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PROBABILISTIC WELL-POSEDENESS FOR THE NONLINEAR
SCHRÖDINGER EQUATION ON THE 2d SPHERE I: POSITIVE

REGULARITIES

NICOLAS BURQ, NICOLAS CAMPS, CHENMIN SUN, AND NIKOLAY TZVETKOV

Abstract. We establish the probabilistic well-posedness of the nonlinear Schrödinger
equation on the 2d sphere S2. The initial data are distributed according to Gaus-
sian measures with typical regularity Hs(S2), for s > 0. This level of regularity
goes significantly beyond existing deterministic results, in a regime where the flow
map cannot be extended uniformly continuously.
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1. Introduction

1.1. Context. The study of the nonlinear Schrödinger equation (NLS) on general
Riemannian manifolds was initiated in [7] as a sequence of works by Bourgain [1]
on the flat torus. It was shown in [7] that in the cases of Riemannian surfaces the
Cauchy problem for the cubic NLS is locally well-posed in the Sobolev space Hs,
s > 1

2
. This result is of interest because the classical methods, based only on Sobolev

embeddings, give the well-posedness under the much stronger restriction s > 1 (one
half of the dimension). In the case of the sphere S2 the restriction s > 1

2
was

relaxed to s > 1
4
in [8]. As shown in [6] the s > 1

4
restriction is in a sense optimal

because this is the limit of the semi-linear well-posedness methods. The goal of
this paper is to show that, in the case of the 2d sphere S2, one can go beyond the
s > 1

4
threshold by randomizing the initial data in a Sobolev space of low regularity.

This is in the spirit of the program initiated in [11], which aims to study dispersive
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PDE with random data (not necessarily related to an invariant measure) beyond
the deterministic thresholds, where some instabilities are known to occur.

1.2. Setup and main results. Let S2 be the unit sphere in R3, endowed with the
canonical metric, where we normalize the measure on S2 to adopt the convention∫
S2
1 = 1. The cubic NLS, posed on S2, we consider in this article is1

i∂tu− (−∆+ 1)u = (|u|2 − 2‖u‖2L2)u, (1.1)

where u : Rt × S2 → C and ∆ is the Laplace-Beltrami operator on S2. It is well-
known that −∆ + 1 is a self adjoint operator on L2(S2) with domain the Sobolev
space H2(S2) and that its spectrum is discrete with eigenvalues λ2n given by

λ2n = n2 + n+ 1, n = 0, 1, 2, · · ·
Moreover, λ2n has multiplicity 2n + 1 and the corresponding eigenspace consists of
the spherical harmonics of degree n (i.e. the restriction of the harmonic polynomials
of degree n on R3 to S2). We denote by En the eigenspace of −∆ + 1 associated
with the eigenvalue λ2n.

If u is a solution of (1.1) then v = eit−2it‖u‖2
L2u is a solution of

i∂tv +∆v = |v|2v (1.2)

which is the traditionally studied NLS. For a sake of convenience, in this article we
will restrict to (1.1) but all results we obtain can be easily rephrased in the context
of (1.2) thanks to the straightforward link between the two equations.

We denote by 〈f |g〉 the scalar product in L2(S2). For n ≥ 0, we denote by
πn the orthogonal projection of L2(S2) on En. More precisely, if (bn,k)|k|≤n is an
orthonormal basis of En then

πn(f) =
∑

|k|≤n

〈f |bn,k〉bn,k, ∀ f ∈ L2(S2).

The Lp mapping properties of πn and the precise concentration properties of its
kernel will play an important role in the analysis below. Since πn is invariant under
the action of the rotation group SO(3), the kernel of πn is invariant under the
rotation, hence

∑
|k|≤n |bn,k(x)|2 is independent of x ∈ S2 (see e.g. [9]). Therefore

∑

|k|≤n

|bn,k(x)|2 =
∑

|k|≤n

‖bn,k‖2L2(S2) = 2n+ 1. (1.3)

If f is decomposed as f =
∑

n≥0 πn(f) then the Sobolev norm Hs(S2) of f is equi-
valent to ∑

n≥0

〈λn〉2s‖πnf‖2L2 , (1.4)

1In this work, the Wick-ordered nonlinearity is only favorable when estimating the regularity
for purely random objects.
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where by definition for x ∈ R, 〈x〉 = (1 + x2)
1
2 . We next define the random initial

data we will consider. Fix a probability space (Ω,F ,P) and a sequence of i.i.d.
complex standard Gaussian random variables (gn,k(ω))n∈N,|k|≤n on it, i.e.

gn,k(ω) =
Re(gn,k)(ω) + i Im(gn,k)(ω)√

2
,

where Re(gn,k), Im(gn,k) are independent real-valued normal random variables on
(Ω,F ,P).

Let again (bn,k)|k|≤n be an orthonormal basis of En. For α ∈ R, we set

φα(x, ω) =
∑

n≥0

1

λαn

∑

|k|≤n

gn,k(ω)bn,k(x). (1.5)

Thanks to (1.3) and (1.4), we can easily compute the typical Sobolev regularity of
φα(x, ω). Namely

E‖φα(·, ω)‖2Hs =
∑

n≥0

〈λn〉2s−2α(2n+ 1)

which is finite if and only if s < α− 1. Therefore φα(·, ω) belongs almost surely to
the Sobolev space Hs(S2) for s < α − 1. One may also show (see e.g. [11, Lemma
B.1]) that φα(·, ω) does almost surely not belong to Hα−1(S2). We also observe that
thanks to the invariance of the gaussians under rotations, we have that the law of
ω 7→ φα(·, ω) (as a random variable on Hs(S2) for some s < α − 1) is independent
of the choice of the basis (bn,k)|k|≤n, and will be denoted by µα.

For N ≥ 0, we define the projectors ΠN ,Π
⊥
N by

ΠN =
∑

n≤N

πn, Π⊥
N := Id− ΠN .

We denote by vN the solution of (1.1) with truncated initial data vN |t=0 = ΠNφα:

i∂tvN − (−∆+ 1)vN = |vN |2vN , vN |t=0 = ΠNφα(·, ω). (1.6)

The initial data in (1.6) is smooth and therefore, thanks to [7], vN is a (unique)
globally defined smooth function on R× S2. We now can formulate our main result
concerning the probabilistic well-posedness of (1.1) with data (1.5).

Theorem 1.1. Let α > 1. There is a set Σ of full probability such that for every
ω ∈ Σ there exists Tω > 0 such that the sequence of smooth solutions (vN )N≥1 in (1.6)
with the initial data ΠNφα, converges in L

∞([−Tω, Tω];Hs(S2)), s < α−1 to a limit
which satisfies the cubic NLS in a distributional sense on (−Tω, Tω)× S2.

We give a more precise version in Theorem 1.2. For α > 5
4
, the statement of The-

orem 1.1 is implied by the local well-posedness of (1.1) in Hs(S2), s > 1
4
, obtained

in [8]. For α ∈ (1, 5
4
], Theorem 1.1 requires a proof going much beyond the analysis

[8]. In particular, it requires a proof of the result of [8] which is less dependent on
the bilinear Strichartz estimates for the free evolution and which is sensitive to the
smoothing effect coming from the modulations in the Bourgain spaces associated
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with the Schrödinger equation on the sphere. These smoothing effects are not ex-
ploited in [8] while they play a key role in the probabilistic well-posedness of (1.1)
when estimating the regularity of the stochastic objects involved in the construction
of the solutions.

The proof of Theorem 1.1 is based on a probabilistic resolution scheme originally
developed by Bourgain in [2]. This scheme was further refined in recent years in
[3, 13, 20, 15, 16, 17, 22, 24]. In the present work we will strongly benefit from these
developments, especially [3, 15]. The severe difficulty in the analysis on S2, revealed
by [4], is the divergence of the first nonlinear Picard iteration with data φα in Hα−1

while in the case of the flat tori the first nonlinear Picard iteration enjoys almost 1
2

derivative smoothing. This derivative smoothing is crucially exploited by Bourgain
in [2] and the subsequent papers on flat tori.

We point out that in our analysis of NLS with data (1.5) we are strongly inspired
by [9]. This allows us to use Weyl asymptotics ideas in the context of Khinchin and
Wiener chaos type estimates. In contrast with the case of flat tori, a significant part
of the analysis on S2 is performed in the physical space, requiring in particular the
introduction of vector valued Fourier-Lebesgue spaces. We also point out that even
in the local in time analysis we use propagation of measure global arguments on the
high dimensional space En, n ≫ 1. Arguments of this spirit are not presented in
the analysis on flat tori.

The globalization of the solutions obtained in Theorem 1.1 is a challenging open
problem. It would also be interesting to decide whether Theorem 1.1 holds for more
general randomized functions, in the spirit of [11, 12].

In the forthcoming work [5], we will consider the case α = 1. In the case α = 1
the statement of Theorem 1.1 should be properly modified because the sequence
(vN )N≥1 is not expected to converge. We will however show that, after introducing
some new ideas, it converges after a suitable renormalization. Moreover, thanks to
invariant measure considerations, we will show that the limit solutions are globally
defined.

1.3. Structure of the nonlinearity. Denote the wick cubic power

N (u) := |u|2u− 2‖u‖2L2u.

By abusing the notation, we denote N (·, ·, ·) the canonical trilinear form such that
N (u, u, u) = N (u).

We isolate the singular trilinear form:

N(0,1)(f, g, h) :=
∑

n,n2,n3

πn(πnf · (πn2g ⋄ πn3h)), (1.7)

where

(g ⋄ h)(x) := g(x)h(x)− 〈h|g〉 (1.8)

is the wick-product of functions g and h. We mean |g|⋄2 = |g|2 − ‖g‖2L2.



PROBABILISTIC WELL-POSEDENESS FOR NLS ON THE 2d SPHERE I 5

It was shown in [4] that, on S2, contrarily to the case of T2, Bourgain’s re-centering
ansatz

u(t) = eit∆φω + r(t)

fails to solve NLS on S2, as r(t) cannot be viewed as a remainder living in more
regular spaces. Roughly speaking, the Duhamel’s integration of the high-low-low
type resonant interaction

N(0,1)(uhigh, ulow, ulow) (1.9)

does not gain any regularity. This compromise the standard semi-linear iteration
scheme based on the Picard’s iterations. Note that in the flat case, the zero mo-
mentum condition (a property inherited from the structure of the plane waves) and
the Wick ordering remove these interactions from the nonlinearity.

Inspired by [15], our resolution is based on the random averaging operator ansatz.

1.4. Random averaging operator (RAO) ansatz. We now prepare and state
in Theorem 1.2 the more precise statement of Theorem 1.1, in which we describe
the precise structure of the limit solutions. For a dyadic integer N ∈ 2N, denote by

PN = ΠN − ΠN
2

(1.10)

the sharp dyadic projection. Let uN be the (smooth) solution of the Wick-ordered
cubic Schrödinger equation:

i∂tuN + (∆− 1)uN = N (uN), uN |t=0 = ΠNφ
ω, (1.11)

Let ψN be the solution of the linear equation

(i∂t +∆− 1)ψN = 2ΠNN(0,1)(ψN , uN/2, uN/2), ψN |t=0 = φω
N := PNφ

ω. (1.12)

For each N , with the knowledge of uN/2, the properties of ψN are encoded in the
random averaging operator (RAO) denoted HN

n (t) on En and implicitly defined by

fn 7→ HN
n (t)(fn) := e−itλ2

nfn − 2i

∫ t

0

e−i(t−t′)λ2
nπn(HN

n (t
′)(fn) · |uN/2(t

′)|⋄2)dt′. (1.13)

Given an orthonormal base (bn,k)|k|≤n of En, we can also define the operator HN
n (t)

by its matrix elements

HN
n;ℓ,k(t) := 〈HN

n (t)(bn,k)|bn,ℓ〉 = 〈bN
n,k(t)|bn,ℓ〉, (1.14)

where bN
n,k(t, x) is the solution of

(i∂t − λ2n)b
N
n,k(t) := 2πn(b

N
n,k(t) · |uN/2(t)|⋄2), bN

n,k|t=0 = bn,k. (1.15)

In other words,

HN
n (t)(bn,k) = bN

n,k(t) =
∑

|ℓ|≤n

HN
n;ℓ,k(t)bn,ℓ.

Note that HN
n (t) does not depend on the basis of En, and it turns out that for all

t ∈ R the operator HN
n (t) is an L

2-isometry of En.
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We can now express the colored Gaussian variables ψN , referred to as terms of
type (C), as follows:

ψN(t, x) =
∑

N
2
<n≤N

πnψN(t, x) =
∑

N
2
<n≤N

1

λ
α− 1

2
n

eNn (t, x), (1.16)

where, given HN
n the random averaging operator (RAO) defined in (1.13), we let

eNn (t, x) := HN
n (t)(e

ω
n). (1.17)

With these notations, for x ∈ S2,

eNn (t, x) =
1√

2n+ 1

∑

|k|≤n

gn,k(ω)bn,k(t, x) , eNn (0, x) = eωn(x) .

Heuristically, the colored object ψN captures the singular interaction Ns(·, ·, ·), and
it can be viewed as a correction of the Bourgain’s re-centering ansatz:

ψN (t) = eit∆φω
N + eit∆ΘN(t)(φ

ω
N) + remainder, (1.18)

where ΘN(t) is the linear operator (with the knowledge of uN
2
) defined by

φ 7→ −iΠN

∫ t

0

ei(t−t′)∆N(0,1)(PNφ, uN
2
, uN

2
)(t′)dt′.

To describe the smooth solution uN we decompose

uN =
∑

M≤N

vM , vM := uM − uM/2 ,

and we impose
vM := ψM + wM . (1.19)

The remainders wM , referred to as terms of type (D), will be estimated in a functional

space that can be embedded into Cloc(Rt, H
1
2
+(S2)). Since

ΠNN(0,1)(ψN , uN
2
, uN

2
) = N(0,1)(ψN , uN

2
, uN

2
) ,

the equation for wN reads:

(i∂t +∆− 1)wN =N (uN
2
+ vN )−N (uN

2
)− 2ΠNN(0,1)(ψN , uN

2
, uN

2
) (1.20)

=2
(
N (vN , uN

2
, uN

2
)−N(0,1)(ψN , uN

2
, uN

2
)
)
+N (uN

2
, vN , uN

2
)

+2N (vN , vN , uN
2
) +N (vN , uN

2
, vN) +N (vN).

We see from the equation above that the ansatz (1.19) removes the most singular
high-low-low type interaction from the equation solved by the remainder wN .

After solving (1.20), the full ansatz can be written as

uN = ψ≤N + w≤N , ψ≤N :=
∑

L≤N

ψL, w≤N =
∑

L≤N

wL. (1.21)

Formally taking N → ∞, the local structure of (1.1) is given by

u = ψ≤∞ + w≤∞.
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We are now ready to formulate the more precise statement of the local well-posedness
Theorem 1.1.

Theorem 1.2. Let α > 1. There exist absolute constants C1 > c1 > 0 and δ0 > 0,
such that the following statements hold. For R ≥ 1, let τR := R−C1. There exists a
measurable set ΣR ⊂ Hα−1−(S2) with

µα(Σ
c
R) < C1e

−c1Rδ0
,

such that for all φ ∈ ΣR, the sequence of smooth solutions uN of (1.11) with initial
data ΠNφ converges to u in C([−τR, τR];Hα−1−(S2)).

Moreover, the limit u is solution to the Wick-ordered cubic Schrödinger equation
and can be written

u(t) = ψ≤∞(t) + w≤∞(t),

where, for some s0 >
1
2
,

ψ≤∞ ∈ C([−τR, τR]; C0−(S2)) , w≤∞ ∈ C([−τR, τR];Hs0(S2)) .

1.5. Main ideas of the proof. With the objects introduced earlier we can now
explain in more details the ingredients of our proofs.

Having identified the singular interactions in [4] we now have to construct an
adapted refined ansatz in order to show the strong convergence of the regularized
solutions (uN)N , and to prove the decomposition claimed in Theorem 1.2. As men-
tioned earlier the overall strategy is inspired from both [3] and [15].

− Non-perturbative resolution scheme. For the derivative nonlinear wave equation
considered in [3], Picard’s iterations are not regularizing and this compromises the
standard semi-linear approach of [2, 11]. Instead, [3] developed a probabilistic quasi-
linear (or non-perturbative) resolution scheme. It has been known since [6] that
solving deterministically NLS on S2 when s ≤ 1

4
would require a quasi-linear ansatz

too. We proved in [4] that it is also the case when the initial data are randomly
distributed, thus confirming that a resolution scheme like in [3] was needed to go
beyond the Cauchy theory achieved in [8] twenty years ago.

− Ansatz. To address the Gibbs measure problem with general power type nonlin-
earities for NLS on T2, [15] identified the structure of the probabilistic objects in
the resolution scheme of [3]. This formulation, particularly the random averaging
operators (RAO) as expressed in (1.21) in our context, provides the foundations for
our ansatz. Leveraging our understanding of the singular interactions [4], we arrive
at the precise description (1.21) of the limit solutions. A notable aspect of our work
is that the RAO are not regularizing: in the limit N → ∞,

ψN (t)− eit∆φω
N

does not exhibit smoother properties than the initial data. This is in contrast with
the previous works [15, 16, 17] and [22, 24]. In particular, the random tensors theory
introduced in [16] to capture the smoothing effect in the Picard iterations, does not
seem to improve the (RAO) method for NLS on S2.
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− Random objects of type (C). These terms, which are not smoother but display a
probabilistic structure, encode the singular interactions that contribute to the main
part of the effective nonlinear dynamics. In our context, they are a superposition
of time-dependent eigenfunctions eNn (t) obtained by applying the operator HN

n (t)
(unitary on En) to the initial Gaussian spherical harmonics eωn , as expressed in
(1.16).

In the present work, the rigorous construction of the random averaging operators
necessitates the functional framework established in Section 4 and the multilinear
estimates from Section 6.
Another new aspect of our analysis is the use of the law invariance stated in

Lemma 3.7. This property comes from the unitary structure of the RAO [17] and
the probabilistic independence between the RAO and the high-frequency component
of the initial data, first observed in [3].
We use the law-invariance to prove pointwise-in-time estimates for resonant inter-

actions as well as L∞(S2)-bounds for time-dependent eigenfunctions eNn (t). However,
when we use Fourier-restriction norms to exploit the time-oscillations, we have to
consider averaged in time quantities for which we cannot use the law-invariance. In-
stead, we prove large deviation bounds in Section 7 that allow to capture the L∞(S2)-
bounds in the Fourier-Lebesgue norm of eNn (t).

− Remainder terms of type (D). These smoother terms denoted wN solve the
equation (1.20). We prove semi-classical energy estimates stated in (5.14), which
imply the convergence of (wN)N at regularity Hs0(S2) for some s0 >

1
2
. In particular,

we recover the gain of almost 1
2
derivatives obtained by Bourgain on T2.

Since some parts of the trilinear estimates could not be performed using general
linear or bilinear Strichartz estimates, we have to carefully analyse the nonlinear
interactions in Fourier-restriction spaces in order to exploit the time-oscillations.
This necessitated the development of a more flexible analysis going much beyond
the methods used in [8].

In Section 8 we derive the trilinear probabilistic estimates for the (C)(C)(C) terms,
and the deterministic estimates for the interactions with at least one term of type (D)
in Section 9, respectively. For the (C)(C)(C) interactions we also cover the case
α = 1 (corresponding to the Gaussian free field on S2), which explains the length of
Section 8.

Finally, we note that our proof of Theorem 1.2 can be strengthened to get a
stability result in the spirit of [15, Proposition 5.5], which is useful in order to
iterate in time the local well-posedness result.

1.6. Remark on a completely resonant system. For the following completely
resonant system

i∂tu+∆u =
∑

n,m

πn(πnu|πmu|2), (t, x) ∈ R× S2, (1.22)

one easily verifies that for every s ∈ R, the Hs-norm of the smooth solution u(t) to
(1.22) is conserved. Such conservation laws lead to invariant measures of the formal
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form
1

Z
exp

(
− 1

2
‖u‖2Hα(S2)

)
du .

As a by-product of our analysis for proving Theorem 1.2 (as well as the stability
statement), together with Bourgain’s invariant measure argument, we have the fol-
lowing almost sure global well-posedness result for the completely resonant system
of the sphere, at positive regularity:

Theorem 1.3. Let α > 1. There is a set Σ of full probability such that for every
T > 0, ω ∈ Σ, the sequence of smooth solution (uN)N≥1 of (1.22) with initial data
ΠNφ

ω
α converges in L∞([−T, T ];Hβ(S2)), β < α− 1 to a limit which satisfies (1.22)

in a distributional sense on [−T, T ]× S2.

We stress out that for α < 5
4
, we do not know how to prove Theorem 1.3 without

using the machinery elaborated in the proof of Theorem 1.2.
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0016.

2. Dictionary of global notations

We summarize generic notations and some notations for important objects.

• Estimates: We will adopt the generic PDE notations f . g, f & g, and f ∼ g
if f . g and f & g. If we want to emphasize the dependence of a parameter
A in the implicit constants, we will write as f .A g. These notations will be
often used in the proof, but we will only use C,CA.

• Probability: Fix the probability space (Ω,F ,P), B≤N denotes the σ-algebra
generated by Gaussians (gn,k)|k|≤n,n≤N , and BN denotes the σ-algebra gen-
erated by Gaussians (gn,k)|k|≤n,N<n≤2N . Given a sub-σ algebra B of F and
p ≥ 1, denote by

‖X(ω)‖Lp
ω|B :=

(
E[|X(ω)|p|B]

) 1
p

the conditional Lp-moment of a random variable X(ω) with respect to B.
• Operators: For Banach spaces X ,Y , we denote by L(X ,Y) the space of
bounded linear operators from X to Y . If X = Y , we denote it simply by
L(X ).

• Dyadic frequencies: Capital numbers N,M,L,Nj, · · · always refer to dyadic
integers, when they appear as subscript/superscript of functions/operators
as well as the summation. Given a set of dyadic numbers N1, N2, N3, · · · ,
we denote by N(1), N(2), N(3) the non-increasing ordering among them. In
particular, N(1) ≥ N(2) ≥ N(3).
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• Projections: For n ∈ N, πn : L2(S2) → En is the orthonogonal projection
on the eigenspace En of the eigenvalue λ2n = n2 + n + 1. The space En is
identified with the L2 topology. Given f ∈ En and 1 ≤ r ≤ ∞ we denote by
‖f‖Lr(En) := ‖πnf‖Lr(S2). For dyadic intergers N , ΠN ,PN defined in (1.10)
are the (sharp) Littlewood-Paley projectors.

• Important objects: uN is the solution of the truncated NLS equation (1.11)
with initial data ΠNφ

ω, and ψN is the solution of (1.12) with initial data
PNφ

ω. HN
n (t) is the random averaging operator (RAO).

• Time cut-off functions: χ, χ1, ϕ, η · · · . For T > 0, we denote by χT (·) :=
χ(T−1·).

• For Lebesgue spaces Lq, we will use the conjugate exponent q′ = q
q−1

(with

the convention that q′ = 1 if q = ∞ and q′ = ∞ if q = 1).

• Generic small parameters: We reserve a very small parameter σ ∈ (0, 2−100)
throughout this article and define several related large/small parameters
qσ, γσ, δσ, θσ around some specific numbers such that:

1

qσ
= σ, 1− γσ = σ − σ10, 1− γ1,σ = σ − σ15 (2.1)

δσ = σ20, sσ =
1

2
+ 100σ, θσ = σ5. (2.2)

Note that 1 < γ1,σq
′
σ < γσq

′
σ < 1 and the hierarchy of the smallness is needed

to estimate deterministic objects into the Fourier-restriction type spaces, for
technical reason. In summary, we have the following hierarchy of parameters:

0 < δ ≪ γ1 −
1

q′
≪ γ − 1

q′
≪ θ ≪ 1

q
≪ s− 1

2
≪ 1.

• Special symbols:

(a) For simplicity, later we will write

n ≈ L ⇐⇒ L

2
< n ≤ L . (2.3)

(b) The wick square |f |⋄2 is defined in (1.8) and the exotic products f =g
and f 6= g are defined in (5.16)

Notation for the pairing and non-pairing products: Note that

N (u, u, u) = N (1)(u, u, u) +N (2)(u, u, u) +N (3)(u, u, u), (2.4)
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where

N (1)(f1, f2, f3) =
∑

n1,n2,n3
n2 6=n1,n2 6=n3

πn1f1πn2f2πn3f3,

N (2)(f1, f2, f3) =
∑

n1,n2
n1 6=n2

[
πn2f3πn2f2 − 〈πn2f3|πn2f2〉

]
πn1f1

+
∑

n2,n3
n2 6=n3

[
πn2f1πn2f2 − 〈πn2f1|πn2f2〉

]
πn3f3,

N (3)(f1, f2, f3) =
∑

n

[
πnf1πnf2πnf3 − 〈πnf1|πnf2〉πnf3 − 〈πnf3|πnf2〉πnf1

]
.

As the wick product is not always needed, we denote by

N (0)(f1, f2, f3) :=
∑

n0,n1,n2,n3

πn0(πn1f1πn2f2πn3f3).

