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When a solid metal is struck, its free surface can eject fast and fine particles. Despite the many diagnostics that have been
implemented to measure the mass, size, velocity or temperature of ejecta, these efforts provide only a partial picture of
this phenomenon. Ejecta characterization, especially in constrained geometries, is an inherently ill-posed problem. In
this context, Photon Doppler Velocimetry (PDV) has been a valuable diagnostic, measuring reliably particles and free
surface velocities in the single scattering regime. Here we present ejecta experiments in gas and how, in this context,
PDV allows one to retrieve additional information on the ejecta, i.e. information on the particles’ size. We explain
what governs ejecta transport in gas and how it can be simulated. To account for the multiple scattering of light in
these ejecta, we use the Radiative Transfer Equation (RTE) that quantitatively describes PDV spectrograms, and their
dependence on the velocity but also on the size distribution of the ejecta. We remind how spectrograms can be simulated
by solving numerically this RTE and we show how to do so on hydrodynamic ejecta simulation results. Finally,
we use this complex machinery in different ejecta transport scenarios to simulate the corresponding spectrograms.
Comparing these to experimental results, we iteratively constrain the ejecta description at an unprecedented level. This
work demonstrates our ability to recover particle size information from what is initially a velocity diagnostic, but
more importantly it shows how, using existing simulation of ejecta, we capture through simulation the complexity of
experimental spectrograms.

I. INTRODUCTION

Probing matter’s behavior under the extreme conditions of
shock compression experiments allows one to better under-
stand its properties at rest. Ejecta formation, the process
through which a shocked material ejects a cloud of fast and
fine particle, has been extensively studied lately1. It has been
shown that ejecta is a limiting case of Richtmyer-Meshkov
instabilities2,3 which occurs when the initial shockwave inter-
acts with the irregularities at the free surface of the material4,5.
It causes matter to partially melt, creating numerous expand-
ing micro-jets. These micro-jets eventually fragment giving
birth to the actual ejecta [see Fig. 1(b)]. One of the purpose
of ejecta study is to determine the size-velocity distribution of
this particle cloud.

Advances on the ejecta source model theory6–8 in shock
compression experiments and the corresponding simula-
tion9–12 have permitted a better description of the distribu-
tion created by a given sample in response to a given solic-
itation. These simulations study the particles from their cre-
ation at the early moment of the experiment to their transport
throughout the propagation medium. This simulation effort
on the ejecta side was supported by the experimental devel-
opment of numerous and diverse optical diagnostics which
refined ejecta description to further constrained ejecta simu-
lations. Especially, Mie scattering13,14 and holography diag-

nostics15,16 have given valuable insights on the particle size-
velocity distribution. The main limitations of these diagnos-
tics remain their difficulty of implementation and the fact that
they only allow the study of elementary examples of ejecta
formation, namely ejection with a few micro-jets. For now,
one has no other choice than assuming that the ejection pro-
cess in more complex experiments gives the same particle
size-velocity distribution with no mean of verifying this claim.

Photon Doppler Velocimetry (PDV) is another optical di-
agnostic which was initially developed to monitor particle ve-
locity distributions17,18. With a single scattering hypothesis,
the PDV response of an ejecta, its time-velocity spectrogram,
can be seen as the velocity distribution of the ejecta at a given
time. Recently, we have shown19 that this spectrogram is in
fact the solution of a broader light transport model which is
sensitive to the particle size distribution and its statistical inho-
mogeneities throughout the medium. Compared to Mie scat-
tering and holography diagnostics that are based on off-axis
and transmission measurements, PDV is on-axis and in re-
flection. A unique collimated probe is used for illumination
and detection. This makes it compact, reliable and minimum
invasive. These perks have made it one of the key diagnos-
tic implemented in almost all experiments and especially the
most constrained ones. Showing that it is possible to recover
additional size information from a PDV spectrogram would
highly impact ejecta analysis. This would enable the evalua-
tion of particle sizes in the most complex configurations and
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allow one to verify that the ejecta formation process is in fact
similar to that of elementary experiments.

The purpose of this work is to showcase an experiment
where, using only PDV spectrograms, we constrain the size
distribution of an ejecta. To proceed, we first introduce ejecta
experiments in gas, their interest for particle size study and
the means available to simulate particle transport in such me-
dia. Then, we remind the working principle of PDV measure-
ments, why they are sensitive to the ejecta size distribution and
how we can compute simulated spectrograms out off of sim-
ulated ejecta transport. Matching the simulated spectrograms
to the experimental ones acquired for three different gas con-
ditions, we are able to better constrain the initial size distribu-
tion of the ejecta and test its robustness. Finally, we discuss
how the present work reflects on existing literature and ejecta
understanding.

The paper is organized as follows. Section II is dedicated
to the presentation of ejecta experiments in gas. We introduce
the micro-jetting mechanism and the resulting size-velocity
distribution. We explain the ways ejecta is assumed to inter-
act with gas and how it depends on particle size. We then
introduce the Phénix code that handles ejecta transport in gas
and allows one to compute the expected ejecta description at
each step of the corresponding experiment. In Sec. III, we re-
call the PDV instrumentation ejecta experiments receive and
how, with a single scattering hypothesis, the resulting PDV
spectrogram accurately estimates the velocity distribution of
the ejecta. For the ejecta considered here, multiple scattering
cannot be ignored. In this regime, we rewrite this spectro-
gram as a function of the specific intensity, a commonly used
quantity in statistical optics. This quantity is the solution of a
Radiative Transfert Equation (RTE) that has been modified to
account for both Doppler shifts due to the particles movement
and the statistical inhomogeneities of the ejecta. The PDV
spectrogram can then be computed given the ejecta’s size-
velocity distribution in time and we do so directly on ejecta
transport results obtained with the Phénix hydrodynamic sim-
ulation code. Our comprehensive study of particle size distri-
bution based on simulated PDV spectrograms in different gas
is reported in Sec. IV. We start in the simplest case of vacuum
and then gradually increase the complexity with helium and
air. Finally, Sec. V discusses the implications of this work,
how it compares to existing literature and what it argues in
favor of for future ejecta studies.

II. EJECTA EXPERIMENTS AND SIMULATION IN GAS

A. Ejecta creation

Typical ejecta experiments, as the ones studied in Sec. IV,
are the planar shock experiments. In a tube, a sample of
the material of interest, here a grooved surface of tin (Sn),
is shocked by a High-Explosive (HE) driven pellet [see
Fig.1(a)]. The shockwave’s interaction with the surface ir-
regularities creates liquid micro-jets of matter. These micro-
jets eventually undergo fragmentation giving birth to the ac-
tual ejecta. In our experiment, the barrel’s inner diameter is

Φbarrel = 98mm, the samples are tin disks with 60µm× 8µm
surface groves. With a copper flyer hitting the tin samples
at 1650m/s, we reach a shock pressure of Pshock = 29.5GPa,
which ensures liquid phase transition in expansion.

