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Abstract

Axis-driven random walks were introduced by P. Andreoletti and P. Debs [AD23] to provide
a rough description of the behaviour of a particle trapped in a localized force field. In contrast
to their work, we examine the scenario where a repulsive force (controlled by a parameter
α) is applied along the axes, with the hypothesis that the walk remains diffusive within the
cones. This force gradually pushes the particle away from the origin whenever it encounters
an axis. We prove that even with a minimal force (i.e., a small α), the walk exhibits transient,
superdiffusive behaviour, and we derive the left and right tails of its distribution.
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Introduction

In this paper, we explore a random walk on Z2 whose distribution varies depending on the par-
ticle’s location. This study falls within the scope of inhomogeneous random walks, an area with
extensive literature that includes a variety of models. These include, for example, oscillating walks
(see [Kem74] for the pioneering result in one dimension, [VP23] for recent advances, and [KW19]
for extensions to higher dimensions), as well as random walks in static or dynamic random en-
vironments (see [Zei01] and [BHdS+19]). A common characteristic of these models is that they
completely alter the distribution of transition probabilities in comparison to a simple random
walk. In the present work we are interested in a case where a small number of coordinates are
affected by this inhomogeneity, and for which the distribution of the walk depends on its distance
to the origin. Following the idea of the [AD23], we assume that the distribution of the random
walk is only changed on some boundaries which are in our case the axes. This has for consequence
that the problem also relies on random walk on the quarter plane and conditioned to remain on
a cone (see for example [FIM17] , [DW15] and [RT22]). The model we present here is inspired by
the one introduced by [AD23], which itself is a toy model for a particle subjected to a magnetic
field applied along two directions (the axes) with the aim of concentrating this particle in the
vicinity of the origin of the lattice. Here, the problem is inverted: the force is applied from the
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origin outward, and only on the axes, while the particle continues to diffuse simply (like a simple
random walk on Z2) within each of the cones.

One of the questions is then as follows: does a small modification of the distribution on an axis
break the recurrent and diffusive nature of the walk or not ? If so, can the behaviour of the walk
be completely determined ?
Let Z = (Zn, n ∈ N) represent this nearest-neighbour random walk on Z2. We assume that when
Z is located at a vertex on one of the axes, it has a preference to remain on the axis and moves
further away from the origin with a probability governed by a parameter α. Conversely, when the
walk is inside a cone, it behaves like a simple random walk. Additionally, we assume that Z starts
at the coordinate (1, 1).

We simplify now the model by considering only the first quadrant, and we briefly discuss our
expectations for the entire lattice at the end of the paper. Specifically, Z is a simple random walk
on K := {(x, y) ∈ Z2

+ | xy ̸= 0}, meaning that the probabilities of transition writes p(x, x±ei) =
1
4

for all x ∈ K, where ei is a vector of the canonical basis. However, on Kc \ {(0, 0)}, the walk
moves away from the origin in the following way : let α > 0, for all i > 0,

p((i, 0), (i− 1, 0)) = p((0, i), (0, i− 1)) = 0,

p((i, 0), (i, 1)) = p((0, i), (1, i)) =
1

2iα
,

p((i, 0), (i+ 1, 0)) = p((0, i), (0, i+ 1)) = 1− 1

2iα
,

finally, when the walk is at (0, 0), it moves to either (0, 1) or (1, 0), each with probability 1
2 (see

Figure 1: Transition probabilities of Z
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also Figure 1). Notice that, besides the force direction, there exists another nuanced discrepancy
compared to the random walk described in [AD23]. Specifically, we restrict the walk from retracing
its steps back to the origin when it resides on the axis. While this difference does not significantly
affect the behaviour of the walk, it simplifies the computations (see the brief discussion on this
subject in the last section of the paper).

In the sequel, we denote, for any z = (x, y) ∈ Z2
+, and any process U , Pz() = P(|U0 = z) and we

omit z when z = (1, 1), we do the same for the expectation Ez(). The main result of this paper
concerns the dominant coordinate of Z at the instant n, that is Zn where for every z = (x, y) ∈ Z2,
z := max(x, y) :

Theorem 1. Assume 0 < α < 1/2, for any small a > 0

lim
n→+∞

P(Zn ≤ an
1

2(1−α) ) = c2

( a

c1

) 1−α
2
,

where c1 = (2(1− α))(1−α)−1, c2 = 8/
√
π, and

lim
n→+∞

P(Zn ≥ a−1n
1

2(1−α) ) = G1/2

((c1

a

)2(1−α)
)
,

where G1/2 is a 1/2-stable distribution such that ea−1/2G1/2(a) → 0 when a → 0.

Note that as α > 0, the walk is superdiffusive and this behaviour arises from the dynamics
along the axis. However the exponent 1/2, which also appears in the normalisation of Zn, comes
from the diffusive part on the cones. Indeed, the behaviour of Zn is significantly influenced by
the number of excursions of the walk on the axes, which is related to the diffusive part. Thus, we
can say that the diffusive component, rather than retaining the particle, amplifies the divergence
of the walk, which is far from intuitive. It turns out that this number of excursions between the
axes and the cone is very close to the one of the simple random walk on the half-plane. This also
explains the appearance of the 1/2-stable distribution.
More precisely let us introduce the following stopping times for Z, we denote X the first coordinate
of Z and Y the second, that is Z = (X,Y ), for any i ∈ N∗,

ηi := inf{k > ρi−1, Xk · Yk = 0}, ρi := inf{k > ηi, Xk · Yk ̸= 0},

that is respectively the i-th exit and entrance times on one axis. Also we assume ρ0 := 0 and
denote η := η1. Then if Nn := max{k, ρk ≤ n} we prove, for example, that for any small u > 0,
limn→+∞ P(Nn ≤ n1/2u) = c2u

1/2 (which is the same as for the simple random walk on the half-
plane). Conversely the random variable Zρm satisfies a law of large number which normalisation
is m(1−α)−1 .
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The overall result proves that even with a weak repulsion parameter (α can be taken as small as
we want), the walk is strongly influenced by its distribution on the axes. In particular, comparing
to the simple random walk on the first quadrant with reflecting boundary on the axes, it is
not diffusive and no longer recurrent. This latter fact comes from the observation that the only
possibility for recurrence is that the walk can reach back the origin by diffusing on the cones.
Unfortunately, diffusive behaviour alone is insufficient to counteract the superdiffusive behaviour
caused by the actions along the axes (see figure 3 at the end of the paper for a visual representation
of a typical trajectory).
Let us conclude with a final remark on the behaviour of Z. Our main theorem focuses on Z, as
this is the variable that exhibits the key characteristics under consideration. However, during the
proof of this theorem (specifically in the proof of Lemma 2.1), we also demonstrate that the time
spent by the walk on the axis remains negligible compared to n, similar to the case of a simple
random walk within a cone. This shows that inside the cone, the walk still performs a diffusive
behaviour. This means in particular that the correct normalisation for min(Xn, Yn) should be√
n. This also proves that axis-driven random walks exhibit great behavioural richness. Indeed,

we observe both superdiffusive behaviour here, while in [AD24], a recurrent and sub-diffusive case
is shown to appear. And this diversity of behaviours arises even though we have only studied a
small number of cases.

The paper is organized as follows. In Section 1, we prove a law of large numbers for the sequence
(Zρi , i). The proof is based on the analysis of the first and second moments of (Zρi − Zηi , i),
whose computations are postponed to Section 3. In Section 2, we prove the theorem using the
aforementioned law of large numbers along with a study of the number of excursions of Z to
the axis before a given time n. Finally, in the last section, we discuss some potential extensions,
particularly for α ≥ 1/2. We also explain why the study of this walk on the entire lattice cannot
be directly derived from this work.

1. A law of large number

In this section, we outline the main steps of the proof regarding the behaviour of the sequence
(Zρi , i). This sequence is actually a sub-martingale with respect to its natural filtration which
diverges almost surely to infinity when i → +∞ (see Section 3.2). To obtain the more precise
result presented below, we consider two main facts. First, we establish that E(Zρi) (almost)
satisfies a recurrence relation, which allows us to derive the asymptotic behaviour of E(Zρi) (also
the subject of Section 3.2). Additionally, we examine the behaviour of the covariance of the
sequence (Zρi − Zηi , i) (discussed in Section 3.3).
The main result of this section is the following
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Proposition 1.1. Assume 0 < α < 1/2, when i → +∞ in probability

Zρi

i
1

(1−α)

→ c1 ,

where c1 = (2(1− α))1/(1−α).

