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Abstract: We theoretically study the propagation of light in one-dimensional space- and
time-dependent disorder. The disorder is described by a fluctuating permittivity 𝜖 (𝑥, 𝑡) exhibiting
short-range correlations in space and time, without cross correlation between them. Depending
on the illumination conditions, we show that the intensity of the average field decays exponentially
in space or in time, with characteristic length or time defining the scattering mean-free path
ℓ𝑠 and the scattering mean-free time 𝜏𝑠. In the weak scattering regime, we provide explicit
expressions for ℓ𝑠 and 𝜏𝑠 , that are checked against rigorous numerical simulations.

1. Introduction

Light (or more generally wave) propagation in spatially disordered media has been an active
topic for many decades, stimulated by basic questions in fundamental physics and by a large
number of applications. On the fundamental side, the existence of Anderson localization for
different kinds of waves is an emblematic example, among many other questions in mesoscopic
physics [1]. On the applied side, imaging and sensing [2] or light control in complex materials [3]
are highly developed research themes. The basic concepts and theoretical tools for modeling
light propagation in spatially disordered media are known to a large extent [4].

Beyond spatial modulation of the medium, there has recently been a surge in research on
propagation of different kinds of waves in time-dependent media, including electromagnetic [5],
optical [6–9], acoustic [10] or water waves [11, 12]. This emerging field opens new perspectives
in terms of applications. For example, periodic space-time metamaterials offer new degrees of
freedom for wave control [13–15]. It also stimulates the development of appropriate theories, in
an area that has been largely unexplored so far. For example, some of us have highlighted the
atypical behavior of wave propagation in a time-varying disorder, showing that the average energy
of the field grows exponentiall at long times [16], providing a theoretical support to observations
based on numerical simulations [7] or experiments [17]. Another recent study has focused on the
role of correlations in time disorder in providing innovative optical properties [18]. These bricks
contribute to the development of theories of wave propagation in time-varying disordered media,
which remains a widely open topic.

In this article, we address the question of light propagation in a medium exhibiting both space
and time disorders. To start with a simple model, we consider a one-dimensional space disorder
combined to a time modulation, resulting in a medium described by a fluctuating dielectric
function 𝜖 (𝑥, 𝑡) considered to be a random variable, with 𝑥 and 𝑡 the space and time coordinates,
respectively. We assume that the medium exhibits short-range correlations in both space and
time, without cross correlation between them. The main objective is to develop a theory for the
average field (or intensity) proving the existence of a scattering mean-free path ℓ𝑠 and a scattering
mean-free time 𝜏𝑠 , and to provide explicit expressions in the weak scattering regime. The paper
is organized as follows: In Sec. 2, we develop the theory that extends the standard multiple
scattering theory to a situation with both space and time disorders. We provide expressions for



ℓ𝑠 and 𝜏𝑠 using a perturbative approach. In Sec. 3, we consider the particular case of disorder
with a gaussian correlation in space and time, and show that the expressions of the mean-free
path and mean-free time are in full agreement with numerical simulations performed without
approximations.

2. Multiple scattering theory for space-time disorder

In this section we build a theory to compute the average electric field, from which we will define
ℓ𝑠 and 𝜏𝑠 , and derive their explicit expressions. To proceed, we generalize the standard multiple
scattering theory to account for space-time disorder. The interested reader can find detailed
presentations of multiple scattering theory in various textbooks [1, 4, 19, 20]. In a medium
with one-dimensional space-time disorder described by a random dielectric function 𝜖 (𝑥, 𝑡), an
electric field linearly polarized along the 𝑦-direction obeys the equation

−𝜕2𝐸 (𝑥, 𝑡)
𝜕𝑥2 + 1

𝑐2
𝜕2

𝜕𝑡2
[𝜖 (𝑥, 𝑡)𝐸 (𝑥, 𝑡)] = 𝑆(𝑥, 𝑡) , (1)

which is easily derived form Maxwell’s equations. Here 𝐸 (𝑥, 𝑡) is the real amplitude of the field
in the time domain, 𝑐 is the speed of light in vacuum, and 𝑆(𝑥, 𝑡) is a source term that we do not
need to specify. It is interesting to note that in Eq. (1) the dielectric function remains within the
time derivative operator, which has important consequences as will be seen later. This is a feature
of scattering problems involving two types of disorder, for example with both permittivity and
permeability disorders [21], or in acoustics with mass density and compressibility disorders [22].
We also note that working with the displacement field 𝐷, as in Ref. [16], does not simplify the
equation when space and time disorders coexist.

2.1. Lippmann-Schwinger equation

The first step of the derivation consists in defining a homogeneous reference (or background)
medium with permittivity 𝜖𝑏. The reference field 𝐸𝑏 in this medium satisfies

−𝜕2𝐸𝑏 (𝑥, 𝑡)
𝜕𝑥2 + 𝜖𝑏

𝑐2
𝜕2𝐸𝑏 (𝑥, 𝑡)

𝜕𝑡2
= 𝑆(𝑥, 𝑡). (2)

The choice of 𝜖𝑏 will be specified later, with the constraint that it should be close to the typical
value of 𝜖 (𝑥, 𝑡) to ensure the accuracy of the perturbative approach.

Subtracting Eq. (2) from Eq. (1) leads to

−𝜕2𝐸𝑠 (𝑥, 𝑡)
𝜕𝑥2 + 𝜖𝑏

𝑐2
𝜕2𝐸𝑠 (𝑥, 𝑡)

𝜕𝑡2
=
𝜖𝑏

𝑐2
𝜕2𝐸 (𝑥, 𝑡)

𝜕𝑡2
− 1
𝑐2

𝜕2

𝜕𝑡2
[𝜖 (𝑥, 𝑡)𝐸 (𝑥, 𝑡)] (3)

where 𝐸𝑠 = 𝐸 − 𝐸𝑏 is the scattered field. Equation (3) shows that the scattered field can be seen
as a field propagating in the reference medium and caused by a complex source term given by the
right-hand side. We now introduce the Green function 𝐺𝑏 defined as the solution to

−𝜕2𝐺𝑏 (𝑥 − 𝑥′, 𝑡 − 𝑡′)
𝜕𝑥2 + 𝜖𝑏

𝑐2
𝜕2𝐺𝑏 (𝑥 − 𝑥′, 𝑡 − 𝑡′)

𝜕𝑡2
= 𝛿(𝑥 − 𝑥′)𝛿(𝑡 − 𝑡′) (4)

where 𝛿 is the Dirac delta function, satisfying Sommerfeld’s radiation condition in space (or
equivalently causality in time). The Green function can be understood as the electric field
radiated in the reference medium by a point source emitting an infinitely short pulse. Its detailed
calculation is given in App. A. In the Fourier domain, the Green function is

