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ABSTRACT

Tricuspid regurgitation (TR) is an increasingly prevalent condition, especially in older populations, and presents significant
challenges due to its association with right heart failure, hospital admissions, and high mortality rates. The management of TR
has evolved, with new percutaneous valve repair and replacement techniques emerging alongside traditional surgical approaches.
However, accurately assessing right ventricular (RV) function-a key prognostic factor in TR-remains difficult due to the RV’s
unique anatomy and sensitivity to loading conditions. Current echocardiographic methods, such as Tricuspid Annular Plane
Systolic Excursion (TAPSE), S’ wave analysis, and RV fractional area change (FAC), offer valuable insights but have limitations,
particularly regarding load dependence and incomplete assessment of RV function. Advances in 3D echocardiography and
myocardial strain imaging provide more comprehensive evaluations, yet challenges persist in integrating these measures in routine
clinical practice. The review highlights the importance of a multimodal approach to RV assessment in TR patients, considering
both the right atrium and pulmonary artery interactions, and explores potential future tools such as myocardial work and dynamic
testing to improve prognostic accuracy and patient outcomes.

1 | Introduction due to acute heart failure, thereby imposing a considerable finan-

cial burden on healthcare systems. These economic pressures

Tricuspid regurgitation (TR) is becoming increasingly prevalent,
posing significant challenges to healthcare systems worldwide.
Although the incidence of severe TR is relatively uncommon in
individuals under 60 years old, it rises sharply with age, affecting
approximately 2% of those aged 65-74 and up to 4% of individuals
over 75 [1-4].

TR is more than just a clinical diagnosis; it can lead to right heart
failure and significantly increase the risk of hospital admissions

remain substantial in the presence of TR, even before the onset of
heart failure [5]. Moreover, TR is associated with a high mortality
rate, with up to 40% of the most severe cases resulting in death
within a year [6]. However, the most pressing concern for patients
is the profound impact TR has on their quality of life.

In recent years, TR has been increasingly studied, leading to
the emergence of various percutaneous valve repair or replace-
ment techniques, in addition to traditional surgical repair. This

Abbreviations: GLS, global longitudinal strain; RA, right atrium; RV, right ventricle; RV ED, right ventricle end-diastolic area; rV ES, right ventricle end-systolic area; RV FAC, right ventricle
fractional area change; RVFWS, right ventricle free wall strain; sPAP, systolic pulmonary artery pressure; TAPSE, tricuspid annular plane systolic excursion; TDI, tissue Doppler imaging; TR, tricuspid

regurgitation.
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raises daily concerns about better patient selection in relation
to the prognosis of these interventions and the stratification of
their prognostic risk. As a result, several risk scores have been
developed to enhance clinical risk stratification [7-10].

Additionally, right ventricular (RV) function is a major determi-
nant of prognosis in patients suffering from TR, yet its assessment
remains challenging. The RV generates the pressure required to
facilitate blood flow through the resistive forces of the pulmonary
vasculature. RV function can be influenced by loading conditions,
making it crucial to integrate load estimation in the evaluation
of RV function. TR increases RV preload through abnormal
systolic blood return to the right atrium (RA), leading to atrial
and subsequently ventricular volume overload, which also raises
diastolic pressure [11, 12].

The anatomy of the RV differs from that of the left ventricle
(LV), with a thinner wall thickness and a crescent-shaped
morphology. This anatomical difference makes the RV more
sensitive to varying loading conditions compared to the LV-
responding well to volume overload but poorly to pressure
overload [13]. Thus, TR can alter both RV anatomy and function,
leading to significant prognostic implications. It underscores the
importance of thorough RV assessment for accurate prognostic
stratification, determining follow-up frequency, and selecting the
aggressiveness and type of treatment.

Assessing RV function is challenging, with no single marker
offering perfect diagnostic and prognostic accuracy, necessitating
a multiparametric evaluation.

In this context, the review article focuses on methods for
assessing RV function with a particular emphasis on advanced
echocardiographic techniques. We will discuss both traditional
echocardiographic parameters and emerging approaches, and
their potential roles in managing patients with TR.