We will add (, ) to present paired, and [, ] to present non-paired constraints that ap-
pear as subscripts of N (j)(f1, f2, f3), j = 0, 1, 2, 3. For example, for j, k ∈ {0, 1, 2, 3}
such that (−1)j + (−1)k = 0,

N (0)
(j,k)(f1, f2, f3) =

∑

n0,n1,n2,n3

1nj=nk
πn0(πn1f1πn2f 2πn3f3), (2.5)

If several pairing conditions are satisfied simultaneously, we write them as accumu-
lated subscripts. For example,

N (0)
(0,1)(2,3)(f1, f2, f3) =

∑

n0,n1,n2,n3

1n0=n11n2=n3πn0(πn1f1πn2f2πn3f3).

For non-pairing constraints, we express the condition nj 6= nk as subscript [j, k]:

N (0)
[j,k](f1, f2, f3) =

∑

n0,n1,n2,n3

1nj 6=nk
πn0(πn1f1πn2f 2πn3f3). (2.6)

When there are several indices in the bracket, we mean that non-pairing conditions
are satisfied for each pair (j, k) such that (−1)j + (−1)k = 0. For example, the
completely non-paired product can be represented by the subscript [0, 1, 2, 3]:

N (0)
[0,1,2,3](f1, f2, f3) :=

∑

n0,n1,n2,n3
distinct

πn0(πn1f1πn2f2πn3f3).

Similarly, if a pairing condition (j, k) and a non-pairing condition [l, i] simultaneously
appears, we will use the accumulate subscript (j, k)[l, i]:

N (0)
(j,k)[l,i](f1, f2, f3) =

∑

n0,n1,n2,n3
nj=nk,nl 6=ni

πn0(πn1f1πn2f 2πn3f3).



12 NICOLAS BURQ, NICOLAS CAMPS, CHENMIN SUN, AND NIKOLAY TZVETKOV

3. Eigenfunction estimates and probabilistic Sobolev embedding

3.1. Eigenfunction estimates on S2. The next two propositions are true on any
Riemannian compact surface.

Proposition 3.1 (Eigenfunction estimate, [23]).

‖πnf‖Lp(S2) ≤ C

{
n

1
2

(
1
2
− 1

p

)
, 2 ≤ p ≤ 6

n
1
2
− 2

p , 6 ≤ p ≤ ∞.

Proposition 3.2 (Bilinear eigenfunction estimate, [8]). Assume that n1 ≥ n2, then
for any f, g ∈ L2(S2),

‖πn1f · πn2g‖L2(S2) ≤ Cn
1
4
2 ‖f‖L2(S2)‖g‖L2(S2).

We will need a probabilistic estimate for the random spherical harmonics for which
the proof is standard:

Lemma 3.3. There exist C > 0 such that for all 2 ≤ q <∞, n ∈ N and x ∈ S2,

‖eωn‖Lq
ω
.

√
r.

Moreover, there exists C0 > c0 > 0, such that for every R ≥ 1,

P
[
‖eωn‖Lq(S2) > R

]
≤ C0e

−c0R2

.

Proof. The first part of Lemma 3.3 is a consequence of Khintchine’s inequality and
the exact Weyl’s law (1.3). The second claim can be viewed as a rough version of
the probabilistic Sobolev embedding from the work [10]. �

3.2. Elementary properties of the random averaging operators. We first
establish a simple but crucial property is that HN

n (t) is unitary on En:

Lemma 3.4. For fixed t ∈ [0, T ], the operator HN
n (t) is unitary on En. In particular,

the matrix element (HN
n;k,k′(t)) expressed in a given orthonormal basis (bn,k)|k|≤n

verifies
∑

|k|≤n

HN
n;k,ℓ(t)H

N

n;k,ℓ′(t) = δℓℓ′,
∑

|ℓ|≤n

HN
n;k,ℓ(t)H

N

n;k′,ℓ(t) = δkk′, (3.1)

for all t ∈ R.

This is the consequence of Lemma B.1 and the fact that the potential operator

fn 7→ πn(fn · |uN
2
(t)|⋄2)

is self-adjoint. This is a consequence of Lemma B.1. This type of unitary property
for random averaging operators was first observed in [17]. As in [17], we will use it to
achieve some cancellation for Wick’s cubic power of colored Gaussians. In addition,
we use this to prove the law of the colored terms is invariant (see Proposition 3.6).
This will be useful to handle some resonant interactions that are removed by the
wick-ordering when NLS is posed on Td.

We have the following key ingredient is the following key cancellation from Wick-
ordering (this is a global aspect of the RAO theory, first appeared in [17]).
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Lemma 3.5.

|eNn (t, x)|2 − ‖eNn (t, x)‖2L2
x
=

∑

|k|,|k′|,|ℓ|,|ℓ′|≤n
ℓ 6=ℓ′

HN
n;k,ℓ(t)H

N

n;k′,ℓ′(t)
gn,ℓgn,ℓ′

2n+ 1
bn,k(x)bn,k′(x)

+
∑

|k|,|k′|,|ℓ|≤n

HN
n;k,ℓ(t)H

N

n;k′,ℓ(t)
|gn,ℓ|2 − 1

2n+ 1
bn,k(x)bn,k′(x)

−
∑

|ℓ|≤n

|gn,ℓ|2 − 1

2n+ 1
. (3.2)

Proof. To see the formula above, we expand directly |eNn (t, x)|2 − ‖eNn (t, x)‖2L2
x
as

∑

k,k′,ℓ,ℓ′

HN
n;k,ℓH

N

n;k′,ℓ′
gn,ℓgn,ℓ′

2n+ 1
bn,k(x)bn,k′(x)−

∑

k,ℓ,ℓ′

HN
n;k,ℓH

N

n;k,ℓ′
gn,ℓgn,ℓ′

2n+ 1

=
∑

k,k′,ℓ,ℓ′

ℓ 6=ℓ′

HN
n;k,ℓH

N

n;k′,ℓ′
gn,ℓgn,ℓ′

2n+ 1
bn,k(x)bn,k′(x)

+
∑

k,k′,ℓ

HN
n;k,ℓH

N

n;k′,ℓ

|gn,ℓ|2
2n+ 1

bn,k(x)bn,k′(x)−
∑

ℓ

|gn,ℓ|2
2n+ 1

,

where to the last step, we used the unitary property (Lemma 3.4). Using again
Lemma 3.4, the second line on the right hand side can be computed as

∑

k,k′,ℓ

HN
n;k,ℓH

N

n;k′,ℓ

|gn,ℓ|2 − 1

2n+ 1
bn,k(x)bn,k′(x) +

∑

ℓ

|bn,k(x)|2
2n+ 1

−
∑

ℓ

|gn,ℓ|2
2n+ 1

.

By Weyl, we have
∑

ℓ

|bn,k(x)|2
2n+ 1

=
∑

ℓ

1

2n+ 1
.

Regrouping terms, the proof is complete. �

Besides, we develop a new property for colored-Gaussians eNn (t) = HN
n (t)(e

ω
n) on

En, which is helpful in the estimate for the resonant interactions, for which we
cannot use time-modulation.

Proposition 3.6. For fixed n > N/2 and t ∈ R, the random field eNn (t) has the
same law as eωn:

L (eNn (t)) = L (eωn) = NEn(0; Id) .

We need the following Lemma from elementary probability theory:

Lemma 3.7. Let X ∼ NRn(0; Id) be a random Gaussian vector on a probability
space (Ω;A ,P). Assume that G ⊆ F is a sub σ-algebra, and that X is independent
of G . Let A ∈ O(n) be a random orthogonal matrix that is G -measurable. Then

L (AX) = L (X) .
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Proof. We compute the characteristic function of AX : given ξ ∈ Rn,

ϕAX(ξ) = E[ei〈AX,ξ〉] = E[ei〈X,A∗ξ〉] = E[E[ei〈X,A∗ξ〉 | G ]] .

Since A∗ξ is G -measurable and that X is independent of G , we deduce that

[E[ei〈X,A∗ξ〉 | G ] = ϕX(A
∗ξ) = e−

1
2
〈A∗ξ,A∗ξ〉 = e−

1
2
〈AA∗ξ,ξ〉 = e−

1
2
|ξ|2 = ϕX(ξ) .

• Hence,
ϕAX(ξ) = ϕX(ξ) .

Since this holds for every ξ ∈ Rn, we conclude that L (AX) = L (X) = NRn(0, Id).
�

Proof of Proposition 3.6. For fixed n > N/2, the colored filed eNn = HN
n (t)(e

ω
n) is

the image of the normal Gaussian variable eωn on En under the rotation HN
n (t). Note

that HN
n (t) depends on the σ-algebra that is FN/2-measurable, hence independent

of eωn since n ≤ N/2. It follows from Lemma 3.7 that for every t ∈ [0, T ],

L (eNn (t)) = L (eωn) . (3.3)

This completes the proof of Corollary 3.6. �

4. Functional spaces for functions and operators

4.1. Fourier-Lebesgue restriction spaces for functions. Recall that En =
πnL

2(S2) is a closed subspace of L2(S2) of dimension 2n + 1, endowed with the
L2(S2) norm. For a space-time Schwartz distribution F ∈ S ′(R × S2), πnF can be
viewed as a Schwartz distribution with values in En, namely πnF ∈ S ′(R;En). We

denote by F̂ (τ, ·) its time Fourier transform. By decomposing into eigenspaces En,
we have

F̂ (τ, x) =
∞∑

n=1

π̂nF (τ, x).

For p, q, r ∈ [1,∞], consider the restriction norm:

‖F‖Xs,γ
p,q,r

:= ‖〈n〉s〈τ + λ2n〉γπ̂nF (τ, ·)‖lpnLq
τLr

x
= ‖〈n〉s〈κ〉γπnê−it∆F (κ, ·)‖lpnLq

κLr
x
.

It will be more convenient to introduce the notation of twisted time-Fourier trans-
form. For a function Fn ∈ S ′(R;En), we denote by

F̃n(κ, x) := F̂n(κ− λ2n, x) =
̂e−it∆Fn(κ, x).

For a general distribution F ∈ S ′(R× S2), we denote by

F̃ (κ, ·) := ê−it∆F (κ, ·) =
∞∑

n=1

π̃nF (κ, ·).

Though En is finite-dimensional space, different norms are not asymptotically equi-
valent as n → ∞. By abusing the notation, we denote by Lr(En) the space En

endowed with the Lr(S2) norm, with the convention L2(En) = En.
Set

‖Fn‖Xs,γ
q,r (En) := ‖〈κ〉γπn ̂e−it∆Fn(κ, x)‖Lq

κLr
x
= ‖〈κ〉κπ̃nFn(κ, x)‖Lq

κLr
x
,
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then
‖F‖Xs,γ

p,q,r
= ‖πnF‖lpnXs,γ

q,r (En).

Note that X0,b
2,2,2 is just the usual X0,b space in the literature. One keeps in mind

that in our trilinear estimates, we will put remainders in X
0, 1

2
+

2,2,2 and terms like linear

evolutions in X1+
∞,∞,1 essentially. Given an interval I ⊂ R, we define the norm

Xs,b
p,q,r(I) by

‖F‖Xs,b
p,q,r(I)

= inf{‖F1‖Xs,b
p,q,r

: F1|I = F}.
Let χ ∈ C∞

c ((−1, 1)) and χT (t) := χ(T−1) be a time cutoff function, we have the
following localization property:

Proposition 4.1. Let 1 ≤ p, r ≤ ∞, and 1 ≤ q < ∞, 0 < γ ≤ γ1 < 1. For any
u ∈ Xγ1

p,q,r such that u(t = 0, ·) = 0, we have

‖χT (t)u‖Xs,γ
p,q,r

. T γ1−γ‖u‖Xs,γ1
p,q,r

for all 0 < T ≤ 1.

We provide the proof in Appendix (see Lemma A.4). We have the embedding
property:

Lemma 4.2. Let 1 < q < ∞, 1 ≤ r ≤ ∞ and γ ∈
(

1
q′
, 1
)
. Then X0,γ

q,r (En) →֒
Cα(R;Lr(En)) for any α ∈ (0, γ − 1

q′
].

The proof is a direct consequence of Lemma A.5. Denote by

IF (t) :=
∫ t

0

ei(t−t′)∆F (t′)dt′

the Duhamel operator, we have the following linear inhomogeneous estimate:

Proposition 4.3. For any s ∈ R, q ∈ (1,∞), 1
q′
< γ ≤ 1 and any compactly

supported smooth time cutoff χ(t), we have for any 0 < θ < 1− γ,

‖χT (t)IπnF‖Xs,γ
q,r (En) ≤ Cη,γT

θ‖πnF‖Xs,γ−1+θ
q,r (En)

,

‖χT (t)IπnF‖Xs,γ
p,q,r

≤ Cη,γT
θ‖F‖Xs,γ−1+θ

p,q,r
,

where χT (t) = χ(T−1t).

The proof is a direct consequence of the abstract Lemma A.8 and Lemma A.4.
We end this Section by recalling the semi-classical Strichartz estimate from Burq–
Gérard–Tzvetkov and its formulation in Fourier restriction space. We stress out
that this estimate is true on any compact surface.

Proposition 4.4 (Semi-classical Strichartz estimate, [7]). For all 2 ≤ p, q ≤ +∞
with q 6= +∞ admissible

1

p
+

1

q
=

1

2
,

and for all compact interval I ⊂ R, there exists C(I, p, q) > such that for all u ∈ H
1
p (S2) ,

‖eit∆φ‖LpLq(I×S2) ≤ C(I, p, q)‖φ‖
H

1
p (S2)

.
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Moreover, if χ is a test function on R, then for all b > 1 and u ∈ X
1
p
,b,

‖χ(t)u‖LpLq(R×S2) ≤ C(η, p, q)‖u‖
X

1
p ,b .

The bound in Fourier restriction spaces follows from the transference principle.
Semi-classical Strichartz estimates are useful in the deterministic analysis of Sec-
tion 9.

4.2. Fourier restriction norms for operators. For the eigenspace En and a time-
dependent linear operator Tn(t) : En → En. Denote by (Tn;k,k′(t))|k|,|k′|≤n the matrix
element of Tn under a given orthonormal basis (bn,k)|k|≤n of En, i.e.

Tn(t)(bn,k) =
∑

|ℓ|≤n

Tn;ℓ,k(t)bn,ℓ.

Denote by

T̂n(τ) :=

∫

R

Tn(t)e
−itτdt

the time Fourier transform of the linear operator H2N,T
n (t), where the integral is in

the sense of Bochner, and we set

T̃n(κ) := ̂eitλ2
nTn(t)(κ)

the twisted time-Fourier transform of the operator Tn(t).
We will use the norm Sq,γ

n for any linear operator Tn(t),Ln(t) ∈ S ′(R;L(En)):

‖Tn‖Sq,γ
n

:= ‖〈τ + λ2n〉γ T̂n(τ)‖En→Lq
τEn

, (4.1)

‖Ln‖Sq,γ,∗
n

:= ‖〈τ − λ2n〉γL̂n(τ)‖En→Lq
τEn

(4.2)

In terms of twisted Fourier transform,

‖Tn‖Sq,γ
n

= ‖〈κ〉γFt(e
iλ2

ntTn(t))(κ)‖En→Lq
κEn

, (4.3)

‖Ln‖Sq,γ,∗
n

= ‖〈κ〉γFt(e
−iλ2

ntLn(t))(−κ)‖En→Lq
κEn

. (4.4)

In terms of matrix element,

‖Tn‖Sq,γ
n

= ‖〈κ〉γT̂n,ℓ,k(κ− λ2n)‖l2k→Lq
κl2ℓ
, ‖Ln‖Sq,γ,∗

n
= ‖〈κ〉γL̂n,ℓ,k(κ+ λ2n)‖l2k→Lq

κl2ℓ
.

Given Hn(t) ∈ S ′(R;L(En)), in application, we will control Sq,γ
n -norm for Hn(t)

while Sq,γ,∗
n -norm for its adjoint (Hn(t))

∗. Note that

H̃n(κ) = Ft(e
iλ2

ntHn(t))(κ) =

∫

R

eiλ
2
nt−itκHn(t)dt.

For fixed κ ∈ R, as an operator acting on En, the adjoint of H̃n(λ) is given by

(H̃n(κ))
∗ = Ft(e

−iλ2
nt(Hn(t))

∗)(−κ) =
∫

R

e−iλ2
nt+itκ(Hn(t))

∗dt.

The matrix elements of H̃n(κ) is H̃n;ℓ,k(κ) = Ĥn;ℓ,k(κ− λ2n), and the matrix element

of (H̃n(κ))
∗ is

(H̃n(κ))
∗
ℓ,k = Ĥn;k,ℓ(λ

2
n − κ) = Ĥn;k,ℓ(κ− λ2n) = H̃n;k,ℓ(κ).
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By definition, we have clearly that

‖Hn‖Sq,γ
n

= ‖〈κ〉γH̃n(κ)‖En→Lq
κEn

= ‖Hn‖En→X0,γ
q,2 (En)

= ‖〈κ〉γH̃n;ℓ,k(κ)‖l2k→Lq
κl2ℓ
.

Since the matrix element

Ft(e
−itλ2

n(Hn(t))
∗)ℓ,k(−κ) = Ĥn;k,l(−κ + λ2n) = Ĥn;k,ℓ(κ− λ2n),

we have

‖H∗
n‖Sq,γ,∗

n
=‖〈κ〉γFt(e

−itλ2
n(Hn(t))

∗)(−κ)‖En→Lq
κEn

=‖〈κ〉γH̃n;ℓ,k(κ)‖l2ℓ→Lq
κl2k
. (4.5)

The Sq,γ
n norm allows us to control the X0,γ

q,∞(En) norm of eN,†
n , while the Sq,γ,∗

n

norm will be used in the probabilistic trilinear estimate for purely colored-Gaussian
terms (see Section 8 ). In particular, we need the following type of pointwise bound:

Lemma 4.5. Assume that Tn(t) ∈ Sq,γ,∗
n , then for any fn ∈ En,

sup
x∈S2

‖〈κ〉γ ˜Tn(t)(fn)(κ, x)‖Lq
κ
≤

√
2n+ 1‖Tn‖Sq,γ,∗

n
‖fn‖En.

Proof. For example, for fn =
∑

|k|≤n akbn,k ∈ En written in the bases (bn,k), we have

Tn(t)(fn)(x) =
∑

|ℓ|,|k|≤n

Tn;ℓ,k(t) · akbn,ℓ(x).

Hence by Cauchy-Schwarz, for fixed x ∈ S2,

‖〈κ〉γ ˜Tn(t)(fn)(κ, x)‖Lq
κ
=
∥∥∥

∑

|ℓ|,|k|≤n

〈κ〉γ · T̃ n;ℓ,k(κ) · akbn,ℓ(x)
∥∥∥
Lq
κ

≤‖ak‖l2k
∥∥∥
( ∑

|k|≤n

∣∣∣
∑

|ℓ|≤n

〈κ〉γT̃n;ℓ,k(κ)bn,ℓ(x)
∣∣∣
2) 1

2
∥∥∥
Lq
κ

=‖fn‖En

∥∥∥
( ∑

|k|≤n

∣∣∣
∑

|ℓ|≤n

〈κ〉γT̃n;ℓ,k(κ)bn,ℓ(x)
∣∣∣
2) 1

2
∥∥∥
Lq
κ

.

We conclude by the following pointwise bound:

∥∥∥
( ∑

|k|≤n

∣∣∣
∑

|ℓ|≤n

〈κ〉γT̃n;ℓ,k(κ)bn,ℓ(x)
∣∣∣
2) 1

2
∥∥∥
Lq
κ

≤
√
2n+ 1‖〈κ〉γ(T̃n(κ))

∗‖En→Lq
κEn

. (4.6)

Indeed, by Weyl (1.3), the left hand side can be bounded by

‖〈κ〉γT̃ n;ℓ,k(κ)‖l2ℓ→Lq
κl

2
k

( ∑

|ℓ|≤n

|bn,ℓ(x)|2
) 1

2
=

√
2n + 1‖〈κ〉γ(T̃n(κ))

∗‖En→Lq
κEn

,

This completes the proof. �
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5. Key induction steps

In this section, we present the precise statement of Theorem 1.2 and the induction
steps. For the reason of clarity, we will only prove the convergence for dyadic
sequences (uN)N∈2N . Slight modification leads to the convergence of the full sequence,
see [15] or [24] for details.

5.1. Equations for the RAO and remainders. The Cauchy problem (1.15) can
be reformulated as a linear equation for HN

n (t):

HN
n (t) = e−itλ2

nIdEn +
2

i

∫ t

0

e−i(t−t′)λ2
nπn(HN

n (t
′)(·) · |uN/2(t

′)|⋄2)dt′. (5.1)

To solve the fixed-point problem for the norm Sq,γ
n , we need also to estimate the

adjoint of the twisted-Fourier transform of HN
n (t). Define the potential operator PN

n

PN
n (t) : F (t) 7→ πn(πnF (t) · |uN(t)|⋄2), (5.2)

The Duhamel formula for the adjoint operator reads:

(HN
n (t))

∗ =eiλ
2
ntIdEn − 2

i

∫ t

0

eiλ
2
nt

′PN
n (t′) ◦ HN

n (t
′) ◦ (HN

n (t))
∗dt′. (5.3)

To see this, using the unitary property of HN
n (t), we write

(HN
n (t))

∗ =eiλ
2
ntIdEn + (HN

n (t))
∗ − eiλ

2
ntHN

n (t)(HN
n (t))

∗

=eiλ
2
ntIdEn + (HN

n (t))
∗ −

(
IdEn +

2

i

∫ t

0

eit
′λ2

nPN
n (t′) ◦ HN

n (t
′)dt′

)
(HN

n (t))
∗

=eiλ
2
ntIdEn −

2

i

∫ t

0

eiλ
2
nt

′PN
n (t′) ◦ HN

n (t
′) ◦ (HN

n (t))
∗dt′.

From (1.20), the equation verified by wN reads

wN(t) =2IN(0,1)(wN , uN/2, uN/2) + 2IN[0,1](ψN + wN , uN/2, uN/2)

+IN (uN/2, ψN + wN , uN/2) + 2IN (ψN + wN , ψN + wN , uN/2)

+IN (ψN + wN , uN/2, ψN + wN) + IN (ψN + wN), (5.4)

where we recall that

N[0,1](f, g, h) :=
∑

n,n1,n2,n3
n 6=n1

πn(πn1f · πn2g ⋄ πn3h). (5.5)

5.2. The extensions and local well-posedness statements. In practice, we
have to restrict the random averaging operators and remainders on some short time
interval of size O(T ) and extend these restrictions that are defined for all time. As
our analysis involves the adjoint of RAO, the extension procedure becomes slightly
more delicate than in [15]. These extensions will be defined inductively as follows:
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A. Initialization:
Given the small number T ∈ (0, 1

2
) and the bump function χ ∈ C∞

c ((−1, 1)) such

that χ(t) ≡ 1 for |t| ≤ 1
2
. First for the given initial frequency N0 = 2, we define

u†N0
(t) = χT (t)uN0(t), where uN0 is the solution of (1.11) with N = 2. Define for

N0/2 < n ≤ N0,

HN0,†
n (t) = χ(t)HN0

n (t), GN0,†
n (t) := χ(t)(HN0

n (t))∗,

and for L ≤ N0, we set simply

ψ†
L := u†L − u†L

2

, w†
L ≡ 0.

B. Heredity: Assuming that for some N ≥ N0, the objects HM,†
m (t), GM,†

m (t),w†
M(t)

and ψ†
M (t) are defined for N0 ≤M ≤ N , compactly supported in (−1, 1) and they

coincide with respectively HM
m (t), (HM

m (t))∗, wM(t), ψM(t) on
[
− T

2
, T
2

]
.

Recall the notation n ≈ 2N for N < n ≤ 2N .

Step B1: The potential operator: For n ≈ 2N , we define the extension of the
linear operator P2N,†

n (t) via

P2N,†
n (t)(F (t)) := πn(πnF (t) · |u†N(t)|⋄2). (5.6)

We have P2N,†
n (t) = P2N

n (t) for |t| ≤ T
2
, and one verifies that for every t ∈ R,

P2N,†
n (t) is a self-adjoint operator on En.

Step 2: Random averaging operators and colored gaussians: For n ≈ 2N ,
we define H2N,†

n by the equation (provided that the solution exists and is unique)

H2N,†
n (t) = χ(t)e−itλ2

nIdEn +
2

i
χ2T (t)

∫ t

0

e−iλ2
n(t−t′)P2N,†

n (t′) ◦ H2N,†
n (t′)dt′. (5.7)

Note that for all n ≈ 2N and t ∈ R, the operator H2N,†
n is B≤N -measurable.

Moreover, when |t| ≤ T
2
, we have

H2N,†
n (t) = H2N

n (t).

For the extension of the adjoint operator, instead of taking directly the adjoint, we
introduce the operator G2N,†

n (t) as the solution of the linear equation

G2N,†
n (t) =χ(t)eiλ

2
ntIdEn − 2

i
χ2T (t)

∫ t

0

eiλ
2
nt

′P2N,†
n (t′) ◦ H2N,†

n (t′) ◦ G2N,†
n (t)dt′. (5.8)

We observe that for |t| ≤ T
2
,

G2N,†
n (t) = (H2N

n (t))∗,

but H2N,†
n (t),G2N,†

n (t) differ from H2N
n (t), (H2N

n (t))∗ on [−T, T ]. Nevertheless we
deduce from Lemma B.2 that H2N,†

n (t) is still unitary 2 on [−T, T ], and that

G2N,†
n (t) = (H2N,†

n (t))∗.