𝐺𝑏 (𝑘, 𝜔) = PV
[

1
𝑘2 − 𝜔2/𝑣2

]
+ 𝑖𝜋

2𝑘
𝛿

(
𝑘 − 𝜔

𝑣

)
− 𝑖𝜋

2𝑘
𝛿

(
𝑘 + 𝜔

𝑣

)
(5)



where 𝑣 = 𝑐/√𝜖𝑏 is the phase velocity in the reference medium and PV stands for the Cauchy
principal value operator. In the following, we will consider two different problems: (1) the
evolution of the wave in space for a monochromatic incident beam, and (2) the evolution of
the wave in time for an incident pulse with a fixed wave number. Expressions for the reference
Green function in the (𝑥, 𝜔) and in the (𝑘, 𝑡) domains are thus required for problems (1) and (2),
respectively. They are given by

𝐺𝑏 (𝑥, 𝜔) =
𝑖

2𝑘𝑏
exp (𝑖𝑘𝑏 |𝑥 |) ; 𝐺𝑏 (𝑘, 𝑡) =

H(𝑡)𝑣2

𝜔𝑏

sin (𝜔𝑏𝑡) (6)

where H is the Heaviside step function, 𝑘𝑏 = 𝜔/𝑣 and 𝜔𝑏 = 𝑘𝑣. It is important to note that the
observed asymmetry between space and time arises from the different boundary conditions in
both cases. In space, we have considered the Sommerfeld’s radiation condition which states that
the field should propagate towards +∞ (respectively −∞) for 𝑥 > 0 (respectively 𝑥 < 0). In time,
this condition is equivalent to causality which translates into the presence of the H operator.

Equation (3) together with the definition of the Green function 𝐺𝑏 allows us to write the
scattered field 𝐸𝑠 in the integral form

𝐸𝑠 (𝑥, 𝑡) = −
∬

𝐺𝑏 (𝑥 − 𝑥′, 𝑡 − 𝑡′) 𝜕
2 [𝜖 (𝑥′, 𝑡′) − 𝜖𝑏] 𝐸 (𝑥′, 𝑡′)

𝑐2𝜕𝑡′2
d𝑥′d𝑡′. (7)

The total field 𝐸 = 𝐸𝑏 + 𝐸𝑠 obeys the integral equation

𝐸 (𝑥, 𝑡) = 𝐸𝑏 (𝑥, 𝑡) −
∬

𝐺𝑏 (𝑥 − 𝑥′, 𝑡 − 𝑡′) 𝜕
2 [𝜖 (𝑥′, 𝑡′) − 𝜖𝑏] 𝐸 (𝑥′, 𝑡′)

𝑐2𝜕𝑡′2
d𝑥′d𝑡′ , (8)

known as the Lippmann-Schwinger equation. This equation is the elementary building block of
multiple scattering theory. For further developments, it will prove useful to manipulate formal
operator expressions. To that end, we define

V = −𝜕2 [𝜖 (𝑥′, 𝑡′) − 𝜖𝑏] •
𝑐2𝜕𝑡2

; G𝑏 =

∬
𝐺𝑏 (𝑥 − 𝑥′, 𝑡 − 𝑡′) • d𝑥′d𝑡′, (9)

where the bullets are to be uderstood as the quantity on which the operator acts. In this formalism,
the Lippmann-Schwinger equation (8) can be rewritten as

𝐸 = 𝐸𝑏 + G𝑏V𝐸. (10)

We emphasize that the main difference with the usual Lippmann-Schwinger equation appearing
in standard multiple scattering theory is the operator character of the scattering potential V.

2.2. Born series and Dyson equation

In order to estimate the field averaged over an ensemble of realizations of disorder (i.e., of the
random variable 𝜖 (𝑥, 𝑡, )), we first expand Eq. (10) in the form

𝐸 = 𝐸𝑏 + G𝑏V𝐸𝑏 + G𝑏VG𝑏V𝐸𝑏 + G𝑏VG𝑏VG𝑏V𝐸𝑏 + . . . (11)

which is known as the Born series. Performing a statistical ensemble average, we find that

⟨𝐸⟩ = 𝐸𝑏 + G𝑏 ⟨V⟩ 𝐸𝑏 + G𝑏 ⟨VG𝑏V⟩ 𝐸𝑏 + G𝑏 ⟨VG𝑏VG𝑏V⟩ 𝐸𝑏 + . . . (12)

where ⟨. . .⟩ denotes the average value. The problem now reduces to the computation of terms of
the form ⟨V(G𝑏V)𝑛⟩. Let us first consider the second order term (i.e., 𝑛 = 1). We define the
connected part of the correlation function of the potentiel by

⟨VG𝑏V⟩ = ⟨V⟩ G𝑏 ⟨V⟩ + ⟨VG𝑏V⟩𝑐 . (13)



This corresponds to a splitting of the correlation function into a factorizable and a non-factorizable
(connected) part. Similar splittings for more complicated terms would require relatively heavy
writing. A convenient way to manipulate such expressions is to use diagrams. For Eq. (13), we
write

⟨VG𝑏V⟩ = + (14)

where circles, solid lines and dashed lines represent scattering events (interactions with the
scattering potential), Green functions of the reference medium, and connections (non-factorizable
part of the correlation function), respectively. Using diagrams, the third-order case (𝑛 = 2)
becomes

⟨VG𝑏VG𝑏V⟩ = + + + + (15)

and similarly for higher-order terms.
The key idea to obtain an equation for the average field consists in defining a new operator S

containing all non-factorizable terms, i.e.