2 | Echocardiographic Assessment of RV Function
in TR Patients

Ultrasound imaging is the cornerstone of heart function and
remodeling evaluation, especially in patients with TR.

2.1 | Quick Overview: RV Morphology

A healthy RV typically has a crescent shape, characterized by a
broad base and a triangular apex. In the case of significant TR,
which affects both RV volume and pressure load, the RV loses
its triangular shape and turns into an elliptical, like one of the
LVs. This morphological change can be visually appreciated in
the subxiphoid view and further quantified by measuring the RV
diastolic and systolic areas in the apical four-chamber view, which
is more reliable than the subxiphoid view for this purpose [14].

Dimensions and surface areas can then be considered abnormal
if they exceed the following thresholds: >42 mm for the RV
basal diameter; >35 mm for the mid-RV diameter; >25 cm? for
the RV end-diastolic area, and >14 cm? for the end-systolic area
[15]. Additionally, changes in loading conditions may be reflected
in the RV-free wall thickness, which hypertrophies in response

to high pressures. This measurement is taken about 1 cm from
the tricuspid annulus in the subxiphoid view, with a RV-free
wall hypertrophy being defined as a thickness >5 mm [15, 16]
(Figure 1).

2.2 | Keeping It Simple: Longitudinal and
Regional Function

TAPSE (Tricuspid Annular Plane Systolic Excursion) is a key
parameter for assessing the longitudinal function of the RV,
as it reflects the tricuspid annular displacement caused by the
shortening of the RV-free and septal walls during systole. The
cursor is placed on the lateral annulus, parallel to the free wall,
and acquired in M-mode. A TAPSE value of <17 mm in M-mode is
considered abnormal and is one of the markers of RV dysfunction.
It has been previously shown to correlate well with RV ejection
fraction (RVEF) assessed by radionuclide ventriculography [14].

TAPSE is simple, highly reproducible, easy to obtain, and inde-
pendent of the heart rate. However, it is limited by its load
dependence and angle dependence, and it assesses only part of
the RV’slongitudinal function rather than its overall function [15].
This limitation makes TAPSE an imperfect marker for assessing
RV function in significant TR, as it can be overestimated in well-
compensated TR patients and may be underestimated when RV
function deteriorates [17].

It is also important to note that TAPSE becomes less reliable in
patients with any type of prior cardiac surgery [18]. In significant
TR, TAPSE has shown prognostic value, with better survival in
patients who do not experience TAPSE reduction compared to
those with significant TAPSE decline [19]. However, its utility
remains controversial in predicting outcomes after tricuspid
surgery or percutaneous repair remains controversial [20, 21].

The advancement of Doppler techniques has enabled the devel-
opment of S’ wave analysis using tissue Doppler imaging (TDI) at
the tricuspid annulus, which measures systolic excursion velocity.
The cursor is placed at the tricuspid annulus or the basal segment
of the RV-free wall, and analysis is performed using TDI coupled
with pulsed Doppler. A value <9.5 cm/s is considered abnormal.
This parameter has shown good reproducibility and a low load
dependence, though it remains angle-dependent.

A reduction in the S’ wave has been associated with a significant
decrease in prognosis for patients with right heart failure; how-
ever, it has not been specifically studied in significant TR [22]
(Figure 2).

These two parameters are insufficient for assessing global RV
function as they only represent a limited portion of the RV (basal
lateral segment) and assess only its longitudinal function of the
RV. Furthermore, TR-related remodeling and potential changes
in RV morphology leading to tricuspid annulus displacement,
that can compromise their utility (Table 1).

2.3 | Looking Globally: Global RGV Function

It would be ideal to have an RV parameter equivalent to the
left ventricular ejection fraction (LVEF). Although calculation
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FIGURE 1 | The importance of RV morphology. (A) In cases of severe TR, the RV takes on an elliptical shape rather than its usual crescent shape.
(B) Enlargement of the RV wall thickness is a sign of remodeling due to elevated load. (C) RV end-diastolic and end-systolic areas are used to assess RV

dilatation. (D) RV basal and mid diameters are used to evaluate RV geometry. RV, right ventricle; TR, tricuspid regurgitation.