2Here we only need the fact that P2N,†
n (t) is self-adjoint for all t ∈ R.
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We split the perturbative components of HN,†
n (t),GN,†

n (t) into

h2N,†
n (t) := HN,†

n (t)− χ(t)e−iλ2
ntIdEn, g

2N,†
n (t) := G2N,†

n (t)− χ(t)eiλ
2
ntIdEn . (5.9)

For |t| ≤ T ,
g2N,†
n (t) = (h2N,†

n (t))∗

and the operators h2N,†
n (t), g2N,†

n (t) are compactly supported on |t| ≤ 2T . Next, we
define

e2N,†
n (t) := HN,†

n (t)(eωn), ψ†
2N (t) := χT (t)

∑

n≈2N

e2N,†
n (t)

λ
α− 1

2
n

. (5.10)

where

f2N,†
n (t) = χT (t)h

2N,†
n (t)(eωn) , f †2N (t) :=

∑

N<n≤2N

f2N,†
n (t)

λ
α− 1

2
n

.

From the notion above, we have for n ≈ 2N ,

πnψ
†
2N (t) =

χT (t)e
−itλ2

neωn + f2N,†
n (t)

λ
α− 1

2
n

. (5.11)

Note that f †2N(t), ψ
†
2N (t) are compactly supported on |t| ≤ T that coincides with

ψ2N (t)− eit∆PNφ, ψ2N (t) on |t| ≤ T
2
, with respectively. Note that ψ†

2N (t) solves the
equation

(i∂t +∆− 1)ψ†
2N = 2Π2NN(0,1)(ψ

†
2N , u

†
N , u

†
N)

only on [−T/2, T/2].
The advantage of defining ψ†

2N (t) only on [−T, T ] is that πnψ†
2N (t) = χT (t)e

2N,†
n (t)

and we could apply the invariance property (which is a global information) for
e2N,†
n when solving the operator equation (5.7) and the equation (5.12) for the
remainder. The motivation of separating the operator h2N,†

n (t) from H2N,†
n (t) is

that, when global information of the colored Gaussian πnψ
†
2N (t) is not needed, we

decompose it as the sum of

λ
− 1

2
n χT (t)T 2N,†

n (t)(eωn), T 2N,†
n ∈ {χ(t)e−itλ2

nIdEn, ϕT (t)h
2N,†
n (t)},

where ϕT (t)χT (t)h
2N
n (t) = χT (t)h

2N,†
n (t) and supp(ϕT ) ⊂ [−T, T ]. In practice, the

output of our estimate for operators T 2N
n (t) will only depend on ‖T 2N

n ‖Sq,γ
n

and
‖(T 2N

n )∗‖Sq,γ,∗
n

norms.

We provide some large deviation bounds on the stochastic objects in Section 7.

Step 3: Remainder: Finally we define w†
2N by solving the integral equation3

w†
2N (t) =2χT (t)

[
IN(0,1)(w

†
2N , u

†
N , u

†
N) + IN[0,1](ψ

†
2N + w†

2N , u
†
N , u

†
N)

]
(5.12)

+χT (t)
[
IN (u†N , ψ

†
2N + w†

2N , u
†
N) + 2IN (ψ†

2N + w†
2N , ψ

†
2N + w†

2N , u
†
N)

]

+χT (t)
[
IN (ψ†

2N + w†
2N , u

†
N , ψ

†
2N + w†

2N) +N (ψ†
2N + w†

2N )
]
.

Note that (5.12) coincides with (1.20) only on the interval [−T/2, T/2].
3Here we truncate the Duhamel formula by χT (t) instead of χ2T (t). The reason is that on

supp(χT ), the extended operators (H2N,†
n ,G2N,†

n ) form an unitary pair.
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At the end of this step, we define

u†2N(t) := u†N(t) + ψ†
2N (t) + w†

2N (t).

Denote by

ψ†
≤2N :=

∑

M≤2N

ψ†
M , w†

≤2N :=
∑

M≤2N

w†
M .

From the iterative scheme of construction, we summarize that:

• We denote the extension of uN , ψN ,wN , and HN
n (t), (HN

n (t))
∗ by

u†N , ψ
†
N , w

†
N ,HN,†

n (t),GN,†
n (t)

• The functions u†N , ψ
†
N , w

†
N are supported in (−T, T ), while H2N,†

n (t),G2N
n (t)

are supported on (−2T, 2T ). They coincide with the corresponding objects
without † on [−T

2
, T
2
].

• The operators (H2N,†
n (t),G2N,†

n (t)) form a unitary pair when |t| ≤ T .

• The random operators HN,†
n (t),GN,†

n (t) are B≤N
2
measurable, keeping the ini-

tial law invariant for |t| ≤ T (see Lemma 7.1).

• The random functions w†
≤N , u

†
N , ψ

†
≤N are B≤N measurable.

Next we define an a priori parameter-dependent local bounds statement:

Definition 5.1 (Loc(N)). Let N ≥ 2 be a dyadic number, 0 < T ≪ 1, R ≥ 1 and
0 < σ ≪ 1, (q, δ, γ, γ1, s, θ) = (qσ, γσ, γ1,σ, δσ, sσ, θσ) the σ-dependent parameters in
(2.1). The statement Loc(N) holds when for all 2 ≤M ≤ N the following properties
are satisfied: If N = 2, then with T = 1

2
,

‖ψ†
≤2‖ = ‖u†2‖L∞

t H10
x

≤ R,

and if N > 2, then T = R− 10
θ ,

• For any M
2
< n ≤ M ,

‖hM,†
n ‖Sq,γ

n
+ ‖gM,†

n ‖Sq,γ,∗
n

≤ R−1,

and

‖HM,†
n ‖Sq,γ

n
+ ‖GM,†

n ‖Sq,γ,∗
n

≤ R.

• The functions ψ†
M verify the bounds (see (5.16) for the definition of = ):

‖ψ†
N‖X0,γ

q,q,∞
≤ RT

−γ+ 1
q′N−(α− 1

2
)+ 1

q
+2δ , ‖ψ†

N
=ψ†

N‖Lq
tL

∞
x
≤ CR2N−2(α− 1

2
)+ 1

2
+ 1

q
+2δ.

(5.13)

• The functions w†
M verify the bounds: for all M ≤ N and L ≥ 2M ,

‖w†
M‖X0,b ≤M−sR−1, ‖Π⊥

Lw
†
M‖X0,b ≤

(M
L

)10
M−sR−1. (5.14)
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Remark 5.2. Note that when Loc(N) holds with parameters (T,R, σ), then we also
have that for all 2 ≤M ≤ N ,

‖(χTHM,†
n )∗‖Sq,γ,∗

n
= ‖χTGM,†

n ‖Sq,γ,∗
n

. T
1
q′
−γ‖GM,†

n ‖Sq,γ,∗
n

. T
1
q′
−γ
R . (5.15)

We used Proposition A.1 to obtain the first inequality.

We now state the key induction Proposition.

Lemma 5.3 (Key induction Proposition). Assume that α > 1. There exist a suffi-
ciently small σ ∈ (0, 1) and accordingly the parameters (q, δ, γ, s, θ) = (qσ, γσ, δσ, sσ, θσ),
constants C0 > 1 > c0 > 0, depending on parameters q, δ, γ, s, θ, α, such that for any
R ≥ 1 and T = R− 10

θ , the following statement holds:

If Loc(N) holds for any ω ∈ ΩN where ΩN is a B≤N measurable set, then
Loc(2N) holds for ω ∈ Ω2N , where Ω2N is another measurable set such that

P(ΩN \ Ω2N ) < C0e
−Nc0Rδ

.

Note that the parameters (σ, q, δ, γ, s, θ, C0, c0) are indeed absolute constants, and
the key induction property does not require any constraint on R which measures
the large deviation of the desired events. Consequently, we have:

Corollary 5.4. Let (σ, q, δ, γ, s, θ, C0, c0) be the same set of parameter in Proposition
5.3. Then for any sufficiently large R ≥ 1, Loc(N) holds for all N ∈ 2N, outside a set

of probability measure C0e
−cRδ0 , where C0, c, δ0 > 0 are absolute constants depending

only on the single parameter σ.

Start: Loc(N)

Inputs: ψ†
N , w

†
N , u

†
N = ψ†

N + w†
N

P†
2N :(5.6)

H2N,†
n :(5.7),

G2N,†
n :(5.8),

ψ†
2N : (5.10)

w†
2N : (5.12)

Renew N = 2N
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Note: Though T = R− 10
θ , we write down the T -dependence in the bound for ψ†

M for
the reason of clarity.

5.3. Key estimates for RAOs. The proof of Proposition 5.3 relies on a set of
multi-linear estimates for functions and operators, both of deterministic type and
stochastic type.
Define

f 6= g :=
∑

n2 6=n3

πn2f · πn3g, f =g :=
∑

n

(
πnf · πng − 〈πnf |πng〉

)
. (5.16)

Hence

ψ†
≤N

=ψ†
≤N =

∑

1≤L≤N

ψ†
L

=ψ†
L , (5.17)

with

ψ†
L

=ψ†
L(t, x) :=

∑

L
2
≤n<L

(|πnψ†
L(t, x)|2 − ‖πnψ†

L(t, ·)‖2L2)

= χT (t)
2

∑

L
2
≤n<L

λ
−2(α− 1

2
)

n (|eL,†n (t, x)|2 − ‖eL,†n (t)‖2L2) . (5.18)

Remark 5.5. The contribution ψ†
L

=ψ†
L will be roughly estimated in L∞

t,x spaces (see

Lemma 7.3) where we will make use of the fact that πnψ
†
L = λ

−(α− 1
2
)

n χT (t)HL,†
n (t)(eωn)

and HL,†
n (t) is unitary on suppχT (·). This global information for RAO motivates

the definition 5.10 for ψ†
N(t).

Recall that in the RAO ansatz,

u†N(t) = ψ†
≤N (t) + w†

≤N(t), w†
≤N(t) ∈ Xs0,b, ψ†

≤N ∈ X
α− 1

2
− 1

q
−3δ,γ1

q,q,∞

for s0 = sσ − σ, δ = δσ and γ1 = γ1,σ ∈ ( 1
q′
, 1). To estimate the norm of P2N,†

n (t), we

expand |u†N(t)|⋄2, the wick square of u†N by

|u†N(t)|2 − ‖u†N(t)‖2L2
x
=|ψ†

≤N(t)|⋄2 + |w†
≤N(t)|⋄2

+2Re(ψ†
≤N(t)w

†
≤N(t))− 2Re

〈
ψ†
≤N (t)|w†

≤N(t)
〉
, (5.19)

where

|ψ†
≤N(t)|⋄2 := |ψ†

≤N(t)|2 − ‖ψ†
≤N(t)‖2L2

x
, |w†

≤N(t)|⋄2 = |w†
≤N(t)|2 − ‖w†

≤N(t)‖2L2 .

We further split

|ψ†
≤N(t)|⋄2 = ψ†

≤N(t) 6=ψ†
≤N (t) + ψ†

≤N (t) =ψ†
≤N (t). (5.20)

We note that

ΠNψ
†
≤N = ψ†

≤N , ΠNw
†
≤N 6= w†

≤N .

Let us start with the estimates for Sq,γ
n norm of the RAOs h2N,†

n and g2N,†
n in the

fixed-point problems:
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Proposition 5.6. There exists a sufficiently small σ ∈ (0, 1), such that if the state-
ment Loc(N) holds with respect to arguments (T,R, σ), then for any N < n ≤ 2N ,
Tn ∈ Sq,γ

n ,

∥∥∥χ2T (t)

∫ t

0

e−iλ2
n(t−t′)P2N,†

n (t′) ◦ Tn(t
′)dt′

∥∥∥
Sq,γ
n

≤ CT θ‖Tn‖Sq,γ
n

· T−2γ+ 2
q′ R2.

Proof. Thanks to Proposition 4.3, it suffices to show that for any Fn ∈ X0,γ
q,2 (En),

‖P2N,†
n (t)(Fn(t))‖X0,γ−1+θ

q,2 (En)

.‖Fn‖X0,γ
q,2 (En)

(
‖ψ†

≤N
=ψ†

≤N‖Lq′

t L∞
x
+ ‖ψ†

≤N‖2Xβ,γ
q,q,∞

+ ‖w†
≤N‖2Xs,b

)
, (5.21)

where β = α− 1
2
− 1

q
− 3δ.

We decompose P2N
n (t)(Fn) into I + II + III, where

I := e−iλ2
ntπn(e

iλ2
ntπnFn(t)ψ

†

≤N
=ψ†

≤N),

II := e−iλ2
ntπn(e

iλ2
ntπnFn(t)Re(ψ

†
≤N (t)w

†
≤N(t)))− Re

〈
ψ†
≤N (t)|w†

≤N(t)
〉
· πnFn(t),

III := e−iλ2
ntπn(e

iλ2
ntπnFn(t)|w†

≤N(t)|2)− ‖w≤N(t)‖2L2 · πnFn(t),

IV := e−iλ2
ntπn(e

iλ2
ntπnFn(t)ψ

†

≤N
6=ψ†

≤N ).

By Lemma A.6 (since En is a Hilbert space),

‖I‖X0,γ−1+θ
q,2 (En)

≤‖I‖X0,0
q,2 (En)

=
∥∥Ft

(
πn(e

iλ2
ntπnFn(t)ψ≤N

=ψ≤N )
)
(λ)

∥∥
Lq
λEn

.
∥∥eiλ2

ntπn(πnFn(t)ψ≤N
=ψ≤N)

∥∥∥
Lq′

t En

.‖Fn‖L∞
t L2

x
‖ψ≤N

=ψ≤N‖Lq′

t L∞
x

.‖Fn‖X0,γ
q,2 (En)

‖ψ≤N
=ψ≤N‖Lq′

t L∞
x
,

where to the last step, we used Lemma 4.2, thanks to the fact that γ ∈
(
1
q′
, 1
)
.

The estimate of the first contribution in II is a direct consequence of Proposi-
tion 6.1. Moreover, for fixed t, using the embedding property Xs,b, →֒ CtH

s
x and

X0,γ
q,∞(En) →֒ CtL

∞(En), we have
∣∣∣
〈
ψ†
≤N (t)|w†

≤N(t)
〉∣∣∣ ≤

∑

n≤N

‖πnψ†
≤N‖L∞

t L∞
x (En)‖πnw†

≤N‖L∞
x L2

x

≤
∑

n≤N

n−(s+β)‖nβπnψ
†
≤N‖X0,γ

q,∞(En)
‖nsπnw

†
≤N‖X0,b

.‖ψ†
≤N‖Xβ,γ

q,q,∞
‖w†

≤N‖Xs,b .

Hence for the second term of II, its X0,γ−1+θ
q,2 (En) norm can be bounded by its L2

t,x

norm, leading to the bound

‖Fn‖X0,γ
q,2 (En)

‖ψ†
≤N‖Xβ,γ

q,q,∞
‖w†

≤N‖Xs,b .
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The estimate of the first term in III is implied by Proposition 6.2, while the estimate
for the second term in III is straightforward. Finally, the estimate for IV is implied
by Proposition 6.3. We conclude the proof of (5.21). This completes the proof of
Proposition 5.6. �

A similar proposition claims that the Duhamel operator above can be extended
as a bounded operator on Xq,γ

q,2 (En). This will allow us to control the equation for

the operator G2N,†
n .

Proposition 5.7. There exists a sufficiently small σ ∈ (0, 1), such that if the state-
ment Loc(N) holds with respect to arguments (T,R, σ), then for any N < n ≤ 2N ,
Tn,Sn ∈ Sq,γ

n ,
∥∥∥χ2T (t)

(∫ t

0

eiλ
2
nt

′P2N,†
n (t′)◦Tn(t

′)dt′
)
◦ Sn(t)

∥∥∥
Sq,γ,∗
n

≤CT θ−γ+ 1
q′ ‖Tn‖Sq,γ

n
‖Sn‖Sq,γ,∗

n
· T−2γ+ 2

q′R2.

Proof. By definition (4.4), we need to show that for any fn ∈ En,
∥∥∥χ2T (t)

(∫ t

0

P2N,†
n (t′) ◦ eiλ2

nt
′Tn(t

′)dt′
)
◦ e−iλ2

ntSn(t)(fn)
∥∥∥
FLγ

q (En)

.T
θ−γ+ 1

q′ ‖Tn‖Sq,γ,∗
n

‖e−iλ2
ntSn(t)(fn)‖FLγ

q (En)(T
−2γ+ 2

q′R2 + ‖ψ†
≤N

=ψ†
≤N‖Lq

tL
∞
x
),

where we refer to (A.1) the abstract notation of Fourier-Lebesgue spaces. Set

A(t′) = eiλ
2
nt

′P2N,†
n (t′) ◦ Tn(t

′), F(t) = e−iλ2
ntSn(t)(fn).

By Lemma A.9,
∥∥∥χ2T (t)

∫ t

0

A(t′)(F(t))dt′
∥∥∥
FLγ

q (En)
. T

θ−γ+ 1
q′ ‖A(t)‖En→FLγ−1+θ

q (En)
‖F(t)‖FLγ

q (En).

As a consequence of (5.21), we have

‖A(t)‖En→FLγ−1+θ
q (En)

.‖Tn‖Sq,γ
n

(
‖ψ†

≤N
=ψ†

≤N‖Lq′

t L∞
x
+ ‖ψ†

≤N‖2Xβ,γ
q,q,∞

+ ‖w†
≤N‖2Xs,b

)

.‖Tn‖Sq,γ
n
(T

−2γ+ 2
q′R2 + ‖ψ†

≤N
=ψ†

≤N‖Lq
tL

∞
x
).

This completes the proof of Proposition 5.7. �

5.4. Key trilinear estimates. Next we state multi-linear estimates for remainders.
We separate them into different classes.

Definition 5.8. For a space-time function4 vN , we say that it is of type (C), if

vN = χT (t)
∑

N<n≤2N

T N
n (t)(eωn)

λ
α− 1

2
n

=: χT (t)T N(t)(φN) ,

where T N
n (t) ∈ Sq,γ

n is B≤N/2-measurable,

‖T N
n (t)‖Sq,γ

n
≤ R.

4Here the notation vN should not be confused with the uN − uN/2 in the previous section.
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and T N :=
∑

N<n≤2N T N
n satisfies

‖T N(t)(φN)‖X0,γ
q,q,∞

≤ N− 1
2
+ 1

q
+ δ

2R.

It is of type (D), if vN = zN ∈ X0,b and

‖zN‖X0,b ≤ N−sR−1.

A typical type (C) term is ψ†
N for which the corresponding operators are HN,†

n .

We enlarge the definition of type (C) term to include RAO hN,†
n and χ(t)e−itλ2

nIdEn

appearing in the decomposition of HN,†
n . A typical type (D) term is the remainder

w†
N , solution to (5.12). However, we introduce the notation to distinguish w†

N . In

practice, knowing Loc(N), we will solve the fixed-point problem for w†
2N in the

ball {w : ‖w‖X0,b ≤ (2N)−s}. For this reason, it is more convenient to establish
estimates for general type (D) terms.

We begin with some deterministic estimates that allows to control the resonant
high-low-low component:

Proposition 5.9. There exists a sufficiently small σ ∈ (0, 1), such that if the state-
ment Loc(N) holds with arguments (T,R, σ), then for any N < n ≤ 2N ,

‖χT (t)IP2N,†
n ‖L(X0,b) ≤ CT

θ−2(γ− 1
q′
)
R2 .

Consequently, for any z2N ∈ X0,b,

‖χT (t)IN(0,1)(z2N , u
†
N , u

†
N)‖X0,b ≤ CT

θ−2(γ− 1
q′
)‖z2N‖X0,bR2.

Proposition 5.9 allows to control the first term of (5.12), and the proof follows in
the same way as for Proposition 5.6, hence we omit it.
Let us analyze the remaining type of nonlinearities in the equation of w†

2N (with
N(1) = 2N):

• (C)(C)(C) type N (ψ†
N1
, ψ†

N2
, ψ†

N3
):

– If N1 = 2N,N2, N3 ≤ N , only N[0,1](ψ
†
N1
, ψ†

N2
, ψ†

N3
) are presented.

– Otherwise N2 = 2N or N(1) = N(2) = 2N , all possible combinations.

• (C)(D)(D) types N (ψ†
N1
, z†N2

, z†N3
),N (z†N1

, ψ†
N2
, z†N3

) and N (z†N1
, z†N2

, ψ†
N3
):

– If N1 = 2N,N2, N3 ≤ N , only N[0,1](ψ
†
N1
, z†N2

, z†N3
)

– Otherwise N2 = 2N or N(1) = N(2) = 2N , all possible combinations.

• (C)(C)(D) types N (ψ†
N1
, ψ†

N2
, z†N3

), N (ψ†
N1
, z†N2

, ψ†
N3
) and N (z†N1

, ψ†
N2
, ψ†

N3
):

– If N1 = 2N,N2, N3 ≤ N , only N[0,1](zN1 , zN2 , zN3).
– Otherwise N2 = 2N,N1, N3 ≤ N or N(1) = N(2) = 2N , all possible
combinations.

• (D)(D)(D) types N (z†N1
, z†N2

, z†N3
): all possible combinations.

We collect the deterministic trilinear estimates in the following proposition which
treated (D)(D)(C), (D)(C)(C) and (D)(D)(D) terms together. Note that we do not
cover the case of the Gibbs measure (α = 1) here, and refined probabilistic estimates
together with a modified resolution scheme are needed. These will be developed in
our forthcoming work [5].
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Proposition 5.10. Let α > 1 and 0 < ǫ0 < min(1
2
(s− 1

2
), α− 1). We suppose that

Loc(N) is true with parameters (T,R, σ) and that the terms ψ†
2N also satisfy the

bound (5.13). Let N1, N2, N3 be dyadic integers such that 2N = N(1) ≥ N(2) ≥ N(3),

and v†Nj
is either ψ†

Nj
(of type (C)) or z†Nj

(of type (D)). We have:

(1) If there is at least one term z†2N then

‖χTIN (z†2N , v
†
N2
, v†N3

)‖X0,b + ‖χTIN (v†N1
, z†2N , v

†
N3
)‖X0,b ≤ CT

θ
2R‖z†2N‖X0,bN−ǫ0

(2) .

(2) If there is at least one term ψ†
2N and no term z†2N . Then,

‖χTIN (v†N1
, ψ†

2N , v
†
N3
)‖X0,b + ‖χTIN[0,1](ψ

†
2N , vN2, ψ

†
2N )‖X0,b ≤ CT

θ
2RN−s

(1)N
−ǫ0
(2) .

(3) If N(2) = N(1) = 2N and at least one of v†N2
, v†N3

is of type (D), then

‖χTIN(0,1)(ψ
†
2N , v

†
N2
, v†N3

)‖X0,b ≤ CT
θ
2RN−s

(1)N
−ǫ0
(2) .

We prove Proposition 5.10 in Section 9. Let us now state the trilinear probabilistic
estimates. In contrast to the above deterministic estimate, we cover the Gibbs case
corresponding to α = 1.

Proposition 5.11 ((C)(C)(C) type interactions). Let α ≥ 1. Suppose that Loc(N)
holds with parameters (T,R, σ), for some sufficiently small σ ∈ (0, 1). Let N1, N2, N3

be dyadic integers such that 2N = N(1) ≥ N(2) ≥ N(3). Let ψ
†
Nj

be of type (C). Then

there exit ǫ0 > 0, independent of α, and a B≤2N -measurable set Ξ with P(Ω \ Ξ) <
C0e

−(logN)c0Rδ0 , such that the following estimates hold on Ξ:

• If N1 = 2N and N2, N3 ≤ N , then

‖χT (t)IN[0,1](ψ
†
N1
, ψ†

N2
, ψ†

N3
)‖X0,b ≤ T

θ
2R4N−s−ǫ0

(1) .

• If N2 = 2N or N(1) = N(3) = 2N , then

‖χT (t)IN (ψ†
N1
, ψ†

N2
, ψ†

N3
)‖X0,b ≤ T

θ
2R4N−s−ǫ0

(1) .

5.5. Proof of Proposition 5.3 by assuming multi-linear estimates. In this
subsection, we show that Proposition 5.6, Proposition 5.7, Proposition 5.9, Propos-
ition 5.10 and Proposition 5.11 imply the key-induction Lemma 5.3.
Let R ≫ 1 be a fixed parameter. Assuming Loc(N) (see Definition 5.1) holds for

all ω ∈ ΩN which is B≤N -measurable.

•Step 1 : Fixed-point for the RAOs

We solve the fixed-point problem (5.7), written in term of h2N,†
n :

h2N,†
n (t) = −2iχ2T (t)

∫ t

0

e−iλ2
n(t−t′)P2N,†

n (t′) ◦ H2N,†
n (t′)dt′ (5.22)

Thanks to Proposition 5.6, the Sq,γ
n norm of the right hand side is bounded by

CT
θ−2γ+ 2

q′R2‖H2N,†
n (t)‖Sq,γ

n
≤ CT

θ
2R2(1 + ‖h2N,†

n ‖Sq,γ
n
),
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where we used the fact that θ − 2γ + 2
q′
> θ

2
, thanks to the choices of parameters.