We decompose Zρi as follows

Zρi =

i∑
j=1

(Zρj − Zηj ) +

i∑
j=1

(Zηj − Zρj−1). (1)

This decomposition relies on the fact that Zρi is mainly driven by the part along the axis, that is,∑i
j=1(Zρj −Zηj ). The proof of the proposition is then primarily based on the study of asymptotic

behaviour for large i of
∑i

j=1 E(Zρj − Zηj ) and the estimation of the covariance of the sequence

(Zρj − Zρj−1 , j). Also we prove that the sum
∑i

j=1(Zηj − Zρj−1) is small compared to i
1

1−α . Let
us resume the main technical estimates we use here (all of them are proved in Section 3), first in
Corollary 3.6 we prove the following asymptotic

lim
i→+∞

i−1/(1−α)
i∑

j=1

E(Zρj − Zηj ) = c1 , (2)

this delivers the correct asymptotic and the constant which appears in the Proposition. We also
control the sum

∑i
j=1(Zρj − Zηj ) using a second moment, this is possible because the incre-

ments (Zρj − Zηj ) have nice second moments (when α < 1/2) and therefore exhibit only slight
correlations. So in Proposition 3.8, we prove that

lim
i→+∞

i−(2α+2)/(1−α)E
(( i∑

j=1

(Zρj − Zηj )− E(Zρj − Zηj )
)2)

= 0. (3)

This implies that in probability i−1/(1−α)
∑

j≤i(Zρj−Zρj ) behaves like i−1/(1−α)
∑

j≤i E(Zρj−Zρj )
which itself behaves like c1 by (2).

Finally we prove that
∑i

j=1(Zηj − Zρj−1) is negligible comparing to i1/(1−α). For that just
note that |

∑i
j=1(Zηj − Zρj−1)| ≤

∑i
j=1 |Zηj − Zρj−1 | and E(|Zηj − Zρj−1 |) = E(EZρj−1

(|Zη −
Zρj−1 ||Zρj−1)) ≤ cste, where the last inequality comes from Lemma 3.2. This implies, by using
the Markov’s inequality, for any ϵ > 0 such that 1/(1− α)− ϵ > 1,

P
(∣∣∣ i∑

j=1

(Zηj − Zρj−1)
∣∣∣ > i1/(1−α)−ϵ

)
≤ i−1/(1−α)+ϵ

i∑
j=1

cste → 0. (4)
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2. Convergences in law (proof of the theorem)

This section is devoted to the proof of Theorem 1 so we always assume that 0 < α < 1/2 in this
section.

2.1. Preliminaries (an elementary coupling)

In this first section, we show that after a small amount of time compared to n, the walk has chosen
an axis (horizontal or vertical) and then will not reach the other axis at least before the instant
n. Of course, the walk still oscillate between the interior of the cone and the chosen axis (in fact
only in the case α ≥ 1 the walk can stay on the axis for ever, see Section 4).

Lemma 2.1. For any 0 < ϵ < 1, limn→+∞ P({∀j ∈ [n1−ϵ, n], Xj = 0} or {∀j ∈ [n1−ϵ, n], Yj =
0}) = 1.

Proof. We rely on two key arguments. First, the number of excursions to the axes for this random
walk behaves similarly to that of a simple random walk in the quarter plane and is of order
n1/2. Second, by Proposition 1.1, within these n1/2 excursions, the walk can reach a coordinate
at a distance n1/[2(1−α)] ≫ n1/2 from the origin. Consequently, since the fluctuations within the
interior of the cone are of order n1/2 (up to time n), the walk starting from this significantly
distant coordinate (n1/[2(1−α)]) is unlikely to return to the opposite side (i.e., the other axis). We
now provide further details.
First, we explain why the number of excursions to the axis of Z before time n, denoted as Nn :=
max{k > 0 : ρk ≤ n}, remains almost the same as for the simple random walk on the quarter
plane (with no constraint at all). For this latter random walk, the transition probabilities are
the same as for Z everywhere except on the axis, where it has a probability of 1/4 to move
forward or backward, and 1/2 to leave the axis. So note first that the local time on the axis of Z
before the instant n remains far below n. Indeed, for a given i, the local time on the axis before
ρi can be expressed as

∑i
m=1(ρm − ηm − 1) =

∑i
m=1(Zρm − Zηm). Then, for any ϵ, we have

P
(∑i

m=1(ρm − ηm − 1) > i
1

1−α
+ϵ
)

≤ E
(∑i

m=1(Zρm − Zηm)
)
i−

1
1−α

−ϵ ∼ const · i
1

1−α · i−
1

1−α
−ϵ,

where the last equivalence comes from (30). So if we consider a number of excursions to the axis
of order n1/2 (this value is by definition smaller for Z than for the simple random walk on the
quarter plane which is itself of order n1/2), the total amount of time spent by Z during these
excursions on the axis is at most of order n

1
2(

1
1−α

+ϵ). Since α < 1
2 , ϵ can be chosen such that

n
1
2(

1
1−α

+ϵ) = o(n). This implies that the local time of Z during the first n steps in the interior
of the cone is approximately n − o(n), which implies that the number of excursions to the axes
(which depends on the trajectories in the interior of the cone) remains of order n1/2, similar to
the simple random walk on the quarter plane. Note that in the following section, we will provide
a more precise result for Nn (the number of excursion to the axes of Z until the instant n).
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This first step shows that for any δ > 0, with a probability close to one, Nn ≥ n1/2−δ/2. In a second
step, we use Proposition 1.1, which states that with a large probability ρn1/2−δ/2 ≥ n(1−δ)/[2(1−α)],
moreover δ can be chosen such that (1− δ)/[2(1−α)] > 1/2. This implies that, with a probability
close to one, before the instant n, Z will reach a coordinate that is at least n(1−δ)/[2(1−α)] distant
from the origin. However, since the only possibility for the random walk to move backward from
this distant coordinate is to do so within the interior of the cone, and given that the walk is only
diffusive within this cone, it becomes impossible for it, with a probability converging to one, to
make a move of order n(1−δ)/[2(1−α)] before the instant n. To conclude the proof, note that with
a probability converging to one, the n1/2−δ excursions to the axis will be achieved within a time
frame of n1−ϵ, even if it requires adjusting ϵ according to δ.

This last lemma tells that Z choose at some point a direction, let say the horizontal axis, and
from this instant and until the instant n (at least) it will never reach again the other direction
(the vertical axis here). With this in mind we introduce a new random walk Z := (X ,Y), which
has the following probabilities of transition when it is on an axis (see also Figure 2): for any i > 0

pZ((i, 0), (i+ 1), 0) = 1− pZ((i, 0), (i, 1)) = 1− 1/2iα,

pZ((0, i), (1, i)) = 2pZ((0, i), (0, i− 1)) = 2pZ((0, i), (0, i+ 1)) = 1/2,

pZ((0, 0), (0, 1)) = pZ((0, 0), (1, 0)) = 1/2,

and which has the simple random walk probabilities of transition (1/4 in every directions) in the
interior of the cone. So typically the random walk Z is subject to the α-force on the horizontal

Figure 2: Transition probabilities Transition probabilities of Z
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axes, it has a reflecting barrier on the vertical axis and is a simple random walk elsewhere.
The previous result shows that we can establish a simple coupling between Z and Z. This coupling
is constructed as follows: for any 1 > ϵ > 0 and for any k between the instants n1−ϵ and n, we
have Zk = Zk. Such a coupling exists thanks to Lemma 2.1.
The next step is to obtain the asymptotic in i of ρZi := inf{k > ηZi ,Yk = 1} where ηZi := inf{k >
ρZi−1,Yk = 0}, with ρZ0 = 0 and NZ

n := max{k > 0, ρZk ≤ n}. Also we denote ηZ := ηZ1 .

2.2. The number of excursions on the axes until the instant n

We start with the study of the asymptotic of ρZm, from which we deduce the left tail of NZ
n :=

max{k > 0, ρZk ≤ n}, then we consider its right tail.

Proposition 2.2. For the Skorokhod J1-topology, when i → +∞

(
ρZ⌊ti⌋

i2
, t)

L−→ (V1/2(t), t), (5)

V1/2(t) is 1/2-stable Lévy subordinator with Lévy triple (0, 0, v1/2) with v1/2(dt) = c2t
−3/21t>0dt

and recall c2 = 8/
√
π.