FIG. 1. (a) Typical explosive setup of a planar shock experiment.
(b) Illustration of the micro-jet mechanism in a typical shock ejecta
experiment. Upon reaching the machined free surface, the shock
wave first comes into contact with the inwardly directed grooves. Un-
der right angle conditions, the shock wave is reflected and the inward
grooves become outward micro-jets. Due to the velocity gap between
the jet-heads and the free surface, the micro-jets are stretched until
surface tension is no longer sufficient to hold matter together and
fragmentation begins. This results in the creation of an ejecta.

To model this ejecta in gas, we need to make a few assump-
tions. The first one is that the ejecta is made out of spherical
particles with radius a. Right after impact, it can then be de-
scribed by its initial size-velocity distribution g(a,v) normal-
ized such that

∫

g(a,v)dadv = 1 . (1)

While recent holography imaging results15,16 and molecular
dynamics simulations10–12 suggest otherwise, this is discussed
in Sec. V, our second assumption is that the initial size and
velocity distributions are independent. This reads

g(a,v) = h(a) j(v) , (2)

with h(a) the size distribution, j(v) the velocity distribution
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and
∫

h(a)da = 1 , (3)
∫

j(v)dv = 1 . (4)

Our last assumption is that the initial size and velocity distri-
butions do not depend on the presence nor the nature of the
gas in the chamber. Once again Mie-scattering measurements
have shown the limits of such an hypothesis20, but as a first
approximation it will prove useful.

In Sec. IV, different initial size distributions will be tested
but the velocity distribution will be imposed from here on.
Instead of defining it directly, we prefer using the integrated
mass-velocity distribution M(v) where v = |v|. Assuming all
velocities to be along the ejection direction uz, the distribution
then reads

j(v) =− 1
Ms

d
dv

M(v)δ

(

1
v

v−uz

)

, (5)

where Ms is the surface mass. Independent Asay foil measure-
ments4 in vacuum for these experiments give

M(v) =







Ms exp

[

−β

(

v

vs

−1

)]

, ifv ∈ [vmin,vmax]

0, otherwise
(6)

with the surface mass Ms = 12mg/cm2, β = 11.7, vs = vmin =
2060m/s and vmax = 3350m/s.

Now that the initial properties of the ejecta have been de-
scribed, we need to model its interaction with gas.

B. Ejecta transport in gas

In case of a vacuum-tight chamber, the objects are in ballis-
tic transport and the ejecta size-velocity distribution remains
the same during propagation. Now if the chamber is gas filled,
the transport properties of the ejecta are altered. While we as-
sume the same initial size-velocity distribution as in vacuum,
knowing that gas interaction depends both on particle size
and velocity, the size-velocity distribution will evolve with
time. This discrimination is what makes ejecta experiments
in gas extremely insightful. The same set of initial conditions
in different gases must allow us to retrieve radically different
particles transport scenarios. In other words, the robustness
of a unique initial description can be tested against different
gas transport conditions to see whether or not it allows one
to match all experimental results. While different from a di-
rect measurement, this technique must be seen as a powerful
new way of evaluating particle size-velocity distribution with
existing diagnostics and in otherwise inaccessible configura-
tions.

In the presence of gas in front of the ejecta, the particles
interact with it mainly through the drag force, which tends to
drive the particle toward the gas velocity. The drag force de-
pends on the particle radius, the gas density and the drag coef-
ficient (based on the particle’s Reynolds and Mach numbers).

We take into account the two-way coupling of the particle and
the gas. The drag force is calculated using the KIVA-II for-
mulation21 given by,

Fi =−1
2

πai
2ρg (vi −vg)

∣

∣vi −vg

∣

∣Cd,i, (7)

with ρg the gas density, vg its velocity, ai the ith particle’s
radius, vi its velocity and Cd,i its drag coefficient. The drag
coefficients are computed using a model based on Ref. 22.

A hydrodynamic break-up model, based on Ref. 23, is also
introduced. The Weber number is expressed as the ratio be-
tween hydrodynamic forces and the surface tension of the par-
ticle,

Wei =
2aiρg

∣

∣vi −vg

∣

∣

2

σi

, (8)

with σi the particle surface tension. If the Weber number is su-
percritical, the particle breaks-up. The calculation of the ratio
between the initial and new radius depends on the value of We
and is detailed in Ref. 23. The corresponding typical values
for the critical Weber number are Wecrit = 10− 20, and cur-
rent work at CEA-DAM shows that Wecrit = 15 is well suited
for tin.

Given an initial ejecta distribution and these two interac-
tions, we need a simulation handling the transport of particles
accordingly in time.

C. Phénix code for particle transport simulation

Hydrodynamic simulations have become the standard to
compute matter’s behavior in shock compression experi-
ments9. In this work, the simulations are run with the Phénix

code, developed at CEA-DAM which uses a multiphase par-
ticulate transport method to model two-way coupling of mo-
mentum and energy. This is based on the approach proposed
by Amsden et al. and implemented in the KIVA-II code21,
which has been improved from the original paper.

To perform the simulations, we have to initialize the parti-
cle cloud according to the experimental parameters to fit the
other diagnostics implemented in the experimental set-up. We
define the ejected mass velocity curve M(v) in agreement with
the Asay foil4 measurement under vacuum (still assuming the
gas does not change the total ejected mass). For the initial size
distribution, we rely on previous experiments and deal with
power laws or lognormal distributions. Studying its influence
on the spectrograms is one of the purpose of this article as
described in Sec. IV.

For each experiment, the Phénix code gives the correspond-
ing cloud description at different time steps. For each of these
times, the description corresponds to a list of so-called nu-

merical particles. Instead of actually simulating the transport
of each individual particles, we only consider a smaller set
of numerical particles. Each of them has a size, a numerical
weight, i.e. the number of physical particles it represents, a po-
sition and a velocity. The number of numerical particles must
be high enough to encompass the full dynamics of the ejecta
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while being low enough to ensure a reasonable compute time.
In practice, the typical scale of the velocity distribution intro-
duced in Eq. (6) is vs/β , which roughly gives 200m/s for the
case considered here. Since vmax − vmin ≈ 1000m/s and the
sampling step in the velocity distribution needs to be at least
ten times smaller than vs/β , we need 50 points. Taking, the
same number of points for the size distributions, which are
introduced in greater details in Sec. IV A, leads to steps of
0.1µm that are smaller than the typical scales of the size dis-
tributions that are considered. This 50× 50 discretization on
the size-velocity distribution gives a total of 2500 numerical
particles, which is the number that will be used for the ejecta
simulations in the rest of this work.

Once the ejecta is initialized, the particle transport happens
as follows. On the one hand, the drag force affects the velocity
and therefore the position of the numerical particles. On the
other hand, the break-up process, which takes place only if the
Weber number Wei is superior to the critical Weber number
Wecrit = 15, decreases the particle size. In practice, when a
given numerical particle breaks-up, it gets associated a new
size depending on its initial Weber number and its numerical
weight is increased to maintain its total associated mass.