FIGURE 2 | TAPSE and S’ TDI as imperfect markers of RV function in TR patients. (A) TAPSE is the most commonly measured parameter in
clinical practice, but it has its limitations. (B) The S’ TDI is a useful marker of systolic function. S’ TDI, systolic wave in tissue Doppler imaging; TAPSE,

Tricuspid Annular Plane Systolic Excursion.

of RVEF has been proposed, it remains underdeveloped due
to the RV’s complex anatomy and the difficulty in accurately
determining its volumes. This complexity limits the use of geo-
metric assumptions for reproducible and validated calculations,
particularly with techniques like radionuclide ventriculography
and, more recently, cardiac MRI. The use of 2D transthoracic
echocardiography (TTE)-derived RVEF is not recommended

in clinical practice, particularly in patients with significant
TR, which further distorts RV shape and makes it even less
predictable.

Therefore, substitutes for RVEF have been developed, notably,
the RV fractional area change (FAC), which is based on apical
four-chamber area measurements of RV end-diastolic and RV
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TABLE 1 | Basic tools for right ventricular function assessment: Advantages, disadvantages, and sources.

TTE parameter Advantages Disadvantages Source
RV morphology Assesses RV shape changes and Provides only a global assessment Refs. 14, 15, 16
(dimensions, area, dilation under load (e.g., TR). of the RV, without considering

thickness) intrinsic myocardial function.

TAPSE (Tricuspid Annular
Plane Systolic Excursion)

S’ TDI (Systolic wave,
Tissue Doppler Imaging) of prognosis in right heart

failure.

Simple, reproducible, easy to
obtain, heart rate independent.

Good reproducibility, predictive

Load-dependent, Refs. 14, 15,17, 18,
angle-dependent, only assesses 19
part of RV longitudinal function.

Angle-dependent, not specifically Ref. 22

studied in significant TR.

end-systolic areas (respectively, RVEDA and RVESA). When
expressed as a ratio, RV FAC = (100¥*[RVEDA-RVESA]/RVEDA)
has shown excellent correlation with radionuclide-determined
RVEF [23]. A value <35% is considered abnormal. RV FAC is
almost always measurable and is obtained by tracing the RV endo-
cardium in both systole and diastole from the free wall annulus
to the apex and then back to the interventricular annulus. This
measurement has shown a good correlation with reference RVEF
obtained by MRI [24]. Additionally, RV FAC has shown promising
prognostic value in tricuspid transcatheter edge-to-edge repair
by distinguishing responders from non-responders to the therapy
[25].

Although 2D TTE-derived RVEF may be inappropriate, the
advent of 3D echocardiography has enabled precise measure-
ments of RV volumes in both systole and diastole, allowing for
accurate RVEF calculation. These volumes are well-correlated
with those obtained by cardiac MRI [26, 27]. A 3D RVEF <45% is
considered pathological and is calculated using the formula RVEF
(%) = 100 x (EDV-ESV)/EDV, with end systolic volume (ESV)
and the end diastolic volume (EDV) [28]. The main limitation
of this method included its load dependence and image quality
due to poor acoustic windows. Volume ratios, provide a global
estimate of the RV function. However, they do not provide insight
regarding the myocardium intrinsic contractility, which is crucial
to account for the varying loading conditions of the TR.

Similar to developments for the LV, myocardial strain imaging
appears useful for assessing RV function. Strain imaging describes
the deformations occurring during the cardiac cycle. Right ven-
tricular longitudinal strain (RVLS) is calculated as the percentage
of systolic shortening of the RV wall from the base to the apex and
is expressed with negative values. RVLS is angle-independent and
less load-dependent than the aforementioned parameters. Two
types of RV strain can be identified: The RV global longitudinal
strain (RVGLS) includes six segments (three from the lateral
wall and three from the interventricular septum), while the RV-
free wall strain (RVFWS) is derived only from the three lateral
wall segments. Pathological thresholds are >-21% for RVGLS
and > —23% for RVFWS. [29] These measurements are more
reproducible and less time-consuming than TAPSE, S’ TDI, and
FAC [30].