Proof. Let us decompose ρZi as ρZi =
∑i

j=1(ρ
Z
j − ηZj ) +

∑i
j=1(η

Z
j − ρZj−1). By symmetry and the

strong Markov property, the random variables (ηZj − ρZj−1)j are independent and have the same
law as the random variable ηZ , for which uniformly in z = (x, 1), for any u > 0

lim
m→+∞

m1/2Pz(η
Z > mu) = c2u

−1/2. (6)

So
∑i

j=1 η
Z
j −ρZj−1 is equal in law to Hi :=

∑i
j=1 η

(j), where for any j, η(j) is an independent copy

of ηZ , so we have the convergence in law with respect to the J1-topology, of the process (
H⌊ti⌋
i2

, t)

toward (V1/2(t), t). We are left to prove that the sum
∑i

j=1(ρ
Z
j − ηZj ) is negligible comparing

to i2, by definition
∑i

j=1(ρ
Z
j − ηZj − 1) =

∑i
j=1(Xρj − Xηj ) moreover this random variable is

stochastically dominated by
∑i

j=1(Zρj − Zηj ) and we know from (30) that the mean of this last
random variable is of order i1/(1−α), this implies that in probability

∑i
j=1(Zρj −Zηj ) and therefore∑i

j=1(ρ
Z
j − ηZj ) is smaller than i1/(1−α)+ϵ for an ϵ > 0 as small as needed, but as α < 1/2 we can

choose ϵ in such a way that i1/(1−α)+ϵ = o(i2).

In the corollary below we state the left and right tails for the number of excursions NZ
n before the

instant n.

Corollary 2.3. For any small u > 0, limn→+∞ P(NZ
n ≤ n1/2u) = c2u

1/2 and limn→+∞ P(NZ
n ≥

n1/2u−1) = G1/2(u), where c2 and G1/2 is defined in Theorem 1.
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Proof. For the first equality, note that P(NZ
n ≤ n1/2u) = P(ρZ⌊n1/2u⌋ ≥ n) and apply Proposition

2.2. For the second, recall that in the proof of Proposition 2.2, we showed that for any i, ρZi can
be approximated by

∑i
j=1(η

Z
j − ρZj−1). Moreover, this sum is equal in law to Hi :=

∑i
j=1 η

(j),
where (η(j), j) are independent copies of ηZ . Now let N∗

n := sup{i > 0,
∑i

j=1 η
(j) ≤ n}. A

usual result (see (5.1) in chapter XI.5 and Theorem 2 in chapter XIII.6 of [Fel68]) shows that
P(N∗

n ≥ n1/2u−1) → G1/2(u). This implies the result for NZ
n .

2.3. Convergence of the random walks Z

In this section, we prove a result very similar to Theorem 1 but for the coordinate X of Z, then
by the way of the coupling discussed at the end of Section 2.1 this leads directly to Theorem 1.

Proposition 2.4. For any small a > 0,

lim
n→+∞

P(Xn ≤ an
1

2(1−α) ) = c2(a/c1)
(1−α)/2,

and
lim

n→+∞
P(Xn ≥ a−1n

1
2(1−α) ) = G1/2

((c1

a

)2(1−α)
)
.

Proof. Let ϵ > 0 introduce

Cϵ,n := {|Xn −XρZ
NZ
n

| > ϵn(2(1−α))−1},

Dϵ,n := {|XρZ
NZ
n

− c1(N
Z
n )(1−α)−1 | > ϵc1(N

Z
n )(1−α)−1}.

Assume for the moment that the following result is true : limn→+∞ P(Cϵ,n ∪ Dϵ,n) = 0. This
implies that the last excursion before n will not affect the normalisation of Xn and that XρZ

NZ
n

can

be approximated by c1(N
Z
n )(1−α)−1 . We start with the left tail :

P(Xn ≤ an(2(1−α))−1
) ≤ P(Xn ≤ an(2(1−α))−1

, Cc
ϵ,n) + o(1) ≤ P(XρZ

NZ
n

≤ an(2(1−α))−1
(1 + ϵ)) + o(1)

= P(XρZ
NZ
n

≤ an(2(1−α))−1
(1 + ϵ), Dc

ϵ,n) + o(1)

≤ P(c1(N
Z
n )(1−α)−1

(1− ϵ) ≤ an(2(1−α))−1
(1 + ϵ)) + o(1)

= P(NZ
n /n1/2 ≤ (a/c1)

1−α((1 + ϵ)/(1− ϵ))(1−α)) + o(1)

Using the left tail in Corollary 2.3, we obtain the upper bound. The lower bound is obtained
similarly with no additional difficulty. The proof of the right tail follows the same line and uses
the right tail of Corollary 2.3.
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To finish we prove separately that both probabilities P(Cϵ,n) and P(Dϵ,n) converge to 0. For that
we need the following preliminary result :

Lemma 2.5. There exists c > 0 such that, for any ϵ > 0, limn→+∞ P(Eϵ,n := {n− ρZ
NZ

n
≤ ϵn}) =

cϵ1/2.

Proof. We have already manipulated the idea of the proof in both Proposition 2.2 and Corollary
2.3. In the proof of Proposition 2.2 we have showed that for any i, ρZi can be approximated
by

∑i
j=1(η

Z
j − ρZj−1), moreover this sum is equal in law to Hi :=

∑i
j=1 η

(j) where (η(j), j) are
independent copies of ηZ such that for any b > 0 and large m, P(η > bm) ∼ c2(bm)−1/2. Also recall
that N∗

n := sup{i > 0,
∑i

j=1 η
(j) ≤ n}, then a usual result (the arcsinus law, see for example [Fel68]

chapter XIV.3, page 447) tells that limn→+∞ P(n−HN∗
n
≤ ϵn) = 1

π

∫ ϵ
0 u−1/2(1−u)−1/2du = cϵ1/2.

This proves the Lemma.

We now prove that the event Cϵ,n is unlikely to occur.

Lemma 2.6. limϵ→0 limn→+∞ P(Cϵ,n) = 0.

Proof. First we have to ensure that Xρ
NZ
n

is not too large, that is to say smaller than n1/2(1−α)−1+ϵ

for any positive ϵ. This fact is actually a consequence of Proposition 1.1, Corollary 2.3 and Lemma
2.5. Let us give some details : by Corollary 2.3 and Lemma 2.5

P(XρZ
NZ
n

> n1/2(1−α)−1+ϵ) =∑
j≤An1/2

∑
x,x≥n1/2(1−α)−1+ϵ

∑
k≤n−ϵn

P(XρZj
= x, ρZj = k)Pz(ρ

Z
1 > n− k) + o(1) + cϵ1/2,

where z = (x, 1). For any k ≤ n− ϵn, the tail Pz(ρ
Z
1 > n− k) is supported by the first exit time

from the cone (the part on the axis is actually exponentially decreasing, see the distribution of
ρ at the beginning of the proof of Lemma 3.1 and n − k ≥ ϵn), so Px(ρ

Z
1 > n − k) ∼ Px(η

Z >
n− k) ≤ C(n− k)−1/2 (see (6)) for a given constant C :

P(XρZ
NZ
n

> n1/2(1−α)−1+ϵ)

=
cst

(ϵn)1/2

∑
j≤An1/2

∑
k≤n−ϵn

P(XρZj
> n1/2(1−α)−1+ϵ, ρZj = k) + o(1) + cϵ1/2

≤ cstA

(ϵ)1/2
max

j≤An1/2
P(XρZj

> n1/2(1−α)−1+ϵ) + o(1) + cϵ1/2

which converges to zero when n goes to infinity by Proposition 1.1 (we use that X is stochastically
dominated by Z). We are now ready to prove the lemma.
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By Corollary 2.3, Lemma 2.5 and the above upper bound for XρZ
NZ
n

P(Cϵ,n) ≤

1
ϵ
n1/2∑
j=1

∑
x,x≤n1/2(1−α)−1+ϵ

∑
k≤n−ϵn

P(XρZj
= x, ρZj = k)

× Pz(|Xn−k − x| > ϵn(2(1−α))−1
, ρZ1 > n− k) + cϵ1/2 + o(1).

We decompose the last probability into two, in one part we assume that for any 0 ≤ m ≤ n− k,
Zm is in the cone whereas the other one that Zn−k belongs to the horizontal axis :

Pz(|Xn−k − x| > ϵn(2(1−α))−1
, ρZ1 > n− k)

≤ Pz(|Xn−k − x| > ϵn(2(1−α))−1
, ηZ > n− k)

+ Pz(|Xn−k − x| > ϵn(2(1−α))−1
, ηZ ≤ n− k, ρZ1 > n− k).