As an order of magnitude, each ejecta simulation corre-
sponding to Sec. IV have around 2500 numerical particles,
taken at 180 temporal steps each separated by δ t = 0.16µs.
The corresponding compute time is 2h on 1 AMD EPYC 7763
64-core CPUs clocked at 2.45GHz.

In summary, the three main parameters that control the evo-
lution of the particle cloud during the simulation are the initial
size distribution, drag force and break-up model. In the study
reported in Sec. IV, these parameters are the ones we expect
to fine tune to make the ejecta robust to transport in different
gases. The efficiency of such a procedure depends on the sen-
sitivity of the chosen diagnostic to changes in ejecta transport
properties. The diagnostic chosen here, PDV, is presented in
Sec. III.

III. PHOTON DOPPLER VELOCIMETRY IN EJECTA

While PDV in ejecta has been shown to be deep in the mul-
tiple scattering19 regime (which will be the case for all the
ejecta presented here), it is interesting to consider first the sin-
gle scattering regime for which PDV was initially developed.
This is the purpose of Sec. III A.

A. Photon Doppler Velocimetry in the single scattering
regime

Photon Doppler Velocimetry is an interferometric tech-
nique17,18 where a collimated laser beam at frequency ω0 is
shined toward a cloud of moving particles and a free surface.
As seen in Fig. 2, light then get scattered by this ejecta and
slightly shifted in frequency before part of it is captured in re-
flection. The collected field interferes at the detector with a
reference field at ω0, resulting in a beating signal I (t) at the

detector. This signal can be written

I (t) = 2Re [Ēs(r, t)Ē
∗
0 (r, t)] , (9)

with Ēs(r, t) the analytic signal associated to the scattered
field, Ē0(r, t) the analytic signal associated to the reference
field and r denotes position of the probe.

1

2

3

5

6

7

FIG. 2. Schematic representation of a typical shock-loaded experi-
ment with a PDV setup. The probe illuminates the ejecta and the free
surface with a highly collimated laser beam (numerical aperture of
4.2mrad and pupil size φp = 1.3µm). The backscattered field is col-
lected by the probe acting as the measuring arm and interferes with
the reference arm at the detector. The beating signal is registered
with a high bandwidth oscilloscope before being analyzed.

In post-treatment a Short-Term Fourier Transform (STFT)
is applied defining the spectrogram S(t,ω) as

S(t,ω) =

∣

∣

∣

∣

∫

I (τ)w(τ − t)exp(iωτ)dτ

∣

∣

∣

∣

2

(10)

where w(t) is a gate function of typical width Tw such that
∫

w(t)dt = Tw.
With a single scattering hypothesis, the scattered field is the

sum of the fields scattered by each particle. We consider scalar
fields, since our focus in this work will be in the multiple scat-
tering regime, where the field can be considered unpolarized,
since depolarization is known to occur on scales of the order
of the scattering mean free path24. For a number of particle
N(t), and assuming a detection in the far field, the scattered
field then reads

Ēs(r, t) =
eik0r

r

N(t)

∑
j=1

A j(u,u0, t)

× exp
{

−i [ω0 + k0(u−u0) ·v j(t)] t
}

, (11)

where r = |r|, k0 = ω0/c with c the light velocity in vac-
uum, u0 is the unit vector defining the direction of illumina-
tion, u = r/r defines the direction of observation, A j(u,u0, t)
is the amplitude of the field scattered by particle j and v j(t)
its velocity. Using Eq. (11) and for an observation direction
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u =−u0, the spectrogram given in Eq. (10) becomes

S(t,ω) =
π2 |A0|2

r2

∫ N(t)

∑
j=1

∣

∣A j(−u0,u0, t)
∣

∣

2

×
{

∣

∣

∣

∣

δ

[

ω +
4π

λ
v j(t)

]∣

∣

∣

∣

2

+

∣

∣

∣

∣

δ

[

ω − 4π

λ
v j(t)

]∣

∣

∣

∣

2
}

dr , (12)

where A0 is the amplitude of the reference field and δ the
Dirac delta function. This simple expression allows one to
convert the frequency appearing in PDV spectrograms directly
into a velocity using v = ω/(4π)λ . In this regime, as shown
in Fig. 4(a), the spectrogram gives an accurate estimation of
the velocity distribution in the ejecta.

B. Photon Doppler Velocimetry beyond single scattering

With z denoting the depth along the ejection direction, the
single scattering hypothesis holds as long as the optical thick-
ness b ≪ 1. The optical thickness is defined as

b =
∫

1
ℓs(z)

dz (13)

where ℓs(z), the photon scattering mean-free path, will be in-
troduced in greater details in this section. We have shown
that in ejecta experiments b can far exceed unity, for exam-
ple b = 42 in the study by Shi et al.25 In these conditions,
Eq. (11) does not hold and the spectrogram expression must
be enriched to account for multiple scattering. This was the
purpose of a previous work19 where we explain in great de-
tails and with the relevant hypothesis how the PDV spectro-
gram expression given in Eq. (12) can be extended to the mul-
tiple scattering regime. The purpose of this section is to recall
the most important results of this previous work that will be
useful to perform spectrogram simulation in Sec. IV.

The quantity of interest in the multiple scattering regime is
the specific intensity I(r,u, t,ω)26–29. This radiometric quan-
tity can be interpreted as a radiative flux at position r, in di-
rection u, at time t and at frequency ω . In this sense, we can
show that the specific intensity satisfies the Radiative Transfer
Equation (RTE) which will be presented in detail below. The
specific intensity can also be related to the wave field via the
Fourier transform of its correlation function. This definition
allows one to connect the specific intensity to the spectrogram
by the relation

S(t,ω) = δ (k− kr)TwS2
p |A0|2

×
∫

Ω
[Is(r,u, t,ω0 +ω)+ Is(r,u, t,ω0 −ω)]

×
[(

kr

2
u+

k0

2
n

)

·n
]2

krdu. (14)

where Sp is the surface of the probe, kr = nrω0/c, nr being the
real part of neff the effective refractive index of the medium as
defined in Ref. 19, Ω is the angular aperture of the probe, du

corresponds to integration over the solid angle, and n is the
unit vector normal to the probe surface.