S = + + + + . . . (16)

With this definition, Eq. (12) can be factorized in the form

⟨𝐸⟩ = 𝐸𝑏 + G𝑏S ⟨𝐸⟩ (17)

which is known as the Dyson equation. Equation (17) is exact and all the complexity of the
multiple scattering problem lies in the closed form of the equation and in the operator S. In
order to define the scattering mean-free path and time, and to derive explicit expressions, we
need to simplify this operator. To that end, let us consider the first term corresponding to a single
scattering event. Applying the operator to the average field leads to

S (1) ⟨𝐸⟩ = − 1
𝑐2

𝜕2

𝜕𝑡2
[⟨𝜖 (𝑥, 𝑡) − 𝜖𝑏⟩ ⟨𝐸 (𝑥, 𝑡)⟩] . (18)

We now need to make a choice for the reference medium. Taking 𝜖𝑏 = ⟨𝜖 (𝑥, 𝑡)⟩ ensures the
accuracy of the pertubation method that we will use, by implying a vanishing first order in
the perturbative expansion. Indeed, by defining the fluctuating part of the permittivity by
𝛿𝜖 (𝑥, 𝑡) = 𝜖 (𝑥, 𝑡) − ⟨𝜖 (𝑥, 𝑡)⟩ = 𝜖 (𝑥, 𝑡) − 𝜖𝑏 we find that

S (1) ⟨𝐸⟩ = − 1
𝑐2

𝜕2

𝜕𝑡2
[⟨𝛿𝜖 (𝑥, 𝑡)⟩ ⟨𝐸 (𝑥, 𝑡)⟩] = 0. (19)

For the second order term, we obtain

S (2) ⟨𝐸⟩ = 1
𝑐4

∬
𝜕2

𝜕𝑡2

{〈
𝛿𝜖 (𝑥, 𝑡)𝐺𝑏 (𝑥 − 𝑥′, 𝑡 − 𝑡′) 𝜕2

𝜕𝑡′2
[𝛿𝜖 (𝑥′, 𝑡′) ⟨𝐸 (𝑥′, 𝑡′)⟩]

〉}
d𝑥′d𝑡′ (20)

where we have used the relationship ⟨𝛿𝜖 (𝑥, 𝑡)𝛿𝜖 (𝑥′, 𝑡′)⟩𝑐 = ⟨𝛿𝜖 (𝑥, 𝑡)𝛿𝜖 (𝑥′, 𝑡′)⟩, generally referred
to as the correlation function of disorder. The first second-order time derivative relates to the
variable 𝑡 and thus applies only to 𝛿𝜖 (𝑥, 𝑡)𝐺𝑏 (𝑥 − 𝑥′, 𝑡 − 𝑡′). The second derivation relates to 𝑡′

and applies to 𝛿𝜖 (𝑥′, 𝑡′)•. It will prove useful to perform a double integration by parts. Assuming
that the correlation function of disorder vanishes at long times, Eq. (20) reduces to

S (2) ⟨𝐸⟩ = 1
𝑐4

∬ 〈
𝜕2

𝜕𝑡2

[
𝛿𝜖 (𝑥, 𝑡) 𝜕2

𝜕𝑡′2
𝐺𝑏 (𝑥 − 𝑥′, 𝑡 − 𝑡′)

]
𝛿𝜖 (𝑥′, 𝑡′)

〉
⟨𝐸 (𝑥′, 𝑡′)⟩ d𝑥′d𝑡′. (21)



Similar transformations can be performed on the higher order terms in S, but are not written
here since they will not be useful in practice. Finallly, S can be written as

S =

∬
Σ(𝑥, 𝑥′, 𝑡, 𝑡′) • d𝑥′d𝑡′ (22)

where Σ is the self-energy and is here a simple multiplicative function (not an operator). Using
the self-energy, the average field can be written

⟨𝐸 (𝑥, 𝑡)⟩ = 𝐸𝑏 (𝑥, 𝑡) +
∫

· · ·
∫

𝐺𝑏 (𝑥 − 𝑥′, 𝑡 − 𝑡′)Σ(𝑥′, 𝑥′′, 𝑡′, 𝑡′′) ⟨𝐸 (𝑥′′, 𝑡′′)⟩ d𝑥′d𝑥′′d𝑡′d𝑡′′ ,
(23)

which is the integral form of the Dyson equation.

2.3. Weak-scattering regime

To derive expressions for the scattering mean-free path and time, we now consider the particular
case of a source term of the form 𝑆(𝑥, 𝑡) = 𝛿(𝑥)𝛿(𝑡) in an infinite medium. In this case,
𝐸𝑏 (𝑥, 𝑡) = 𝐺𝑏 (𝑥, 𝑡) and ⟨𝐸 (𝑥, 𝑡)⟩ = ⟨𝐺 (𝑥, 𝑡)⟩, with 𝐺 the Green function of the medium in
the presence of disorder. We assume statistical homogeneity in space and time, such that
Σ(𝑥′, 𝑥′′, 𝑡′, 𝑡′′) only depends on 𝑥′ − 𝑥′′ and 𝑡′ − 𝑡′′. In these conditions, Eq. (23) reduces to

⟨𝐺 (𝑥, 𝑡)⟩ = 𝐺𝑏 (𝑥, 𝑡) +
∫

· · ·
∫

𝐺𝑏 (𝑥 − 𝑥′, 𝑡 − 𝑡′)Σ(𝑥′ − 𝑥′′, 𝑡′ − 𝑡′′) ⟨𝐺 (𝑥′′, 𝑡′′)⟩ d𝑥′d𝑥′′d𝑡′d𝑡′′.
(24)

This equation can be solved by performing a space-time Fourier transform, which leads to

⟨𝐺 (𝑘, 𝜔)⟩ = 𝐺𝑏 (𝑘, 𝜔) + 𝐺𝑏 (𝑘, 𝜔)Σ(𝑘, 𝜔) ⟨𝐺 (𝑘, 𝜔)⟩ , (25)

or equivalently

1
⟨𝐺 (𝑘, 𝜔)⟩ =

1
𝐺𝑏 (𝑘, 𝜔)

− Σ(𝑘, 𝜔) = 𝑘2 − 𝜔2

𝑣2 − Σ(𝑘, 𝜔). (26)

This expression of the average Green function will be used to derive expressions for the scattering
mean-free path ℓ𝑠 and scattering mean-free time 𝜏𝑠. We start by considering a monochromatic
source term, oscillating at a frequency 𝜔, and we focus on the spatial behavior of the average
field given by

⟨𝐺 (𝑥, 𝜔)⟩ =
∫ +∞

−∞

𝑒𝑖𝑘𝑥

𝑘2 − 𝑘2
𝑏
− Σ(𝑘, 𝜔)

d𝑘
2𝜋

. (27)

The computation of this inverse Fourier transform requires additional hypotheses. Considering
the weak-scattering regime defined by the condition |Σ(𝑘, 𝜔) | ≪ 𝑘2

𝑏
, the self-energy has a

significant contribution only when 𝑘 ≃ ±𝑘𝑏. Assuming that the disorder is statistically isotropic,
we also have Σ(𝑘, 𝜔) = Σ(−𝑘, 𝜔). As a result, the self-energy can be taken on-shell for 𝑘 = 𝑘𝑏
in Eq. (27). Under this assumption, Eq. (27) becomes