For the first probability, under η > n− k, (Xm,m ≤ n− k) is a simple random walk on the cone.
Moreover as α > 0 and as we work under the probability measure Pz we ask this simple random
walk to make a fluctuation larger than n(2(1−α))−1 which is way greater than (n− k)1/2, so there
exists c′ such that

P(|Xn−k − x| > ϵn(2(1−α))−1
, ηZ > n− k) ≤ e−c′ϵ2n(1−α)−1

(n−k)−1 ≤ e−c′ϵ2nα/(1−α)
. (7)

To address the second probability, it is important to observe that for the walk (under the event
{ηZ ≤ n−k, ρZ1 > n−k− l}) to exhibit a behaviour like Xn−k−x < −ϵn(2(1−α))−1 , this has to be
during the excursion on the cone, because indeed the walk is increasing on the axis. So similarly
as above

Pz(Xn−k − x < −ϵn(2(1−α))−1
, ηZ ≤ n− k, ρZ1 > n− k) ≤ e−c′ϵ2nα/(1−α)

. (8)

The last event to be treated {Xn−k − x > ϵn(2(1−α))−1} is some more delicate. It seems that we
have no choice but to decompose this event based on the values of the pair (ηZ ,XηZ )

Pz(Xn−k − x > ϵn(2(1−α))−1
, ηZ ≤ n− k, ρZ1 > n− k)

=

n−k−1∑
l=1

∑
y

Pz(η
Z = l,XηZ = y)P(y,0)(Xn−k−l − x > ϵn(2(1−α))−1

, ρZ > n− k − l), (9)

where ρZ = inf{k > 0,Yk = 1}. We decompose the sum on y into two, either y is such that
y − x > ϵn(2(1−α))−1

/2 or not. In the case y − x > ϵn(2(1−α))−1
/2 (which implies that the effort is

11



carried out by the walk on the cone), we have again

n−k−1∑
l=1

∑
y,y−x>ϵn(2(1−α))−1

/2

Pz(η
Z = l,XηZ = y)P(y,0)(Xn−k−l − x > ϵn(2(1−α))−1

, ρZ > n− k − l)

≤
n−k−1∑
l=1

∑
y,y−x>ϵn(2(1−α))−1

/2

Pz(η
Z = l,XηZ = y) ≤ Pz(XηZ − x > ϵn(2(1−α))−1

/2, ηZ ≤ n− k − 1)

≤ e−c′ϵ2nα/(1−α)
. (10)

where the last inequality comes, as before, from the fact that the probability for a diffusion process
to fluctuate more than the square root of its time is exponentially decreasing. Otherwise when
y − x ≤ ϵn(2(1−α))−1

/2 (here the effort is carried out by the trajectory on the axis) :

n−k−1∑
l=1

∑
y,y−x<ϵn(2(1−α))−1

/2

Pz(η
Z = l,XηZ = y)P(y,0)(Xn−k−l − x > ϵn(2(1−α))−1

, ρZ > n− k − l)

≤
∑

y,y−x<ϵn(2(1−α))−1
/2

Pz(XηZ = y)P(y,0)(XρZ − x > ϵn(2(1−α))−1
),

where the last inequality comes from the fact that the walk is increasing on the axis. We now
refer to the proof of Lemma 3.1 for the distribution of XρZ (the distribution of XρZ is actually
the same than the one of Zρ), we obtain

P(y,0)(XρZ − x > ϵn(2(1−α))−1
) =

x+ϵn1/(2(1−α))∏
m=y

(1−m−α/2) ≤
x+ϵn1/(2(1−α))∏

m=x+ϵn1/(2(1−α))/2

(1−m−α/2)

∼ e
− 1

2(1−α)
((x+ϵn1/(2(1−α)))1−α−(x+ϵn1/(2(1−α))/2)1−α)

Then if x ≤ ϵn1/(2(1−α)), there exists a constant c > 0 such that P(y,0)(XρZ − x > ϵn(2(1−α))−1
) ≤

e−cϵxnα/(2(1−α)) , otherwise P(y,0)(XρZ−x > ϵn(2(1−α))−1
) ∼ e−

ϵ
2
x−αn(2(1−α))−1

and as x ≤ n(2(1−α))−1+ϵ,
P(y,0)(XρZ − x > ϵn(2(1−α))−1

) ≤ e−n1/2−αϵ . So
∑

y,y−x<ϵn(2(1−α))−1
/2
Pz(XηZ = y)P(y,0)(XρZ − x >

ϵn(2(1−α))−1
) ≤ e−n1/2−αϵ . This last upper bound together with (10) and (9), yields that there

exists a constant c′ such that Pz(Xn−k − x > ϵn(2(1−α))−1
, ηZ ≤ n− k, ρZ1 > n− k) ≤ e−nc′ . This

together with (7) and (8) back in the decomposition of P(Cϵ,n), yields the Lemma.

We conclude this section with a Lemma and a remark summarizing the theorem’s proof.
12



Lemma 2.7. For any ϵ > 0,

lim
n→+∞

P(Dϵ,n) = 0. (11)

Proof.
Like for the proof of Proposition 1.1, we decompose XρZ

NZ
n

=
∑NZ

n
m=1(XρZm

−XηZm
) +

∑NZ
n

m=1(XηZm
−

XρZm−1
).

Assume for the moment that Σ′
NZ

n
:=

∑NZ
n

m=1XηZm
−XρZm−1

= o((NZ
n )(1−α)−1

), so we only prove

that (11) is still true if we replace XρZ
NZ
n

by
∑NZ

n
m=1(XρZm

−XηZm
) =: ΣNZ

n
: let A > 0 large and

introduce the interval Jn := (A−1n1/2, An1/2), let ϵ > 0 using Lemma 2.5 and Corollary 2.3 and
strong Markov property

P(|ΣNZ
n
− c1(N

Z
n )(1−α)−1 | > ϵc1(N

Z
n )(1−α)−1

)

≤P(|ΣNZ
n
− c1(N

Z
n )(1−α)−1 | > ϵc1(N

Z
n )(1−α)−1

, Eϵ,n, N
Z
n ∈ Jn) +O(ϵ1/2) +O(A−1/2)

=
∑
j∈Jn

∑
x

∑
k≤n−ϵn

P(|Σj − c1j
(1−α)−1 | > ϵc1j

(1−α)−1
,XρZj

= x, ρZj = k)×

Pz(ρ
Z
1 > n− k) +O(ϵ1/2) +O(A−1/2).

As we have already see in the proof of Lemma 2.6 the tail Pz(ρ
Z
1 > n−k) is supported by the first

exit time from the cone so Pz(ρ
Z
1 > n− k) ∼ Pz(η

Z > n− k) ≤ C(n− k)−1/2 and as k ≤ n− ϵn,

P(|ΣNZ
n
− c1(N

Z
n )(1−α)−1 | > ϵc1(N

Z
n )(1−α)−1

)

≤ (ϵn)−1/2
∑
j∈Jn

P(|Σj − c1j
(1−α)−1 | > ϵc1j

(1−α)−1
, ρZj ≤ n)

then by using the coupling with Z (see Section 2.1), (30), and (3) we obtain that P(|ΣNZ
n

−
c1(N

Z
n )(1−α)−1 | > ϵc1(N

Z
n )(1−α)−1

) → 0.
We are left to prove that in probability Σ′

NZ
n

is small comparing to (NZ
n )(1−α)−1 , we start similarly

as above : using Lemma 2.5 and Corollary 2.3

P(|Σ′
NZ

n
| > ϵc1(N

Z
n )(1−α)−1

)

=
∑
j∈Jn

∑
x

∑
k≤n−ϵn

P(|Σ′
j | > ϵc1j

(1−α)−1
,XρZj

= x, ρZj = k)Px(ρ
Z
1 > n− k) + o(1)

≤ 1

(ϵn)1/2

∑
j∈Jn

P(|Σ′
j | > ϵc1j

(1−α)−1
) + o(1). (12)
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The sum |Σ′
j | = |

∑j
m=1XηZm

−XρZm−1
| is stochastically dominated by

∑j
m=1X

(m)

ηZ
where X (m)

ηZ
are

independent copies of XηZ under the probability distribution P(|Z0 = (0, 1)). Also let 0 < β < 1,
we obtain :

P(Σ′
j > ϵc1j

(1−α)−1
) = P(|

j∑
m=1

X (m)

ηZ
| > ϵc1j

(1−α)−1
) ≤

j∑
m=1

E((X (m)

ηZ
)β)(ϵc1j

(1−α)−1
)−β.