The RTE governing the evolution of the specific intensity
takes the form19

[

1
vE(r, t,ω)

∂

∂ t
+u ·∇r +

1
ℓe(r, t,ω)

]

I(r,u, t,ω)

=
1

ℓs(r, t,ω)

∫

p(r,u,u′, t,ω,ω ′)I(r,u′, t,ω ′)du
′ dω ′

2π
,

(15)

with vE the energy velocity, ℓe the extinction mean-free path
and p the phase function. Equation (15) is a generalized form
of RTE that takes into account the inhomogeneities of the par-
ticle cloud (under a quasi-homogeneous approximation30,31).
This equation that naturally accounts for multiple scattering
can be understood as an energy balance. The two derivatives
of the specific intensity in the left-hand side of Eq. (15) corre-
sponds to the spatio-temporal evolution of this quantity. This
evolution is governed by both losses and gains. Losses are
caused by absorption and scattering as described by the ex-
tinction mean-free path ℓe. It is worth pointing out that these
losses happen at the same frequency ω . The gains, also caused
by scattering, are handled by the phase function in the right-
hand side of Eq. (15). The scattering process being inelastic, it
allows a conversion from a frequency ω ′ to ω . The extinction
mean-free path ℓe is defined as

1
ℓe(r, t,ω)

=
∫

ρ(r, t)σe(a,ω)h(r, t,a)da, (16)

where σe(a,ω) is the extinction cross-section of a particle
with radius a at frequency ω and h(r, t,a) is the size distri-
bution at position r and time t. In our case h(r, t0,a) = h(a)
as introduced in Sec. II, with t0 the ejecta creation time. The
scattering mean-free path ℓs and the phase function p are de-
fined as

1
ℓs(r, t,ω)

p(r,u,u′, t,ω,ω ′) =
∫

ρ(r, t)
dσs(a,u ·u′,ω)

du

×2πδ
[

ω ′−ω − kR(u
′−u) ·v

]

g(r, t,a,v)dadv, (17)

where σs(a,ω) is the scattering cross-section of a particle with
radius a and g(r, t,a,v) is the size-velocity distribution at po-
sition r and time t. Again, in our case, g(r, t0,a,v) = h(a) j(v)
as introduced in Sec. II. With this definition, the phase func-
tion is normalized as

∫

p(r,u,u′, t,ω,ω ′)du
′ dω ′

2π
= 1 , (18)

and, integrating Eq. (17) over u, the scattering mean free-path
reads

1
ℓs(r, t,ω)

=
∫

ρ(r, t)σs(a,ω)h(r, t,a)da . (19)

We define the absorption mean-free path ℓa(r, t) as

1
ℓa(r, t)

=
1

ℓe(r, t)
− 1

ℓs(r, t)
. (20)
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Finally, since we have nonresonant scattering, the energy ve-
locity vE is given by vE = c/neff.

The quasi-homogeneous approximation used in this form of
the RTE, which amounts here to the r and t dependencies of
the ejecta description, makes it perfectly suited here to eval-
uate the effects of inhomogeneities caused by ejecta exper-
iments in gas. Moreover, the dependence of the mean-free
paths and phase function on the size-velocity distribution of
the ejecta g(r, t,a,v) makes PDV a good candidate for indirect
size-velocity measurement we aim to perform. While the idea
of ejecta experiments in gas to evaluate particle size-velocity
distribution is not new20,32, the novelty of this work resides
in connecting historic ejecta simulations schemes directly to
a light transport model for PDV. The intricacies of this link is
the subject of Sec. III C.

C. Photon Doppler Velocimetry spectrogram simulation

The RTE given in Eq. (15) can be rewritten in an integral
form which is naturally suited for a Monte Carlo simulation
scheme. Such a process can be seen as a random walk for
energy quanta (behaving as classical particles), where each
step is sampled in statistical distributions for step length, scat-
tering direction, and frequency. While the expression of these
statistical distributions and the details of the random walk pro-
cedure are available in Ref. 19, what is relevant in the scope
of this paper is that they only require the mean-free paths and
phase function defined in Eqs. (16) and (17) on a time scale
small enough to capture the temporal evolution of the ejecta
and on a spatial scale small enough to capture its spatial sta-
tistical inhomogeneities. The challenge here is to connect the
ejecta description, i.e. the numerical particles, computed by
the Phénix code to the aforementioned quantities of interest.

Firstly, the value of δ t, the time step introduced in Sec. II
chosen for the Phénix code, is well below the typical value
of 1µs for the ejecta evolution time scale. Same goes for the
spatial scale where the typical number of numerical particles
of 2500 mentioned in Sec.II provides a good sampling of the
ejecta on position, velocities and size. Now, at a given step of
the hydrodynamic simulation, here is how the resulting ejecta
description, i.e. the numerical particles and their attributes, al-
low to compute the corresponding mean-free paths and phase
function. The numerical particles are given in the launch tube
geometry. This ejecta is then discretized spatially into several
layers depending on the space variations of the ejecta’s statis-
tical properties. In each layer the integration over size a and
velocity v appearing in Eqs. (16) and (17) is replaced by a dis-
crete sum over the numerical particle. In these discrete sums,
the product ρ(r, t)h(r, t,a) and ρ(r, t)g(r, t,a,v) is replaced
by the particle number density wi/δV where wi corresponds
to the numerical weight of the ith numerical particle and δV

the volume of the layer in the ejecta geometry. The regular
and differential cross-sections are computed using the routine
given in Ref. 33. An example of this entire procedure is de-
picted in Fig. 3 for computing the extinction mean-free path.
As an order of magnitude, the compute time for each simu-
lated spectrogram presented in Sec. IV is around 1h20min on

FIG. 3. Illustration of how to use hydrodynamic simulation results
as input data for PDV spectrogram simulation. The medium is sliced
in layers of equal thickness and each of them intersects part of the
ejecta. For each layer, the numerical particles concerned are then
used to compute the local mean-free paths and phase functions.

80 AMD EPYC 7763 64-core CPUs clocked at 2.45GHz for
5.12× 109 Monte Carlo draws, at 180 different times, with
2500 numerical particles arranged in 100 effective layers.

After presenting the simulation tools permitting to describe
the path from the solicitation on the sample to the spectro-
gram, the aim of Sec. IV is to do a comprehensive study
to constrain ejecta description using simulated PDV spectro-
grams.

IV. EJECTA BEHAVIOR RECOVERY BASED ON PDV
SPECTROGRAMS ANALYSIS

In the remainder of this article, we propose to study a com-
plex set of ejection experiments in gas. We consider three
experiments, differing only by the gas present in the chamber.
The experimental setup is the one presented in Sec. II A and
pictured in Fig. 1. Ejecta travels, respectively, in Pvacuum =
1Pa vacuum, Phelium = 500kPa helium and Pair = 100kPa air.

We start by simulating a spectrogram in vacuum to define
a size-velocity distribution baseline. Next, in order to see if
this baseline holds in helium, we focus on the induced drag
forces. Finally in air, we explore the additional effect of hy-
drodynamic break-up.

A. Ejecta’s initial size distribution in vacuum

For this first simulation in vacuum, we choose a standard
power law distribution of the particle size, in the form14

h(a) =







α −1

a−α+1
min −a−α+1

max
a−α , ifa ∈ [amin,amax]

0, otherwise
, (21)

with α = 5, amin = 1µm and amax = 6µm. With these input pa-
rameters, the Phénix code handles the particle transport during
the entire simulation, from t = 0 to t = 27µs. This data is then
given as input data in the Monte Carlo simulation to compute
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the corresponding expected spectrogram for the experimental
setup characteristics.

