
0.

91
0.

80
0.

57
0.

99
0.

71
G

ra
ph

w
id

th
/
n

0.
01

0.
00

0.
00

0.
18

0.
00

0.
00

0.
00

0.
00

0.
01

0.
01

0.
03

S
T

S
st

at
is

ti
cs

N
um

be
r

of
le

ap
s

pe
r

m
er

ge
0.

27
0.

04
0.

10
0.

02
0.

10
0.

11
N

A
0.

00
N

A
0.

07
0.

30
C

os
t

of
S
T
S

ov
er

ex
cl
(u
)

/
|e
x
cl
(u
)|

3.
14

1.
06

1.
32

1.
03

1.
35

1.
45

N
A

1.
00

N
A

1.
34

1.
35

C
om

m
on

ta
il

m
is

se
s

/
|X

u
v
|0

.0
6

0.
00

0.
05

0.
04

0.
01

0.
00

0.
00

0.
00

0.
01

0.
04

B
re

ak
po

in
ts

/
|X

u
v
|0

.0
0

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

S
T

R
an

d
d
ic

h
ot

om
y

st
at

is
ti

cs
R

an
ge

s
of

in
te

re
st

/
n

1.
91

1.
80

1.
84

1.
99

1.
82

2.
03

1.
75

1.
75

1.
74

2.
00

1.
93

|s
p
li
t 1
(S

)|
fo

r
lo

ng
S

/
lo
g
2
(|
S
|)

0.
66

0.
67

0.
66

0.
69

0.
66

0.
64

0.
66

0.
66

0.
68

0.
64

0.
67

|s
p
li
t 2
(S

)|
fo

r
sh

or
t
S

/
lo
g
2
(|
S
|)

1.
24

1.
37

1.
33

1.
31

1.
34

1.
27

1.
39

1.
39

1.
39

1.
28

1.
30

H
ei

gh
t

of
se

ar
ch

tr
ee

of
−→ R

(u
)

/
lr
(u
)

1.
17

1.
17

2.
28

2.
34

2.
34

2.
26

1.
18

1.
18

1.
21

1.
33

1.
32

W
or

st
-c

os
t

di
ch

ot
om

y
se

ar
ch

/
lr
(u
)2

0.
75

0.
75

0.
76

6.
70

0.
87

1.
17

0.
75

0.
75

0.
75

0.
71

0.
77

R
ea

ch
ab

il
it
y

an
d

la
b
el

d
is

co
ve

ry
ST

R
re

ac
ha

bi
lit

y:
or

ac
le

ca
lls

/
lo
g
2
(n

)
4.

47
7.

54
19

.1
49

7
14

.6
24

.6
2.

66
3.

18
1.

88
11

.8
13

.2
ST

R
in

de
x

si
ze

/
n

2.
07

2.
00

2.
01

2.
01

2.
01

2.
07

2.
00

2.
00

2.
00

2.
04

2.
05

L
D

ro
un

d-
tr

ip
s

(1
ed

it
)

/
lo
g
2
(n

)
1.

14
1.

09
1.

06
1.

00
1.

11
1.

11
1.

06
1.

09
1.

13
1.

09
1.

09
L
D

ex
ch

an
ge

d
va

lu
es

(1
ed

it
)

/
lo
g
2
(n

)
4.

55
5.

77
6.

57
74

.5
8.

12
6.

80
6.

14
6.

39
4.

89
5.

57
8.

68
L
D

ro
un

d-
tr

ip
s

(1
00

ed
it

s)
/
lo
g
2
(n

)
1.

91
1.

66
1.

80
1.

67
2.

22
2.

06
1.

62
1.

66
1.

79
1.

85
2.

03
L
D

ex
ch

an
ge

d
va

lu
es

(1
00

ed
it

s)
/
lo
g
2
(n

)
15

0
21

5
32

1
86

7
36

5
30

7
27

9
27

1
13

4
23

6
38

9
T
ab

le
1.