⟨𝐺 (𝑥, 𝜔)⟩ ≈
∫ +∞

−∞

𝑒𝑖𝑘𝑥

𝑘2 − 𝑘2
𝑏
− Σ(𝑘𝑏, 𝜔)

d𝑘
2𝜋

. (28)

In order to compute the integral, we apply the residue theorem. For 𝑥 > 0, we use the contour
plotted in Fig. 1 (a). The semicircle in the upper plane is chosen in order to apply Jordan’s lemma.
The poles are 𝑘± = ±

√︃
𝑘2
𝑏
+ Σ(𝑘𝑏, 𝜔). Assuming that ImΣ(𝑘𝑏, 𝜔) > 0, which will be justified

below, we obtain

⟨𝐺 (𝑥 > 0, 𝜔)⟩ = 𝑖𝑒𝑖𝑘
+𝑥

𝑘+ − 𝑘−
=
𝑖𝑒𝑖𝑘

+𝑥

2𝑘+
. (29)



Fig. 1. Integration contours used to compute the average Green function. (a) and (b) are
used for the inverse Fourier transform for positive and negative positions, respectively.
(c) and (d) are used for the inverse Fourier transform for negative and positive times,
respectively. In these representations, we have assumed ImΣ(𝑘𝑏 , 𝜔) > 0 for (a) and
(b) and ImΣ(𝑘, 𝜔𝑏) > 0 for (c) and (d), as explained in the main text.

For 𝑥 < 0, we use the contour presented in Fig. 1 (b) and we obtain

⟨𝐺 (𝑥 < 0, 𝜔)⟩ = 𝑖𝑒−𝑖𝑘
+𝑥

𝑘+ − 𝑘−
=
𝑖𝑒−𝑖𝑘

+𝑥

2𝑘+
(30)

which finally leads to

⟨𝐺 (𝑥, 𝜔)⟩ = 𝑖𝑒𝑖𝑘𝑒 |𝑥 |

2𝑘𝑒
, (31)

where 𝑘𝑒 = 𝑘+. We clearly see from Eqs. (6) and (31) that the average field propagates in a
homogeneous effective medium with an effective wavevector 𝑘𝑒. It is convenient to split 𝑘𝑒 into
its real and imaginary parts. We write 𝑘𝑒 = 𝑘𝑟 + 𝑖/(2ℓ𝑠), with ℓ𝑠 the scattering mean-free path,
and 𝑘𝑟 = 𝑛𝑟𝜔/𝑐, which defines the real part 𝑛𝑟 of the effective refractive index of the medium.
The intensity of the average field is then given by

|⟨𝐺 (𝑥, 𝜔)⟩|2 =
𝑒−|𝑥 |/ℓ𝑠 (𝜔)

4 |𝑘𝑒 |2
(32)

which will be the expression used later for comparison with numerical simulations. In the weak
scattering regime, we have

ℓ𝑠 (𝜔) =
𝑘𝑏

ImΣ(𝑘𝑏, 𝜔)
. (33)

We also note that the approximation 𝑘𝑟 ≃ 𝑘𝑏 holds in the weak-scattering regime. A more refined
expression would involve the real part of the self-energy.

We now turn to the illumination by a pulse source term with a fixed 𝑘-vector, and we focus on
the temporal evolution of the average Green function, which is given by

⟨𝐺 (𝑘, 𝑡)⟩ =
∫ +∞

−∞

𝑒−𝑖𝜔𝑡

𝜔2
𝑏
/𝑣2 − 𝜔2/𝑣2 − Σ(𝑘, 𝜔)

d𝜔
2𝜋

. (34)

The weak-scattering regime amounts to assuming that |Σ(𝑘, 𝜔) | ≪ 𝜔2
𝑏
/𝑣2. Under this assumption,

the self-energy takes significant values for 𝜔 ≃ ±𝜔𝑏. For statistically isotropic disorder, such
that Σ(𝑘, 𝜔) = Σ(−𝑘, 𝜔), and making use of the fact that Σ(𝑥, 𝑡) is real valued, we find that

Σ(𝑘,−𝜔) =
∫ +∞

−∞
Σ(𝑥, 𝑡)𝑒−𝑖𝑘𝑥−𝑖𝜔𝑡d𝑥d𝑡 =

[∫ +∞

−∞
Σ(𝑥, 𝑡)𝑒𝑖𝑘𝑥+𝑖𝜔𝑡d𝑥d𝑡

]∗
=

[∫ +∞

−∞
Σ(𝑥, 𝑡)𝑒−𝑖𝑘𝑥+𝑖𝜔𝑡d𝑥d𝑡

]∗
= Σ(𝑘, 𝜔)∗. (35)



As a result, the self-energy can be replaced by Σ(𝑘, 𝜔𝑏)∗ in Eq. (34) in the vicinity of −𝜔𝑏,
and by Σ(𝑘, 𝜔𝑏) in the vicinity of 𝜔𝑏. This is the counterpart of the on-shell approximation
in the frequency domain. In order to compute the integral, we now make use of the residue
theorem. For 𝑡 < 0, we use the contour in Fig. 1 (c). The poles are 𝜔− = −𝑣

√︁
𝑘2 − Σ∗ (𝑘, 𝜔𝑏)

and 𝜔+ = 𝑣
√︁
𝑘2 − Σ(𝑘, 𝜔𝑏). If ImΣ(𝑘, 𝜔𝑏) > 0, we get ⟨𝐺 (𝑘, 𝑡 < 0)⟩ = 0. This is the signature

of causality in the time-domain Green function. For 𝑡 > 0, considering the contour in Fig. 1 (d),
we find that

⟨𝐺 (𝑘, 𝑡 > 0)⟩ = 𝑖𝑣2
[
𝑒−𝑖𝜔

+𝑡

𝜔+ − 𝜔− + 𝑒−𝑖𝜔
− 𝑡

𝜔− − 𝜔+

]
. (36)

Defining 𝜔𝑒 = 𝜔𝑟 − 𝑖/(2𝜏𝑠), with 𝜏𝑠 the scattering mean-free time, we finally obtain

⟨𝐺 (𝑘, 𝑡)⟩ = H(𝑡)𝑣2

𝜔𝑟

sin(𝜔𝑟 𝑡)𝑒−𝑡/[2𝜏𝑠 (𝑘 ) ] (37)

for the average field. To wash out the rapid oscillations in the intensity, we square this expression
and perform a time average over a window with width 𝑇 such that 2𝜋/𝜔𝑟 ≪ 𝑇 ≪ 𝜏𝑠 . This leads
to

⟨𝐺 (𝑘, 𝑡)⟩2 =
H(𝑡)𝑣4

2𝜔2
𝑟

𝑒−𝑡/𝜏𝑠 (𝑘 ) , (38)

which will be the expression used for comparison with numerical simulations. Under the
weak-scattering approximation, the scattering mean-free time is

𝜏𝑠 (𝑘) =
𝑘2

𝜔𝑏 ImΣ(𝑘, 𝜔𝑏)
. (39)

We note that 𝜔𝑟 ≃ 𝜔𝑏 in the weak-scattering regime. We also stress that having ImΣ(𝑘, 𝜔𝑏) < 0
is not possible since this would lead to a non vanishing average Green function for 𝑡 < 0, thus
violating causality.