RVFWS has shown prognostic significance compared to cardiac
CT [31]. It has also demonstrated a strong association with
clinical outcomes (i.e., death or heart failure hospitalizations) in

various stages of severe TR [32-34]. Preserved RV strain is likely
associated with favorable clinical outcomes [35] (Figure 3).

2.4 | The RV’s Interaction With the Left Heart

Of course, the RV is not an isolated entity; it is closely linked
to the LV via the interventricular septum. It is estimated that
the two structures share common muscle fibers, and 20%-40%
of RV ejection force is related to LV fiber action [36]. This leads
to an interest in the interactions between the LV and RV. It is
well-known that significant changes in load can cause flattening
of the interventricular septum [37, 38]. When the RV pressure
exceeds the LV pressure, the septum bows, a phenomenon
observed primarily in cases of excessive early RV filling and
in conditions such as cor pulmonale and RV/LV asynchrony.
This septal flattening, with or without asynchrony, has shown
prognostic significance [12, 39, 40].

In the context of TR, this septal flattening may be related to the
increasing volume overload of the RV. In this case, RV pressure
is lower than one from the LV in early systole but exceeds LV
pressure in late systole. In severe TR, the LV and RV can no
longer eject their volumes effectively. In severe TR, this septal
flattening occurs in both systole and diastole and may result from
pressure or volume overload. Using TTE, systolic septal flattening
is diagnosed by calculating the eccentricity index as a ratio of
LV anterior-posterior diameter and LV septolateral diameter in
the parasternal short-axis view at the papillary muscle level. The
eccentricity index is calculated both in systole and diastole, and
when it is >1.0 in both phases, it indicates RV overload [41, 42].
This index appears to be of interest in detecting patients at risk of
developing a severe functional TR [43].

Data are lacking regarding the prognostic impact of this param-
eter in patients with significant TR. A recent study has demon-
strated reverse remodeling of the septal curvature after T-TEER
therapy, which warrants further attention [44] (Figure 4).

2.5 | RVis Also Coupled to the Pulmonary Artery

The right ventricle-pulmonary artery coupling (RV-PA) is a
recently described marker that relates systolic pulmonary artery
pressure (SPAP) (representing afterload) to the longitudinal
function parameter TAPSE, which is load-dependent when con-
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FIGURE 3 | Systolic function: Global more than longitudinal indices? (A) RV end-diastolic and end-systolic areas are used to calculate RV fractional
area change as a surrogate for RV ejection fraction. (B) Right ventricular longitudinal strain may be of interest as a surrogate marker of local RV

contractility. (C, D) The use of 3D-TTE could help in accurately quantifying volumes and calculating RV ejection fraction without relying on geometric

assumptions of the RV. 3D-TTE, 3D transthoracic echocardiography; RV, right ventricle.

sidered in isolation. This marker has demonstrated prognostic
value in various cardiac conditions, with different thresholds
identified [45, 46].

Initially studied in pulmonary hypertension through invasive
evaluation, RV-PA coupling has been increasingly explored in
patients with TR [47]. An initial threshold of 0.49, later refined
to >0.4 in combination with a dilated RA (>60 mL/m?), has been
identified as a predictor of cardiovascular events in patients with
significant functional TR [48, 49].

This coupling concept appears more functional and less anatom-
ical than usual markers, providing a better prediction of the
progression of significant TR than morphological markers of right
ventricular severity or TR severity. Another study identified a
TAPSE/sPAP threshold <0.31 in patients with RV-PA uncoupling
that correlates with a higher incidence of clinical events during
follow-up [50].

Itisinteresting to consider that a marker of right myocardial func-
tion as RV FWS, which independently predicts events better than
TAPSE, could be even more reliable when combined with the
analysis of pulmonary pressures (which represent a component of
the RV load). Consequently, the RVFWS/sPAP ratio was initially
proposed in pulmonary hypertension and later studied in TR. In

a recent study, Ancona et al. demonstrated that a threshold >0.26
predicted greater event-free survival in patients with severe TR,
whereas a baseline RVFWS/sPAP ratio was <0.34 was associated
with a higher incidence of events [51, 52] (Figure 5).