For T ∼ R− 10
θ , the fixed-point problem (5.22) has a unique solution in the ball of

Sq,γ
n with radius R > 0.
Similarly, for the fixed-point problem (5.8) written in term of g2N,†

n :

g2N,†
n (t) = 2iχ2T (t)

(∫ t

0

eiλ
2
nt

′P2N,†
n (t′) ◦ H2N,†

n (t′)dt′
)
◦ G2N,†

n (t), (5.23)

by Proposition 5.7, the Sq,γ,∗
n -norm of the right hand side is bounded by

CT
θ
2R2(1 + ‖g2N,†

n ‖Sq,γ,∗
n

),

provided that θ−3γ+ 3
q′
> θ

2
, which allows to find the unique fixed-point in the ball

of Sq,γ,∗
n with radius R > 0. Consequently, for any N < n ≤ 2N , we obtain that

‖h2N,†
n ‖Sq,γ

n
+ ‖g2N,†

n ‖Sq,γ,∗
n

≤ R−1,

and

‖H2N,†
n ‖Sq,γ

n
+ ‖G2N,†

n ‖Sq,γ,∗
n

≤ R.

From Lemma 7.2 and Lemma 7.3, by deleting a subset ΞN from ΩN of probability
smaller than C0e

−c0(2NR)δ0 , we have

‖ψ†
2N‖X0,γ

q,q,∞
≤ T

−γ+ 1
q′RN−(α− 1

2
)+ 1

q
+2δ, ‖ψ†

2N
=ψ†

2N‖Lq
tL

∞
x
≤ R2(2N)−2(α− 1

2
)+ 1

2
+ 1

q
+2δ.

•Step 2: Fixed-point problem for the remainder w†
2N

Now we solve the fixed-point problem (5.12) for w†
2N in the closed set

B2N := {z : ‖z‖X0,b ≤ (2N)−sR−1, sup
L≥4N

‖Π⊥
Lz‖X0,b ≤ (L/2N)−10(2N)−sR−1}

Below we only show that with the choice T ∼ R− 10
θ , the mapping

Φ(z2N) :=2χT (t)
[
IN(0,1)(z2N , u

†
N , u

†
N) + 2IN[0,1](ψ

†
2N + z2N , u

†
N , u

†
N)

]
(5.24)

+2χT (t)
[
IN (u†N , ψ

†
2N + z2N , u

†
N) + IN (ψ†

2N + z2N , ψ
†
2N + z2N , u

†
N

]

+χT (t)
[
IN (ψ†

2N + z2N , u
†
N , ψ

†
2N + z2N ) + IN (ψ†

2N + z2N )
]
.

maps B2N to itself, since the contraction property can be proved in a similar way
upon elementary algebraic manipulation.

First, from Proposition 5.9, for any type (D) term z2N ∈ B2N , we have

‖χT (t)INs(z2N , u
†
N , u

†
N)‖Xs1,b ≤ CT

θ−2γ+ 2
q′R2‖z2N‖X0,b ≤ CT

θ
2R(2N)−s, (5.25)

thanks to the condition of parameters θ − 2γ + 2
q′
> θ

2
.

For other contributions on the right hand side of (5.12) (replacing w†
2N by z2N ), we

decompose u†N =
∑

L≤N (ψ
†
L + w†

L) and estimate each dyadic pieces. For (C)(C)(C)
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type interactions are linear combination of the following terms
∑

N2,N3≤N

χT (t)IN[0,1](ψ
†
2N , ψ

†
N2
, ψ†

N3
),

∑

N1,N3≤N

χT (t)Π2NIN (ψ†
N1
, ψ†

2N , ψ
†
N3
)

∑

N2≤2N

χT (t)IN (ψ†
2N , ψ

†
N2
, ψ†

2N ),
∑

N3≤N

χT (t)IN (ψ†
2N , ψ

†
2N , ψ

†
N3
).

According to Proposition 5.11, the X0,b-norm of these terms can be bounded by

CT
θ
2R4(2N)−s+ǫ0(logN)3,

outside a subset of probability smaller than C0e
−(logN)c0Rc0 , where the logN factor

comes from the dyadic summation.
For other terms ((C)(C)(D), (C)(D)(D) and (D)(D)(D) interactions), we apply

Proposition 5.10 to control the X0,b−norm of the sum of these dyadic pieces by
∑

N(3)≤N(2)≤2N

CT
θ
2R2(2N)−sN

−ǫ0(α−1)
(2) ≤ CCT

θ
2R2(2N)−s.

For T = R− 10
θ and sufficiently large R > 1, we deduce that

CT
θ
2R2(2N)−s + CT

θ
2R3(2N)−s+ǫ0(logN)3 + CT

θ
2R2(2N)−s ≤ (2N)−sR−1.

To conclude, it remains to estimate ‖Π⊥
LΦ(z2N )‖X0,b for all L ≥ 4N . The proof is

exactly the same as in the previous paragraphs. Here we sketch the main point to
gain of the extra factor (L/2N)−10. Indeed, since ψ†

M is exactly supported on frequen-

ciesm ∈ (M/2,M ], so for (C)(C)(C) terms, when L ≥ 24N , say, Π⊥
LN (ψ†

N1
, ψ†

N2
, ψ†

N3
) =

0. For other terms Π⊥
LN (v†N1

, v†N2
, v†N3

) where there are at least one v†Nj
is of type

(D), we decompose each type (D) term as ΠL/4z
†
Nj

+ Π†
L/4v

†
Nj
. As L/4 ≥ 4N , then

for non-zero contributions of Π⊥
LN (· · · ), there is at least one Π⊥

L/4z
†
Nj
, which will

contribute a factor C(L/4N)−10 · (2N)−sR−1. With these additional arguments, we
conclude the proof of the key-induction Lemma 5.3.

6. Some deterministic estimates for operators

Let n ∈ N, recall the notation

N(0,1)(f1, f2, f3) :=
∑

n,n2,n3

πn(πnf1πn2f 2πn3f3) (6.1)

and a slightly different variant (in order to deal with the product f2 6= f3)

N(0,1)[2,3](f1, f2, f3) :=
∑

n,n2,n3
n2 6=n3

πn(πnf1πn2f 2πn3f3). (6.2)

We provide in this section some deterministic estimates that are needed for the key
estimates for RAOs. Our estimates hold under weaker assumptions for the regularity
of the Fourier-Lebesgue norms. So they will be useful to treat the Gibbs-measure
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regularity data, i.e. α = 1. To state the following propositions, we assume that
parameters q, γ, γ0, θ, δ satisfies the following constraint

1− γ =
1

q
− 1

q10
, γ0 =

1

q
+

1

q10
, δ <

1

q20
, θ =

1

q5
. (6.3)

Proposition 6.1. Let ϕ ∈ S(R;R). There exist q ∈ [2,∞) large enough, and
γ, γ0, δ, θ obeying (6.3), such that for any s > 1

4
+ 2

q
, 1
2
< b < 1, and for any

F1 ∈ X0,γ
q,2,2, F2 ∈ X

1
2
− 1

q
−3δ,γ

q,q,∞ , F3,∈ Xs,b, we have

‖ϕ(t)πnN(0,1)(F1, F2, F3)‖X0,γ−1+θ
q,2 (En)

. ‖πnF1‖X0,γ
q,2 (En)

‖F2‖
X

1
2− 1

q−3δ,γ

q,q,∞

‖F3‖Xs,b,

‖ϕ(t)πnN(0,1)(F1, F3, F2)‖X0,γ−1+θ
q,2 (En)

. ‖πnF1‖X0,γ
q,2 (En)

‖F2‖
X

1
2− 1

q−3δ,γ

q,q,∞

‖F3‖Xs,b,

where the implicit bound is independent of n and 0 < T < 1.

Similarly, we have:

Proposition 6.2. Let ϕ ∈ S(R;R). There exist q ∈ [2,∞) large enough, and
γ, γ0, δ, θ obeying (6.3), such that for any s > 1

4
+ 2

q
, 1
2
< b < 1, and for any

F1 ∈ X0,γ
q,2,2, F2, F3 ∈ Xs,b,

‖ϕ(t)πnN(0,1)(F1, F2, F3,)‖X0,γ−1+θ
q,2 (En)

.‖πnF1‖X0,γ
q,2 (En)

‖F2‖Xs,b‖F3‖Xs,b ,

where the implicit bound is independent of n and 0 < T < 1.

For non-pairing part, we have similar estimate:

Proposition 6.3. Let ϕ ∈ S(R;R). There exist q ∈ [2,∞) large enough, and
γ, γ0, δ, θ obeying (6.3), such that for any s > 1

4
+ 2

q
, 1
2
< b < 1, and for any

F1 ∈ X0,γ
q,2,2, F2, F3 ∈ X

1
2
− 1

q
−3δ,γ

q,q,∞ ,

‖ϕ(t)N(0,1)[2,3](F1, F2, F3)‖X0,γ−1+θ
q,2 (En)

.‖πnF1‖X0,γ
q,2 (En)

‖F2‖
X

1
2− 1

q−3δ,γ

q,q,∞

‖F3‖
X

1
2− 1

q−3δ,γ

q,q,∞

,

where the implicit bound is independent of n and 0 < T < 1.

Before proving the above propositions, we state an elementary Lemma useful in
the analysis.

Lemma 6.4. Assume that

α2, α3 ∈ (0, 1), α2 + α3 >
1

2
,

then for any κ̃ ∈ R, 1 ≤ r ≤ 2

∑

n3≥1

λ−2α3
n3

( ∑

n2≥1

λ−rα2
n2

〈κ̃+ λ2n2
− λ2n3

〉−10r
) 2

r
. 1,

where the implicit bound is independent of κ̃ ∈ R.
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Proof. By making change of variable m = |λ2n3
− λ2n2

|, we have

∑

n2:1≤n2≤n3

λ−rα2
n2

〈κ̃+ λ2n2
− λ2n3

〉−10r =
∑

0≤m≤λ2
n3

−1

〈κ̃−m〉−10r(λ2n3
−m)−

rα2
2

.〈κ̃− λ2n3
〉− rα2

2 ,

and
∑

n2:n2>n3

λ−rα2
n2

〈κ̃+ λ2n2
− λ2n3

〉 =
∑

m≥0

〈κ̃+m〉−10r〈m+ λ2n3
〉− rα2

2

.〈κ̃− λ2n3
〉− rα2

2 .

Therefore, the desired sum can be estimated by
∑

n3≥1

λ−2α3
n3

〈κ̃− λ2n3
〉−α2 . 1,

thanks to the fact that 2α2 + 2α3 > 1. �

6.1. Multilinear estimates for N(0,1) and N(0,1)[2,3]. The proof will follow from
an interpolation argument. First we prove some general estimates which leave some
flexibility of indices:

Lemma 6.5. Assume that q1, q2 ∈ [2,∞) and γj ∈
(

1
q′j
, 1
)
. For any γ0 ∈

(
1
q1
, 1
)

δ > 0, b > 1
2
, then uniformly in n ∈ N,

‖ϕ(t)πnN(0,1)(F1, F2, F3)‖X0,−γ0
q1,2

(En)

.qj ,γj ,δ‖πnF1‖X0,γ1
q1,2

(En)
‖F2‖

X
1
2− 2

q2
−3δ,γ2

q2,q2,∞

‖F3‖
X

1
4+ 2

q2
+4δ,b

2,2,2

, (6.4)

and

‖ϕ(t)πnN(0,1)(F1, F2, F3)‖X0,0
q1,2

(En)

.qj ,γj‖πnF1‖X0,γ1
q1,2

(En)
‖F2‖X1,γ2

q2,q2,∞
‖F3‖X2,b

2,2,2
. (6.5)

Proof. First we prove (6.4). By duality, it suffices to show that for any Gn ∈
X0,γ0

q′1,2
(En) with ‖Gn‖X0,γ0

q′1,2
(En)

≤ 1, there holds

∣∣∣
∫

R

∫

S2
πnN(0,1)(F1, F2, F3)·ϕ(t)Gn(t, x)

∣∣∣

.‖πnF1‖X0,γ1
q1,2

(En)
‖F2‖Xβ2,γ2

q2,q2,∞
‖F3‖Xβ3,b , (6.6)

where

β2 =
1

2
− 2

q2
− 3δ, β3 =

1

4
+

2

q2
+ 4δ
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throughout the proof. By Plancherel in time, we have
∫

R

∫

S2
πnN(0,1)(F1, F2, F3) · ϕ(t)Gn(t, x)dxdt

=

∫

R

∫

S2

∑

n2,n3

πnF1(t)πn2F 2(t)πn3F3(t)ϕ(t)Gn(t)dtdx

=

∫

R4

d~τ

∫

S2

∑

n2,n3

πnF̂1(τ1, x)πn2F̂ 2(τ2, x)πn3F̂3(τ3, x)Ĝn(τ0, x)ϕ̂(τ1 − τ2 + τ3 − τ0)dx

=

∫

R4

d~κ

∫

S2

∑

n2,n3

πnF̃1(κ1, x)πn2F̃ 2(κ2, x)πn3F̃3(κ3, x)G̃n(κ0, x)ϕ̂(κ̃− Ω(~n))dx,

where κj = τj + λ2nj
, d~τ = dτ0dτ1dτ2dτ3 d~κ = dκ1dκ2dκ3dκ0, κ̃ = κ1 − κ2 + κ3 − κ0,

and Ω(~n) = −λ2n2
+ λ2n3

. Set

a(1)
n (κ1) = ‖〈κ1〉γ1πnF̃1(κ1, ·)‖L2

x
, a(2)

n2
(κ2) = nβ2

2 ‖〈κ〉γ2πn2F̃2(κ2, ·)‖L∞
x
,

a(3)
n3
(κ3) = nβ3

3 ‖〈κ3〉bπn3F̃3(κ3, ·)‖L2
x
, a(0)

n (κ0) = ‖〈κ0〉γ0G̃n(κ0, ·)‖L2
x
.

Applying the bilinear eigenfunction estimate from Proposition 3.2, we obtain
∫

S2
πnF̃1(κ1, x)πn2F̃ 2(κ2, x)πn3F̃3(κ3, x)G̃n(κ0, x)dx

.n
1
4
3 n

−β2

2 n−β3

3

a
(0)
n (κ0)a

(1)
n (κ1)a

(2)
n2 (κ2)a

(3)
n3 (κ3)

〈κ0〉γ0〈κ1〉γ1〈κ2〉γ2〈κ3〉b
.

It remains to control the expression
∫

R4

d~κ
a
(0)
n (κ0)a

(1)
n (κ1)

〈κ0〉γ0〈κ1〉γ1〈κ2〉γ2〈κ3〉b
∑

n2,n3

a(2)
n2
(κ2)a

(3)
n3
(κ3)|ϕ̂(κ̃− Ω(~n))|n−β2

2 n
−β3+

1
4

3 . (6.7)

By Hölder, the sum in the integrand can be bounded by

‖a(2)
n2
(κ2)‖ℓq2n2

‖a(3)
n3
(κ3)‖ℓ2n3

∥∥ϕ̂(κ̃−Ω(~n))n−β2

2 n
−β3+

1
4

3

∥∥
ℓ2n3

ℓ
q′
2

n2

.δ,q2 ‖a(2)
n2
(κ2)‖ℓq2n2

‖a(3)
n3
(κ3)‖ℓ2n3

,

where to the last step we applied Lemma 6.4 with parameters r = q′2 ∈ [1, 2],
α2 = β2 ∈ (0, 1) and α3 = β3 − 1

4
∈ (0, 1), satisfying α2 + α3 = β2 + β3 − 1

4
> 1

2
.

Then, by Hölder and the fact that γ0q > 1, γjq
′
j > 1, j = 1, 2, we obtain that

(6.7) . ‖a(0)
n (κ0)‖

L
q′1
κ0

‖a(1)
n (κ1)‖Lq1

κ1
‖a(2)

n2
(κ2)‖Lq2

κ2
ℓ
q2
n2
‖a(3)

n3
(κ3)‖L2

κ3
ℓ2n3
.

This proves (6.4).

Next, to prove (6.5), by Corollary A.7,

‖ϕ(t)πnN(0,1)(F1, F2, F3)‖X0,0
q1,2

(En)
.‖ϕ(t)πnN(0,1)(F1, F2, F3)‖

L
q′
1

t L2
x

.

The right hand side can be controlled simply by

‖πnF1‖L∞
t L2

x
‖F2‖L∞

t L∞
x
‖F3‖L∞

t L∞
x
.
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By Sobolev embedding and the embedding property claimed in Lemma 4.2,

‖πnF1‖L∞
t L2

x
. ‖πnF1‖X0,γ1

q1,2
(En)

, ‖F3,‖L∞
t L∞

x
. ‖F3‖L∞

t H2
x
. ‖F3‖X2,b .

Moreover,

‖F2‖L∞
x
=

∥∥∥
∑

n2

πn2F2

∥∥∥
L∞
x

≤
(∑

n2

nq2
2 ‖πn2F2‖q2L∞

x

) 1
q2

(∑

n2

1

n
q′2
2

) 1
q′
2 .q2

∥∥∥n2πn2F2

∥∥∥
ℓ
q2
n2

L∞
x

.

Hence

‖F2‖L∞
t L∞

x
. ‖n2πn2F2‖L∞

t ℓ
q2
n2

L∞
x
. ‖n2πn2F2‖ℓq2n2

L∞
t L∞

x
. ‖F2‖X1,γ2

q2,q2,∞
,

where we used Lemma 4.2 to the last inequality. The proof of Lemma 6.5 is now
complete. �

Similarly, we have:

Lemma 6.6. Assume that q ∈ [2,∞) and γ ∈
(
1
q′
, 1
)
. For any γ0 ∈

(
1
q
, 1
)
δ >

0, b > 1
2
, then

‖ϕ(t)πnN(0,1)(F1, F2, F3)‖X0,−γ0
q,2 (En)

.q,γ,δ ‖πnF1‖X0,γ
q,2 (En)

‖F2‖
X

1
4+2

q +4δ,b‖F3‖
X

1
4+2

q +4δ,b ,

(6.8)

and

‖ϕ(t)πnN(0,1)(F1, F2, F3)‖X0,0
q,2 (En)

.qj ,γj ‖πnF1‖X0,γ
q,2 (En)

‖F2‖X2,b‖F3‖X2,b . (6.9)

Proof. The proof follows from very similar argument as in the proof of Lemma 6.5.
Below we only indicate the different places.

For the proof of (6.8), we modify the function a
(2)
n2 (κ2) as

a(2)
n2
(κ2) = nβ2

2 ‖〈κ〉bπn2F̃2(κ, ·)‖L2
x
, where β2 =

1

4
+

2

q
+ 4δ.

Note that β3 = 1
4
+ 2

q
+ 4δ remains unchanged. Using the bilinear eigenfunction

estimate (Proposition 3.2), the expression to be estimated becomes
∫

R4

d~κ
∑

n2,n3

(n2n3)
1
4n−β2

2 n−β3
3

a
(0)
n (κ0)a

(1)
n (κ1)a

(2)
n2 (κ2)a

(3)
n3 (κ3)

〈κ0〉γ0〈κ1〉γ〈κ2〉b〈κ3〉b
|ϕ̂(κ̃− Ω(~n))|.

Here to estimate the sum over n2, n3, we use Schur’s test. More precisely, we observe
that

sup
n2

∑

n3

|ϕ̂(κ̃− Ω(~n))|+ sup
n3

∑

n2

|ϕ̂(κ̃− Ω(~n))| . 1.

Thanks to the fact that β2 = β3 >
1
4
, we obtain the bound

∑

n2,n3

(n2n3)
1
4
−β2a(2)

n2
(κ2)a

(3)
n3
(κ3)|ϕ̂(κ̃− Ω(~n))| . ‖a(2)

n2
(κ2)‖ℓ2n2

‖a(3)
n3
(κ2)‖ℓ2n3

.

The rest argument is to use Hölder to control the integral over κj, as in the previous
case.
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To prove (6.9), the analysis is exactly the same as before, but we simply control
‖F2‖L∞

t L∞
x

by ‖F2‖X2,b using the Sobolev embedding. This proves Lemma 6.6. �

Finally we establish an estimate to deal with the product F2
6=F3 when F2, F3 are

both in the Fourier-Lebesgue space X
1
2
− 2

q
−3δ,γ

q,q,∞ .

Lemma 6.7. Assume that q ∈ [2,∞) and γ ∈
(
1
q′
, 1
)
. For any γ0 ∈

(
1
q
, 1
)
δ > 0, b > 1

2
,

‖ϕ(t)πnN(0,,1)[2,3](F1, F2, F3)‖X0,−γ0
q,2 (En)

.q,γ,δ ‖πnF1‖X0,γ
q,2 (En)

‖F2‖
X

1
2− 2

q−3δ,γ

q,q,∞

‖F3‖
X

1
2− 2

q−3δ,γ

q,q,∞

,

(6.10)

‖ϕ(t)πnN(0,1)[2,3](F1, F2, F3)‖X0,0
q,2 (En)

.qj ,γj ‖πnF1‖X0,γ
q,2 (En)

‖F2‖X1,γ
q,q,∞

‖F3‖X1,γ
q,q,∞

.

(6.11)

Proof. The proof is also very similar as the proof of Lemma 6.5, so we only indicate
the different places. For (6.10), we adjust the function

a(3)
n3
(κ3) := nβ3

3 ‖〈κ3〉γπn3F̃3(κ3, ·)‖L∞
x
, β3 =

1

2
− 2

q
− 3δ,

and β2 =
1
2
− 2

q
− 3δ remains unchanged. By Cauchy-Schwarz,

∫

S2
πnF̃1(κ1, x)πn2F̃ 2(κ2, x)πn3F̃3(κ3, x)G̃n(κ0, x)dx

.(n2n3)
−β a

(0)
n (κ0)a

(1)
n (κ1)a

(2)
n2 (κ2)a

(3)
n3 (κ3)

〈κ0〉γ0〈κ1〉γ〈κ2〉γ〈κ3〉γ
,

and we need to control

∫

R4

a
(0)
n (κ0)a

(1)
n (κ1)d~κ

〈κ0〉γ0〈κ1〉γ〈κ2〉γ〈κ3〉γ
∑

n2,n3
n2 6=n3

a(2)
n2
(κ2)a

(3)
n3
(κ3)|ϕ̂(κ̃− Ω(~n))|(n2n3)

−β3

≤
∫

R4

a
(0)
n (κ0)a

(1)
n (κ1)

〈κ0〉γ0〈κ1〉γ〈κ2〉γ〈κ3〉γ
‖a(2)

n2
(κ2)‖ℓqn2

‖a(2)
n2
(κ2)‖ℓqn2

d~κ

×
∑

n2,n3≤n
n2 6=n3

|ϕ̂(κ̃− Ω(~n))|(n2n3)
−β,

where we used ℓq →֒ ℓ∞. By the divisor bound (here we make use of the fact
n2 6= n3):

sup
l

#{n2 6= n3 : nj ∼ Nj , λ
2
n2

− λ2n3
= l} .ǫ (N2N3)

ǫ,

the sum in the second line is uniformly bounded. By Hölder, we obtain (6.10).
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Next, to prove (6.5), by Lemma A.7,

‖ϕ(t)πnN(0,1)[2,3](F1, F2, F3)‖X0,0
q,2 (En)

.‖ϕ(t)πnN(0,1)[2,3](F1, F2, F3)‖Lq′

t L2
x

.
∥∥∥
∑

n2,n3

‖πnF1(t)‖L2
x
‖πn2F2(t)‖L∞

x
‖πn3F3(t)‖L∞

x

∥∥∥
L∞
t

≤‖πnF1(t)‖L∞
t L2

x

∥∥‖n2πn2F2(t)‖ℓqn2
L∞
x
‖n3πn3F3(t)‖ℓqn3

L∞
x

∥∥
L∞
t
,

where to the last step, we used the Hölder inequality for the sum and the fact that

‖n−1
2 ‖

ℓq
′

n2

<∞, ‖n−1
3 ‖

ℓq
′

n3

<∞.

Finally, by Minkowski and the embedding propertyX0,γ
q,∞(En) →֒ L∞

t L
∞
x (En) (Lemma

4.2), we conclude the proof. �

6.2. Proof of main propositions. Now we provide the proof of main propositions
in this section by an interpolation argument.

Proof of Proposition 6.1,6.2 and 6.3. We take a q large enough, then from the choice
of parameters (6.3), we must have

1− γ − θ

γ0
· (s− 1

4
− 2

q
− 4δ) > (2− s) · γ0 − (1− γ − θ)

γ0
,

1

q
· 1− γ − θ

γ0
>

(1
2
+

1

q
+ 3δ

)
· γ0 − (1− γ − θ)

γ0
. (6.12)

Indeed, the left hand sides of inequalities above are at least of order O(q−1) while
the right hand sides are of order O(q−4).
To prove the desired inequality in Proposition 6.1, we will apply (6.4),(6.5) to

frequency-localized F2, F3 and then interpolate. More precisely, we decompose

Fj =
∑

Nj

PNj
Fj , j = 2, 3.

For fixed N2, N3, applying (6.4) with q1 = q2 = q,

‖ϕ(t)πnN(0,1)(F1,PN2F2,PN3F3)‖X0,−γ0
q,2 (En)

. ‖πnF1‖X0,γ
q,2 (En)

‖PN2F2‖
X

1
2− 2

q−3δ,γ

q,q,∞

‖PN3F3‖
X

1
4+2

q+4δ,b

. N
− 1

q

2 N
−
(
s− 1

4
− 2

q
−4δ

)
3 ‖πnF1‖X0,γ

q,2 (En)
‖PN2F2‖

X
1
2− 1

q−3δ,γ

q,q,∞

‖PN3F3‖Xs,b .