In summary, Eqs (33) and (39) show that it is possible to define a scattering mean-free path ℓ𝑠
and a scattering mean-free time 𝜏𝑠 for a space and time dependent disorder. The reason for this
is that self-energy Σ is a simple multiplicative function, even when the scattering potential is
an operator. Moreover, we clearly see from the Dyson equation (25) that there is no change in
frequency or wavevector during propagation of the average field. For a monochromatic source
at frequency 𝜔, this means that the average field propagates at 𝜔 and the scattering mean-free
path can be defined for a fixed frequency 𝜔. Similarly, for a source at a fixed wavevector 𝑘 , the
average field evolves at the same 𝑘 and the scattering mean-free time can be defined for this
fixed wavevector 𝑘 . This behavior is typical of an average (or ballistic) field, and is observed
for example in dynamic multiple scattering (or diffusing-wave spectroscopy) where the Doppler
shift vanishes for the average field [23].

3. Disorder with a Gaussian correlation in space and time

To get explicit expressions for the scattering mean-free path ℓ𝑠 and mean-free time 𝜏𝑠, we need
to define a specific model of disorder. A canonical choice is that of a disorder with Gaussian
correlation in both space and time, which allows to derive analytical expressions that can be
easily compared to numerical simulations. This comparison is a relevant test of validity of the
pertubation theory developed above.



3.1. Practical expressions for ℓ𝑠 and 𝜏𝑠

In the weak-scattering regime, we can derive expressions for ℓ𝑠 and 𝜏𝑠 restricted to the leading
term in the perturbative expansion of the self-energy. The self-energy reads as

Σ(𝑥 − 𝑥′, 𝑡 − 𝑡′) = 1
𝑐4

𝜕2

𝜕𝑡2

{〈
𝛿𝜖 (𝑥, 𝑡) 𝜕2

𝜕𝑡′2
[𝐺𝑏 (𝑥 − 𝑥′, 𝑡 − 𝑡′)] 𝛿𝜖 (𝑥′, 𝑡′)

〉}
, (40)

which can be reorganized in the form

Σ(𝑥 − 𝑥′, 𝑡 − 𝑡′) = 1
𝑐4

𝜕2

𝜕𝑡2

{
𝜕2

𝜕𝑡′2
[𝐺𝑏 (𝑥 − 𝑥′, 𝑡 − 𝑡′)] ⟨𝛿𝜖 (𝑥, 𝑡)𝛿𝜖 (𝑥′, 𝑡′)⟩

}
, (41)

in which the correlation function of disorder appears explicitly. We now assume that this
correlation function factorizes into two components, in the form

⟨𝛿𝜖 (𝑥, 𝑡)𝛿𝜖 (𝑥′, 𝑡′)⟩ = 𝛼(𝑥 − 𝑥′)𝛽(𝑡 − 𝑡′) , (42)

meaning that short-range correlations may exist in the space or time dependence, with cross
space-time correlations excluded. Plugging this expression into Eq. (41), and taking the Fourier
transform, leads to

Σ(𝑘, 𝜔) = 𝜔2

𝑐4

∫
(𝜔 − 𝜔′)2A(𝑘, 𝜔 − 𝜔′)𝛽(𝜔′) d𝜔′

2𝜋
(43)

where A(𝑘, 𝜔) is the Fourier transform of A(𝑥, 𝑡) = 𝐺𝑏 (𝑥, 𝑡)𝛼(𝑥). We note that for a
pure static disorder, with 𝛽(𝑡 − 𝑡′) = 1, we would recover the standard result involving the
spatial correlation function of disorder and the Green function, namely 𝛽(𝜔′) = 2𝜋𝛿(𝜔′) and
Σ(𝑘, 𝜔) = 𝜔4/𝑐4A(𝑘, 𝜔) [24].

The gaussian-correlated disorder model amounts to considering that

𝛼(𝑥 − 𝑥′) = 𝐴 exp
[
− (𝑥 − 𝑥′)2

2ℓ2

]
; 𝛽(𝑡 − 𝑡′) = 𝐵 exp

[
− (𝑡 − 𝑡′)2

2𝜏2

]
(44)

where ℓ and 𝜏 are the correlation length and time of disorder, respectively, and 𝐴 and 𝐵 are
amplitudes of the correlation functions. With this model, we find that

ImΣ(𝑘, 𝜔) = 𝐴𝐵ℓ𝜏𝜔4𝑣3

8𝑐4 (ℓ2 + 𝜏2𝑣2)3/2 𝑒−𝜂2
{√

2𝜋
(
𝜔𝜏2𝑣 − 𝑘ℓ2

)
𝑒 𝜉

2 + 2
√

2𝜋
(
𝜔𝜏2𝑣 + 𝑘ℓ2

)
𝑒2𝑘𝜔ℓ2/𝑣+𝜉 2

+2
√︁
ℓ2 + 𝜏2𝑣2 +

√
2𝜋

(
𝑘ℓ2 − 𝜔𝜏2𝑣

)
erf (𝜉)𝑒 𝜉 2

}
− 𝐴𝐵ℓ𝜔4𝜏𝑣3

4𝑐4ℓ2√𝜋 (𝜔 + 𝑘𝑣)
𝑒−𝜂2

𝜔𝐺2,1
0,0

©­«−𝜉, 1
2

������ 1

1/2, 1
ª®¬

+ 2𝑣2

ℓ2 (𝜔 + 𝑘𝑣)
𝐺

2,1
0,0

©­«−𝜉, 1
2

������ 1

1, 3/2
ª®¬
 (45)

where
𝜂 =

ℓ(𝜔 + 𝑘𝑣)
√

2𝑣
; 𝜉 =

ℓ2 (𝜔 + 𝑘𝑣)
√

2𝑣
√
ℓ2 + 𝜏2𝑣2

(46)

and



𝐺𝑚,𝑛
𝑝,𝑞

©­«𝑧, 𝑟
������ 𝑎1, . . . , 𝑎𝑛, 𝑎𝑛+1, . . . , 𝑎𝑝

𝑏1, . . . , 𝑏𝑚, 𝑏𝑚+1, . . . , 𝑏𝑞

ª®¬
=

𝑟

2𝑖𝜋

∫
𝛾

Γ(1 − 𝑎1 − 𝑟𝑠) . . . Γ(1 − 𝑎𝑛 − 𝑟𝑠)Γ(𝑏1 + 𝑟𝑠) . . . Γ(𝑏𝑚 + 𝑟𝑠)
Γ(𝑎𝑛+1 + 𝑟𝑠) . . . Γ(𝑎𝑝 + 𝑟𝑠)Γ(1 − 𝑏𝑚+1 − 𝑟𝑠) . . . Γ(1 − 𝑏𝑞 − 𝑟𝑠) 𝑧