A limitation of these indices is the reliability and accuracy of TR
maximal velocity in patients with severe TR. Non-invasive (i.e.,
TTE-derived) measurement of SPAP can be misleading when TR
severely alters the pressure dynamics between the right heart
chambers. Despite a correlation of around 0.8 in these patients,
caution is needed to avoid underestimating echocardiographic
pressure compared to invasive measurement [53].

Thus, it is important to consider the right heart as a whole,
including both its upstream and downstream structures, to refine
risk stratification in patients with TR [54].

A promising tool to evaluate non-invasive sPAP is the ratio
between RV forward stroke volume (SV) (i.e., RV SV — regurgitant
volume) and RV end-systolic volume (ESV). A study found that
a ratio >0.4 is associated with favorable prognosis in patients
with significant secondary TR. This may have a stronger
prognostic value than previously described RVPA coupling
indices [55]. Although these measures require further validation
(Table 2).
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FIGURE 4 | Geometry matters: Septal flattening, eccentricity index. (A, B) The use of the eccentricity index: Elliptical shape of the LV (A) compared
to a healthy LV with no elevated RV pressures (B). (C, D) The use of septal curvature to compare a case of increased RV pressures (C) with that of a
healthy patient (D). LV, left ventricle; RV, right ventricle.

FIGURE 5 | Rightventricle-pulmonary artery coupling: Load-independent? TAPSE/SPAP (A) and RV FWS/sPAP (B) are useful for assessing RV-PA
coupling independent of load.

2.6 | Look Upstream: The RA is Also Involved As blood regurgitates into the RA, it is crucial to assess both its

morphology and function. These parameters can be evaluated via
If the RV and the pulmonary system are integral to understanding TTE and are easily accessible. It is recommended to measure the
the pathophysiological and have prognostic implications, it is RA area, considering RA dilatation for values >18 cm?. Notably,
equally important not to overlook the upstream circuit involving ~ normal TTE ranges for RA volume are 25 + 7 mL/m? in men and
the RA. 21 + 6 mL/m? in women [28].

6 of 13 Echocardiography, 2024
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TABLE 2 | Advanced echocardiographic markers for right ventricular assessment: Advantages, disadvantages.

TTE parameter Advantages

Disadvantages Source

RV fractional area Strong correlation with RVEF

change (FAC) measured by CMR, prognostic value
in TR.
3D RVEF (3D RV Allows precise volume
ejection fraction) measurements and accurate RVEF
calculation, well correlated with
CMR
RV strain imaging Angle-independent, reproducible

(RVGLS, RVFWS)
clinical outcomes.

Eccentricity index and

septal flattening assessing significant TR, may
predict progression of functional
TR.
RV-PA coupling Functional assessment of RV-PA
(RV-PA coupling) coupling, accounts for

load-dependence compared to
morphological markers.

measurements, correlated with

Indicator of RV overload, useful in

Load-dependent, limited to the Refs. 23, 24, 25
analyzed segments, not a direct
measure of myocardial

contractility.

Image quality-dependent, requires Refs. 26, 27, 28
good acoustic windows,

load-dependent.

Dependent on equipment and Refs. 29, 30, 31,
operator training, pathological 32,33
thresholds not fully standardized.

Refs. 12, 37, 38,
39,40

Limited prognostic data in TR
context, more research needed for
validation.

Refs. 45, 46, 47,
48, 49

Limited accuracy due to
non-invasive pulmonary artery
pressure measurements, requiring
further validation.

FIGURE 6 | Therightatrium: More than just an upstream participant. The right atrium (RA) is also important; the RA area (A) and strain (reservoir

function) (B) may provide additional prognostic information.

It also appears that the function of the RA, which can be studied
using strain imaging, has a prognostic impact on patients with
significant TR. A study suggests that an impaired right atrial
strain negatively affects the prognosis of patients suffering from
TR [35] (Figure 6). However, the optimal cut-off value of RA
strain in healthy remains heterogeneous and warrants further
investigation.