From (6.5),

‖ϕ(t)πnN(0,1)(F1,PN2F2,PN3F3)‖X0,0
q,2 (En)

. ‖πnF1‖X0,γ
q,2 (En)

‖PN2F2‖X1,γ
q,q,∞

‖PN3F3‖X2,b

. N
1
2
+ 1

q
+3δ

2 N2−s
3 ‖πnF1‖X0,γ

q,2 (En)
‖PN2F2‖

X
1
2− 1

q−3δ,γ

q,q,∞

‖PN3F3‖Xs,b .
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Interpolate the above inequalities (since 0 < 1− γ − θ < γ0), we have

‖ϕ(t)πnN(0,1)(F1,PN2F2,PN3F3)‖X0,γ−1+θ
q,2 (En)

≤ ‖ϕ(t)Nn,res(F1,PN2F2,PN3F3)‖
1−γ−θ

γ0

X
0,−γ0
q,2 (En)

‖ϕ(t)Nn,res(F1,PN2F2,PN3F3)‖
1− 1−γ−θ

γ0

X0,0
q,2 (En)

.

Thanks to (6.12), we gain negative powers in N2, N3 for the right hand side, which
is summable. This proves the first estimate of Proposition 6.1. The second one is
similar and we omit the detail.
For Proposition 6.2 and Proposition 6.3, we only need to adjust the argument

above. By Lemma 6.6 and interpolation,

‖ϕ(t)πnN(0,1)(F1,PN2F2,PN3F3)‖X0,γ−1+θ
q,2 (En)

. (N2N3)
−
(
s− 1

4
− 2

q
−4δ

)
1−γ−θ

γ0 (N2N3)
(2−s)

γ0−(1−γ−θ)
γ0

‖πnF1‖X0,γ
q,2 (En)

‖PN2F2‖Xs,b‖PN3F3‖Xs,b ,

where the powers of N2, N3 are negative. The same argument by Lemma 6.3, we
have

‖ϕ(t)πnN(0,1)[2,3](F1,PN2F2,PN3F3)‖X0,γ−1+θ
q,2 (En)

. (N2N3)
− 1

q
· 1−γ−θ

γ0 (N2N3)

(
1
2
+ 1

q
+3δ

)
γ0−(1−γ−θ)

γ0

‖πnF1‖X0,γ
q,2 (En)

‖PN2F2‖
X

1
2− 1

q−3δ,γ

q,q,∞

‖PN3F3‖
X

1
2− 1

q −3δ,γ

q,q,∞

.

These bounds are conclusive, thanks to (6.12). �

7. Large deviation estimates for linear random object

In this section we prove the bounds claimed in Loc(N) (Definition 5.1) at step
2N for the random objects. An important ingredient is the equivalence in law of
product of colored random spherical harmonics.

7.1. Equivalence in law. Denote by B≤N the σ-algebra generated by gaussians of
frequency ≤ N . Recall that for n ∈ N, En is the eigenspace with respect to the
eigenvalue λ2n, and En is isometric to C2n+1, equipped with the L2 norm. Recall that
for n ≈ N and |t| ≤ T , the colored term is

eN,†
n (t) = HN,†

n (t)(eωn),

where HN,†
n (t) is an unitary operator on En for |t| ≤ T and is B≤N/2 measurable.

Lemma 7.1 (law-equivalence). Let l ∈ N∗ and n1, · · · , nl ∈ (N/2, N ] (not necessar-
ily distinct). Let F be a bounded Borel measurable functional on C×En1 ×· · ·×Enl

.
Let Y be B≤N/2 measurable. Then for all |t| ≤ T ,

E
[
F
(
Y,HN,†

n1
(t)(eωn1

), · · · ,HN,†
nl

(t)(eωnl
)
)
|B≤N

2

]
= E[F (Y, eωn1

, · · · , eωnl
)|B≤N

2
], a.s.
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In particular, if Y is independent of BN and F is of the product form F (Y, ·) =
Y ·G(·), then

E
[
Y G

(
HN,†

n1
(t)(eωn1

), · · · ,HN,†
nl

(t)(eωnl
)
)
|B≤N

2

]
= E[Y ] · E[G(eωn1

, · · · , eωnl
)], a.s.

Proof. We identify the eigenspace En as C2n+1 endowed with the L2(En), which is
isometric to the canonical norm of C2n+1. Let U(2n+1) denote the unitary group on
En = C2n+1. Up to modifying the functional F , we can assume that n1, n2, · · · , nl

are distinct. There holds

Xω := (eωn1
, · · · , eωnl

), H(X) :=
(
HN

n1
(eωn1

), · · · ,HN
nl
(eωnl

)
)
.

Since B≤N/2 is generated by Z := (eωn)n≤N/2, then almost surely, Y = ϕ(Z) for some
Borel measurable function ϕ on the product space Πn≤N/2En. Similarly, since HN

nj

are B≤N/2 measurable there exist some U(2n + 1)-valued Borel functions Unj
such

that HN
nj

= Unj
(Z).

It suffices to show that for any bounded Borel function G,

E[F (Y,H(X))G(Y )] = E[F (Y,X)G(Y )], a.s. (7.1)

Denote by µZ(·) the distribution of Z = (eωn)n≤N/2 on Πn≤N/2C
2n+1 and µX(·) the dis-

tribution of X on Πl
j=1C

2nj+1. By independence between X,Z, the joint distribution
of (Z,X) is µZ ⊗ µX . Thus

E[F (Y,H(X))G(Y )]

=

∫
∏

n≤N/2 C
2n+1

G(z)dµY (z)

∫
∏l

j=1 C
2nj+1

F (ϕ(z), Un1(z)xn1 , · · · , Unl
(z)xnl

)dµX(x),

It suffices to show that for almost every z,

∫
∏l

j=1 C
2nj+1

F (ϕ(z), Un1(z)xn1, · · · , Unl
(z)xnl

)dµX(x)

=

∫
∏l

j=1 C
2nj+1

F (ϕ(z), xn1, · · · , xnl
)dµX(x).

This amounts to show that for fixed z, the random variables

U(X) =: (Un1(z)en1, · · · , Unl
(z)enl

) and X = (en1, · · · , enl
)

have the same law. This follows from the fact that

µX = ⊗l
j=1NC

2nj+1(0, 1),

and from Lemma 3.7 (the unitary group leaves the complex normal distribution
invariant). This yields (7.1) and completes the proof of Lemma 7.1. �
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7.2. Fourier-Lebesgue norm of the colored term. In the first Lemma, we ob-
tain deduce some bounds on the Fourier-Lebesgue norms of colored terms from the
random information encoded in the random averaging operators (RAOs). Recall the
definitions (5.8), (5.9) and (5.10) of G2N,†

n ,h2N,†
n , g2N,†

n and f2N,†
n .

Lemma 7.2 (Fourier-Lebsegue bounds). Assume that Ξ is a B≤N -measurable set
such that on Ξ,

‖g2N,†
n (t)‖Sq,γ,∗

n
≤ R−1, ‖G2N,†

n (t)‖Sq,γ,∗
n

≤ R.

Then there exists a B≤2N -measurable set Ξ′ such that P(Ω \Ξ′) < C0e
−c0(NR)δ0 , such

that on Ξ \ Ξ′,

‖f2N,†
n ‖X0,γ

q,∞(En)
≤ N

1
q
+δR, ‖ψ†

2N‖X0,γ
q,q,∞

≤ T
−γ+ 1

q′RN−(α− 1
2
)+ 1

q
+2δ,

where C0, c0, δ0 > 0 are parameters depending only on q, δ, γ.

Proof. Thanks to Lemma 3.3 and Sobolev embedding, we have

‖e−itλ2
neωn‖X0

q,q,∞
.q RN

1
q
+2δ

outside a set of probability smaller than O(e−c0NθR2
). Then, according to the de-

composition (5.11), it remains to prove the bound for f2N,†
n .

To simplify the notation, we drop the subindex n and superindex N in the proof
for f2N,†

n (t),h2N,†
n;ℓ,k(t), where given an orthonormal basis (bn,k)|k|≤n of En, we denote

by h2N,†
n;ℓ,k(t) the matrix-element of h2N,†

n (t).

Let us first make two observations. Thanks to the eigenfunction estimate, by

losing N
1
q , it suffices to estimate the X0,γ

q,q (En)-norm of f † and to prove the bound

‖f †‖X0,γ
q,q (En)

≤ N δR

outside of the set with probability smaller than O(e−c0(NR)θ ). Moreover, since f † is
compactly supported on [−T, T ], we may replace the operator h† (which is supported
on [−2T, 2T ]) by η(t/T )h† for some η ∈ C∞

c ((−1, 1)) such that η(t/T )f † = f †. Since
(h†)∗ = g† on |t| ≤ T , we have

(
η(t/T )f †

)∗
= η(t/T )g†. This simple observation

allows us to replace the operator norm of the adjoint (h†)∗ by the operator norm g†

in the arguments below.

From the discussion above, we implicitly insert η(t/T ) in the operators h†(t), g†(t)
and obtain

〈λ〉γ f̃ †(λ, x) =
∑

|k|,|ℓ|≤n

〈λ〉γh̃†
ℓ,k(λ)

gn,k(ω)√
λn

bn,ℓ(x).
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By Chebyshev and Minkowski, for q <∞ and p ≥ q,

P
[
‖1Ξ · 〈λ〉γ f̃ †(λ, x)‖Lq

λ,x
> N δR

]
≤ 1

(N δR)p
‖1Ξ · 〈λ〉γ f̃ †(λ, x)‖p

Lp
ωL

q
xL

q
λ

=
1

(N δR)p

∥∥∥1Ξ ·
∥∥‖〈λ〉γ f̃ †(λ, x)‖Lq

λ,x

∥∥
Lp
ω|B≤N

∥∥∥
p

Lp
ω

≤ 1

(N δR)p

∥∥∥1Ξ ·
∥∥‖〈λ〉γ f̃ †(λ, x)‖Lp

ω|B≤N

∥∥
Lq
λ,x

∥∥∥
p

Lp
ω

Recall that the matrices h̃†
ℓ,k(λ) are independent of the Borel σ-algebra generated

by Gaussians B2N . Therefore, for fixed λ, x the conditional Wiener-chaos estimate
yields

‖1Ξ · 〈λ〉γ f̃ †(λ, x)‖Lp
ω |B≤N

≤Cp 1
2

∥∥∥1Ξ ·
∑

|k|,|ℓ|≤n

〈λ〉γh̃†
ℓ,k(λ)

gn,k(ω)√
λn

bn,ℓ(x)
∥∥∥
L2
ω|B≤N

.

Taking Lq
λ of the inequality above, we have for fixed x,

‖〈λ〉γ f̃ †(λ, x)‖Lq
λL

p
ω |B≤N

≤ Cp
1
2

n
1
2

∥∥∥
( ∑

|k|≤n

∣∣∣
∑

|ℓ|≤n

〈λ〉γh̃†
ℓ,k(λ)bn,ℓ(x)

∣∣∣
2) 1

2
∥∥∥
Lq
λ

. (7.2)

Applying (4.6) to Tn = h†, we obtain the bound
( ∑

|k|≤n

∣∣∣
∑

|ℓ|≤n

〈λ〉γh̃†
ℓ,k(λ)bn,ℓ(x)

∣∣∣
2) 1

2 ≤ Cn
1
2‖〈λ〉γ(h̃†(λ))∗‖En→Lq

λEn
.

Plugging into (7.2) and using the fact that (h†(t))∗ = η(t/T )g†(t), we finally obtain
the bound

(7.2) ≤Cp 1
2‖〈λ〉γ(h̃†(λ))∗‖En→Lq

λEn

=Cp
1
2‖〈λ〉γFt(e

−itλ2
ng†(t))(−λ)‖En→Lq

λEn
= Cp

1
2‖η

( t
T

)
g†(t)‖Sq,γ,∗

n
.

Since g†(0) = 0, by Corollary A.4 , the right hand side is bounded by

Cp
1
2‖g†‖Sq,γ,∗

n
≤ Cp

1
2R−1

on Ξ. Taking the Lq
x on and optimizing the choice of p, we obtain the desired

estimate. �

7.3. Pointwise bound on the colored terms. In this subsection, we prove large
deviation estimates for norms defined in the physical space. We use the equivalence
in law of Lemma 3.7 to reduce the analysis to time t = 0, when the random objects
are much simpler.

Lemma 7.3 (Pointwise bounds). Suppose that on a B≤N -measurable set Ξ, the

colored Gaussian ψ†
2N is well defined and Loc(N) is true with parameters (T,R, σ)

with σ sufficiently small, and (q, γ, δ) = (qσ, γσ, δσ). There exists a B≤2N -measurable

set Ξ′ with P(Ω \ Ξ′) < C0e
−c0(NR)δ0 such that on Ξ \ Ξ′,

‖ψ†
2N‖Lq

tL
∞
x
≤ RN−(α−1)+δ , ‖ψ†

2N
=ψ†

2N‖Lq
tL

∞
x
≤ R2N−2(α− 1

2
)+ 1

2
+δ , (7.3)
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where the constants C0, c0, δ0 > 0 only depend on q, δ, γ.

Proof. As in the proof of Lemma 7.2 (and using a Sobolev embedding) we reduce
the proof to a moment bounds: there exists C > 0 such that for all r ≥ q,

‖ψ†
2N‖Lr

ωL
q
t,x

≤ √
rCN−(α−1) , (7.4)

‖ψ†
2N

=ψ†
2N‖Lr

ωL
q
t,x

≤ rCN−2(α− 1
2
)+ 1

2 . (7.5)

We first prove (7.4). Recall the decomposition

ψ†
2N(t, x) =

∑

n≈2N

πnψ
†
2N (t) =

∑

n≈2N

λ
−(α− 1

2
)

n χT (t)e
2N,†
n (t) .

We have from the equivalence in law of Lemma 7.1 that for fixed t, x and n ≈ 2N ,

‖e2N,†
n (t, x)‖Lr

ω
=

∥∥‖e2N,†
n (t, x)‖Lr

ω |B≤N

∥∥
Lr
ω
= ‖eωn(x)‖Lr

ω
.

√
r ,

where we used Lemma 3.3. Then (7.4) follows from the Minkowski’s inequality and
the triangle inequality in the sum over n ≈ 2N .

Let us now turn to the proof of (7.5). According to equivalence of laws, for fixed
t, x,

‖ψ†
2N

=ψ†
2N(t, x)‖Lr

ω
=χT (t)

2
∥∥‖

∑

n≈2N

λ
−2(α− 1

2
)

n (|e2N,†
n (t, x)|2 − ‖e2N,†

n ‖2L2(S2))‖Lr
ω|B≤N

∥∥
Lr
ω

=χT (t)
2
∥∥ ∑

n≈2N

λ
−2(α− 1

2
)

n (|eωn(x)|2 − ‖eωn‖2L2(S2))
∥∥
Lr
ω
,

Then, for n ≈ 2N we fix an orthonormal basis (bn,k)|k|≤n of En and we decompose
into two parts:

|eωn(x)|2 − ‖eωn‖2L2(S2) =
1

(2n+ 1)

∑

k 6=k′

gn,k(ω)gn,k′(ω)bn,k(x)bn,k′(x)

+
1

(2n+ 1)

∑

k

|gn,k(ω)|2(|bn,k(x)|2 − 1) .

According to this decomposition, we write

∑

n≈L

λ
−2(α− 1

2
)

n (|eωn(x)|2 − ‖eωn‖2L2) = I(x) + II(x) .

Note that we have no dependence on t, thanks to the invariance of the law. Note
also that on Td there is no term II(x) since the amplitude of a plane wave is always
one.
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•Term I(x): We deduce from hypercontractivity that

E[I(x)r]
1
r = E

[∣∣∣
∑

n≈2N

λ
−2(α− 1

2
)

n

∑

k,k′

k 6=k′

gn,k(ω)gn,k′(ω)
bn,k(x)bn,k′(x)

2n+ 1

∣∣∣
r] 1

r

. rE
[∣∣∣

∑

n≈2N

λ
−2(α− 1

2
)

n

∑

k,k′

k 6=k′

gn,k(ω)gn,k′(ω)
bn,k(x)bn,k′(x)

2n+ 1

∣∣∣
2] 1

2

. r
( ∑

n≈2N

λ
−4(α− 1

2
)

n

∑

k,k′

k 6=k′

|bn,k(x)|2|bn,k′(x)|2
(2n+ 1)2

) 1
2
,

where we used the independence on the last line. We conclude from Weyl’s law (1.3)
that

E[| I(x)|r] 1r ≤ r
(∑

n≈L

λ
−4(α− 1

2
)

n

( ∑

|k|≤n

|bn,k(x)|2
2n+ 1

)2) 1
2
. rN−2(α− 1

2
)+ 1

2 .

Note that the above bound does not depend on x.

•Term II(x): For the second term, we also use hypercontractivity to obtain

E[| II(x)|r] 1r ≤ rE
[( ∑

n≈2N

λ
−2(α− 1

2
)

n

∑

k

|gn,k(ω)|2
|bn,k(x)|2 − 1

2n+ 1

)2] 1
2
.

We observe from Weyl’s law (1.3) that for every n and x ∈ S2,

∑

k

|gn,k(ω)|2(|bn,k(x)|2 − 1) =
∑

k

(|gn,k(ω)|2 − 1)
|bn,k(x)|2 − 1

2n+ 1
.

This allows us to use random oscillations and to deduce from the independence that

E[| II(x)|r] 1r ≤ r
( ∑

n≈2N

λ
−4(α− 1

2
)

n

∑

|k|≤n

E[(|gn,k(ω)|2 − 1)2]
( |bn,k(x)|2 − 1

2n+ 1

)2) 1
2

≤ r
( ∑

n≈2N

λ
−4(α− 1

2
)

n

∑

|k|≤n

( |bn,k(x)|2 − 1

2n+ 1

)2) 1
2

≤ r
( ∑

n≈2N

λ
−4(α− 1

2
)

n

( ∑

|k|≤n

∣∣∣ |bn,k(x)|2 − 1

2n+ 1

∣∣∣
)2) 1

2
,

where we used ℓ1 →֒ ℓ2. Applying the Weyl’s law (1.3) we conclude that

E[| II(x)|r] 1r . r
( ∑

n≈2N

λ
−4(α− 1

2
)

n

) 1
2

. rN−2(α− 1
2
)+ 1

2 .

This gives (7.5) and completes the proof of Lemma 7.3. �
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Summarizing Lemma 7.2 and Lemma 7.3, we obtain the bounds on the stochastic
objects claimed in Loc(N) (Definition 5.1) at step 2N .

The rest of the paper is devoted to prove the bounds (5.14) on the remainder

w†
2N , which is solution to the equation (5.12). We may implicitly suppose that the

random objects of generation 2N satisfy the bound (5.13) in Loc(2N).

8. Large deviation estimates for the (C)(C)(C) terms

Given N1, N2, N3 and ψ†
N1
, ψ†

N2
, ψ†

N3
of type (C)(C)(C) we derive some moments

estimates, from which we deduce the large deviation bounds claimed in Proposition
5.11. Note that the estimates obtained in this Section are effective when α = 1, on
the support of the Gibbs measure.

In what follows, denote by N(1) ≥ N(2) ≥ N(3) the decreasing rearrangement of
N1, N2, N3.

Proposition 8.1. Suppose that Loc(N) holds for parameters (T,R, σ), with σ suf-
ficiently small. Let Ξ′

2N be a B2N -measurable set as in Lemma 7.2 and Lemma 7.3.

Then, there exists C > 0 such that for all ψ†
Nj

of type (C), for all r ≥ q and

b1 >
1

2
, s1 < α− 1

2
+

1

q
+ 4δ,

we have

• For all N1, N2, N3 with N(1) = 2N and N(1) = N(2) or N(1) = N2,

‖χN(0,1)(ψ
†
N1
, ψ†

N2
, ψ†

N3
)‖Lr

ω(ΩN∩Ξ′
2N ;X0,−b1 ) .α,s (r

1
2RT

−γ+ 1
q′ )3N−s1 .

• For all N1, N2, N3 with N1 = 2N ,

‖χN[0,1](ψ
†
N1
, ψ†

N2
, ψ†

N3
)‖Lr

ω(ΩN∩Ξ′
2N ;X0,−b1 ) .α,s (r

1
2RT

−γ+ 1
q′ )3N−s1 .

We stress out that the constraint N(1) = N(2) or N(1) = N2 when N = N(0,1) is
necessary in order to have the nonlinear smoothing effect, as proved in [4]. This
constraint is imposed by our ansatz (1.12).

Proof: Proposition 8.1 implies 5.11. Using that

‖χTI(χN (ψ†
N1
, ψ†

N2
, ψ†

N3
))‖X0,b . T 1−b−b′‖χN (ψ†

N1
, ψ†

N2
, ψ†

N3
)‖X0,−b′ ,

for b+ b′ < 1, with 0 ≤ b′ < 1
2
. Interpolate with the trivial estimate (N(1) = 2N)

‖χN (ψ†
N1
, ψ†

N2
, ψ†

N3
)‖Lr

ω(ΩN∩Ξ′
2N ;X0,0) .α N

10R3,

we have

‖χN (ψ†
N1
, ψ†

N2
, ψ†

N3
)‖Lr

ω(ΩN∩Ξ′
2N ;X0,−b′ ) . r

3b′

2b1R3T
(−γ+ 1

q′
) 3b

′

b1 N
− b′

b1
s1+10(1− b′

b1
)
.

Obviously, for b′, b1, b
′ < 1

2
< b1, close enough to 1

2
, we have b′

b1
s1−10(1− b′

b1
) > s+σ.

Then for γ, 1
q′

close enough to 1 such that 1 − b − b′ > γ − 1
q′
, we complete the

proof of Proposition 5.11 by the standard argument using Chebyshev. We remark
that the growth R4 in the statement of Proposition 5.11 is responsible for the decay
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C0 exp(−(logN)c0Rc0) for the exceptional set, since the growth in the moment bound
is R3. �

Let us start with a general probabilistic multilinear estimate used in many places
of the proof.

Lemma 8.2 (k-linear probabilistic estimates at generation 2N). Fix N ≥ 1 such
that Loc(N) holds for parameters (R, T, σ), and let Ξ′

2N be as in Lemma 7.2 and
Lemma 7.3. For all k ≥ 1, for every B≤N -measurable function f ∈ L∞

x L
r
ωℓn1,··· ,nk

Lq′

κ1,··· ,κk

and every x in S2,

∥∥∥
∫

Rk

dκ1 · · · dκk
∑

n1,··· ,nk
distinct

( k∏

i=1

πni
ψ̃†
2N

ιi

(κi, x)
)
fn1,··· ,nk

(κ1, · · ·κk, x)
∥∥∥
Lr
ω(Ξ

′
2N )

.k (r
1
2T

−γ+ 1
q′RN−(α− 1

2
))k

∥∥∥(
k∏

i=1

〈κi〉−γ)fn1,··· ,nk

∥∥∥
Lr
ω(Ξ

′
2N ;ℓ2n1,··· ,nk

Lq′
κ1,··· ,κk

)
, (8.1)

where ιi stands for the possible conjugaison bar, which is not important here.

This type of estimate allows one to control the time-modulated multilinear interac-
tions between k-colored Gaussian variables from the same generation 2N , possibly
interacting with a random function constructed at a former generation, which is
therefore B≤N -measurable.

Remark 8.3. Lemma 8.2 will be repeatedly applied in several parts of the multilinear
probabilistic estimates, with k ≤ 3. Hence, we neglect the dependence on k of the
constants.

Proof. It turns out that the conjugaison bar plays no role we suppose that ιi = 1 for
all i ∈ {1, · · · , k}. Recall that for n ≈ 2N ,

πnψ
†
2N (t, x) = χT (t)λ

−(α− 1
2
)

n e2N,†
n (t, x) =

λ
−(α− 1

2
)

n

(2n+ 1)
1
2

∑

|k|,|ℓ|≤n

χT (t)H
2N,†
n;k,ℓ(t)gn,ℓ(ω)bn,k(x) .

We also stress out that H2N,† is B≤N -measurable, and is independent of the Gaussian
variables (gn,ℓ)|ℓ|≤n when n ≈ 2N . Hence, we deduce from the conditional Wiener
chaos estimate and from the non-pairing condition that almost surely in ω,

l.h.s (8.1) = ‖
∫

Rk

∑

n1,··· ,nk
distinct

k∏

i=1

πni
ψ̃†
2N (κi, x)fn1,··· ,nk

(κ1, · · ·κk, x)dκ1 · · · dκk ‖Lr
ωL

r
ω|B≤N

. r
k
2 ‖

∫

Rk

∑

n1,··· ,nk
distinct

k∏

i=1

πni
ψ̃†
2N (κi, x)fn1,··· ,nk

(κ1, · · ·κk, x)dκ1 · · ·dκk‖Lr
ωL

2
ω |B≤N

.
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Expanding the colored Gaussian variables and using independence along with the
non-pairing condition, we conclude that almost surely in ω,

‖
∫

Rk

dκ1 · · · dκk
∑

n1,··· ,nk
distinct

k∏

i=1

πni
ψ̃†
2N (κi, x)fn1,··· ,nk

(κ1, · · ·κk, x, ω) ‖2L2
ω|B≤N

=

∫

R2k

dκ1 · · · dκkdκ′1 · · ·dκ′k
∑

σ∈Sk

∑

n1,··· ,nk
distinct

fn1,··· ,nk
(κ1, · · · , κk, x, ω)fnσ(1),··· ,nσ(k)

(κ′1, · · · , κ′k, x, ω)

×
k∏

i=1

λ
−2(α− 1

2
)

ni

∑

|ℓi|≤ni

( ∑

|ki|≤ni

˜(χTH
2N,†
ni;ki,ℓi

)(κi)
bni,ki(x)

(2ni + 1)
1
2

)( ∑

|k′i|≤ni

˜(χTH
2N,†
ni;k′i,ℓi

)(κ′i)
bni,k′i

(x)

(2n+ 1)
1
2

)
,

where Sk is the permutation group of {1, 2, · · · , k}.
We do Cauchy-Schwarz in the sums over ℓi to see that the right-hand-side is

controlled by

.