On the one hand, for the experimental spectrogram, we do
not directly have access to I (t) as introduced in Eq. (9). In
practice, the time frequency analysis is performed on the sig-
nal in volts recorded at the photodiode which gives Sexp(t,ω).
Instead of directly representing the spectrogram, the preferred
quantity is Pexp(t,v), defined as

Pexp(t,v) = 10log

[

1

K2
phT 2

w P0Pref
Sexp

(

t,
4π

λ
v

)

]

(22)

where Kph is the efficiency of the photodiode, P0 is the optical
power of the reference arm and Pref is a reference power. For
this set of experiments, we have KPh = 104 V/W and choose
P0,exp = 1mW, such that Pexp(t,v) is expressed in dBm. On
the other hand, we represent the simulated spectrogram with
Psim(t,v) defined as

Psim(t,v) = 10log

[

4

(kr + k0)2T 2
w |A0|2 S2

pF0,sim
S

(

t,
4π

λ
v

)

]

(23)
where A0 is the amplitude of the reference field, Sp is the sur-
face of the detector and the reference flux F0,sim = 1V−2s−2.
Even in the presence of the multiple scattering regime, for
both spectrograms frequencies are converted to apparent ve-
locities using the single scattering relation v = ω/(4π)λ . One
has to keep in mind that the apparent velocity correspond to
the actual velocity of particles only in the single scattering
regime. Given these definitions, it is meaningful to compare
the dynamic range rather than the absolute value.

Figure 4 displays the comparison between the experimen-
tal spectrogram in vacuum [Fig. 4(a)] and the first simu-
lated spectrogram of this study [Fig. 4(b)]. The first inter-
esting observation is that, while the levels differ, the dynamic
ranges of both spectrograms are similar - around 50dB. Sec-
ondly, we see that the dynamic of velocities as expected be-
tween v = 2000m/s and v = 3000m/s and that from t = 4 to
t = 23µs, the spectrogram does not depend much on time. We
only see a slight decrease on velocity readings as displayed for
example for v= 2100m/s in Fig. 4(c). To understand this sec-
ond observation, we have to consider the behavior of particles
in vacuum.

In vacuum, the size-velocity distribution of the particles re-
mains constant due to ballistic transport. The velocity differ-
ence between the front and the back particles will therefore
stretch the ejecta along the z-axis linearly over time. Since the
size-velocity distribution does not change, this stretch does
not impact the local phase function but nonetheless it causes
the particle number density to decrease as 1/t and therefore
the mean-free paths to increase linearly with t. To predict the
impact on the specific intensity measured by the PDV probe,
it is instructive to stick to the random walk picture. On the
one hand, since the mean-free paths expand at the same rate
as the medium, all the random walks will expand accordingly,
i.e. the light propagation in the ejecta is homothetic with time.
If we consider the transverse profile of the specific intensity
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FIG. 4. (a) Experimental spectrogram in vacuum. The setup char-
acteristics are given in Sec. II A. The shock pressure is Pshock =
29.5GPa and vacuum residual pressure was Pvacuum = 1Pa. The
ejecta is created at t = 4µs, it travels in ballistic expansion before
reaching the probe at t = 23µs. (b) Simulated spectrogram in vacuum
with a power law size distribution of parameter α = 5. (c) Extraction
of the simulated spectrogram at v = 2100m/s which illustrates the
expected signal small decrease from t = 4 to t = 23µs.

distribution at the front of the ejecta, it spreads and there-
fore decreases quadratically with time t in the xy-plan. On
the other hand, considering its narrow aperture of 4.2mrad,
the collection from the PDV probe mostly happens in a cylin-
der of diameter φp which does not change with time. The
combination of both these phenomena results in a decrease
with time of the PDV signal. In practice, considering that the
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particle are mostly forward scattering, the light spread at the
front of the ejecta remains small and the decrease is subtile
as seen in Fig. 4(c). While obvious in the single scattering
regime, this observation is here extended to multiple scatter-
ing. A formal explanation of this phenomena based on the
RTE is provided in App. A. Finally, the fastest particles reach
the probe at t = 23µs in both the experimental and simulated
spectrograms. In the experimental case, this causes a parti-
cle accretion on the probe and an almost immediate loss of
return signal. In the simulation, we do not account for this
effect. The particles are simply removed for the medium and
we eventually recover the free surface at t = 27µs.

The key difference in the experimental spectrogram is that
the free surface is visible almost over the full duration of the
experiment, while it does not appear in the simulation. This
observation suggests that the ejecta has a too large optical
thickness b for the free surface to be seen. Indeed, we find
b = 16 from t = 4 to t = 23µs. To investigate this, we break
down the scattering mean-free path contributions of each nu-
merical particle compared to its corresponding particle size,
i.e. we plot the integrand of Eq. (19). We observe in Fig. 5(a)
that, while they do not contribute much to the mass of the
ejecta, a group of numerical particles with a small associated
size have the leading contribution to the scattering mean-free
path. This ought to be the main reason why the free surface
remains hidden in the simulated spectrogram compared to the
experimental one. This result argues in favour of a size distri-
bution with a lesser density at small particle sizes.

Beyond the standard power law distributions, lognormal
size distributions have been proposed lately14. Since they tend
to 0 when a tends to 0, they precisely address the divergence
issue of power laws at small particle sizes. Therefore, we pro-
pose to change h(a) to a lognormal distribution which reads

h(a) =







K

aσ
√

2π
exp

[

− ln2 (a/a0)

2σ2

]

, ifa ∈ [amin,amax]

0, otherwise
(24)

with σ = 0.5, a0 = 2.25µm, amin =
1µm, amax = 6µm and K =

2/
{

erf
[

ln(amax/a0)/
(

σ
√

2
)]

− erf
[

ln(amin/a0)/
(

σ
√

2
)]}

where erf is the Gauss error function. In Fig. 5(a), we see that
for the same surface mass, the lognormal distribution tends to
attenuate the contribution of the numerical particles having a
small associated size. This results in a drastic decrease of the
optical thickness to b = 6 and should allow to recover the free
surface in the simulated spectrogram.

Figure 5(b) represents the simulated spectrogram in vac-
uum for this corrected size distribution. As expected, it allows
one to recover the free surface in the spectrogram while keep-
ing all the already present and desired characteristics of the
simulated spectrogram.