D
et

ai
le

d
st

at
is

ti
cs

(s
ee

T
ab

le
6)

fo
r

la
rg

e
ha

nd
-p

ic
ke

d
op

en
-s

ou
rc

e
re

po
si

to
ri

es
.D

ep
en

di
ng

on
th

e
ro

w
,e

ac
h

va
lu

e
is

ei
th

er
th

e
ac

tu
al

va
lu

e
fo

r
th

e
w

ho
le

gr
ap

h,
an

av
er

ag
e

ov
er

al
l
no

de
s

or
pa

ir
s

of
no

de
s,

or
an

av
er

ag
e

ov
er

a
ra

nd
om

sa
m

pl
e.

B
la

nk
va

lu
es

co
ul

d
no

t
be

co
m

pu
te

d
be

fo
re

ti
m

in
g

ou
t.

Dichotomy in version-controlled repositories 25

Fig. 7. Reachability ratio of subgraphs generated over DB2.

D.3 Benchmark setting for reachability algorithms

Algorithms were implemented in Python using standard data structures (lists,
sets, . . .). 7

The goal is to evaluate the time needed to insert a node, perform some reach-
ability queries (both between recently inserted nodes and between uniformly ran-
dom nodes), and the memory consumption of the index. We create any number
of artificial revision graphs from the same underlying “true” repository (graphs
in DB2) by picking a random node x in the graph, and extracting the subgraph
Gx induced by

−→
R(x), along with a randomised anti-topological insertion order

num (cf. Appendix D.5).
We then let each algorithm process each graph Gx: insert all nodes in the

given insertion order and run the reachability queries required to compute the
rank of each node as they are inserted (i.e., for merge nodes, we run a DFS
from the exclusive neighbour and prune out nodes that are reachable from the
tail neighbour). We thus measure the processing time for each algorithm and
each instance Gx, as well as the memory needed to store the index : this is
estimated as the number of integers stored in the index, independently of the
underlying data structure (e.g. a set or a list of length n are both counted as n
integers, independently of the actual number of bytes that Python is using to
store them). Once the graph is processed, we further run reachability queries on
randomly selected pairs of nodes in Gx (with typically much larger distance than
during the processing phase), allowing to compute an average time per test. We
split these random tests into positive and negative tests, since some algorithms

7 A lower-level language with fine-tuned data-structures would certainly give better
performances, but since this type of optimization is not within the scope of the
paper, we elected to test all algorithms in this “uniform” setting. See Appendix D.4
for more algorithmic details

26 L. Bulteau et al.

perform better than others on each kind, and the ratio of positive and negative
tests for random pairs depends highly on the underlying repository.

D.4 Implemented algorithms

Beside our canonical-range-based reachability algorithms, we implemented sev-
eral alternatives. We identified three families (naive, BFL, 2Hop), and tested
several variants in each family. The best in each case was selected for the final
comparison presented in Section 5.

Naive algorithms The first obvious possibilities for reachability queries are index-
free algorithms DFS and BFS. For a query from u to v, we start the algorithm
from u, pruning the search tree whenever we reach a node u′ with num(u′) <
num(v). We further tested a rank-based pruning step (prune if rank(u′) ≤
rank(v) and u ̸= v). This additional step comes at the cost of an additional
comparison per node, and help prune the search tree. However, we do not count
the rank computation in the running time of the algorithm (we assume it is
computed in any case in our setting).

We also implemented a full-index approach, where the whole transitive clo-
sure is stored explicitly in memory, allowing constant-time reachability queries.
As can be expected, the memory requirement in this setting is quadratic.

Overall, the algorithm giving best performances in this family (see Figure 8)
was DFS without the rank-based pruning step.