Then, let us note that XηZ is simply the simple random walk in the half-plane, stopped when
it touches the horizontal axis. So a local limit result for for XηZ writes : for large r, P(XηZ =

r|X0 = (0, 1)) ∼ cst · r−2. This implies that E(|X (m)

ηZ
|β) is well bounded, so P(Σ′

j > ϵc1j
(1−α)−1

) ≤
cst(ϵc1)

−βj−β(1−α)−1+1. Then as α > 0, we can choose a β with our constraints such that −β(1−
α)−1 + 1 < 0. Replacing this upper bound in (12), we finally obtain P(Σ′

NZ
n
> ϵc1(Nn)

(1−α)−1
) ≤

cst · ϵ−1−βAn1/2(−β(1−α)−1+1) which converges to zero.

Theorem 1 is a consequence of Proposition 2.4 together with Lemma 2.5 and the comments that
follow.

3. The moments of Xρi and Xηi

In the first section below, we study the moments of Zρ (with ρ := inf{m > 0, Xm · Ym > 0}),
Zη, and Zρ1 . Then, we apply these results to analyze the asymptotics of E(Zρi) and E(Zηi) as i
increases. Note that some of these estimates remain valid under the weaker condition 0 < α < 1,
so we explicitly state the assumptions on α throughout this section.

3.1. Elementary moments

In this paragraph, we study the dominant coordinate of the walk after a single excursion.

Lemma 3.1. Assume 0 < α < 1, for any z = (x, 0) or z = (0, x) with x positive and large,

Ez(Zρ) = x+ 2xα − 3

2
− 1

6

1

xα
+O

( 1

x2α

)
. (13)

For any β ≤ 2,

Ez(Z
β
ρ ) = xβ + 2βxβ−1+α +O(xβ−1). (14)

Proof. First, note that for any z, the expression of Ez(Zρ) can be written explicitly; however, the
hypothesis x large simplifies its expression. For any β, Ez((Zρ)

β) = Ez((x+ρ−1)β). When β = 1,
we just have to compute Ez(ρ), for which we use the equality Pz(ρ > k) =

∏k
m=0

(
1 − 1

2(x+m)α

)
.

14



Moreover, for large x, and k ≤ xα+ϵ with ϵ > 0 small enough so that α + ϵ < 1,
∏k

m=0

(
1 −

1
2(x+m)α

)
= e−

k
2

(
1
xα

+ 1
4x2α

+ 1
12x3α

+O
(

1
x4α

))
. This implies that

Ez(ρ1ρ≤xα+ϵ)

=
∑

k≤xα+ϵ

e−
k
2
( 1
xα

+ 1
4x2α

+O( 1
x3α

)) =
(
1− e−

1
2
( 1
xα

+ 1
4x2α

+ 1
12x3α

+O(( 1
xα

)4)
)−1

+O(x2αe−xϵ/2
)

= 2xα − 1

2
− 1

6

1

xα
+O

(
x−2α

)
.

To finish we have to prove that Ez(ρ1ρ>xα+ϵ) is negligible comparing to the above expression,

for that just note that
∏k

m=0

(
1 − 1

2(x+m)α

)
≤ e

− 1
2(1−α)

((x+k)1−α−x1−α), which implies that there

exists a constant c > 0 such that, Ex(ρ1ρ>xα+ϵ) ≤ e−c((x+xα+ϵ)1−α−x1−α) ≤ e−xϵ/2 so we obtain
the result. The moment of order β can be treated quite similarly, indeed :

Ez((x+ ρ− 1)β) = Ez((x+ ρ− 1)β1ρ≤xα+ϵ) + Ez((x+ ρ− 1)β1ρ>xα+ϵ), (15)

where like for the first moment just the first term count. So let us focus on this one :

Ez((x+ ρ− 1)β1ρ≤xα+ϵ) = xβEz((1 + (ρ− 1)/x)β1ρ≤xα+ϵ)

= xβPz(ρ ≤ xα+ϵ) + βxβ−1Ez(ρ1ρ≤xα+ϵ) +
1

2
β(β − 1)xβ−2Ez(ρ

21ρ≤xα+ϵ)

+O(xβ−1) +O(xβ−3Ez(ρ
31ρ≤xα+ϵ)).

The first two terms have already been treated for the first moment. For the third one just note
that Ez(ρ

21ρ≤xα+ϵ) = −xα+ϵPz(ρ > xα+ϵ) + 2
∑xα+ϵ

k=0 kPz(ρ > k) = 8x2α +O(1). So finally

Ez((x+ ρ− 1)β1ρ≤xα+ϵ) = xβ + 2βxβ−1+α − β

2
xβ−1 − β

6
xβ−1−α + 4β(β − 1)xβ−2+2α +O(xβ−2+α).

Finally for Ez((x+ρ−1)β1ρ>xα+ϵ), we prove similarly as for the first moment that the contribution
is negligible.

We now make the same analysis but for the random variable Zη, where η is the first instant the
walk reach an axis : η = inf{m > 0, Xm · Ym = 0}.

Lemma 3.2. Assume z = (x, 1) or z = (1, x), there exists c3 > 0 such that for large x,

Ez(Zη) = x+ c3 +O(x−1/2). (16)

similarly Ez(|Zη − x|) ∼ c4 with c4 > 0. Moreover for any β < 1, there exists c5 > 0 such that for
any large x,

Ez(Z
β
η ) = xβ + c5x

β−1 +O(xβ−3/2). (17)
15



Proof. Assume z = (x, 1), computations are identical for the other case. Recall that Zη = (Xη, Yη).
For the first statement, we initially assume Yη = 0, and decompose: Ez(Zη, Yη = 0) = xPx(1 ≤
Xη ≤ 2x − 1) +

∑
−x+1≤k≤x−1 kPz(Xη = x + k) +

∑
k≥x Pz(Xη > x + k). The first term yields

xPz(1 ≤ Xη ≤ 2x− 1) = x− xPz(Xη ≥ 2x) = x− c+O(x−1) where c is a positive constant, and
we have used a small extension of the local limit result for Px(Xη = y) proved in Lemma 5.1 in
[AD23]: for any ℓ with ℓ ≤ Ax and A > 0 there exists a positive bounded function c(ℓ/x) which
converges when x → +∞ such that

Pz(Xη > x+ ℓ) ∼ xc(ℓ/x)

(x+ ℓ)2
. (18)

We also recall the following results presented in [AD23], which are useful in the sequel

if ℓ/x → +∞, Pz(Zη = (ℓ, 0)) ∼ 16

π

x

ℓ3
, if ℓ/x → 0,Pz(Zη = (ℓ, 0)) ∼ 16

π

max(ℓ, 1)

x3
, (19)

and for any ℓ > 0, Pz(Yη > ℓ) ≤ cstℓ−2. (20)

For the second term (
∑

−x+1≤k≤x−1 kPz(Xη = x+k)) we have by symmetry that for small η (typ-
ically η smaller than ϵx2, with ϵ > 0 small), the sum vanishes. Otherwise, by using the above local
limit result, we can prove that there exists a constant c′ > 0 such that

∑
−x+1≤k≤x−1 kPz(Xη =

x+ k, η ≥ ϵx2) = c′ +O(x−1). For the last term we use again the above local limit theorem, and
get that there exists c′′ > 0 such that

∑
k≥x Pz(Xη > x+ k) = c′′ +O(x−1). From this we deduce

that Ez(Zη, Yη = 0) = x+ c3 +O(x−1), with c3 = c+ c′ + c′′, note that c3 is necessarily positive
as the walk remains on (Z+)

2, note however that the value of this constant has no importance at
all in the sequel.
For Ez(Zη, Xη = 0) we note that the random walk has to move from a coordinate (x, 1) to a coor-
dinate (0, .) which comes with a certain cost, again with the above local limit results, in particular
(19) and (20),

Ez(Zη, Xη = 0) =
∑

k≤x3/2

Pz(Xη = 0, Yη > k) +
∑

k>x3/2

Pz(Xη = 0, Yη > k)

≤
∑

k≤x3/2

Pz(Xη = 0) +
∑

k>x3/2

Pz(Xη = 0, Yη > k)

≤ cst

x3/2
+

∑
k>x3/2

cst
x

k2
≤ cst

x1/2
.

For Ez(|Zη −x|), just note that, Ez(|Xη −x|) =
∑

k>0 kPz(Xη = x+ k)−
∑

k<0 kPz(Xη = x+ k),
and we proceed similarly as above. Also the case where Zη = Yη under Pz, leads to a negligible
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contribution. For the second statement,

Ez(Z
β
η )

= Ez(Z
β
η1Yη=0) + Ez(Z

β
η1Xη=0)

=
∑

−x+1<k≤x

(x+ k)βPz(Xη = k + x) + Ez(X
β
η 1Xη>2x) + Ez(Y

β
η 1Xη=0)

= xβPz(Xη ≤ 2x) +
∑
k≤x

((x+ k)β − xβ)Pz(Xη = x+ k) + Ez(X
β
η 1Xη>2x) + Ez(Y

β
η 1Xη=0).