A residual defect is that free surface response seems to
fade away quicker in the experimental spectrogram than in
the simulated one. We assume this effect is due the modelling
of the free surface as a loss-less specular reflector instead of
properly accounting for the deformation induced by micro-
jetting. This tends to overestimate its contribution to the spec-
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FIG. 5. (a) Scattering mean-free path contributions over size for
power law and lognormal initial particle size distribution. (b) Sim-
ulated spectrogram in vacuum with a lognormal size distribution of
parameters σ = 0.5 and a0 = 2.25µm.

trogram. Moreover, it is known experimentally and confirmed
by molecular dynamics simulations10–12 that an intermediate
regime exists right after breakout and before the transverse
homogenization of the ejecta. In this time window, between
4µs and 7µs in Fig. 4 (a), the microjets’ structure causes only
the spike velocity at high values and the bubble velocity at
values around the free surface to be visible in the early mo-
ment for the ejecta34 [see Fig. 1 (b)]. This effect is indeed not
rendered in the current simulation where we assume the ejecta
creation to happen instantly at the breakout. Additionally, we
also assume the ejecta to be translationally invariant right after
breakout, which again takes a few microseconds experimen-
tally. These phenomena explain the remaining discrepancies
between the experimental and simulated spectrograms.

This study of ejecta in vacuum is conclusive and gives us a
first draft of ejecta description. Comparing different simulated
spectrograms to the experimental one allowed us to clearly fa-
vor one distribution over the other only based on a PDV spec-
trogram. Before, a choice would have been harder to justify.
The next step is a more complex particle transport scenario
- ejecta in helium - and the aim is to see if the description
established in vacuum holds.
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B. Drag coefficient effect study for ejecta in helium

We now consider an ejecta in helium at Phelium = 500kPa.
We assume the same initial size distribution as in vacuum, the
lognormal distribution given in Eq. (24), but now the pres-
ence of gas will change the transport of particles as stated
in Sec.II B. In case of helium, the shockwave in gas, with
a velocity v = 3084m/s, travels ahead of most of the ejecta.
Therefore, particles travel in shocked gas resulting in low
particle-gas velocity differences. The Weber number Wei

given by Eq. (8) remaining subcritical, the ejecta interacts
with the gas mostly through drag forces. Figure 6(a) repre-
sents the experimental spectrogram in helium. The interaction
with gas can be seen in the slowing down of the fastest par-
ticles, typically from 3000m/s to 2500m/s. Since the drag
force Fi scales with particle size as a2

i , the slowing down of
particles scales in a−1

i . Recovering the slowing down slope
in simulated spectrograms would further confirm the choice
of the size distribution. To have a comparison point for the
simulations, we compute a numerical fit of the experimental
spectrogram’s upper boundary. It appears as a red overlay in
Fig. 6.

As for vacuum in Sec. IV A, we use the Phénix code to
compute the ejecta description throughout transport in helium.
We then use this output data to simulate the expected spectro-
gram in Fig. 6(b) and compare it with the experimental one.
We see in Fig.6(b) that we kept the desired characteristics ob-
tained in the vacuum case, but this first spectrogram in helium
does not fit the slowing down curve of the experimental spec-
trogram. The slowing down of particles is underestimated,
suggesting that the current drag force Fi is undervalued. Con-
sidering the expression of Fi in Eq. (7), to increase drag forces
we can either shift back the particle size distribution towards
smaller particles or increase the drag coefficients Cd . Since
we need to change the slowing down slope of the spectrogram
while keeping the current optical thickness, we have chosen to
modify the drag coefficients Cd to fit the experimental spec-
trogram. Indeed, in a context where drag models in turbulent
flows are still under debate35,36, we use this case in helium to
experimentally tune the drag coefficient model for our ejecta
thanks to the comparison allowed by simulated spectrograms.
After such a correction, the drag coefficient are roughly mul-
tiplied by a factor of 5 compared to their initial values and
we obtain another spectrogram in helium which is shown in
Fig. 6(c). This time, the slowing-down nicely fits the exper-
imental upper boundary. A down side remains the overvalu-
ation of the free surface which remains visible in the simu-
lated spectrogram while it disappears at t = 8µs in the exper-
imental one. This bias of the model was already discussed in
Sec. IV A.

Now that we have a size distribution tested in the presence
of a drag force, the next step is to see how it holds up in a con-
figuration with an additional interaction, i.e. hydrodynamic
break-up.
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FIG. 6. (a) Experimental spectrogram in helium. The setup char-
acteristics are given in Sec. II A. The shock pressure is Pshock =
29.5GPa and helium pressure was Phelium = 500kPa. The ejecta is
created at t = 4µs, it travels in helium before reaching the probe at
t = 26µs. The spectrogram is overlayed with an analytic fit of its up-
per boundary (red line). (b) Simulated spectrogram in helium for a
lognormal size distribution of parameters σ = 0.5 and a0 = 2.25µm,
overlayed with an analytic fit of the upper boundary of the exper-
imental spectrogram (red line). (c) Simulated spectrogram in he-
lium for a lognormal size distribution of parameters σ = 0.5 and
a0 = 2.25µm, corrected drag force coefficients and overlayed with
an analytic fit of the upper boundary of the experimental spectro-
gram (red line).
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C. Ejecta break-up model in air

We now consider the final and most complicated case,
ejecta transport in air. We keep the same size distribution as
in helium, the lognormal distribution given by Eq. (24), and
check its relevance in this new scenario. In air, the initial
shockwave travels at v = 2520m/s. This means that while
the slowest particles travel in shocked air and, as in helium,
interact with the gas mostly through drag forces, the fastest
particles travel in unshocked air. For the latter, if they are
rather small, they slow down rapidly through drag forces be-
fore being caught-up by the shockwave and eventually reac-
celerated in shocked air. If they are rather big, their Weber
number Wei is supercritical and they additionally experience
break-up. They may first slow down with a gentle slope but
as soon as they break up, their reduced size makes them slow
down much faster before being caught by the shock wave and
reaccelerated in the shocked air. In Fig. 7(a), displaying the
experimental spectrogram in air, we can observe both phe-
nomena. Between 4 and 7µs, we can see a plateau around
2800m/s corresponding to the fast particles before break-up.
After break up, around 8µs, the free surface gets screened and
the slowing down is much more substantial. In the meantime,
between 10 and 15µs, we see around 1800m/s the reaccel-
eration of the slowest particles. We aim to capture these two
phenomena in the simulated spectrogram.

Figure 7(b) represents the simulated spectrogram in air. The
expected key features are clearly observed. Firstly, we observe
that high velocity particles remain visible between t = 4 and
t = 6µs before disappearing, which matches very well the ex-
perimental spectrogram. Secondly, some particles are heavily
slowed down and then reaccelerated by the shocked air be-
tween t = 7 and t = 10µs. While this behavior is expected,
it happens a bit too early, we do not expect to see the reac-
celeration before t = 10µs. Thirdly, we keep the free surface
velocity in the early moment of the spectrogram before break-
up screens it. Finally, the main issue is the long term velocity
distribution. While in the experiment, all velocities tend to the
gas velocity of v= 2060m/s, in the simulation a spreading be-
tween v = 2000m/s and v = 2400m/s remains. We believe
that the inability to perfectly match the experimental spectro-
gram puts forward the limit of validity of the hypothesis made
in Sec. II A on the initial size-velocity distribution. Namely,
this observation argues in favor of a correlated size-velocity
distribution. This question is discussed in Sec. V.