BFL In this algorithm we pick k = 16 landmarks, and register for each node
u the set of landmarks appearing either in

−→
R(u) or R(u) (with R(u) = {v |

u ∈
−→
R(v)}). Both subsets are stored as bit-vectors on single integers, allowing

constant-time bit-wise operations. For a reachability query from u to v, we first
test if there is a landmark in

−→
R(u)∩R(v), in which case we can directly answer

positively. Otherwise, we run a DFS from u, and for each u′ ∈
−→
R(u), we have

an additional pruning test: if there is a landmark ℓ in
−→
R(u′) \

−→
R(v) or in R(v) \

R(u′), then v /∈
−→
R(u′) and the search tree can be pruned at u′.

This approach works best if landmarks are evenly distributed within the
graph, however all bit vectors have to be recomputed whenever landmarks are
displaced. So in practice, we mostly keep landmarks unchanged when we insert
new nodes, and compute bit-vectors for reachable landmarks as the OR of the
corresponding bit-vectors of its out-neighbours. We reset landmarks whenever
the graph size doubles, which leads to constant insertion time on average. The
full set of tests includes variants with more landmarks (32 or 64), or a larger
reset ratio (4 instead of 2). As for DFS, we further tested a rank-based pruning
step, again without clear advantage. See Figure 9.

2-Hop The algorithm we implemented for 2-Hop is based on the dynamic algo-
rithm presented by Zhu et al. [ZLWX14]. The first step is to associate a score
s(u) to each node (more details on how the score is selected are given below).

Dichotomy in version-controlled repositories 27

Fig. 8. Processing time as a function of the graph size for algorithms variants in the
no-index family.

We maintain two lists of nodes Lin(u), Lout(u) for each node, where v ∈ Lin(u)

(resp. v ∈ Lout(v)) iff (i) s(v) > s(u), (ii) v ∈
−→
R(u) (resp. u ∈

−→
R(v)), and (iii)

there is no w on any path between u and v with s(w) > s(v). The key property
of these lists is that there is a path from u to v iff the sets ({u} ∪ Lout(u)) and
({v} ∩ Lin(v)) intersect.

The insert operation is non-trivial. For a new node u, since u is a source in
our setting we have Lin(u) = ∅. For Lout(u), write N for the out-neighbours of u:
we start with the candidate set C =

⋃
u′∈N Lout(u

′)∪{u′}. Clearly Lout(u) ⊆ C,
but we need to filter out those nodes that do not satisfy conditions (i) and
(iii). Note that for (iii), only nodes w ∈ Lout(u) need to be tested. The main
difficulty is then to update Lin(v) for existing nodes v in the graph, since u
may need to be inserted in many such lists. It can be noted that for any such
v, we have v ∈

−→
R(u′) for some u′ ∈ N , so either v ∈ C, or there is w ∈ C

with w ∈ Lin(v) and s(w) < s(u). Thus, we maintain for each w the inverse
list Iin(w) = {v | w ∈ Lin(v)}, and enumerate

⋃
w∈C,s(w)<s(u) Iin(w). All nodes

in this set are candidate nodes v, and it remains to verify condition (iii) before
inserting u to Lin(v) (which can be done by looking-up nodes in Lin(v)∩Lout(u)).

Here the lists Lout are coherent, but Lin and Iin may grow whenever a node
is inserted, unless the score of new nodes is always minimal.

For optimal performances, the score should normally take into account both
in-degree and out-degree of each node. On the other hand, editing the score of

28 L. Bulteau et al.

Fig. 9. Processing time as a function of the graph size for algorithms variants in the
BFL family.

Dichotomy in version-controlled repositories 29

existing nodes may lead to arbitrarily large changes in the rest of the index. We
thus tested different versions (see Figure 10):

– (V0) the score of inserted nodes is always minimal, and new scores are as-
signed periodically8 (leading to a full reset of the index);

– (V1) the score of a node is random and constant;
– (V2) the score is based on its out-degree (which remains unchanged) plus a

random component for tie-breaking.

Note that in V0 we do not need to store the inverse lists, since a node is never
added to any Lin at insertion time (only during full resets).