The first term, which is equal to xβ −xβPz(Xη > 2x) = xβ − c′xβ−1+o(xβ−1), where the equality
comes from (18) for some constant c′ > 0. We obtain also that the second term is of order xβ−1

again by using (18). The third term Ez(X
β
η 1Xη>2x) = o(xβ−1) is treated similarly. The last term

(Ez(Y
β
η , Xη = 0)) is actually even smaller as the walk has to change of axis (moving from (x, 1)

to something like (0, ·) ).

Lemma 3.3. Assume 0 < α < 1, there exists c > 0 such that for any z = (x, 1) and z = (1, x)
with x > 0 large

Ez(Zρ1) = x+ 2xα + c− 1

6

1

xα
+ o

( 1

xα

)
, (21)

moreover, for any β < 1,

Ez(Z
β
ρ1) =xβ + 2βxβ−1+α +O(xβ−1). (22)

Proof. Let A > 0 large, strong Markov property, yields

Ez(Zρ1) = Ez(EZη(Zρ)) = Ez(EZη(Zρ)1Zη≤A) + Ez(EZη(Zρ)1Zη>A).

Following the idea of the proof of Lemma 3.1, we can get that for any u such that, u ≤ A,
Eu(Zρ) ≤ 2A, so Ez(EZη(Zρ)1Zη≤A) ≤ 2APz(Zη ≤ A) ≤ const · Ax−2, where the last inequality
comes from (19). For the other part we apply (13),

Ez(EZη(Zρ)1Zη>A) = Ez((Zη + 2(Zη)
α − 3/2− (Zη)

−α/6 +O((Zη)
−2α))1Zη>A)

= Ez((Zη + 2(Zη)
α − 3/2− (Zη)

−α/6 +O((Zη)
−2α)))

− Ez((Zη + 2(Zη)
α − 3/2− (Zη)

−α/6 +O((Zη)
−2α))1Zη≤A)

= Ez(Zη + 2(Zη)
α − 3/2− (Zη)

−α/6 +O((Zη)
−2α)) +O(Ax−2).

We are left to evaluate the above mean for which we can apply Lemma 3.2. For (22), we write
Ez(Z

β
ρ1) = Ez(EZη(Z

β
ρ )), then we apply (14) and (17).
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3.2. The asymptotic of the sequence (E(Zρi), i)

In this section we study the moments of (Zρi , i), we begin by discussing some basic facts about
this sequence.

Lemma 3.4. Assume α > 0, (Zρi , i) is a sub-martingale, moreover P(limi→+∞ Zρi = +∞) = 1.

Proof. Let x > 0,

E(Zρi1Zρi−1=x) = E(Zρi1Zρi−1=(x,1)) + E(Zρi1Zρi−1=(1,x)),

by the strong Markov property

E(Zρi1Zρi−1=(x,1))

= E(x,1)(EZη(Zρ))P(Zρi−1 = (x, 1)) = E(x,1)(Zη + EZη(ρ− 1))P(Zρi−1 = (x, 1)).

By definition Zη dominates stochastically the (same stopped) simple random walk on the half plane
instead of the quarter plane. Moreover the mean, starting from x, of this stopped random on the
half plane is equal to x by symmetry, this implies that E(x,1)(Zη) ≥ x. Also, as ρ ≥ 1, EZη(ρ−1) ≥
0. So E(Zρi1Zρi−1=(x,1)) ≥ xP(Zρi−1 = (x, 1)); similarly E(Zρi1Zρi−1=(1,x)) ≥ xP(Zρi−1 = (1, x)).
As P(Zρi−1 = x) = P(Zρi−1 = (x, 1)) + P(Zρi−1 = (1, x)), this implies E(Zρi |Zρi−1 = x) ≥ x,
so (Zρi , i) is a sub-martingale. Moreover the simple random walk on the quarter plane is almost
surely not bounded, and it crosses the axis infinitely many times almost surely, which implies that
almost surely Zρi diverges to +∞ when i → +∞.

In the Proposition below we prove that E.(Zρi−1) almost satisfies a recurrent equation.

Proposition 3.5. Assume 0 < α < 1/2, for any z and large i

Ez(Zρi−1) + 2(Ez(Zρi−1))
α + c− ai−1 ≤ Ez(Zρi) ≤ Ez(Zρi−1) + 2(Ez(Zρi−1))

α + c, (23)

where (ai, i) is a positive sequence which converges to zero when i → +∞ such that ai(Ez(Zρi−1)
2α−1∨

Ez(Z
−α
ρi−1

))−1 is bounded.

Proof. The strong Markov property yields Ez(Zρi) = Ez(EZρi−1
(Zρ1)), then for large i, by Lem-

mata 3.3 and 3.4

−Ez(Z
−α
ρi−1

) ≤ Ez(EZρi−1
(Zρ1))− Ez(Zρi−1)− 2Ez(Z

α
ρi−1

)− c ≤ 0.

We are left to prove that Ez(Z
α
ρi−1

) behaves almost like Ez(Zρi−1)
α. Note that there is nothing to

do for the upper bound thanks to Jensen inequality, so the upper bound in (23) is obtained. For
the lower bound, assume that for a certain index i eventually large

Ez((Zρi−1)
α) ≥ (Ez(Zρi−1))

α − ai−1. (24)
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We now compute Ez((Zρi)
α) and compare it with (Ez((Zρi))

α. First, we apply (22) with β = α,
and then the above assertion,

Ez((Zρi)
α) = Ez(EZρi−1

(Z
α
ρ1)) ≥ Ez(Z

α
ρi−1

) ≥ (Ez(Zρi−1))
α − ai−1. (25)

Similarly, applying (21)

Ez(Zρi) = Ez(EZρi−1
(Zρ1)) ≤ Ez(Zρi−1) + 2Ez(Z

α
ρi−1

) + c. (26)

So an upper bound for (Ez(Zρi))
α, is given by

(Ez(Zρi))
α ≤ (Ez(Zρi−1))

α
(
1 + 2

Ez(Z
α
ρi−1

)

Ez(Zρi−1)
+

c

Ez(Zρi−1)

)α

≤ (Ez(Zρi−1))
α + (2 + c)

(Ez(Zρi−1))
αEz(Z

α
ρi−1

)

Ez(Zρi−1)
≤ (Ez(Zρi−1))

α + (2 + c)(Ez(Zρi−1))
2α−1 (27)

where the last inequality follows from Jensen’s inequality. Now we subtract (25) and (27), we
obtain the lower bound :

Ez((Zρi)
α)− (Ez(Zρi))

α ≥ −ai−1 − (2 + c)(Ez(Zρi−1))
2α−1. (28)

So this proves the lower bound of (23) as by Lemma 3.4, Zρi diverges almost surely toward
+∞.

From the above Proposition, we obtain two Corollaries, the first one concerns, in particular, the
asymptotic in i of the expectation of Zρi .

Corollary 3.6. Assume 0 < α < 1/2, for any fixed x, z = (x, 1) or z = (1, x) and i large

Ez(Zρi) = c1 · (i+ gα · i
1−2α
1−α )

1
1−α + oi(1) (29)

where c1 = (2(1− α))
1

1−α and gα = c
2(c1 )

α . Also,∑
m≤i

Ez(Zρm − Zηm) ∼ c1i
1/(1−α) and Ez(Zηi) ∼ c1i

1/(1−α). (30)

Proof. For (29), let (ui, i) the sequence defined for any i by ui = ui−1 + 2(ui)
α + c, we first check

that asymptotically in i, the sequence vi = c1 · (i + gα · i(1+2α)/(1−α))1/(1−α) is asymptotically
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solution of this recurrent equation. By definition of c1 , and considering large i

vi = c1 · (i− 1)
1

1−α

(
1 +

1

i− 1
+ gα · i

(1−2α)/(1−α)

i− 1

)1/(1−α)

= c1 · (i− 1)
1

1−α +
c1

1− α
· (i− 1)

α
1−α +

c1gα
1− α

i+ c1gα
(1− 2α)

(1− α)2
+O(i−1)

= c1 · (i− 1)
1

1−α + 2(c1)
α · (i− 1)

α
1−α +

c1gα
1− α

(i− 1) + 2(c1)
αgα

(1− 2α)

(1− α)
+O(i−1).