V. DISCUSSION

A certain number of observations have been made in this
study and it is worth discussing their implications, and to com-
pare them to results reported in the existing literature.
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FIG. 7. (a) Experimental spectrogram in air. The setup characteris-
tics are given in Sec. II A. The shock pressure is Pshock = 29.5GPa
and air pressure is Pair = 100kPa. The ejecta is created at t = 4µs.
The ejecta front is heavily slown down and experience break-up in
unshocked air until t = 10µs. From t = 10 up to t = 20µs the slowest
particles fall back in shocked air and are reaccelerated. From t = 20
to t = 27µs, all particles seem at free surface velocity. (b) Simulated
spectrogram in air for a lognormal size distribution of parameters
σ = 0.5 and a0 = 2.25µm.

A. Effect of particle break-up on the scattering mean-free
path

In Sec. IV A, we showed that small particles between 1µm
and 3µm had the leading contribution to the scattering mean-
free path. This observation was confirmed by the free surface
disappearance for ejecta in air in Sec. IV C. We attributed
this phenomenon to an increase in the optical thickness due to
the break-up of initially large particles into numerous smaller
ones. To check this hypothesis, we have used the simulation
results of the Phénix code and Eq. (13) to compute the opti-
cal thickness during each simulation reported in Sec. IV. The
results are reported in Fig. 8. We see that for all three simu-
lations, the initial optical thickness is around b = 6, since all
simulations have the same initial size-velocity distribution. In
the vacuum and helium cases, this optical thickness remains
constant until t = 23µs where the ejecta gets shaved down
from reaching the probe. It eventually decreases back to zero
by t = 27µs. In the case of air, we see that because of fragmen-
tation the optical thickness increases up to b = 9 from t = 4 to
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FIG. 8. Optical thickness evolution during the simulation for each
gas configuration. Using the simulation results from Phénix code
and Eq. (13), the optical thickness is computed during the time cor-
responding to the experiments. The three ejecta simulations for a
lognormal size distribution of parameters σ = 0.5 and a0 = 2.25µm
seen in Sec. IV are represented: vacuum (dotted black line), helium
with corrected drag coefficients (solid orange line) and air (solid ma-
genta line)

t = 7µs.
Buttler et al.20 investigate ejecta in gas as well but con-

sider a reactive break-up scenario. In their study, a cerium
ejecta is created and travels in deuterium gas. Through an
hydriding reaction between the metal and the gas, the initial
particles also break up into multiple smaller ones. This mech-
anism is similar to the hydrodynamic break-up in air we con-
sider but interestingly Buttler et al. report opposite observa-
tions. In their experiment, they assume that the fragmenta-
tion of the ejecta’s front in smaller particles makes it invisible
to the PDV wavelength, allowing to see particles that up to
that point had been hidden in the back of the ejecta. A key
point to understand this difference is to consider the size limit
reached by each break-up mechanism. In the case of tin ejecta
in shocked air we reach an average size of a = 1µm while
Buttler et al. assume the average size of particles to be on the
order of a = 100nm. For a mono-disperse ejecta of homoge-
neous particle number density, the initial scattering mean-free
path is ℓs,0 = 1/[ρ(a0)σs(a0)] with a0 the initial particle size
and ρ(a0) the corresponding initial particle number density.
If this ejecta were to break up into smaller particles of size
a with mass conservation, the particle number density would
scales as ρ(a)/ρ(a0) = (a0/a)3, leading to

ℓs(a) =
a3

a3
0

1
ρ(a0)σs(a)

. (25)

We have studied the scattering-mean free path given in
Eq. (25) for a tin ejecta of an initial size a0 = 10µm and
ρ(a0) = 1014 m−3 and used Mie theory37,38 to compute the
scattering cross-sections σs. In Fig. 9, we report its vari-
ation from 10µm down to 10nm. We observe that, upon
break-up and down to a = 250nm, the scattering mean-free
path first decreases. This is consistent with the phenomenon
we observed for hydrodynamic break-up. It corresponds to
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FIG. 9. Scattering mean-free path for a size mono-disperse ejecta
of tin in air experiencing fragmentation. The exact scattering mean-
free paths is computed tanks to Mie theory (orange solid line). For
comparison, we display the dipole limit case (black dotted line) and
the large particle limit case (dashed solid). Mie theory allows one
to describe the scattering mean-free path evolution over this large
break-up window and recover limit cases at each end of it.

the limit case of particles much bigger than the wavelength.
The scattering cross-section scales as σs(a) ∼ a2 and there-
fore the scattering mean-free path as ℓs(a) ∼ a. Now, if we
were to reach smaller particle sizes, for example due to reac-
tive break-up as in the study of Buttler et al., we see that the
scattering mean-free path would increase again - even exceed-
ing its initial value below a = 60nm. We have reached here
the limit case of dipole approximation where the scattering
cross-section scales as σs(a)∼ a6 and therefore the scattering
mean-free path as ℓs(a) ∼ a−3. Both limit cases are repre-
sented in Fig. 9. We believe that this mechanism explains the
phenomenon observed by Buttler et al. after multiple break-
up cycles for cerium in deuterium. Break-up first decreased
the scattering mean-free path, as in our case, followed by an
increase large enough to uncover particles initially hidden.

The effects of reactive break-up were not opposite to the
ones of hydrodynamic break-up, they were in fact exceeding
them. Going past the initial decrease in the scattering mean-
free path, the increase for small particle was enough to exceed
the initial mean-free path.

B. Introducing size and velocity dependencies

As mentioned in Sec. IV C, the main issues in the simulated
spectrogram show up at the end of the experiment and in its
early moments. At the end of the simulation, the spread in
velocity is broader than the one observed experimentally. We
believe this is due to large particles, that sit right before the
shockwave in gas. These particles only travel in shocked air,
therefore their velocity differential to the gas is low and they
do not break-up. In the meantime, they are too big to slow
down only through drag force to the free surface velocity and
by the 20µs mark. The velocity curve of such a particle with
radius a = 4.15µm taken from the ejecta dynamics simulation
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is overlayed in red on the simulated spectrogram in Fig. 10.
This observation argues in favor of a size velocity distribution
with bigger particles at low velocities and smaller particles
at higher velocities. This is in agreement with observations
made by holographic measurements15 and the ejecta mecha-
nism suggested by molecular dynamics simulations10–12.
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FIG. 10. Simulated spectrogram in air for a lognormal size distribu-
tion of parameters σ = 0.5 and a0 = 2.25µm. The simulated spectro-
gram is overlayed with the velocity curves of two interesting numer-
ical particles extracted from the corresponding Phénix simulation: a
particle of radius a= 4.15µm with an initial velocity of v= 2234m/s
(red solid line) and a particle of radius a = 5µm with an initial ve-
locity of v = 2670m/s (green solid line)

Nonetheless, in the early moments, particles at the front of
the ejecta must correspond to the high-velocity plateau be-
tween between t = 4 and t = 6µs. These particles need to be
big enough so that despite of heavy drag forces in non shocked
air they do not slow down immediately. When eventually they
break-up and slow down, they also allow to recover the reac-
celeration slope below the free surface velocity between t = 7
and t = 10µs. A example of such a particle of radius a = 5µm
taken from our simulation is overlayed in green on the simu-
lated spectrogram in Fig. 10.