As a side note, the insertion algorithm is different from the one presented
in [ZLWX14], not only because adding sources entails a few simplification, but
also because of a couple of oversights in the original pseudo-code (using the
notations from the paper), cf Algorithm 2 p.1327:

– the main loop of the algorithm does not include the case u = v, so v cannot
be added to any list Lin when L′

in(v) is empty (which is the case in particular
for sources). This can easily be fixed by looping over L′

in(v) ∩ {v}.
– The inner loop considers the set L′

out(v) ∪ {v}, but it should instead loop
over the whole set Cout defined in Algorithm 1. A simple example is the
case where the new node v has the largest score over the whole graph: in
this case, L′

out(v) = ∅, so the second loop is empty, but instead v should be
added to Lin(x) for all x ∈

−→
R(v).

D.5 Creating random anti-topological orders

The order in which nodes are inserted in the graph (i.e. the num function)
may have an important impact on the performance of algorithms. The baseline
algorithm we implemented works as follows: pick a random source of the graph,
place it last in the order, and continue in the remaining subgraph.

The main drawback with this approach is that two parallel branches can
be overly interleaved. For instance, if the graph consists of two completely in-
dependent paths advancing in parallel, the probability to have a long interval
of nodes from the same path being inserted consecutively decreases exponen-
tially with the length of the interval. This can be realistic in some cases (e.g.
for a server receiving code from several developers currently working in parallel
on different sub-projects), but not always (e.g., each developer would normally
not add the other branch into her own graph until both branches merge, lead-
ing to two well-separated intervals of nodes). So beside this baseline permuta-
tion, we also generate unshuffled permutations. To this end, we pick random
intervals I = [ui, . . . , uj] in the baseline order, and reorder such intervals into
I∩R(uj)+I \R(uj) (i.e., all nodes that can reach uj first, then the rest, keeping
the same relative order within each part).
8 we tested either with fixed ratios (reset scores when the graph size is multiplied by

a given factor) or deltas (reset scores when a fixed number of nodes is added)

30 L. Bulteau et al.

Fig. 10. Processing time as a function of the graph size for algorithms variants in the
2Hop family.

Dichotomy in version-controlled repositories 31

The final benchmark group is composed both of baseline permutations and
of unshuffled permutations with different window sizes (10, 100, 1000).

We evaluate the window size influence over an algorithm as follows: for each
subgraph in our dataset, we compare the processing times between all pairs
of tested window sizes, compare the ratio, and average over all pairs of window
sizes and all subgraphs. We notice that with larger unshuffling windows our range
algorithm as well as 2Hop are slightly slower (up to 8% increase on average for
2Hop). On the other hand, DFS and BFL gain respectively 10% and 15% in
their running time when we increase the window size.

Algorithm Range DFS BFL 2Hop
Time with larger window
Time with shorter window 1.026 0.903 0.851 1.082

D.6 Detailed results for memory and individual queries

See Figures 11, 12 and 13 for detailed scatter-plots for memory usage, positive
queries and negative queries respectively.

Fig. 11. Memory needed for each algorithm as a function of the instance size. Note
that DFS does not need any index, so it is not depicted here. Beside the index, our
algorithms use caches for storing split results between successive calls. These caches
are included in the total depicted here, even though they can be cleared at any time.

32 L. Bulteau et al.

Fig. 12. Average time to perform a positive reachability query for a random pair of
nodes in the graph.

Fig. 13. Average time to perform a negative reachability query for a random pair of
nodes in the graph.

Bibliography

[oct20] Bitbucket public mercurial archive. https://bitbucket-archive.
softwareheritage.org/, 2020.

[ZLWX14] Andy Diwen Zhu, Wenqing Lin, Sibo Wang, and Xiaokui Xiao.
Reachability queries on large dynamic graphs: a total order approach.
In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data, pages 1323–1334, 2014.

https://bitbucket-archive.softwareheritage.org/
https://bitbucket-archive.softwareheritage.org/

	Dichotomy for reachability and label synchronisation in large version-controlled repositories