Similarly

vi−1 = c1 · (i− 1)
1

1−α

(
1 + gα · (i− 1)(1−2α)/(1−α)

i− 1

)1/(1−α)

= c1 · (i− 1)
1

1−α +
c1gα
1− α

(i− 1) +O(i−1),

and

(vi−1)
α = (c1)

α · (i− 1)
α

1−α

(
1 + gα · (i− 1)(1−2α)/(1−α)

i− 1

)α/(1−α)

= (c1)
α · (i− 1)

α
1−α +

α(c1)
αgα

1− α
+O(i−1).

The last three estimations of vi, vi−1 and (vi−1)
α yields

vi = vi−1 + 2(vi−1)
α + 2(c1)

αgα
(1− 2α)

1− α
+

2α(c1)
αgα

1− α
+O(i−1)

= vi−1 + 2(vi−1)
α + 2(c1)

αgα +O(i−1).

so asymptotically vi satisfies the recurrent equation of ui which gives the asymptotic of ui. We
then deduce (29) using (23).
For (30), we have Ez(Zηj − Zρj−1) = Ez(EZρj−1

(Zη) − Zρj−1) ≤ cste, where the last inequality
comes from (16). This implies that Ez(

∑i
j=1(Zηj −Zρj−1)) = o(i1/(1−α)). Also by (29), Ez(Zρi) ∼

c1i
1/(1−α), which proves the first equivalence, the second one is obtained similarly.

The second corollary below also deals with Ez(Zρi), but with varying z

Corollary 3.7. Assume 0 < α < 1/2. Let ϵ > 0 small, let i ≥ 1, and z ∈ {(0, x), (1, x),
(x, 0), (x, 1)}, then for any x ≥ ϵ−1i(1−α)−1, xα ≤ Ez(Z

α
ηi) ≤ Ez(Z

α
ρi) ≤ xα(1 + ϵ). Otherwise if

x ≤ ϵi(1−α)−1, and assume that i is large then (c1)
αi

α
1−α ≤ Ez(Z

α
ηi) ≤ Ez(Z

α
ρi) ≤ (c1)

αi
α

1−α (1+ ϵ),
finally if ϵi(1−α)−1 ≤ x ≤ ϵ−1i(1−α)−1 there exists c3 = c3(x, ϵ) > 0 which is bounded by a constant
times ϵ−

α
1−α such that c3i

α
1−α ≤ Ez(Z

α
ηi) ≤ Ez(Z

α
ρi) ≤ c3i

α
1−α (1 + ϵ).
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Proof.
For the first statement, note that if i = 1, this is just (22). Similarly Ez(Z

α
ρ2) = Ez(EZρ1

(Z
α
ρ1)) =

Ez(Z
α
ρ1 + 2αZ

2α−1
ρ1 + o(Z

2α−1
ρ1 )), then using Lemma 3.3 back again we obtain xα ≤ Ez(Zρ2) ≤

xα + o(xα). We can then proceed recursively, the condition x ≥ ϵ−1i(1−α)−1 ensures that the sum
of the terms which are added in the recurrence is still negligible compared to xα. The two other
assertions come from Jensen’s inequality, (28) and Corollary 3.6.

3.3. The covariance of the sequence (Zρi − Zηi, i)

In all this section we assume that α < 1/2.

Proposition 3.8.

lim
i→+∞

i−(2α+2)/(1−α)E
((∑

j≤i

(Zρj − Zηj )− E(Zρj − Zηj )
)2)

= 0.

Proof. The main contribution of the above second moment comes from the covariance which
appears in the following upper bound

E
((∑

j≤i

(Zρj − Zηj )− E(Zρj − Zηj )
)2)

≤ 2
∑
j≤i

∑
k<j

|Cov(Zρj − Zηj , Zρk − Zηk)|+
∑
j≤i

V ar(Zρj − Zηj ).

To obtain an upper bound for the covariance we apply the following fact (proved in Lemma 3.9
below) : for any ϵ > 0, large k and j > k such that j − k is large

|Cov[(Zρj − Zηj ), (Zρk − Zηk)]|
≤ 8E(Zα

ηj−k
)((V ar(Z

α
ηk
))1/2 + ϵE(Zα

ηk
)) + 2V ar(Z

α
ηk
)

+ csteϵ−α/(1−α)(j − k)α/(1−α)((V ar(Z
α
ηk
))1/2 + ϵE(Zα

ηk
)) + 2ϵE(Z2α

ηk
) + 4E(Zα

ηk
).

From here, we need to estimate the mean and variance that appear on the right-hand side of the
above inequality. To do so, we apply Jensen’s inequality, which implies that for any 0 < β < 1,
E(Zβ

ηℓ
) ≤ E(Zβ

ρℓ
) ≤ (E(Zρℓ))

β then for sufficiently large ℓ by (30), E(Zβ
ηℓ
) ≤ 2c1ℓ

β/(1−α). So we
obtain an upper bound for the last three moments of the above inequality. For the variance, as
E(Zα

ρk
) = E(EZηk

(Z
α
ρ )) by (14) with β = α and k large, E(Zα

ηk
) ≥ E(Zα

ρk
) − 1, also by (28),

E(Zα
ρk
) ≥ (E(Zρk))

α − ak where ak converges to zero. As α < 1/2, this implies that, V ar(Z
α
ηk
) ≤

(E(Zηk))
2α − ((E(Zηk))

α − ak − 1)2 ≤ cE(Zρk)
α ≤ c′kα/(1−α), with 0 < c < c′ are constants.

Finally, considering V ar(Zρj − Zηj ) which also appears in the second moment, we obtain for
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large j : V ar(Zρj − Zηj ) ≤ c′jα/(1−α). Then we can find a constant which is adjusted in order to
encompass the terms with few contribution (that is bounded j − k and k). So collecting all the
upper bounds there exists two constants C and C ′ such that

E
((∑

j≤i

(Zρj − Zρj−1)− E(Zρj − Zρj−1)
)2)

≤ Cϵ
1−2α
1−α

∑
j≤i

∑
k≤j

(j − k)α/(1−α)kα/(1−α) +
∑
j≤i

C ′jα/(1−α) ≤ Cϵ
1−2α
1−α i(2+2α)/(1−α),

for the last inequality, C has been adjusted accordingly. This finishes the proof as α < 1/2.

We finish this section with the Lemma on the covariance that we used in the previous proof.

Lemma 3.9. For any ϵ > 0, large k and j > k such that j − k large

|Cov[(Zρj − Zηj ), (Zρk − Zηk)]|
≤ 8E(Zα

ηj−k
)((V ar(Z

α
ηk
))1/2 + ϵE(Zα

ηk
)) + 2V ar(Z

α
ηk
)

+ csteϵ−α/(1−α)(j − k)α/(1−α)((V ar(Z
α
ηk
))1/2 + ϵE(Zα

ηk
)) + 2ϵE(Z2α

ηk
) + 4E(Zα

ηk
).

Proof. The strong Markov property gives,

E(Zρj − Zηj |Zρk) = EZρk
(Zρj−k

− Zηj−k
) = EZρk

(EZηj−k
(Zρ)− Zηj−k

).

As j − k is large (which implies that Zηj−k
is large almost surely by Lemma 3.4), applying (21),

E(Zρj − Zηj |Zρk) = 2EZρk
(Z

α
ηj−k

) + c+ o(1).

So we deduce that

E((Zρj − Zηj )(Zρk − Zηk)) = E[(2EZρk
(Z

α
ηj−k

) + c+ o(1))(Zρk − Zηk)].