We believe this observation balances the previous one and
illustrates the need of a more complex size velocity distribu-
tion. Overall, we need big particles at the back of the ejecta
and small particles at the front to achieve the long term ve-
locity profile. This distribution must then be completed with
a few big particles typically for the ejecta head, to observed
the desired plateau in the early moments. While investigat-
ing such correlations is beyond the scope of this article, this is
an insightful observation. The ability to simulate spectrogram
has not only allowed to constrain size-velocity distributions
to experimental spectrograms, but also to confirm that the ac-
tual size velocity distributions of ejecta ought to be correlated
distributions.

VI. CONCLUSION

In summary, we have shown that PDV measurements could
be used to retrieve additional information on the size distri-

bution of ejecta particles in shock compression experiments.
Based on a exact relationship between the specific intensity
and the measured signal in PDV experiments and a rigorous
RTE model for PDV experiments in the multiple scattering
regime, we have shown the influence of particle size distri-
bution in PDV spectrograms. To exploit this sensitivity, we
implemented a simulation scheme allowing to use directly the
results of ejecta hydrodynamic simulations to compute simu-
lated spectrograms. This opens up the possibility of indirect
size-velocity distribution evaluation thanks to different parti-
cle transport conditions accounting for drag forces and par-
ticle break-up models. Finally, a comprehensive study on a
real-conditions experiment showed how, through an iterative
process, spectrogram simulation allowed to better our ejecta
description. We are not aware of any technique that can de-
scribe in detail the partition of mass below the resolution limit
of that diagnostic. Indeed, we observed the effect of particles
down to a = 60nm while still working at λ = 1.55µm.

From a more general point of view, this work is a proof
of concept of a simulation chain aiming to mimic PDV mea-
surement in ejecta experiments. It shows that with a clear
implementation of the direct problem including the full path
from an ejecta to its expected spectrogram, the comparison
with experimental spectrogram already allows one to have in-
sightful ideas for the inverse problem of reconstructing this
ejecta (or at least its statistical properties). In the case of
size-velocity distribution studies, this works argues in favor
of correlated size-velocity distributions, for the early moments
of the experiment, corresponding to the phenomenology cap-
tured by molecular dynamics simulations. The current sim-
ulation chain, including particle transport and spectrogram
simulation, would remain identical. Coupled with a better
treatment of light scattering close the free surface, typically
around the micro-jets, we believe this would allow to recover
experimental spectrograms even in very complex cases as in
air. This kind of indirect measurements could be applied to
many other ejecta scenarios, especially those with no ana-
lytical expression of the size-velocity distribution throughout
the experiment. For example, the transport of reactive ejecta
in gas. In addition, this opens the possibility of sensitivity
studies on other parameters such as shock pressure, illumina-
tion wavelength or material type. In this work, the fact that
the simulated spectrograms give semi-quantitive results, i.e.,
that spectrograms have the right dynamics even if their abso-
lute values are shifted from the experimental ones, allowed
one to compare them to their experimental counterpart. Ei-
ther by the presence of the free surface or the shape of slow-
ing down slope of the fastest particles, being able to visu-
ally compare spectrograms have proven plenty useful in this
study. For future work, this difference would need to be mea-
sured by global and local metrics that allow quantifying the
distance between spectrograms, either experimental or simu-
lated. These are potential lines to be followed in further inves-
tigations.



13

ACKNOWLEDGMENTS

This work has received support under the program “In-
vestissements d’Avenir” launched by the French Government.

DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are avail-
able within the article.

Appendix A: Spectrogram invariance for single shock ejecta in
vacuum

In the ejecta geometry where the mean-free path and the
phase function depend only on depth, and in the quasi-static
approximation (slow cloud dynamics compared to the light
travel time in the ejecta), the RTE given in Eq. (15) becomes

[

u ·∇r +
1

ℓe(r ·uz, t,ω)

]

I(r,u, t,ω)

=
1

ℓs(r ·uz, t,ω)

∫

p(r ·uz,u,u
′, t,ω,ω ′)I(r,u′, t,ω ′)du

′ dω ′

2π
.

(A1)

Equation (A1) taken at r(1+∆t/t) and t +∆t reads

{

u ·∇r +
1

ℓe [r(1+∆t/t) ·uz, t +∆t,ω]

}

× I [r(1+∆t/t) ,u, t +∆t,ω]

=
1

ℓs [r(1+∆t/t) ·uz, t +∆t,ω]

×
∫

p
[

r(1+∆t/t) ·uz,u,u
′, t +∆t,ω,ω ′]

× I
[

r(1+∆t/t) ,u′, t +∆t,ω ′]du
′ dω ′

2π
. (A2)

In a single shock experiment in vacuum, the particles at the
depth r · uz at time t are the one that will be at the depth
r(1+∆t/t) ·uz at time t +∆t. Therefore the mean-free path
and phase function obey the following conservation law

p

[

r

(

1+
∆t

t

)

·uz,u,u
′, t +∆t,ω,ω ′

]

= p
(

r ·uz,u,u
′, t,ω,ω ′) ,

(A3)

ℓs,e

[

r

(

1+
∆t

t

)

·uz, t +∆tω

]

= ℓs,e (r ·uz, t,ω)

(

1+
∆t

t

)

.

(A4)
While the phase function remains constant, for the mean-free
paths the (1+∆t/t) factor accounts for the decrease in par-
ticle density caused by the homothetic stretch of the ejecta
along the z-axis. Using this property, Eq. (A2) multiplied by

(1+∆t/t) reads

[

u ·∇r (1+∆t/t)+
1

ℓe (r, t,ω)

]

I [r(1+∆t/t) ,u, t +∆t,ω]

=
1

ℓs(r ·uz, t,ω)

∫

p(r ·uz,u,u
′, t,ω,ω ′)

× I
[

r(1+∆t/t) ,u′, t +∆t,ω ′]du
′ dω ′

2π
. (A5)

Comparing Eqs. (A1) and (A5) shows that at t and t + δ t the
specific intensity obeys to the same equation except that in the
latter configuration all distances are to be scaled up by a factor
1+∆t/t, which formally proves the claim of Sec. IV A.
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