The RA has gained interest as a marker since secondary TRs have
been categorized into atrial and ventricular phenotypes. This
distinction is clinically important as it helps to clarify the etiology
of the TR and has prognostic implications. As almost 90% of all TR
cases are secondary (i.e., nor primarily involving of the tricuspid
valve itself or cardiac implantable electronic devices related TR),
it is crucial to understand the underlying mechanisms to prevent
and treat this valvular heart disease [56].

2.7 | Several Classifications of Atrial or
Ventricular TR Have Been Proposed [57-61]

A consortium has taken a position to define the criteria for atrial
and ventricular forms of secondary TR, while also acknowledging
the existence of borderline forms.

The defining characteristics of so-called atrial TR include: tri-
cuspid tenting height <9 mm, right mid-ventricular diameter
< 38 mm, preserved RV systolic function (TAPSE >17 mm,
FAC > 35%, TDI S’> 9 cm/s), and preserved left ventricular
function >50% [62].

The size of the RA is not part of the definition as studies are
discordant on this parameter. Therefore, it does not seem to
be the determining factor for classifying a patient in the atrial
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FIGURE 7 | The unconstrained imaging planes of CMR allow for a precise delimitation of the complex RV geometry, making it the gold standard

for RV volume and EF measure.

phenotype [61, 63]. This point needs further investigation, but an
emerging tool using 3D-TTE is the RA:RV volume ratio. A ratio
>1.5 suggests an atrial secondary TR [62, 64].

It is important to adhere to classifying patients with secondary
TR, as this has a significant impact on prognosis. It is known
that patients with atrial secondary TR have a better long-term
prognosis than those with a ventricular phenotype (78% survival
for ASTR vs. 46% for VISR over 10 years in a large series of
patients) [60].

3 | Multimodality Imaging of the RV Function in
TR Patients

Cardiac magnetic resonance (CMR) is the gold standard in
evaluating RV structure and function, particularly in TR. Thanks
to unconstrained imaging planes, CMR allows for the visual-
ization of the entire RV and is well suited to the RV’s complex
geometry, dense myocardial trabeculations, retrosternal position,
and peculiar motion. Its unique ability to cross-check measures
like SV makes it highly accurate and reproducible [65] (Figure 7).

MR imaging-based RVEF provides independent and incremental
prognostic information in patients undergoing corrective surgery
for severe functional TR [66]. Patients with reduced echocar-
diographic TAPSE survive better if CMR RVEF is preserved
[21]. Contemporary CMR data suggests that practical RVEF,
expressing the net pulmonary flow as a fraction of the end-
diastolic volume, is a more robust outcome predictor than RVEF
[67].

RV strain offers a non-invasive window on ventriculoarterial
coupling and can be obtained by MR feature-tracking during the
post-processing of standard cine sequences [68-71]. CMR RV-free
wall longitudinal strain appears to be an early marker of RV dys-
function in severe TR, showing additional prognostic information
over established parameters such as CMR measurements of RV
volumes and RVEF [72].

Despite challenges regarding spatial resolution, CMR-specific
ability to characterize myocardial tissues with late gadolinium
enhancement (LGE) and extracellular volume mapping (ECV)

could provide more information on RV dysfunction and help
implement early TR intervention [73].

Nuclear imaging techniques have historically been the most
widely employed for assessing RV function and allow for pre-
cise ejection fraction and volume quantification at the cost of
low temporal resolution and irradiation [74]. As it is derived
from the difference in count densities in end-diastole and end-
systole, the radionuclide RVEF measure is independent of the
geometric assumption required for other modalities. Both first
pass and equilibrium techniques approaches have been exten-
sively validated [75, 76]. However, in the age of MRI and 3D
echocardiography, the unique advantage of nuclear imaging lies
in the added information about perfusion and metabolism [77,
78]. Alterations in RV metabolism and RV ischemia have been
identified as significant contributors to pulmonary hypertension
[79]. They may allow a comprehensive assessment of RV function
and physiology in patients with significant TR.