The expression of EZρk
(Z

α
ηj−k

) depends whether or not Zηk ≤ Zρk is large comparing to (j −
k)1/(1−α) : let ϵ > 0 small, by Corollary 3.7

EZρk
(Z

α
ηj−k

) = EZρk
(Z

α
ηj−k

)1Zηk
<ϵ(j−k)1/(1−α) + EZρk

(Z
α
ηj−k

)1Zηk
>ϵ−1(j−k)1/(1−α)

+ EZρk
(Z

α
ηj−k

)1ϵ(j−k)1/(1−α)≤Zηk
≤ϵ−1(j−k)1/(1−α)

≤ (1 + ϵ)E(Zα
ηj−k

)1Zηk
<ϵ(j−k)1/(1−α) + (1 + ϵ)Z

α
ρk
1Zηk

>ϵ−1(j−k)1/(1−α)

+ (1 + ϵ)c3(j − k)α/(1−α)1ϵ(j−k)1/(1−α)≤Zηk
≤ϵ−1(j−k)1/(1−α) ,
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and recall that c3 is bounded eventually depending on Zρk and ϵ. This implies,

E((Zρj − Zηj )(Zρk − Zηk))

≤ (2E(Zα
ηj−k

)(1 + ϵ) + c+ o(1))E((Zρk − Zηk)1Zηk
<ϵ(j−k)1/(1−α))

+ E((2Zα
ρk
(1 + ϵ) + c+ o(1))(Zρk − Zηk)1Zηk

>ϵ−1(j−k)1/(1−α))

+ E((2c3(j − k)α/(1−α)(1 + ϵ) + c+ o(1))(Zρk − Zηk)1ϵ(j−k)1/(1−α)≤Zηk
≤ϵ−1(j−k)1/(1−α))

=: E1 + E2 + E3. (31)

Similarly,

E(Zρj − Zηj )E(Zρk − Zηk)

= E(2EZρk
(Z

α
ηj−k

) + c+ o(1))E(Zρk − Zηk),

≥ (2E(Zα
ηj−k

) + c+ o(1))E(Zρk − Zηk)P(Zηk < ϵ(j − k)1/(1−α))

+ (2E(Zα
ρk
1Zηk

>ϵ−1(j−k)1/(1−α)) + cPZρk
(Zηk > ϵ−1(j − k)1/(1−α)) + o(1))E(Zρk − Zηk)

+ E((2c3(j − k)α/(1−α) + c+ o(1))1ϵ(j−k)1/(1−α)≤Zηk
≤ϵ−1(j−k)1/(1−α))E(Zρk − Zηk)

=: E′
1 + E′

2 + E′
3. (32)

We now subtract term by term (31) and (32),

E1 − E′
1 =(2E(Zα

ρj−k
)(1 + ϵ) + c+ o(1))E((Zρk − Zηk)1Zηk

<ϵ(j−k)1/(1−α))

− (2E(Zα
ηj−k

) + c+ o(1))E(Zρk − Zηk)P(Zηk < ϵ(j − k)1/(1−α))

≤2E(Zα
ρj−k

)(E((Zρk − Zηk)1Zηk
<ϵ(j−k)1/(1−α))− E(Zρk − Zηk)P(Zηk < ϵ(j − k)1/(1−α)))

+ 2cE(Zρk − Zηk) + 2ϵE(Zα
ρj−k

)E((Zρk − Zηk)1Zηk
<ϵ(j−k)1/(1−α)).

We first address the first term on the right-hand side after the inequality. Conditioning with
respect to Zηk , we use the Strong Markov property and the fact that under P(x,0), Zρ = x+ ρ− 1
to obtain

E((Zρk − Zηk)1Zηk
<ϵ(j−k)1/(1−α) |Zηk)

= EZηk
(Zρ)1Zηk

<ϵ(j−k)1/(1−α) − Zηk1Zηk
<ϵ(j−k)1/(1−α)

= Zηk1Zηk
<ϵ(j−k)1/(1−α) + EZηk

(ρ− 1)1Zηk
<ϵ(j−k)1/(1−α) − Zηk1Zηk

<ϵ(j−k)1/(1−α)

= EZηk
(ρ− 1)1Zηk

<ϵ(j−k)1/(1−α) ,
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with the same argument

E(Zρk − Zηk |Zηk)P(Zηk < ϵ(j − k)1/(1−α))|Zηk) = EZηk
(ρ− 1)P(Zηk < ϵ(j − k)1/(1−α)),

finally we use that EZηk
(ρ) = 2Zα

ηk
− 1/2 + o(1) (see the proof of Lemma 3.1). Subtracting the

last two equality and taking the mean

|E(E((Zρk − Zηk)1Zηk
<ϵ(j−k)1/(1−α) |Zηk)− E(Zρk − Zηk |Zηk)P(Zηk < ϵ(j − k)1/(1−α))|Zηk))|

= |E((2Zα
ηk

− 3/2 + o(1))1Zηk
<ϵ(j−k)1/(1−α)))− E(2Zα

ηk
− 3/2 + o(1))P(Zηk < ϵ(j − k)1/(1−α)))|

≤ 4(V ar(Z
α
ηk
))1/2

where the inequality comes from the Cauchy-Schwarz inequality. For the last two terms in the
inequality for E1 − E′

1, we just use that E(Zρk − Zηk) ≤ 2E(Zα
ηk
) by (13). So we obtain the

following upper bound :

|E1 − E′
1| ≤ 8E(Zα

ηj−k
)((V ar(Z

α
ηk
))1/2 + ϵE(Zα

ηk
)).

We proceed similarly for E2 − E′
2,

|E2 − E′
2| = |2E(Zα

ρk
(1 + ϵ)1Zηk

>ϵ−1(j−k)1/(1−α)(Zρk − Zηk))

− 2E(Zα
ρk
1Zηk

>ϵ−1(j−k)1/(1−α))E(Zρk − Zηk) + 2E(Zα
ηk
)|

≤ 2|E((Zα
ηk

− E(Zα
ηk
))(Zα

ηk
1Zηk

>ϵ−1(j−k)1/(1−α) − E(Zα
ηk
1Zηk

>ϵ−1(j−k)1/(1−α))))|

+ 2E(Zα
ηk
) + 2ϵE(Z2α

ηk
) ≤ 2(V ar(Z

α
ηk
) + E(Zα

ηk
) + ϵE(Z2α

ηk
)).

and finally for |E3 − E′
3|,

|E3 − E′
3| ≤ 2(j − k)α/(1−α)(1 + ϵ)|E(c3(Zρk − Zηk)1ϵ(j−k)1/(1−α)≤Zηk

≤ϵ−1(j−k)1/(1−α))

− E(c31ϵ(j−k)1/(1−α)≤Zηk
≤ϵ−1(j−k)1/(1−α))E(Zρk − Zηk) + 2E(Zα

ηk
)|

≤ Cϵ−
α

1−α (j − k)α/(1−α)((V ar(Z
α
ηk
))1/2 + ϵE(Zα

ηk
)) + 2E(Zα

ηk
)

for some constant C > 0.

4. The cases α ≥ 1 and 1/2 ≤ α < 1, beyond the first quadrant, and a last remark.

The cases α ≥ 1 and 1/2 ≤ α < 1
There is very few things to say about the case α ≥ 1 : as we have already seen in Lemma 3.1, for
any z, Ez(Zρ) = x+Ex(ρ−1) and as Px(ρ > k) =

∏k
m=0

(
1− 1

2(x+m)α

)
, this implies (with α ≥ 1)
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that Ez(Zρ) = +∞. Since the walk within the cone is recurrent (and therefore crosses the axes
at some point with probability one), this simple observation implies that the walk is, of course,
transient and that almost surely, limn→+∞

Zn
n = 1. So, an interesting question (at least for α = 1)

could be: "What does the largest fluctuation on the cone observed before time n look like?".
Otherwise, the case 1/2 ≤ α < 1 cannot be obtained with the method presented here, primarily
because it is based on the analysis of the moment which can be fully controlled only when α < 1/2.

Beyond the first quadrant
We consider the quarter plane here, but we can ask the same question by considering the whole
plane, with the same hypothesis on each axis, that is, the walk is pushed away from the origin.
In this case, it is not clear at all if our method works directly. This can be seen by looking at the
recurrent equation satisfied by the mean of Ez(Zρi); typically, we would have

Ez(Zρi+1) ∼ Ez(Zρi) + 2Ez(sign(Z̃ρi)|Zρi |α) + c, with c ̸= 0.

Here, sign(Z̃ρi), which is the sign of the largest coordinate (in absolute value) between Xρi and
Yρi is, of course, what makes a difference compared to what we propose here. Then, there are
two possible outcomes for the expected result: either the walk eventually chooses a quadrant and
stays in it, which would yield the same result as ours, or there is some form of oscillation between
quadrants. Note that numerical simulations show that the first solution holds (see also Figure 3).

Figure 3: Z on Z2, with α = 0.2
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Authorised the back-return on the axis
We assume here that when on an axis the walk can not go backward, that is to say, toward
the origin. In a hypothesis similar (but inverted) to that presented in [AD23], we can allow a
backward movement on the axes (for example, starting from (x, 0) with x > 0, we could have
p((x, 0), (x − 1, 0)) = 1

3x
−α). Then, we can prove that the distribution of Xρ is such that there

exists a positive bounded function h : N2 → R+ such that, for any x large and and y such that
0 < y − x ≤ Axα,

P(x,0)(Xρ = (y, 0)) ∼ h(x, y)

yα
e

1
2
(y1−α−x1−α).

But this implies that this backward movement does not lead to any significant change, though it
makes the computations more tedious.
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