−𝑠d𝑠 (47)

is the generalized Meĳer G-function, 𝛾 being an appropriate path in the complex plane, and Γ is
the Gamma function. To have a practical expression of the scattering mean-free path, we use the
on-shell approximation in Eq. (45), which leads to

ImΣ(𝑘𝑏, 𝜔) =
𝐴𝐵ℓ𝜏𝜔2𝑣2

4𝑐4

{
𝜔

√︂
2𝜋
W + 𝑣

W 𝑒−Z + 𝜔

W

√︂
𝜋

2W 𝑒−X
(
ℓ2 − 𝑣2𝜏2

) [
erf

(√︁
Y
)
− 1

]
+ 𝜔

W

√︂
2𝜋
W 𝑒−Xℓ2

[
−2 +𝑄

(
−1

2
,Y

)]
− 𝜔

√︂
𝜋

2W 𝑒−X
[
−2 +𝑄

(
1
2
,Y

)]}
(48)

where

W = 𝜖𝑟ℓ
2 + 𝑣2𝜏2 ; X =

2ℓ2𝜔2𝜏2

W ; Y =
2ℓ4𝜔2

𝑣2W
; Z =

2ℓ2𝜔2

𝑣2 (49)

and 𝑄 is the regularized incomplete gamma function defined by 𝑄(𝑎, 𝑧) = Γ(𝑎, 𝑧)/Γ(𝑎), with
Γ(𝑎, 𝑧) the incomplete gamma function. Equation (48) together with Eq. (33) provide the
expression of the scattering mean-free path ℓ𝑠 for a spatio-temporal gaussian-correlated disorder.
It is also interesting to extract the expression of the scattering mean-free path in the limit where
the time disorder vanishes (i.e., 𝜏 → ∞), which gives

1
ℓ𝑠,𝜏→∞ (𝜔) =

𝐴𝐵ℓ𝜔2𝑣2

2𝑐4

√︂
𝜋

2

[
1 + exp

(
−2ℓ2𝜔2

𝑣2

)]
. (50)

Similarly, the expression in the limit of a vanishing space disorder (i.e., ℓ → ∞) is

1
ℓ𝑠,ℓ→∞ (𝜔) =

𝐴𝐵𝜏𝜔2𝑣3

2𝑐4

√︂
𝜋

2

[
1 − exp

(
−2𝜏2𝜔2

)]
. (51)

To get an expression for the scattering mean-free time 𝜏𝑠 in the presence of space and time
disorder, we have to make use of Eq. (39) together with Eq. (48) where all occurrences of the
variable 𝜔 are replaced by 𝑘𝑣. The limited cases are given by

1
𝜏𝑠,𝜏→∞ (𝑘) =

𝐴𝐵ℓ𝑘2𝑣5

2𝑐4

√︂
𝜋

2

[
1 + exp

(
−2ℓ2𝑘2

)]
(52)

for a vanishing time disorder and

1
𝜏𝑠,ℓ→∞ (𝑘) =

𝐴𝐵𝜏𝑘2𝑣6

2𝑐4

√︂
𝜋

2

[
1 − exp

(
−2𝜏2𝑘2𝑣2

)]
(53)

for a vanishing space disorder.

3.2. Numerical simulations

In this section we compare the predictions of the theoretical model with numerical simulations
performed without approximations. The first step consists in generating numerically an ensemble
of configurations of disorder [i.e., of 𝜖 (𝑥, 𝑡)] that will be used to perfom an ensemble average.



The statistics of 𝜖 (𝑥, 𝑡) has to satisfy Eq. (42), which is the only assumption on the model
of disorder in the theory. One way of achieving this is to consider the particular case of a
permittivity in which the space and time dependences factorize. We choose a permittivity in
the form 𝜖 (𝑥, 𝑡) = 1 + 𝛿𝜖 (𝑥)𝛿𝜖 (𝑡), with 𝜖𝑏 = 1 for the sake of simplicity, and 𝛿𝜖 (𝑥) and 𝛿𝜖 (𝑡)
statistically independent. In this case, we immediately find that

⟨𝛿𝜖 (𝑥, 𝑡)𝛿𝜖 (𝑥′, 𝑡′)⟩ = ⟨𝛿𝜖 (𝑥)𝛿𝜖 (𝑡)𝛿𝜖 (𝑥′)𝛿𝜖 (𝑡′)⟩ = ⟨𝛿𝜖 (𝑥)𝛿𝜖 (𝑥′)⟩ ⟨𝛿𝜖 (𝑡)𝛿𝜖 (𝑡′)⟩
= 𝛼(𝑥 − 𝑥′)𝛽(𝑡 − 𝑡′). (54)

Under this assumption, we only have to generate two independent one-dimensional disorders for
𝛿𝜖 (𝑥) and 𝛿𝜖 (𝑡), with gaussian correlation functions. Let us illustrate this process with space
disorder with the correlation function 𝛼. We consider a finite-size medium with size 𝐿, and
we discretize the space into 𝑁𝑥 points 𝑥𝑚 in the interval [−𝐿/2, 𝐿/2], with a step Δ𝑥 = 𝑥2 − 𝑥1.
Next, we generate a white-noise gaussian disorder [standard normal distribution N(0, 1)] that is
finally convolved with

𝑓𝑚 =

(
2
𝜋

)1/4 √
𝐴ℓΔ𝑥 exp

[
−𝑥2

𝑚

ℓ2

]
, (55)

which gives one realization 𝛿𝜖𝑚. Restarting the process allows us to generate a set of disorder
configurations. After averaging, the correlation function tends to the function 𝛼, as expected. The
same process can be followed to generate configurations of the time disorder, the time interval
[0, 𝑇] being discretized into 𝑁𝑡 points 𝑡𝑛 with a step size Δ𝑡. An example of disorder is plotted in
Fig. 2 (a) together with a comparison between the numerical and theoretical correlation function
in Fig. 2 (b).