Cardiac computed tomography (CCT) offers high spatial resolu-
tion in three dimensions, allowing unlimited multiplanar refor-
mats. Thus, CCT’s anatomical assessment capabilities make it
invaluable for pre-procedural planning of transcatheter tricuspid
valve repair and TR related to congenital diseases [80].

Beyond anatomical information, RV volumes and RV EF mea-
sured by CCT correlate well with those obtained by CMR imaging.
Tanaka et al. used CCT to derive RV EF in symptomatic patients
with severe TR undergoing transcatheter tricuspid valve repair,
offering incremental prognostic information beyond standard
echocardiographic measurements of RV function [25]. Irradia-
tion, limited availability, and the need for iodinated contrast
limit the use of CCT for RV EF evaluation in routine practice.
Nevertheless, RV EF assessment should be considered in all TR
patients undergoing CCT for any purpose [81].

4 | Gapsin Evidence and Future Perspectives

We have seen that the assessment of RV function in the presence
of TR relies on a multiparametric approach, and that there is
no single non-invasive tool that meets the criteria for accessi-
bility while also providing a reproducible and load-independent
evaluation of the RV contractility (Figure 8).
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FIGURE 8 | New perspectives in evaluating RV function in the presence of TR? Upper panel: The use of RV strain imaging (A) combined with

either invasive (B, upper panel) or non-invasive (B, lower panel) pulmonary pressure as a surrogate for RV pressure to obtain RV myocardial work

indices (C) using the software dedicated to the LV. Lower panel: The application of new indices based on the computation of myocardial RV strain

imaging. Each segment can be identified, and curves can be analyzed separately (D, E). Indices such as time to peak or time to pulmonary valve closure

can be obtained. Additionally, we can imagine that strain integral analysis could help to characterize total myocardial contraction (F, bold cyan line)

as the sum of constructive work (F, green area) and wasted work (F, red area). PVC, pulmonary valve closure; PVO, pulmonary valve opening; TVC,

tricuspid valve closure; TVO, tricuspid valve opening.

An interesting tool, initially developed for the LV, could be
the application of myocardial work to the RV. This parameter
represents the different phases of work performed by the cardiac
muscle to ensure blood ejection. It allows for a more physio-
logical and functional assessment of ventricular function than
traditional markers by incorporating the load experienced by the
ventricle. This parameter is also an excellent reflection of the
myocardial oxygen consumption [82, 83].

Although, this parameter can be computed non-invasively in the
LV, the technique has not yet been widely validated in routine
clinical practice for the assessment of the RV function, although
a proof of concept has been undertaken [84, 85]. Small series
on the use of RV myocardial work are emerging, particularly in
pulmonary hypertension or atrial septal defect [86, 87].

The myocardial work can be used to obtain various markers, such
as the RV Global Work Index (mm Hg%), RV Global Constructive
Work (mm Hg%), RV Global Wasted Work (mm Hg%), and RV
Global Work Efficiency (%). These parameters, derived from com-
putations based on segmental myocardial deformation analysis,

provided promising results in the study of the LV and have only
been minimally investigated to study the RV [88].

This parameter is still at an invasive stage, with greater accuracy
achieved when the pressures used to generate the curves from
which the parameters are derived are invasive pressures. More-
over, estimating right-sided pressures poses a challenge in the
case of TR [53].

The variability of pulmonary pressures between the invasive
technique and echocardiographic estimation is an issue that
remains to be studied, but it appears to be a key determinant
of the technique. To overcome this hurdle, another promising
parameter could be the use of strain integrals, which have not
yet been studied in the RV. These parameters, derived from cal-
culations based on segmental myocardial deformation analyses,
have shown promise in the study of the LV but have only been
minimally applied to the RV [89].

Another avenue to overcome the load-dependence that compli-
cates the assessment of RV function in the case of significant
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TR could be the use of dynamic tests. These tests would be
based on the comparison of two different time points where the
patient serves as their own control, and the loading conditions
are deliberately varied (e.g., during exercise or using the handgrip
test). One could even imagine monitoring pressure variations
through non-invasive quantification.

These approaches are still exploratory, and the RV remains
elusive, despite playing a key role in clinical decision-making and
patient prognostication.
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