∫

R2k

dκ1 · · · dκkdκ′1 · · · dκ′k
∑

σ∈Sk

∑

n1,··· ,nk

|fn1,··· ,nk
(κ1, · · · , κk, x, ω)fnσ(1),··· ,nσ(k)

(κ′1, · · · , κ′k, x, ω)|

×
k∏

i=1

λ
−2(α− 1

2
)

ni

( ∑

|ℓi|≤ni

∣∣∣
∑

|ki|≤ni

˜(χTH
2N,†
ni;ki,ℓi

)(κi)
bni,ki(x)

(2ni + 1)
1
2

∣∣∣
2) 1

2

×
( ∑

|ℓi|≤ni

∣∣∣
∑

|ki|≤ni

˜(χTH
2N,†
ni;ki,ℓi

)(κ′i)
bni,ki(x)

(2ni + 1)
1
2

∣∣∣
2) 1

2
,

and we conclude from Hölder’s inequality in the κi’s variables that

.
∑

n1,··· ,nk

‖(
k∏

i=1

〈κi〉−γλ
−(α− 1

2
)

ni )fn1,··· ,nk
(κ1, · · · , κk, x, ω)‖2

Lq′
κ1,··· ,κk

k∏

i=1

∥∥∥〈κi〉γ
( ∑

|ℓi|≤ni

∣∣∣
∑

|ki|≤ni

˜(χTH
2N,†
ni;ki,ℓi

)(κi)
bni,ki(x)

(2ni + 1)
1
2

∣∣∣
2) 1

2
∥∥∥
2

Lq
κi

.

The result follows from (4.6) and from the induction assumption Loc(N) , together
with the definition of the norm (4.5) and the operator bounds at generation 2N and
(5.15), the above quantity can be estimated by

∑

n1,··· ,nk

‖(
k∏

i=1

〈κi〉−γλ
−(α− 1

2
)

ni )fn1,··· ,nk
(κ1, · · · , κk, x, ω)‖2

Lq′
κ1,··· ,κk

‖(χTH2N,†
n )∗‖2kℓ∞n Sq,γ,∗

n

.k (T
−γ+ 1

q′RN−(α− 1
2
))2k

∑

n1,··· ,nk

∥∥∥(
k∏

i=1

〈κi〉−γ)fn1,··· ,nk
(κ1, · · · , κk, x, ω)

∥∥∥
2

Lq′
κ1,··· ,κk

.

We conclude by taking the Lr-norm in ω. �
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We are now ready to prove Proposition 8.1.

Proof of Proposition 8.1. The proof of Proposition 8.1 boils down to show that there
exists δ > 0 such that for all r ≥ 2,

∥∥∥〈κ〉−b1

∫

R3

d~κ
∑

(n1,n2,n3)∈Γ(n)

χ̂(κ̃− Ω(~n))

πn
(
πn1ψ̃

†
N1
(κ1)πn2ψ̃

†
N2
(κ2) ⋄ πn3ψ̃

†
N3
(κ3)

)∥∥∥
Lr
ω(Ξ

′
2N ;ℓ2nL

2
κ,x)

. (r
1
2RT

−γ+ 1
q′ )3N−s1 (8.2)

where we recall the notations

~n = (n1, n2, n3, n) , κ̃ := κ1−κ2+κ3−κ, d~κ = dκ1dκ2dκ3, Ω(~n) := λ2n1
−λ2n2

+λ2n3
−λ2n .

Given n, the set Γ(n) represents a certain constraint to be specified. We defined the
Wick product denoted by ⋄ in (1.8).

Remark 8.4. Before starting the proof we stress out that, by considerations on the
degree of the spherical harmonics, only the terms with n . N(1) contribute to the
sum over n.

To prove (8.2) and to control the moments of order r, we use different features
of the colored Gaussian random variables, depending on the pairing configuration
Γ(n) and on the relative size of N1, N2, N3 and 2N .

Case 1: Pairing n1 = n. In this case ψ†
N2

and ψ†
N3

play a symmetric role, so we
may suppose that N2 ≥ N3.

Only the terms with N(1) = N(2) = 2N or N(1) = N2 = 2N contribute. Indeed,
the other frequency interactions are absorbed in the ansatz (1.12) when N = N(0,1).
We have

l.h.s (8.2) =
∥∥∥〈κ〉−b1

∫

R3

χ̂(κ̃−(λ2n2
−λ2n3

))N(0,1)(ψ
†
N1
, ψ†

N2
, ψ†

N3
)d~κ

∥∥∥
Lr
ω(ΩN∩Ξ′

2N ;ℓ2nL
2
κL

2
x)
.

•Case 1.1: Partial pairing: N(0,1)[2,3]. In this case we haveN1 ≤ 2N ,max(N2, N3) =
2N . Since the resonant function is Ω(~n) = λ2n2

− λ2n3
, with n2 6= n3, we leverage

these time-oscillations to sum over n2 and n3 together without losing powers in N2

or N3.

First, observe that we save a square root in the sum over n thanks to the ortho-

gonal projectors πn. Then, we get rid of the terms πnψ̃
†
N1
(κ1) by using deterministic

bounds:

l.h.s (8.2) = ‖χN(0,1)[2,3](ψ
†
N1
, ψ†

2N , ψ
†
N3
)‖Lr

ω(Ξ
′
2N ,X0,−b1 )

. ‖〈κ〉−b1
∑

n2 6=n3

∫

R3

χ̂(κ̃−(λ2n2
−λ2n3

)))πnψ̃
†
N1
(κ1, x)πn2ψ̃

†
N2
(κ2, x)πn3ψ̃

†
N3
(κ3, x)d~κ ‖Lr

ωL
2
κL

2
xℓ

2
n

. ‖〈κ1〉γπnψ̃†
N1
‖L∞

ω (ΩN∩Ξ′
2N ;ℓqnL

q
κ1

L∞
x )‖〈κ〉−b1〈κ1〉−γfn(κ, κ1, x) ‖

Lr
ωL

2
κ,xℓ

2q
q−2
n Lq′

κ1

,
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with

fn(κ1, κ, x) :=

∫

R2

∑

n2 6=n3

χ̂(κ̃− (λ2n2
− λ2n3

))πn2ψ̃
†
N2
(κ2, x)πn3ψ̃

†
N3
(κ3, x)dκ2dκ3 .

We obtain

l.h.s (8.2) . ‖ψ†
N1
‖L∞

ω (ΩN∩Ξ′
2N ;X0,γ

q,q,∞) , ‖〈κ〉−b1〈κ1〉−γfn(κ, κ1, x)‖
Lr
ωL

2
κ,xℓ

2q
q−2
n Lq′

κ1

Using the definition of the set Ξ′
2N we deduce that

l.h.s (8.2) . RT
−γ+ 1

q′N
−(α− 1

2
)+ 1

q
+2δ

1 ‖〈κ〉−b1〈κ1〉−γfn(κ, κ1, x) ‖
Lr
ω(Ξ

′
2N ;L2

κ,xℓ
2q
q−2
n Lq′

κ1
)
.

We are now in a good position to apply Lemma 8.2. If N2 = N3 we can directly
apply Lemma 8.2 with k = 2, and we end up with the bound

(r
1
2RT

−γ+ 1
q′ )3N

−(α− 1
2
)+ 1

q
+2δ

1 N
−2(α− 1

2
)

2 ≤ (r
1
2RT

−γ+ 1
q′ )3N

−(α− 1
2
)+ 1

q
+2δ

(1) N
−(α− 1

2
)

(2) ,

which is conclusive. Otherwise N2 > N3 and we apply the Lemma twice. In this
case, set

fn(κ, κ1, x) =:

∫

R

∑

n2≈N2

πn2ψ̃
†
N2
(κ2)fn,n2(κ, κ1, κ2, x)dκ2 ,

with

fn,n2(κ, κ1, κ2, x) :=

∫

R

∑

n3≈N3

χ̂(κ̃− (λ2n2
− λ2n3

))πn3ψ̃
†
N3
(κ3)dκ3 .

To control fn, we use Lemma 8.2 applied at generation N2 with fn,n2 and k = 1:

‖〈κ〉−b1〈κ1〉−γfn(κ, κ1, x) ‖
Lr
ωL

2
κ,xℓ

2q
q−2
n Lq′

κ1

≤ ‖〈κ〉−b1〈κ1〉−γfn(κ, κ1, x) ‖
Lr
ωL

2
κ,xℓ

2q
q−2
n Lq′

κ1
Lr
ω |B≤N3

. r
1
2RT

−γ+ 1
q′N

−(α− 1
2
)

2 ‖〈κ〉−b1〈κ1〉−γ〈κ2〉−γfn,n2‖
Lr
ωL

2
κL

2
xℓ

2q
q−2
n Lq′

κ1
ℓ2n2

Lq′
κ2

.

Subsequently, we write

fn,n2(κ, κ1, κ2) =

∫

R

∑

n3≈N3

πn3ψ̃
†
N3
(κ3)fn,n2,n3(κ, κ1, κ2, κ3, x)dκ3 ,

with
fn,n2,n3(κ, κ1, κ2, κ3) = χ̂(κ̃− (λ2n2

− λ2n3
)) .

We apply Lemma 8.2 at generation N3 with fn,n2,n3 and k = 1 and Minkowski
(2 > q′) to conclude that

l.h.s (8.2) . r(RT
−γ+ 1

q′ )3N
−(α− 1

2
)+ 1

q
+2δ

1 (N2N3)
−(α− 1

2
)

‖1n2 6=n3〈κ〉−b1(〈κ1〉〈κ2〉〈κ3〉)−γχ̂(κ̃− (λ2n2
− λ2n3

))‖
L2
κℓ

2q
q−2
n Lq′

κ1,κ2,κ3
ℓ2n2,n3

.

Since n2 6= n3 in the sums, we can conclude from the divisor bound

sup
l

#{n2 6= n3 : nj ∼ Nj , λ
2
n2

− λ2n3
= l} .ǫ (N2N3)

ǫ, (8.3)
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that we can sum over n2 and n3 together. We obtain that for all ǫ > 0,

l.h.s (8.2) .ǫ r(RT
−γ+ 1

q′ )3N
−(α− 1

2
)+ 1

2
+ 1

q
+2δ

1 (N2N3)
−(α− 1

2
)+ǫ ,

where we used that the sum over n runs over O(N1)-terms (because we have the
condition n = n1). This is conclusive at least when α ≥ 1. In the case where
N(1) = N(2) = 2N , we get the bound

r(RT
−γ+ 1

q′ )3N
−(α− 1

2
)+ 1

2
+ 1

q
+2δ

(1) (N(2))
−(α− 1

2
)+ǫ . r(RT

−γ+ 1
q′ )3N−2(α− 1

2
)+ 1

2
+ 1

q
+2δ+ǫ.

In the cases where N2 = 2N , we get the bound

r(RT
−γ+ 1

q′ )3N
−(α− 1

2
)+ 1

2
+ 1

q
+2δ

(2) N
−(α− 1

2
)+ǫ

(1) . r(RT
−γ+ 1

q′ )3N−(α− 1
2
)+ 1

q
+2δ+ǫ.

We conclude in both cases.

• Case 1.2 Full pairing: N(0,1)(2,3) In this resonant case we need to exploit (at
least when n1 6= n2) the Wick renormalization, especially Lemma 7.3. Moreover, we
cannot expect to gain from the modulation (since there is no time oscillation), so
we do not have to consider Fourier transform in time.

For the interaction N(0,1) we supposed N(2) = 2N or N2 = 2N . Since here we
have N2 = N3, and hence N2 ≥ N(2), we necessarily have N2 = 2N . Therefore, we
have to exploit the Wick ordering and the saving in N2 from Lemma 7.3. We have

l.h.s (8.2) = ‖χ
∑

n≈N1

πn(πnψ
†
N1
(ψ†

2N
=ψ†

2N )) ‖Lr
ω(ΩN∩Ξ′

2N ;X0,−b1 )

. ‖χ
∑

n≈N1

πn(πnψ
†
N1
(ψ†

2N
=ψ†

2N )) ‖Lr
ω(ΩN∩Ξ′

2N ;X0,0)

. ‖χπnψ†
N1
(ψ†

2N
=ψ†

2N )‖Lr
ω(ΩN∩Ξ′

2N ;ℓ2nL
2
tL

2
x)
.

Using the assumption, we have that for all ω ∈ Ξ′
2N

‖ψ†
2N

=ψ†
2N‖Lq

tL
∞
x
≤ CR2N−2(α− 1

2
)+ 1

2
+ 1

q
+2δ ,

Therefore,

l.h.s (8.2) .
∥∥∥‖χπnψ†

N1
‖
L

2q
q−2
t ℓ2nL

2
x

‖ψ†
2N

=ψ†
2N‖Lq

tL
∞
x

∥∥∥
Lr
ω(ΩN∩Ξ′

2N )

. ‖πnψ†
N1
‖
Lr(ΩN ;L

2q
q−2
t ℓ2nL

2
x)
R2N−2(α− 1

2
)+ 1

2
+ 1

q
+2δ .

Using that πnψ
†
N1
(t, x) = λ

−(α− 1
2
)

n HN1,†
n (t)(eωn)(x), and that HN1,†

n (t) is unitary, we
obtain that for all t and n ≈ N1

‖πnψ†
N1
(t)‖Lr(ΩN ;ℓ2nL

2
x) . ‖eωn‖Lr

ω(ΩNL2
x)(

∑

n≈N1

λ
−2(α− 1

2
)

n )
1
2 . RN1−α

1 . (8.4)

Hence, by Minkowski (when r ≥ 2q
q−2

),

l.h.s (8.2) . R3N1−α
1 N−2(α− 1

2
)+ 1

2
+ 1

q
+2δ . R3N−2(α− 1

2
)+ 1

2
+ 1

q
+2δ .

This is conclusive when α ≥ 1.
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Case 2: No pairing, n1, n2, n3, n are distinct. In this paragraph we have N(1) =
2N , and without loss of generality we suppose N1 = N(1) ≥ N2 ≥ N3 (since the
three terms are symmetric in this configuration).
We only present the situation when we have three different generations, namely

2N = N1 > N2 > N3, in which case we apply Lemma 8.2 with k = 1 three times.
Otherwise we would proceed similarly: if N1 = N2 = 2N , say, we apply Lemma 8.2
at generation 2N with k = 2 first and then at generation N3 with k = 1.

In Case 2, when 2N = N1 > N2 > N3, we have

l.h.s (8.2) = ‖〈κ〉−b1

∫

R

πn1ψ̃
†
2N (κ1, x)fn1(κ1, n, κ, x)dκ1‖Lr

ωℓ
2
nL

2
κL

2
x
,

where, given n1 ≈ 2N ,

fn1(κ1, n, κ, x) :=
∑

n2≈N2,n3≈N3
n2 6=n3

∫

R2

χ̂(κ̃− Ω(~n))πn2ψ̃
†
N2
(κ2, x)πn3ψ̃

†
N3
(κ3, x)dκ2dκ3 ,

is a B≤N -measurable function. We first apply the conditional Minkowski’s inequality
and Lemma 8.2 at generation N1 with fn1 and k = 1 to see that

l.h.s (8.1) . ‖〈κ〉−b1

∫

R

πn1ψ̃
†
N1
(κ1, x)fn1(κ1, n, κ, x)dκ1‖Lr

ωℓ
2
nL

2
κL

2
xL

r
ω|B≤N

. r
1
2RT

−γ+ 1
q′N−(α− 1

2
)‖〈κ〉−b1〈κ1〉−γfn1 ‖

Lr
ωℓ

2
nL

2
κL

2
xℓ

2
n1

Lq′
κ1

≤ r
1
2RT

−γ+ 1
q′N−(α− 1

2
)‖〈κ〉−b1〈κ1〉−γfn1 ‖

Lr
ωℓ

2
nL

2
κL

2
xℓ

2
n1

Lq′
κ1

Lr
ω|B≤N2

,

where we have used the Minkowski in the last step.
Subsequently, we write

fn1(κ1, κ, n, x) :=

∫

R

∑

n2≈N2

πn2ψ̃
†
N2
(κ2, x)fn1,n2(κ1, κ2, n, κ, x)dκ2 ,

with

fn1,n2(κ1, κ2, n, κ, x) :=
∑

n3≈N3

∫

R

πn3ψ̃
†
N3
(κ3, x)χ̂(κ̃− Ω(~n))dκ3 .

We apply Lemma 8.2 at generation N2 with fn1,n2 (which is a B≤N3-measurable
function, with N3 ≤ N2

2
) and k = 1 together with the Minkowski to deduce that

‖〈κ〉−b1〈κ1〉−γfn1 ‖
Lr
ω(ΩN ;ℓ2n,n1

L2
κL

2
xL

q′
κ1

Lr
ω |B≤N2

)

. r
1
2RT

−γ+ 1
q′N

−(α− 1
2
)

2

∥∥∥‖〈κ〉−b1

2∏

i=1

〈κi〉−γfn1,n2 ‖
L2
xL

q′
κ1,κ2

L2
κℓ

2
n,n1,n2

∥∥∥
Lr
ω(ΩN∩Ξ′

2N )
.

Hence,

l.h.s (8.2) . r(RT
−γ+ 1

q′ )2(NN2)
−(α− 1

2
)‖〈κ〉−b1

2∏

i=1

〈κni
〉−γfn1,n2 ‖Lr

ω(ΩN ;L2
xL

q′
κ1,κ2

L2
κℓ

2
n,n1,n2

)
.
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Then, we apply Lemma 8.2 at generation N3 with fn1,n2,n3 and k = 1, where

fn1,n2,n3(κ1, κ2, κ3, n, κ) := χ̂(κ̃− Ω(~n)) = χ̂(κ̃− (λ2n − λ2n1
+ λ2n2

− λ2n3
)) .

We obtain

l.h.s (8.2) . r
3
2 (RT

γ− 1
q′ )3(NN2N3)

−(α− 1
2
)‖〈κ〉−b1

3∏

i=1

〈κi〉−γχ̂(κ̃−Ω(~n)) ‖
L2
κL

q′
κ1,κ2,κ3

ℓ2n,n1,n2,n3

.

Then, we can used the divisor bound as in (8.3) together with Remark 8.4 sum over
n1 and n together for fixed ~κ and n2, n3: for all ǫ > 0,

l.h.s (8.2) . (r
1
2RT

γ− 1
q′ )3(N1N2N3)

−(α− 1
2
)(N2N3)

1
2

∥∥∥〈κ〉−b1

3∏

i=1

〈κi〉−γκ−b1‖χ̂(κ̃− Ω(~n))‖L∞
κ,κ1,κ2,κ3

ℓ∞n2,n3
ℓ2n,n1

∥∥∥
L2
κL

q
κ1,κ2,κ3

.ǫ r
3
2 (RT

γ− 1
q′ )3N−(α− 1

2
)+ǫ(N2N3)

1−α ,

which is conclusive at least when α ≥ 1.

Case 3: Partial pairing with wick-ordering: N[0,1](23). We distinguish between
two cases, whether N1 ≤ N2 = N3 = 2N , or N2 = N3 ≤ N and N1 = 2N .

• Case 3.1: N1 ≤ N2 = 2N . In this case we only exploit the gain from the Wick
ordering. For this reason, we do not need to use the Fourier transform in time. In
case 3.1 we have

l.h.s (8.2) = ‖χ
∑

n

∑

n1≈N1
n1 6=n

πn(πn1ψ
†
N1
(ψ†

2N
= ψ†

2N ))‖Lr
ω(ΩN∩Ξ′

2N ;X0,−b1 )

. ‖χ
∑

n

∑

n1≈N1
n1 6=n

πn(πn1ψ
†
N1
(ψ†

2N
= ψ†

2N))‖Lr
ω(ΩN∩Ξ′

2N ;X0,0)

Observe that

‖χ
∑

n

∑

n1≈N1
n1 6=n

πn(πn1ψ
†
N1
(ψ†

2N
= ψ†

2N ))‖Lr
ω(ΩN∩Ξ′

2N ;L2
t,x)

≤ ‖χ
∑

n

∑

n1≈N1

πn(πn1ψ
†
N1
(ψ†

2N
= ψ†

2N ))‖Lr
ω(ΩN∩Ξ′

2N ;L2
t,x)

+ ‖χ
∑

n

πn(πnψ
†
N1
(ψ†

2N
= ψ†

2N ))‖Lr
ω(ΩN∩Ξ′

2N ;L2
t,x)

.

We have already controlled the second term in Case 1.2 (in the present case when
N2 = 2N), and we deduce from this bound that

l.h.s (8.2) . ‖χ
∑

n

∑

n1≈N1

πn(πn1ψ
†
N1
(ψ†

2N
= ψ†

2N ))‖Lr
ω(ΩN∩Ξ′

2N ;L2
t,x)

+R3N−2(α− 1
2
)+ 1

2
+ 1

q
+2δ .
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It suffices therefore to handle the first term, where we do not assume the non-pairing
condition. By duality, we have that for fixed ω ∈ ΩN ∩ Ξ′

2N ,

‖χ
∑

n

∑

n1≈N1

πn(πn1ψ
†
N1
(ψ†

2N))‖Lr
ω(ΩN∩Ξ′

2N ;L2
t,x)

≤
∥∥∥ sup

‖v‖
L2
t,x

≤1

∣∣∣
∫

R×S2
χ(t)ψ†

N1
(t, x)(ψ†

2N
= ψ†

2N )(t, x)v(t, x)
∣∣∣dtdx

∥∥∥
Lr
ω(ΩN∩Ξ′

2N )

.
∥∥∥ sup

‖v‖
L2
t,x

≤1

‖ψ†
N1
‖
L

2q
q−2
t L2

x

‖ψ†
2N

= ψ†
2N‖Lq

tL
∞
x
‖v‖L2

t,x

∥∥∥
Lr
ω(ΩN∩Ξ′

2N )
.

We have from orthogonality and form (8.4) that

‖ψ†
N1
‖
Lr
ωL

2q
q−2
t L2

x

. r
1
2N1−α

1 .

According to the assumption ω ∈ Ξ′
2N ,

‖ψ†
2N

= ψ†
2N‖Lq

tL
∞
x
. R2N−2(α− 1

2
)+ 1

2
+ 1

q
+2δ

We conclude that in Case 3.1 we have the same estimate as in Case 1.2:

l.h.s (8.2) . R2N−2(α− 1
2
)+ 1

2
+ 1

q
+2δ ,

for all α ≥ 1.

• Case 3.2: N2 ≤ N , N1 = 2N In this case, it suffices to gain over N1 by using the
time-modulation, and the non-pairing condition n 6= n1.

We do not exploit the saving from the Wick-ordering (for instance, when N2 ≪ N1

this saving is of no use). In Case 3.2, we have

l.h.s (8.2) .
∥∥∥〈κ〉−b1

∑

n1≈2N

∫

R3

χ̂(κ̃− (λ2n − λ2n1
))πn

(
πn1ψ̃

†
N1
(κ1, x)

ψ̃†
N2
(κ2, x) = ψ̃†

N2
(κ3, x)

)
d~κ

∥∥∥
Lr
ωℓ

2
nL

2
κL

2
x

.

Since N2 ≤ N , the random function ψ†
N2

is B≤N -measurable, we can readily apply
Lemma 8.2 at generation 2N with k = 1, and

fn1(κ, κ1, x, n) :=

∫

R2

χ̂(κ̃− (λ2n − λ2n1
))ψ̃†

N2
(κ2, x) = ψ̃†

N2
(κ3, x)dκ2dκ3 .

We obtain

l.h.s (8.2) . r
1
2RT

−γ+ 1
q′N−(α− 1

2
)
∥∥∥〈κ〉−b1〈κ1〉−γfn1(κ, κ1, x, n)

∥∥∥
Lr
ωℓ

2
nL

2
κL

2
xℓ

2
n1

Lq′
κ1

.

It follows from the Minkowski’s inequality (q′ < 2) and the Hölder’s inequality that

l.h.s (8.2) . r
1
2RT

−γ+ 1
q′N−(α− 1

2
)

∑

n2≈N2

‖〈κ〉−b1(〈κ1〉〈κ2〉〈κ3〉)−γχ̂(κ̃− (λ2n − λ2n1
))‖

L2
κL

q′
κ1,κ2,κ3

ℓ2n,n1

‖ψ†
N2
‖2
X0,γ

q,q,∞
.
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Using the bound (5.13) for ψ†
N2
, which holds on ΩN , we obtain that for all ω ∈

ΩN ∩ Ξ′
2N ,

l.h.s (8.2) . r
1
2 (RT

−γ+ 1
q′ )3N−(α− 1

2
)+ǫN

1−2(α− 1
2
)+ 2

q
+4δ

2

‖〈κ〉−b1(〈κ1〉〈κ2〉〈κ3〉)−γχ̂(κ̃− (λ2n − λ2n1
))‖

L2
κL

q′
κ1,κ2,κ3

ℓ2n,n1

.