Fig. 2. (a) Example of spatial disorder at a fixed time 𝑡. (b) Comparison between the
disorder correlation function in space computed numerically and that given by Eq. (44).
The parameters are:

√
𝐴𝐵 = 2 × 10−2 and 𝜖𝑏 = 1. 1680 disorder configurations are

used to perform the statistical average.

We now briefly describe the numerical resolution of the wave equation for a given configuration
of disorder. We need to solve Eq. (1) with the boundary conditions 𝐸 (−𝐿/2, 𝑡) = 𝐸 (𝐿/2, 𝑡) = 0,
and the initial condition 𝐸 (𝑥, 0) = 0. The source term 𝑆 depends on the type of situation to
be addressed. To compute the spatial evolution of the field, in order to estimate the scattering
mean-free path, we choose

𝑆(𝑥, 𝑡) = 𝑆𝜔0 (𝑥, 𝑡) = 𝑠(𝑡)𝛿 (𝑥) 𝑒−𝑖𝜔0𝑡 (56)

which corresponds to a point source oscillating at a given frequency 𝜔0. To avoid numerical



artifacts due to a discontinuous source term in time, we apply a 𝐶∞ pseudo step function given by

𝑠(𝑡) =


0 if 𝑡 < 0,
1 if 𝑡 > 𝑡𝑟 ,
exp

{
−
[
1 − (𝑡 − 𝑡𝑟 )2/𝑡2𝑟

]−1 + 1
}

otherwise,
(57)

where 𝑡𝑟 is the rising time. To estimate the temporal evolution of the field, in order to compute
the scattering mean-free time, we use a source term of the form

𝑆(𝑥, 𝑡) = 𝑆𝑘0 (𝑥, 𝑡) = 𝑑 (𝑡)𝑒𝑖𝑘0𝑥 (58)

where 𝑑 is a 𝐶∞ pseudo Dirac delta function given by

𝑑 (𝑡) = 𝑠(𝑡) − 𝑠(𝑡 − 𝑡𝑟 )
𝑡𝑟

, (59)

also chosen to avoid numerical artifacts. This source term corresponds to a temporal pulse
oscillating in space with a fixed wavevector 𝑘0.

To solve the wave equation, we simply discretize it in space and time, with the numerical
scheme

𝐸𝑚,𝑛+1 =
2𝜖𝑚,𝑛𝐸𝑚,𝑛 − 𝜖𝑚,𝑛−1𝐸𝑚,𝑛−1

𝜖𝑚,𝑛+1
+ 𝑐2Δ𝑡2

𝜖𝑚,𝑛+1

[
𝑆𝑚,𝑛 +

𝐸𝑚+1,𝑛 + 𝐸𝑚−1,𝑛 − 2𝐸𝑚,𝑛

Δ𝑥2

]
(60)

where the first indices (𝑚−1, 𝑚, 𝑚 +1) correspond to space discretization, and the second indices
(𝑛 − 1, 𝑛, 𝑛 + 1) to time discretization. The Dirac delta function in the source term is discretized
using a Kronecker delta (i.e., 𝛿𝑚,𝑚0/Δ𝑥 where 𝑚0 is the index corresponding to 𝑥 = 0). As for
any finite-difference scheme, the Courant–Friedrichs–Lewy condition must be fulfilled to ensure
numerical convergence and stability (i.e., Δ𝑡 ≤ Δ𝑥/𝑐). The resolution is performed for each
disorder configuration of the ensemble, allowing us to estimate the ensemble averaged electric
field.

Let us start with the spatial evolution of the field, with the source term 𝑆𝜔0 . We plot in
Fig. 3 the intensity of the average field obtained from the full numerical simulation and from
the analytical expressions, for the parameters given in the figure caption. The numerical result
of |⟨𝐸 (𝑥, 𝑡)⟩|2 at a fixed long time 𝑡 is compared to the square modulus of the average Green
function (i.e., |⟨𝐺 (𝑥, 𝜔0)⟩|2 given by Eq. (32), with 𝑘𝑟 = 𝑘𝑏). Excellent quantitative agreement
is observed, which supports the validity of the theoretical model for the scattering mean-free path
ℓ𝑠. We also see that taking into account the spatial disorder only does not lead to an accurate
result. The full model given by Eqs. (33) and (48) is needed to provide a relevant prediction,
showing that the time dependence of the disorder clearly affects the spatial attenuation of the field.
We also note that the scattering mean-free path is larger for the full disorder model than for spatial
disorder model only, meaning that adding time disorder reduces the effect of scattering from
space disorder. This result may look counter-intuitive, but it is because energy is not conserved
in the presence of time disorder.

Next, we study the temporal evolution of the field with the source term 𝑆𝑘0 . In order to
compare the numerical results to the square of the average Green function (i.e., ⟨𝐺 (𝑘0, 𝑡)⟩2, with
𝜔𝑟 = 𝜔𝑏), we first compute numerically the average field ⟨𝐸 (𝑥, 𝑡)⟩ for a fixed 𝑥 = 0. Then,
we take the square modulus and perform a rolling average over a time window with width 𝑇

satisfying 2𝜋/𝜔𝑏 ≪ 𝑇 ≪ 𝜏𝑠 . This eliminates rapid oscillations and keeps the decaying envelope
that depends on the scattering mean-free time 𝜏𝑠 . We obtain

𝐼 (𝑥, 𝑡) =
∫ +∞

−∞
𝑤(𝑡 − 𝑡′) |⟨𝐸 (𝑥, 𝑡′)⟩|2 d𝑡′ (61)



Fig. 3. Intensity of the average field versus the normalized space variable 𝑘0𝑥, with
𝑘0 = 𝜔0/𝑐. This intensity is computed numerically (red solid line) and analytically
(blue solid line for the full model, black dotted line for the model taking into account the
space disorder only, i.e. 𝜏 → ∞, and green dotted line for the model taking into account
the time disorder only, i.e. ℓ → ∞). The plot corresponds to the normalized time
𝜔0𝑡 = 4000. The parameters are: 𝑘0𝐿 = 8000, 𝑘0ℓ = 4, 𝜔0𝜏 = 4,

√
𝐴𝐵 = 2 × 10−2,

𝜖𝑏 = 1 and 𝜔0𝑡𝑟 = 100. 104 disorder configurations are used to perform the statistical
average.

where 𝑤 is a rectangular function of width 𝑇 and amplitude 1/𝑇 . The comparison is plotted in
Fig. 4. Again, we obtain excellent quantitative agreement between the numerical simulation and
the analytic expressions, supporting the theoretical model for the scattering mean-free time 𝜏𝑠.
We also observe that the full theoretical model taking into account both space and time disorder
is required to correctly predict the time decay of the intensity.