We conclude from the divisor bound and Remark 8.4, which allows to sum n, n1 . N
together, that for all ǫ > 0,

l.h.s (8.2) .ǫ r
1
2 (RT

−γ+ 1
q′ )3N−(α− 1

2
)+ǫN

1−2(α− 1
2
)+ 2

q
+4δ

2 .

This completes the proof of Proposition 8.1 when α ≥ 1. �

9. Deterministic trilinear estimates

In this section, we prove Proposition 5.10, hence finish the proof of our main
result. We organize the terms to be estimated into following groups: Below, v†Nj

∈
{ψ†

Nj
, z†Nj

}:
• Group I: There is at least one type (D) term z†M with M ≥ 1

100
N .

• Group II: The type (C) term ψ†
2N appears on the first (or the third) position

and are not in Group I. This group contains terms of the form

N(0,1)(ψ
†
2N , ψ

†
2N , z

†
N3
), N(0,1)(ψ

†
2N , z

†
N2
, ψ†

2N ), N[0,1](ψ
†
2N , v

†
N2
, v†N3

),

where ate least one of v†N2
, v†N3

is of type (D). Note that we removed the

singular interactions N(0,1)(ψ
†
2N , vN2 , vN3) with N2, N3 ≤ N thanks to the

ansatz.
• Group III: The type (C) term ψ†

2N appears on the second position and are
not in Group I or Group II. This group contains terms of the form

N (v†N1
, ψ†

2N , v
†
N3
),

N1, N3 ≤ N, v†Ni
is of type (C) or (D) with at least one of type (D).

Before estimating the interactions in each group, we prove an elementary Lemma
useful to control terms of type (D). This Lemma exploit the fact that type (D) terms
are not any function in Xs,b. Indeed, they satisfy a semiclassical energy estimate
and are essentially oscillating at frequency N .

Lemma 9.1. If Loc(N) is true then for all M ≤ N and for z†M of type (D) and
ǫ0 > 0,

‖z†M‖Xs−ǫ0,b . R−1M−ǫ0 .

Proof. A Littlewood–Paley decomposition gives

‖z†M‖Xs−ǫ0,b ≤
∑

K

Ks−ǫ0‖PKz
†
M‖X0,b .

∑

K≤M

Ks−ǫ0‖z†M‖X0,b+R−1
∑

K≥2M

(
M

K
)10−sK−ǫ0

. R−1M−ǫ0 .

This proves Lemma 9.1. �



52 NICOLAS BURQ, NICOLAS CAMPS, CHENMIN SUN, AND NIKOLAY TZVETKOV

We now handle terms in Group I (which contains terms of type (D) with con-
structed at a generation close to N). The goal is to place this high-frequency term
in X0,b (to spare derivatives). The proof involves only the semiclassical Strichartz
estimate recalled in Proposition 4.4.

Lemma 9.2. Suppose that 0 < ǫ0 <
1
2
(s− 1

2
). There exists C > 0 such that for all

function v†N2
, v†N3

of type (C) or (D), and b1 >
1
2
,

‖χN (z†N1
, v†N2

, v†N3
)‖X0,−b1 ≤ C‖z†N1

‖X0,b

∏

i∈{2,3}

min(‖v†Ni
‖Xs−2ǫ0,b , ‖v†Ni

‖Lq
tL

∞
x
) .

Similarly, for all functions v†N1
, v†N3

of type (C) or (D),

‖χN (v†N1
, z†N2

, v†N3
)‖X0,−b1 ≤ C‖z†N2

‖X0,b

∏

i∈{1,3}

min(‖v†Ni
‖Xs−2ǫ0,b , ‖v†Ni

‖Lq
tL

∞
x
) .

Proof. By duality it suffices to show that for all v ∈ X0,b1 such that ‖v‖X0,b1 ≤ 1,
there holds

∣∣∣
∫

R

∫

S2
χ(t)N (z†N1

,v†N2
, v†N3

)(t, x)v(t, x)dtdx
∣∣∣

≤C‖z†N1
‖X0,b‖v‖X0,b1

∏

i∈{2,3}

min
(
‖v†Ni

‖Xs−2ǫ0,b , ‖v†Ni
‖Lq

tL
∞
x

)
.

Since the Wick renormalization plays no role in the analysis below, without loss of
generality, we will replace the nonlinearity N (f1, f2, f3) by the usual multiplication
f1f 2f3. By Hölder’s inequality,

∣∣∣
∫

R

∫

S2
χ(t)N (z†N1

, v†N2
, v†N3

)(t, x)v(t, x)dtdx
∣∣∣

≤ ‖z†N1
‖L∞

t L2
x
‖v‖L∞

t L2
x
‖v†N2

‖Lp2
t L∞

x
‖v†N3

‖Lp3
t L∞

x
‖χ‖

L
1− 1

p2
− 1

p3
t

,

where p2, p3 ∈ (2,+∞), to be chosen later, satisfy 1
p2

+ 1
p3
< 1. By Lemma 4.2 we

obtain

‖z†N1
‖L∞

t L2
x
. ‖z†N1

‖X0,b , ‖v‖L∞
t L2

x
. ‖v‖X0,b1 .

As for the terms vN2 and vN3 , of type (C) or (D), we proceed as follows. When vNi

is of type (C), we take pi = q (we specified the parameters in(2.1)). When vNi
is of

type (D), we let (pi, qi) be an admissible pair and we apply the Sobolev embedding
and the semi-classical Strichartz estimate from [7] recalled in Proposition 4.4:

‖v†Ni
‖Lpi

t L∞
x
. ‖v†Ni

‖
X

2
qi

+ 1
pi

,b . ‖v†Ni
‖
X

1− 1
pi

,b ,

where we used the admissibility condition 2
pi
+ 2

qi
= 1. The desired bound for terms of

type (D) follows by choosing pi > 2 sufficiently close to 2, such that 1− 1
pi
< s−2ǫ0.

This is possible thanks to the assumption ǫ0 <
1
2
(s− 1

2
). �

To handle terms in Group II, we distinguish a special contribution where our
analysis relies on the Wick ordering:
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Lemma 9.3. For all v†N3
of type (D), we have

‖χN(1,2)(ψ
†
2N , ψ

†
2N , v

†
N3
)‖X0,−b1 . R2N−2(α− 1

2
)+ 1

2
+ 1

q
+δ‖v†N3

‖X0,b .

Proof. The proof is in the physical space, in the spirit of the proof of Lemma 9.2.
Here, we place ψ†

2N
=ψ†

2N in Lq
tL

∞
x and apply Lemma 7.3. �

It remains to handle the other interactions in Group II. In the next Lemma we
control the remaining interactions not covered by Lemma 9.2 and Lemma 9.3 (even
if there might be some overlap in some cases).

Lemma 9.4 (Remaining interactions with ψ†
2N in first position). Suppose that for

i ∈ {2, 3}, Ni ≤ 2N and vNi
is of type (C) or (D) with at least one of type (D). For

all ǫ > 0 and ǫ0 > 0 with ǫ0 < min(s− 1
2
, α− 1), we have

‖χN[0,1][1,2](ψ
†
2N , vN2 , vN3)‖X0,−b1 .ǫ0 RN

−(α− 1
2
)+ǫ(N2N3)

−ǫ0 . (9.1)

Moreover, if N3 ≤ 2N,

‖χN(01)(ψ
†
2N , ψ

†
2N , z

†
N3
)‖X0,−b1 .ǫ0 RN

−(α− 1
2
)−(α−1)N

−(s− 1
2
)+ǫ0

3 . (9.2)

If N2 ≤ 2N ,

‖χN (ψ†
2N , z

†
N2
, ψ†

2N )‖X0,−b1 .ǫ0 RN
−(α− 1

2
)−(α−1)N

−(s− 1
2
)+ǫ0

2 . (9.3)

Proof. Thanks to the high frequency assumption in Loc(N) we can suppose that
the terms of type (D) are truncated at frequency 4N . Consequently the output
frequency is less than 100N . As in the proof of Lemma 9.2, it suffices to replace the
nonlinearity N··· by the usual multiplication, subjecting to the specific constraint.

We first prove (9.1).

• Case 1: (C)(C)(D). By duality and Cauchy–Schwarz in x ∈ S2,

‖χN[0,1][1,2](ψ
†
2N , ψ

†
N2
,Π2N3z

†
N3
)‖X0,−b1

.
∑

ni.N
n0 6=n1 ,n1 6=n2

(λn1λn2)
−(α− 1

2
)

∫

R4

|χ̂(κ̃− Ω(~n))|
〈κ0〉b1〈κ1〉b〈κ2〉γ〈κ3〉b

3∏

i=0

a(i)
ni
(κi)d~κ . (9.4)

Denote by

a(0)
n0
(κ0) := 〈κ0〉b1‖πn0 v̂n0(κ0 − λ2n0

)‖L2
x
, a(1)

n1
(κ1) := 〈κ1〉γ‖ê2N,†

n1 (κ1 − λ2n1
)‖L∞

x
,

a(2)
n2
(κ2) := 〈κ2〉γ‖êN2,†

n2 (κ2 − λ2n2
)‖L∞

x
, a(3)

n3
(κ3) := 〈κ3〉b‖πn3 ẑ

†
N3
(κ3 − λ2n3

)‖L2
x
,

where v is a function in X0,b1 with ‖v‖X0,b1 ≤ 1. Under our assumptions, there holds

‖a(0)
n0
(κ0)‖ℓ2n0

L2
κ0

= ‖v‖X0,b1 ≤ 1 , ‖a(i)
ni
(κi)‖Lq

κi
ℓ∞n1

. R for i ∈ {1, 2} ,
and for all ǫ > 0, according to Lemma 9.1,

‖a(3)
n3
(κ3)‖L2

κ3
ℓ1n3

.ǫ ‖n
1
2
+ǫ

3 a(3)
n3
(κ3)‖L2

κ3
ℓ2n3

.ǫ ‖z†N3
‖
X

1
2+ǫ,b .ǫ N

−(s− 1
2
)+ǫ

3 R−1 . (9.5)
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For fixed n2, n3 and ~κ,
∑

n0,n1.N
n0 6=n1

|χ̂(κ̃− Ω(~n))|a(1)
n1
(κ1)λ

−(α− 1
2
)

n1 .ǫ N
−(α− 1

2
)+ǫ‖a(1)

n1
(κ1)‖ℓ∞n1

.

Indeed, for fixed n2 and n3, we have from the small divisor bound that
∑

n0≈2N,n1.N
n0 6=n1

|χ̂(κ̃− Ω(~n))|a(1)
n1
(κ1)λ

−(α− 1
2
)

n1

. N−(α− 1
2
)‖a(1)

n1
(κ1)‖ℓ∞n1

∑

m

∑

n0,n1.N
n0 6=n1

1λ2
n1

−λ2
n0

=m|χ̂(κ̃− λ2n3
+ λ2n2

−m)|

. N−(α− 1
2
)‖a(1)

n1
(κ1)‖ℓ∞n1

sup
m

#{n0 6= n1 . N , λ2n1
− λ2n0

= m}

.ǫ N
−(α− 1

2
)+ǫ‖a(1)

n1
(κ1)‖ℓ∞n1

.

We deduce from the Schur’s test that for fixed n3 and ~κ,
∑

n0,n1,n2.N
n0 6=n1 ,n2 6=n1

(λn1λn2)
−(α− 1

2
)|χ̂(κ̃− Ω(~n))|a(0)

n0
(κ0)a

(1)
n1
(κ1)a

(2)
n2
(κ2)

.ǫ N
−(α− 1

2
)+ǫN

1
2
2 ‖a(1)

n1
(κ1)‖ℓ∞n1

‖a(0)
n0
(κ0)‖ℓ2n0

‖λ−(α− 1
2
)

n2 a(0)
n2
(κ2)‖ℓ2n2

.ǫ N
−(α− 1

2
)+ǫN

−(α−1)
2 ‖a(1)

n1
(κ1)‖ℓ∞n1

‖a(0)
n0
(κ0)‖ℓ2n0

‖a(2)
n2
(κ2)‖ℓ∞n2

.

Summing over n3 in (9.4) and integrating over ~κ, we conclude from Hölder’s inequal-
ity that

|(9.4)| .ǫ N
−(α− 1

2
)−ǫN

−(α−1)
2 ‖a(0)

n0
(κ0)‖L2

κ0
ℓ2n0

‖a(1)
n1
(κ1)‖Lq

κ1
ℓ∞n1

‖a(2)
n2
(κ2)‖Lq

κ2
ℓ∞n2

.ǫ N
−(α− 1

2
−ǫ)N

−(α−1)
2 N

−(s− 1
2
)+ǫ

3 R ,

which is conclusive.

• Case 2: (C)(D)(C). This case is analog to the previous one but inverting the role
of n2 and n3, by first fixing n2 while summing over n0, n1, n3. When we apply the
Schur’s test, we apply the divisor bound

sup
m

#{n1, n3 . N | λ2n1
+ λ3n3

= m} .ǫ N
ǫ .

•Case 3: (C)(D)(D). We do the same analysis as in Case 1, but replacing ‖λ−(α− 1
2
)

n2 a
(0)
n2 (κ2)‖ℓ2n2

by

‖〈κ2〉bπn2 ẑ
†
N2
(κ2 − λ2n2

)‖L2
κℓ

2L∞
x
.ǫ ‖z†N2

‖
X

1
2+ǫ,b . N

−(s− 1
2
)+ǫ

2 R−1 ,

where we used the Sobolev embedding and applied Lemma 9.1 to obtain the last
bound.
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We now turn to the proof of (9.2). In this case, we have the analog of (9.4):

‖χN(0,1)(ψ
†
2N , ψ

†
2N ,Π2N3z

†
N3
)‖X0,−b1

.
∑

n,n2,n3
n,n2≈N

(λnλn2)
−(α− 1

2
)

∫

R4

|χ̂(κ̃− Ω(~n))|
〈κ0〉b1〈κ1〉γ〈κ2〉γ〈κ3〉b

a(0)
n (κ0)a

(1)
n (κ1)a

(2)
n2
(κ2)a

(3)
n3
(κ3)d~κ ,

(9.6)

where the a(i) for i ∈ {0, 1, 2, 3} are as in (9.4). First, we fix n, n3 and ~κ to sum over
n2:

∑

n2≈N

λ
−(α− 1

2
)

n2 a(2)
n2
(κ2)|χ̂(κ̃− (λ2n1

− λ2n2
+ λ2n3

− λ2n0
))| . N−(α− 1

2
)‖a(2)

n2
(κ2)‖ℓ∞n2

.

By Cauchy-Schwarz, summing over n gives
∑

n≈N

λ
−(α− 1

2
)

n a(0)
n (κ0)a

(1)
n (κ1) . N−(α−1)‖a(0)

n ‖ℓ2n‖a(1)
n ‖ℓ∞n .

We conclude by integrating over ~κ using Hölder, and summing over n3 using (9.5)
to finally obtain (9.2). Since the proof of (9.3) is similar, we omit it. This finishes
the proof of Lemma 9.4 �

We now handle the interactions when ψ†
2N is at the second position and the other

terms are of generation ≤ N .

Lemma 9.5 (Remaining interactions with ψ†
2N in second position). Suppose that

for i ∈ {1, 3}, Ni ≤ N and vNi
is of type (C) or (D) with at least one of type (D).

Moreover, for type (D) terms we suppose that Ni ≤ 1
50
N . For all b1 >

1
2
, ǫ > 0 and

ǫ0 > 0 with ǫ0 < min(s− 1
2
, α− 1), we have

‖χN (vN1 , ψ
†
2N , vN3)‖X0,−b1 .ǫ N

−(α− 1
2
)+ǫ(N1N3)

−ǫ0 . (9.7)

Proof. The proof is similar to the proof of Lemma 9.4. We reduce to the case when
the terms of type are truncated at frequency 4N and the output frequency is less
than 100N . As in the proof of Lemma 9.2, it suffices to replace the nonlinearity N···

by the usual multiplication, subjecting to the specific constraint.

• Case 1: (C)(C)(D). By duality and Cauchy–Schwarz in x ∈ S2,

‖χN (ψ†
N1
, ψ†

2N ,Π2N3z
†
N3
)‖X0,−b1

.
∑

n0.N,n1≈N1,n2≈2N,n3.N3

(λn1λn2)
−(α− 1

2
)

∫

R4

|χ̂(κ̃− Ω(~n))|
〈κ0〉b1〈κ1〉γ〈κ2〉γ〈κ3〉b

3∏

i=0

a(i)
ni
(κi)d~κ ,

(9.8)

where

a(0)
n0
(κ0) := 〈κ0〉b1‖πn0 v̂n0(κ0 − λ2n0

)‖L2
x
, a(1)

n1
(κ1) := 〈κ1〉γ‖êN1,†

n1 (κ1 − λ2n1
)‖L∞

x
,

a(2)
n2
(κ2) := 〈κ2〉γ‖ê2N,†

n2 (κ2 − λ2n2
)‖L∞

x
, a(3)

n3
(κ3) := 〈κ3〉b‖πn3 ẑ

†
N3
(κ3 − λ2n3

)‖L2
x
,
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where v is a function in X0,b1 with ‖v‖X0,b1 ≤ 1. Under our assumptions, we have
that for all ǫ > 0

‖a(0)
n0
(κ0)‖ℓ2n0

L2
κ0

= ‖v‖X0,b1 ≤ 1 , ‖a(i)
ni
(κi)‖Lq

κi
ℓ∞n1

. R for i ∈ {1, 2} ,

‖a(3)
n3
(κ3)‖L2

κ3
ℓ1n3

.ǫ N
−(s− 1

2
)+ǫ

3 R−1 ,

where the last estimate was proved in (9.5). We now fix n3 and ~κ and we sum over
n0, n1, n2 in the same spirit as in the proof of Lemma 9.4, but in this case we will
sum over n0,n1 using Schur’s test and avoid to sum over n2 by using the modulation.
The assumption N1 ≤ 2N ensures the non-pairing condition n1 6= n2. Moreover, we
use the divisor bound

sup
m

#{n0, n2 . N | λ2n0
+ λ2n2

= m} .ǫ N
ǫ .

• Case 2: (D)(C)(D). In this case we assume that N1 ≤ 1
50
N to ensure the non-

pairing condition n1 6= n2 (otherwise this case falls into the scope of Group I and
can be bounded by Lemma 9.2). The rest of the analysis is as in the previous cases
and we do not give further details. �

We are now ready to prove the trilinear deterministic estimates claimed in Pro-
position 5.10.

Proof of Proposition 5.10. Cases when there is a term z†2N follows from Lemma 9.2,
Lemma 9.1 and an interpolation argument (using [14, Proposition 1.2.1] for instance,
in order to have a crude estimate for the X0,0-norm but loosing small powers of N2

only).

The other cases are source terms, so we can afford to lose a small power of N in
the interpolation. These terms are covered by Lemma 9.3, 9.4 and 9.5 (always in the
case α > 1), where we collected before the statement of Proposition 5.9 the different

configurations which contribute to the equation (5.12) satisfied by w†
2N . �

Appendix A. Banach-valued Fourier-Lebesgue function spaces

Let X be a Banach space and F : R → X a Schwartz function such that

‖F‖FLγ
q (X ) := ‖〈τ〉γF̂(τ)‖Lq(Rτ ;X ) <∞. (A.1)

The space FLγ
q (X ) is the closure of X -valued Schwartz functions S(R;X ) with re-

spect to the topology defined via the norm above. We will state and prove estimates
for a general Banach space X in this appendix, but one should keep in mind that
in our application, X = Lp(En) for some 1 ≤ p ≤ ∞ which is a finite (but large as
n→ ∞) dimensional space. Indeed, this section concerns only estimates for regular
objects in general functional spaces.



PROBABILISTIC WELL-POSEDENESS FOR NLS ON THE 2d SPHERE I 57

A.1. Time localization properties.

Proposition A.1. Let X be a Banach space, 1 < q <∞, γ ∈ R, and ϕ ∈ S(R).
(1) For any F ∈ FLγ

q ,

‖ϕ(t)F‖FLγ
q (X ) . ‖F‖FLγ

q (X ).

(2) Denote by ϕT (t) = ϕ(T−1t) for 0 < T ≤ 1. For 0 ≤ γ ≤ γ1 < 1 and 0 < T ≤ 1,
we have

‖ϕT (t)F‖FLγ
q (X ) . T γ1−γ‖F‖FL

γ1
q (X ), if γ1 <

1

q′

and

‖ϕT (t)F‖FLγ
q (X ) . T γ1−γ log

(
1 +

1

T

)
‖F‖FL

γ1
q (X ), if γ1 =

1

q′
,

and

‖ϕT (t)F‖FLγ
q (X ) . T

1
q′
−γ‖F‖FL

γ1
q (X ), if γ1 >

1

q′
,

(3) If in addition, F(0) = 0, for any 0 < γ ≤ γ1 < 1 such that γ1 > 1
q′
, and

0 < T ≤ 1, we have

‖ϕT (t)F‖FLγ
q (X ) . T γ1−γ‖F‖FL

γ1
q (X ).

Remark A.2. It will be clear from the proof that all implicit bounds in Proposition
A.1 can be chosen to depend on

‖ϕ‖W 10,1
t (R) :=

10∑

k=0

‖ϕ(k)‖L1(R).

Proof. (1) By Fourier inversion formula,

ϕ(t)F(t) =
1

2π

∫

R

ϕ̂(η)F(t)eitηdη.

Since 〈τ〉γ . 〈η〉|γ|〈τ − η〉γ, we deduce that

‖ϕ(t)F(t)‖FLγ
q (X ) .

∫

R

|ϕ̂(η)|〈η〉|γ|‖〈τ−η〉γF̂(τ−η)‖Lq
τ (X )dη ≤ ‖ϕ‖

FL
|γ|
1 (R)

‖F‖FLγ
q (X ).

Since ϕ ∈ S(R), we obtain the first inequality.

(2) Now let us prove the second inequality with time cutoff ϕT (t). First we consider
the case 0 ≤ γ ≤ γ1 < 1.
We split F = F1 + F2, where

F̂1(τ) = 1|τ |≥ 1
T
F̂(τ), F̂2(τ) = 1|τ |< 1

T
F̂(τ),

where F̂(τ, ·) is the time-Fourier transform of F. It suffices to show that

(a) ‖〈τ〉γ(ϕ̂T ∗ F̂1)(τ)‖Lq
τ (X ) . T γ1−γ‖〈η〉γ1F̂(η)‖Lq

η(X ); (A.2)

(b) ‖〈τ〉γ(ϕ̂T ∗ F̂2)(τ)‖Lq
τ (X ) . T γ1−γ‖〈η〉γ1F̂(η)‖Lq

η(X ). (A.3)
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To prove (a), we note that

‖〈τ〉γ(ϕ̂T ∗ F̂1)(τ)‖X =
∥∥∥
∫

R

K+
T (τ, η)〈η〉γ1F̂(η)dη

∥∥∥
X

≤
∫

R

|K+
T (τ, η)|〈η〉γ1‖F̂(η)‖Xdη,

where

K+
T (λ, η) = ϕ̂(T (λ− η))

T 〈λ〉γ
〈η〉γ1 1|η|≥ 1

T
.

By Schur’s test, it suffices to show that

sup
λ∈R

∫

R

|K+
T (λ, η)|dη ≤ C1T

γ1−γ, sup
η∈R

∫

R

|K+
T (λ, η)|dλ ≤ C2T

γ1−γ

with C1, C2 independent of T . One can check these two inequalities by direct com-
putation, here we explain it in an informal way. Since ϕ̂ is a Schwartz function,
|λ− η| is essentially bounded by O( 1

T
). Due to the fact that |η| ≥ 1

T
, λ is essentially

constraint in the region |λ| . 1
T
. Since the length of the integration is of size 1

T
, we

deduce that two integrations are bounded by O(1)T γ1−γ. We note that the (a) holds
for 0 ≤ γ ≤ γ1 < 1.
Next we prove (b). By splitting ϕ̂T (λ − η) = [ϕ̂T (λ − η) − ϕ̂T (λ)] + ϕ̂T (λ), we

have

‖(ϕ̂T ∗ F̂2)(λ)‖X =
∥∥∥
∫

|η|< 1
T

ϕ̂T (λ− η)F̂(η)dη
∥∥∥
X

≤
∥∥∥
∫

|η|< 1
T

[ϕ̂T (λ− η)− ϕ̂T (λ)]F̂(η)dη
∥∥∥
X
+ |ϕ̂T (λ)|

∥∥∥
∫

|η|< 1
T

F̂(η)dη
∥∥∥
X
. (A.4)

Since ϕ̂T (λ) = T ϕ̂(Tλ), we have

[ϕ̂T (λ− η)− ϕ̂T (λ)]1T |η|<1 = T · O(|Tη|〈Tλ〉−100).

By Hölder, we deduce that
∣∣∣
∫

|η|< 1
T

‖F̂(η)‖X [ϕ̂T (λ− η)− ϕ̂T (λ)]dη
∣∣∣

≤T 2〈Tλ〉−100‖〈η〉γ1F̂(η)‖Lq
η(X )

∥∥∥ |η|
〈η〉γ1

∥∥∥
Lq′ (|η|≤ 1

T
)

.T
γ1+1− 1

q′ 〈Tλ〉−100‖F‖FL
γ1
q (X ).

Multiplying by 〈λ〉γ and taking the Lq
λ norm of the above quantity, we obtain the

bound
∥∥∥〈λ〉γ

∫

|η|< 1
T

[ϕ̂T (λ− η)− ϕ̂T (λ)]F̂(η)dη
∥∥∥
Lq
λ(X )

. T γ1−γ‖F‖FL
γ1
q (X ).

We note that there is no constraint about 0 ≤ γ ≤ γ1 < 1 for this contribution.
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Finally,
∥∥∥〈λ〉γϕ̂T (λ)

∥∥∥
∫

|η|< 1
T

F̂(η)dη
∥∥∥
X

∥∥∥
Lq
λ

≤ ‖〈λ〉γϕ̂T (λ)‖Lq
λ
‖F‖FL

γ1
q (X )

∥∥∥ 1

〈η〉γ1 1|η|< 1
T

∥∥∥
Lq′
η

.

(A.5)

Since for 0 < T ≤ 1, 〈λ〉γ ≤ T−γ〈Tλ〉γ, we have ‖〈λ〉γϕ̂T (λ)‖Lq
λ
‖ . T

1
q′
−γ
. If

0 ≤ γ ≤ γ1 <
1
q′
, ‖〈η〉−γ11|η|<T−1‖

Lq′
η
. T

γ1−
1
q′ , we obtain that

∥∥∥〈λ〉γϕ̂T (λ)
∥∥∥
∫

|η|< 1
T

F̂(η)dη
∥∥∥
X

∥∥∥
Lq
λ

. T γ1−γ‖F‖FL
γ1
q (X ).

When γ1 = 1
q′
, we get an extra factor log

(
1 + 1

T

)
. When γ1 >

1
q′

and 0 ≤ γ ≤ γ1,

we only get the bound T
1
q′
−γ‖F‖FL

γ1
q (X ).

(3) If in addition F(0) = 0, we are able to improve the estimate (b) of (A.2). This
is an analogue of Proposition 2.7 of [15].
From the argument in (2), we realize that it suffices to improve the second term

on the right hand side of (A.4):
∥∥∥〈λ〉γϕ̂T (λ)

∥∥∥
∫

|η|< 1
T

F̂(η)dη
∥∥∥
X

∥∥∥
Lq
λ

. T γ1−γ‖F‖FL
γ1
q (X ) (A.6)

in the range γ1 >
1
q′
. The point is to exploit the cancellation from the condition

F(0) = 0. By the Fourier inversion formula, we have
∫

R

F̂(η)dη = 0 =

∫

|η|< 1
T

F̂(η)dη +

∫

|η|≥ 1
T

F̂(η)dη. (A.7)

Therefore, the left hand side of (A.6) is equal to
∥∥∥〈λ〉γT ϕ̂(Tλ)

∥∥∥
∫

|η|≥ 1
T

F̂(η)dη
∥∥∥
X

∥∥∥
Lq
λ

.

By Hölder’s inequality and the fact that γ1 >
1
q′
,

∫

|η|≥ 1
T

‖F̂(η)‖Xdη ≤ ‖〈η〉γ1F̂(η)‖Lq
η(X ) · T γ1−

1
q′ ,

hence (using 〈λ〉 ≤ T−1〈Tλ〉 if 0 < T ≤ 1)
∥∥∥〈λ〉γT ϕ̂(Tλ)

∫

|η|≥ 1
T

‖F̂(η)‖Xdη
∥∥∥
Lq
λ

. T γ1−γ‖〈η〉γ1F̂(η)‖Lq
η(X ).

This completes the proof of Proposition A.1. �

Remark A.3. Note that on the right hand side of (A.5), when γ1 >
1
q′
, the function

〈η〉−γ1belongs to Lq′, and we do not gain positive power in T when integrating the

region |η| ≤ 1
T

to compensate the power T
1
q′
−γ

from ‖〈λ〉γϕ̂T (λ)‖Lq
λ
. By applying

vanishing property, finally we are allowed to integrate 〈η〉−γ1 from the region |η| > 1
T
,

and this explains the gain.
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Corollary A.4. Let 1 ≤ p, r ≤ ∞, and 1 ≤ q < ∞, 1
q′
< γ ≤ γ1 < 1. For any

u ∈ Xγ1
p,q,r such that u(t = 0, ·) = 0, we have

‖χT (t)u‖Xs,γ
p,q,r

. T γ1−γ‖u‖Xs,γ1
p,q,r

for all 0 < T < 1.

Proof. It suffices to prove that for u = πnu ∈ En such that u|t=0 = 0, the following
inequality:

‖χT (t)u‖X0,γ
q,r (En)

. T γ1−γ‖u‖
X

0,γ1
q,r (En)

. (A.8)

Note that with vn(t) = eiλ
2
ntu(t), this is equivalent to

‖χT (t)vn(t)‖FLγ
q (Lr(En)) . T γ1−γ‖vn‖FL

γ1
q (Lr(En)),

the consequence of (3) of Proposition A.1. �

A.2. Embedding properties.

Lemma A.5. Let X be a Banach space, 1 < q < ∞ and γ ∈
(
1
q′
, 1
)
. Then for any

F ∈ C∞
c (R;X ), F ∈ Cα(R;X ) with 0 < α ≤ γ − 1

q′
. More precisely,

‖F‖Cα(R;X ) . ‖〈τ〉γF̂(τ)‖FLγ
q (X ),

where the implicit constant is uniform.

Proof. Pick t, t′ ∈ R, 0 < |t − t′| < 1. By the inverse Fourier transform for vector-
valued function f ∈ C∞

c (R;X ),

F(t)− F(t′) =
1

2π

∫

R

F̂(τ)eit
′τ (ei(t−t′)τ − 1)dτ

=
1

2π

(∫

|τ |≤ 1
|t−t′|

+

∫

|τ |> 1
|t−t′|

)
〈τ〉−γ · 〈τ〉γF̂(τ)eit′τ (ei(t−t′)τ − 1)dτ.

For the contribution |τ | > 1
|t−t′|

, by Hölder,

∥∥∥
∫

|τ |> 1
|t−t′|

〈τ〉−γ · 〈τ〉γF̂(τ)eit′τ (ei(t−t′)τ − 1)dτ
∥∥∥
X
≤2‖〈τ〉−γ1|τ ||t−t′|>1‖Lq′

τ
‖〈τ〉γF̂(τ)‖Lq

τX

.|t− t′|γ− 1
q′ ‖〈τ〉γF̂(τ)‖Lq(R;X).

For the contribution |τ | ≤ 1
|t−t′|

, from |ei(t−t′)τ − 1| ≤ |t− t′||τ |, we have

∥∥∥
∫

|τ |≤ 1
|t−t′|

〈τ〉−γ · 〈τ〉γF̂(τ)eit′τ (ei(t−t′)τ − 1)dτ
∥∥∥
X
≤|t− t′|‖〈τ〉1−γ1|τ ||t−t′|≤1‖Lq′

τ
‖〈τ〉γF̂(τ)‖Lq

τX

.|t− t′|γ− 1
q′ ‖〈τ〉γF̂(τ)‖Lq(R;X).

The boundedness of ‖F(t)‖X follows similarly, and we omit the detail. The proof of
Lemma A.5 is complete. �
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Lemma A.6 (Vector-valued inequality: Theorem 4.5.1 of [19]). Let H be a separable
Hilbert space and T : Rd → Rd be a linear operator that is bounded from Lp(Rd) to
Lr(Rd) for some 1 < p, r <∞. Then T can be extended as a bounded linear operator
from Lp(Rd;H) to Lr(Rd;H), denoted by T, such that

‖T(F)‖Lr(Rd;H) ≤ Cp,r‖T‖Lp(R)→Lr(R)‖F‖Lp(Rd;H).

In particular, the Fourier transform extends to the space L2(R;H).

Proof. The proof can be found in the book [19]. Here we provide the proof for the
case r ≥ p (which is enough for our need) by using the probabilistic method. Let
(hj)j∈N be an orthonormal basis of H. Then any F ∈ S(R;H)can be represented as
F =

∑
j≥1 Fjhj , where Fj ∈ S(Rd). It suffices to show that for any finite number

m,

∥∥∥
( m∑

j=1

|TFj|2
) 1

2
∥∥∥
Lr(R)

≤ Cp,r‖T‖Lp→Lr

∥∥∥
( m∑

j=1

|Fj|2
) 1

2
∥∥∥
Lp(R)

(A.9)

Once this inequality is proved, a density argument allows us to conclude. Consider
a sequence of i.i.d. random variables (ǫωj )j∈N, such that

P[ǫωj = +1] = P[ǫωj = −1] =
1

2
.

Consider the random function F ω :=
∑m

j=1 ǫ
ω
j Fj. For each fixed event ω, from the

boundedness of T , we have

‖TF ω‖Lr(Rd) ≤ ‖T‖Lp→Lr‖F ω‖Lp(Rd).

Since r ≥ p, by taking the Lr
ω norm on both sides and using Minkowski, we have

‖TF ω‖Lr(Rd;Lr
ω)

≤ ‖T‖Lp→Lr‖F ω‖Lp(Rd;Lr
ω)
. (A.10)

By the Khintchine inequality, for fixed x ∈ Rd,

∥∥∥
m∑

j=1

ǫωj TFj(x)
∥∥∥
Lr
ω

∼r

( m∑

j=1

|Fj(x)|2
) 1

2
,

∥∥∥
m∑

j=1

ǫωj TFj(x)
∥∥∥
Lr
ω

∼r

( m∑

j=1

|Fj(x)|2
) 1

2
.

Plugging into (A.10), we obtain (A.9). �

Corollary A.7 (Hausdorff-Young). Let H be a Hilbert space and F ∈ Lp′(R;H) for
some p ≥ 2. Then F ∈ FL0

p(H) and

‖F‖FL0
p(H) .p ‖F‖Lp′(R;H).

Proof. First, if F ∈ L1(R;H), by the triangle inequality, we get

‖F̂(τ)‖H ≤
∫

R

‖F(t)‖Hdt = ‖F‖L1(R;H).

If 2 ≤ p <∞, by Hausdorff-Young and Lemma A.6, the Fourier transform F extends
to F ∈ Lp′(R;H), and the desired inequality holds. �
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A.3. Inhomogeneous linear estimates.

Lemma A.8. Let X be a Banach space and F : R → X a Schwartz function such
that

‖F‖FLγ
q (X ) := ‖〈τ〉γF̂(τ)‖Lq(Rτ ;X ) <∞.

Then for any χ ∈ C∞
c (R), χT (t) := χ(T−1t), 0 < T ≤ 1, 1

q′
< γ ≤ 1,

‖χT (t)IF‖FLγ
q (X ) . ‖F‖FLγ−1

q (X ),

where the implicit constant does not depend on T > 0.

Proof. We follow the argument in [18]. Write

χT (t)IF(t) =
χT (t)

2π

∫ t

0

dt′
∫

R

F̂(τ)eit
′τdτ =

χT (t)

2π

∫

R

F̂(τ)
eitτ − 1

iτ
dτ

=
χT (t)

2π

∑

k≥0

tk

k!

∫

T |τ |≤1

(iτ)k−1F̂(τ)dτ

︸ ︷︷ ︸
I

− χT (t)

2π

∫

T |τ |>1

(iτ)−1F̂(τ)dτ

︸ ︷︷ ︸
II

+
χT (t)

2π

∫

T |τ |>1

eitτ (iτ)−1F̂(τ)dτ

︸ ︷︷ ︸
III

.

Since∫

T |τ |≤1

|(iτ)k−1|‖F̂(τ)‖Xdτ ≤T−(k−1)‖F‖FLγ−1
q (X )

(∫

|τ |T≤1

〈τ〉(1−γ)q′dτ
) 1

q′

≤CT−(k−γ+ 1
q′
)‖F‖FLγ−1

q (X ), provided that γ ≤ 1,

and ∫

T |τ |>1

|τ |−1‖F̂(τ)‖Xdτ ≤‖F‖FLγ−1
q (X )

(∫

T |τ |>1

〈τ〉−q′γdτ
) 1

q′

≤CT γ− 1
q′ ‖F‖FLγ−1

q (X ), provided that γ >
1

q′
.

the integrals in I, II are fixed elements of X . Then

‖I‖FLγ
q (X ) ≤C

∑

k≥0

‖χT (t)t
k‖FLγ

q (R)

k!

∥∥∥
∫

T |τ |≤1

(iτ)k−1F̂(τ)dτ
∥∥∥
X

≤C
∑

k≥0

k2T
k−γ+ 1

q′

k!
· T−(k−γ+ 1

q′
)‖F‖FLγ−1

q (X ) ≤ C‖F‖FLγ−1
q (X ),

where we use the fact that

‖χT (t)(t/T )
k‖FLγ

q (R) . T
1
q′
−γ‖χ(t)tk‖FLγ

q (R) . T
1
q′
−γ‖χ(t)tk‖

W 2,q′

t
. k2T

1
q′
−γ
.

and

‖II‖FLγ
q (X ) ≤ C‖χT (t)‖FLγ

q (R)T
γ− 1

q′ ‖F‖FLγ−1
q (X ).



PROBABILISTIC WELL-POSEDENESS FOR NLS ON THE 2d SPHERE I 63

For III, set

JT (t) :=
1

2π

∫

T |τ |>1

F̂(τ)

iτ
eitτdτ,

then by Hölder, we have

‖JT‖FLγ
q (X ) ≤ C‖F‖FLγ−1

q (X ), ‖JT‖FL0
q(X ) ≤ CT γ‖F‖FLγ−1

q (X ).

From 〈η〉γ ≤ C〈η − τ〉γ + C〈τ〉γ for any τ ∈ R, we deduce that

‖III‖FLγ
q (X ) ≤C‖(〈·〉γχ̂T ) ∗ ĴT (η)‖Lq

ηX + C‖χ̂T ∗ (〈·〉γĴT )(η)‖Lq
ηX

≤C‖〈·〉γχ̂T ‖L1‖JT‖FL0
q(X ) + C‖χ̂T‖L1‖JT‖FLγ

q (X )

≤C‖F‖FLγ−1
q (X ).

where to the second inequality, we used Young’s convolution inequality, and

‖〈·〉γχ̂T‖L1 . T−γ.

The proof of Lemma A.8 is now complete. �

Lemma A.9. Let χ ∈ C∞
c (R), 0 < T < 1, 1 < q < ∞, θ ≥ 0, γ ∈

(
1
q′
, 1
)
. Then for

any A(t) ∈ S(R;L(X )), the operator χT (t)
∫ t

0
A(t′)dt′ ∈ L(FLγ

q (X )). Moreover, for
any F(t) ∈ FLγ

q (X ),
∥∥∥χT (t)

( ∫ t

0

A(t′)dt′
)
(F(t))

∥∥∥
FLγ

q (X )
. T

θ−γ+ 1
q′ ‖A‖L(X ,FLγ−1+θ

q (X ))‖F(t)‖FLγ
q (X ).

Remark A.10. The reason for which we make the assumption A(t) ∈ S(R;L(X ))
is to avoid the issue of justifying interchange of orders of integral as well as the time
Fourier transform. This regularity assumption is always satisfied in our application,
as every object is smooth (in time and in space).

Remark A.11. Comparing to Lemma A.8, we have an extra loss T
−γ+ 1

q′ . This is

basically due to the fact that ‖χT (t)F(t)‖FLγ
q (X ) . T

1
q′
−γ‖F(t)‖FLγ

q (X ) since γ >
1
q′
.

Proof. The proof is similar to the proof of Lemma A.8. Without loss of generality, we
assume that F(t) ∈ S(R;X ) so that all manipulation can be justified. The function
A(t′)F(t) is well-defined with its time Fourier transform (with respect to t′ variable)

is Â(τ1)F(t). Moreover, the Fourier transform in t-variable is Â(τ1)F̂(τ).

We write χT (t)
∫ t

0
A(t′)F(t)dt′ as

χT (t)

2π

∫ t

0

dt′
∫

R

Â(τ1)F(t)e
it1τ1dτ1 =

χT (t)

2π

∫

R

eitτ1 − 1

iτ1
Â(τ1)F(t)dτ1

=
χT (t)

2π

∫

T |τ1|≤1

Â(τ1)F(t)

iτ1

∞∑

k=1

(iτ1t)
k

k!
dτ1

︸ ︷︷ ︸
I

− χT (t)

2π

∫

T |τ1|>1

Â(τ1)F(t)
1

iτ1
dτ1

︸ ︷︷ ︸
II

+
χT (t)

2π

∫

T |τ1|>1

Â(τ1)F(t)
eitτ1

iτ1
dτ1

︸ ︷︷ ︸
III

.
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•Estimate for I: Note that∫

T |τ1|≤1

|(iτ1)k−1|‖〈τ〉γÂ(τ1)Ft(χT (t)t
kF)(τ)‖Xdτ1

≤T−k+1‖〈τ〉γ〈τ1〉γ−1+θÂ(τ1)Ft(χT (t)t
kF)(τ)‖Lq

τ1
(X )

(∫

T |τ1|≤1

〈τ1〉(1−γ−θ)q′dτ1

) 1
q′

.T
γ− 1

q′
+θ‖〈τ〉γ〈τ1〉γ−1+θÂ(τ1)Ft(χT (t))(t/T )

kF))(τ)‖Lq
τ1

(X ).

Set Gk(t) = χT (t)(t/T )
kF(t). From Remark A.2 and Proposition A.1,

‖Gk‖FLγ
q (X ) . T

1
q′
−γ‖χ(t)tk‖W 10,1

t
. k10T

1
q′
−γ‖F‖FLγ

q (X ),

where the implicit constant is independent of k. Therefore,

‖I‖FLγ
q (X ) .T

γ− 1
q′
+θ

∞∑

k=1

∥∥‖〈τ〉γ〈τ1〉γ−1+θÂ(τ1)Ĝk(τ)‖X
∥∥
Lq
τ,τ1

k!

=T
γ− 1

q′
+θ

∞∑

k=1

∥∥‖〈τ〉γ〈τ1〉γ−1+θÂ(τ1)Ĝk(τ)‖Lq
τ1

X

∥∥
Lq
τ

k!

≤T γ− 1
q′
+θ

∞∑

k=1

∥∥‖A‖X→FLγ−1+θ
q

‖〈τ〉γĜk(τ)‖X
∥∥
Lq
τ

k!

.T θ‖A‖X→FLγ−1+θ
q

∞∑

k=1

k10‖F‖FLγ
q (X )

k!

.T θ‖A‖X→FLγ−1+θ
q

‖F‖FLγ
q (X ),

as desired.

•Estimate for II:

∫

T |τ1|>1

‖〈τ〉γA(τ1)χ̂TF(τ)‖X
|τ1|

dτ1

≤‖〈τ〉γ〈τ1〉γ−1+θÂ(τ1)χ̂TF(τ)‖Lq
τ1

(X )

(∫

T |τ1|>1

〈τ1〉−q′(γ+θ)dτ1

) 1
q′

.T
γ− 1

q′
+θ‖〈τ〉γ〈τ1〉γ−1+θÂ(τ1)χ̂TF(τ)‖Lq

τ1
(X ),

provided that γ > 1
q′
. The right hand side can be majorized by

T
γ− 1

q′
+θ‖A‖X→FLγ−1+θ

q
‖〈τ〉γχ̂TF(τ)‖X .

Taking the Lq
τ -norm, we obtain the bound

T
γ− 1

q′
+θ‖A‖X→FLγ−1+θ

q
‖χTF‖FLγ

q (X ) . T θ‖A‖X→FLγ−1+θ
q

‖F‖FLγ
q (X ),

where we have used (2) of Proposition A.1.
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•Estimate of III : Finally, for III, we denote by

J(τ) =
1

2π

∫

T |τ1|>1

Â(τ1)χ̂TF(τ − τ1)

iτ1
dτ1

and we need to control ‖〈τ〉γJ(τ)‖Lq
τX . First,

〈τ〉γ‖J(τ)‖X ≤
∫

T |τ1|>1

〈τ〉γ〈τ1〉−1‖Â(τ1)χ̂TF(τ − τ1)‖Xdτ1.

Next, we observe that if T |τ1| > 1 and |τ | . |τ1|, 〈τ〉γ〈τ1〉−1 . T θ〈τ1〉γ−1+θ. If
|τ | ≫ |τ1|, we have |τ | . |τ − τ1|, hence 〈τ〉γ〈τ1〉−1 ∼ T θ〈τ − τ1〉γ〈τ1〉γ−1+θ〈τ1〉−γ.
Thus

〈τ〉γ‖J(τ)‖X .T θ

∫

T |τ1|>1

‖〈τ1〉γ−1+θÂ(τ1)χ̂TF(τ − τ1)‖Xdτ1

+T θ

∫

T |τ1|>1

‖〈τ1〉γ−1+θ〈τ − τ1〉γÂ(τ1)χ̂TF(τ − τ1)‖X · 〈τ1〉−γdτ1.

(A.11)

By changing variables, the first term on the right hand side can be written as

T θ

∫

T |τ−τ1|>1

‖〈τ − τ1〉γ−1+θÂ(τ − τ1)χ̂TF(τ1)‖Xdτ1.

By Minkowski, its Lq
τ -norm can be bounded by

T θ

∫

R

‖〈τ − τ1〉γ−1+θÂ(τ − τ1)χ̂TF(τ1)‖Lq
τXdτ1

=T θ

∫

R

‖〈τ〉γ−1+θÂ(τ)〈τ1〉γχ̂TF(τ1)‖Lq
τX 〈τ1〉−γdτ1

≤T θ‖A‖X→FLγ−1+θ
q (X )‖χTF‖FLγ

q (X )‖〈τ1〉−γ‖
Lq′
τ1

.T
θ+ 1

q′
−γ‖A‖X→FLγ−1+θ

q (X )‖F‖FLγ
q (X ),

where to the last step, we have used Hölder and (2) in Proposition A.1.
Similarly, to control the Lq

τ -norm of the second term on the right hand side of
(A.11), we apply Hölder and Minkowski to get

T θ
∥∥‖〈τ − τ1〉γ−1+θ〈τ1〉γÂ(τ − τ1)χ̂TF(τ1)‖Lq

τ1
X‖〈τ − τ1〉−γ1T |τ−τ1|>1‖Lq′

τ1

∥∥
Lq
τ

.T
θ+γ− 1

q′
∥∥‖〈τ − τ1〉γ−1+θÂ(τ − τ1)〈τ1〉γχ̂TF(τ1)‖Lq

τX

∥∥
Lq
τ1

.T
θ+γ− 1

q′ ‖A‖X→FLγ−1+θ
q (X )‖χTF‖FLγ

q

.T θ‖A‖X→FLγ−1+θ
q (X )‖F‖FLγ

q
,

where we used (2) in Proposition A.1 in the last step. This completes the proof of
Proposition A.9. �
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Appendix B. Some elementary estimates

Lemma B.1. Let A(t) be a operator-valued function that is self-adjoint on a Hilbert
space X for every t ∈ R. Let H(t) be the solution operator of the well-posed Cauchy
problem

i∂tH(t) = A(t)H(t), H(0) = Id.

Then H(t) is unitary.

Proof. Note that H(t) is a linear operator for any t ∈ R. Since H(0) = Id, it suffices
to show that H(t) preserves the norm of the Hilbert-space. the For any f ∈ X ,
consider

d

dt
‖H(t)f‖2X = 2Re(∂tH(t)f,H(t)f)X = 2Im(A(t)H(t)f,H(t)f)X = 0,

since (A(t))∗ = A(t) for all t ∈ R. Therefore, ‖H(t)f‖X = ‖H(0)f‖X = ‖f‖X , for
any f ∈ X . This leads to H(t)H(t)∗ = Id. �

Lemma B.2. Let A(t) be in Lemma B.1. Let 0 < T < 1. Assume that χ ∈ C∞
c (R)

is a bump function that equals to 1 on |t| ≤ 1
2
and vanishes for |t| ≥ 1. For the

unique solutions H†(t),G†(t) of equations

H†(t) = χ(t)Id− iχ
( t

2T

) ∫ t

0

A(t′)H†(t′)dt′,

G†(t) = χ(t)Id + iχ
( t

2T

) ∫ t

0

A(t′)H†(t′)Γ†(t)dt′.

Then for all |t| ≤ T , H†(t) is unitary and Γ†(t) = (H†(t))∗.

Proof. Note that H†(t) solves the equation
{

i∂tH†(t) = χ2T (t)A(t)H†(t) + χ′(t)− i
2T
χ′
(

t
2T

) ∫ t

0
A(t′)H†(t′)dt′,

H†(t) = Id.

We observe that for |t| ≤ T , H†(t) solves the same equation as H(t) with the same
initial data. By uniqueness of the linear equation. By the well-posedness of the
Cauchy problem, we have H†(t) = H(t) for |t| ≤ T . For the G†(t) par, as it solves
the same integral equation

G†(t) = Id + i

∫ t

0

A(t′)H(t′)G†(t)dt′

as (H(t))∗ for |t| ≤ T , by uniqueness, we have G(t)† = (H(t)∗). �
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