4. Conclusion

In conclusion, we have studied the behavior in space and time of the averaged field propagating in
a medium with both space and time disorders. We have developed a multiple scattering theory that
predicts the space and time decay of the average field, and allows to derive practical expressions
of the scattering mean-free path ℓ𝑠 and mean-free time 𝜏𝑠 in the weak-scattering regime. The
model has been compared to exact numerical simulations, showing quantitative agreement in
the particular case of a spatio-temporal gaussian-correlated disorder with no space-time cross
correlation. Counter-intuitively, in this regime the introduction of a time disorder on top of a
space disorder tends to reduce the scattering strength, even in the absence of cross correlation
between the two types of disorders. However, this theory does not seem to predict the existence
of a situation where the attenuation by scattering is totally cancelled out, at least in the case of
Gaussian-correlated disorder. The theory developed in this work and the results bring a brick
in the widely open field of waves in complex space and time varying media. In particular, the
next step will be to study the case of the average intensity, whose behavior is known to be very



Fig. 4. Intensity of the average field as a function of the normalized time variable 𝜔0𝑡
with 𝜔0 = 𝑘0𝑐. This intensity is computed numerically (red solid line) by applying
Eq. (61) and analytically (blue solid line for the full model, black dotted line for the
model taking into account the space disorder only, i.e. 𝜏 → ∞, and green dotted line for
the model taking into account the time disorder only, i.e. ℓ → ∞). The plot corresponds
to a fixed normalized 𝑘0𝑥 = 0. The parameters are: 𝑘0𝐿 = 8000, 𝑘0ℓ = 4, 𝜔0𝜏 = 4,√
𝐴𝐵 = 2 × 10−2, 𝜖𝑏 = 1, 𝜔0𝑡𝑟 = 0.1 and 𝜔0𝑇 = 30. 104 disorder configurations are

used to perform the statistical average. Short times are not represented since for 𝑡 < 𝑇 ,
the averaging procedure given by Eq. (61) leads to an oscillating signal because of the
Heaviside step function at 𝑡 = 0.

different from that of the average electric field in the presence of disorder.
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A. Calculation of the Green function 𝐺𝑏

The 1D scalar Green function of the wave equation in the reference medium described by its
relative permittivity 𝜖𝑏 is given by Eq. (4) which reads in the Fourier domain(

𝑘2 − 𝜔2

𝑣2

)
𝐺𝑏 (𝑘, 𝜔) = 1 (62)



where we recall that 𝑣 = 𝑐/√𝜖𝑏. 𝑘 and 𝜔 are the dual variables for 𝑥 and 𝑡 respectively. In terms
of distributions (the Green function is rigorously a distribution), the inversion of this equation
leads to

𝐺𝑏 (𝑘, 𝜔) = PV
[

1
𝑘2 − 𝜔2/𝑣2

]
+ 𝜆𝛿

(
𝑘 − 𝜔

𝑣

)
+ 𝜇𝛿

(
𝑘 + 𝜔

𝑣

)
(63)

where 𝜆 and 𝜇 are constants that should be determined in order to fulfil the boundary conditions
in space and time. For that purpose, we consider first the inverse Fourier transform in time which
gives

𝐺𝑏 (𝑘, 𝑡) = PV
∫ +∞

−∞

𝑒−𝑖𝜔𝑡

𝜔2
𝑏
/𝑣2 − 𝜔2/𝑣2

d𝜔
2𝜋

+ 𝜆𝑣

2𝜋
𝑒−𝑖𝑘𝑣𝑡 + 𝜇𝑣

2𝜋
𝑒𝑖𝑘𝑣𝑡 (64)

where we recall that 𝜔𝑏 = 𝑘𝑣. To compute the first term, we apply the residue theorem and
consider two cases. If 𝑡 < 0, we use the contour described in Fig. 5 (a). The semicircle in the
upper plane is chosen in order to apply Jordan’s lemma. This leads to

𝐺𝑏 (𝑘, 𝑡 < 0) = − 𝑣2

2𝜔𝑏

sin(𝜔𝑏𝑡) +
𝜆𝑣

2𝜋
𝑒−𝑖𝜔𝑏𝑡 + 𝜇𝑣

2𝜋
𝑒𝑖𝜔𝑏𝑡 . (65)

The causality requires that 𝐺𝑏 (𝑘, 𝑡 < 0) = 0 which leads to −𝜆 = 𝜇 = 𝜋/(2𝑖𝑘). For 𝑡 > 0, we
use the contour described in Fig. 5 (b). This finally gives

𝐺𝑏 (𝑘, 𝑡) =
H(𝑡)𝑣2

𝜔𝑏

sin (𝜔𝑏𝑡) . (66)

We consider now the inverse Fourier transform in space with the values of 𝜆 and 𝜇 determined
above. This gives

𝐺𝑏 (𝑥, 𝜔) = PV
∫ +∞

−∞

𝑒𝑖𝑘𝑥

𝑘2 − 𝑘2
𝑏

d𝑘
2𝜋

+ 𝑖

2𝑘𝑏
cos (𝑘𝑏𝑥) (67)

where we recall that 𝑘𝑏 = 𝜔/𝑣. Again, we consider two cases to compute the first term. If 𝑥 > 0,
we use the contour described in Fig. 5 (c). This leads to

𝐺𝑏 (𝑥 > 0, 𝜔) = 𝑖

2𝑘𝑏
[cos (𝑘𝑏𝑥) + 𝑖 sin (𝑘𝑏𝑥)] =

𝑖

2𝑘𝑏
exp (𝑖𝑘𝑏𝑥) . (68)

If 𝑥 < 0, we use the contour described in Fig. 5 (d) which gives

𝐺𝑏 (𝑥 < 0, 𝜔) = 𝑖

2𝑘𝑏
[cos (𝑘𝑏𝑥) − 𝑖 sin (𝑘𝑏𝑥)] =

𝑖

2𝑘𝑏
exp (−𝑖𝑘𝑏𝑥) . (69)

The two previous results combined give

𝐺𝑏 (𝑥, 𝜔) =
𝑖

2𝑘𝑏
exp (𝑖𝑘𝑏 |𝑥 |) . (70)

It is interested to note that this last expression automatically fulfiled the outgoing wave condition
thanks to causality.
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