
HAL Id: hal-04778356
https://hal.science/hal-04778356v1

Preprint submitted on 12 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lower bounds on fibered Yang-Mills functionals: generic
nefness and semistability of direct images

Siarhei Finski

To cite this version:
Siarhei Finski. Lower bounds on fibered Yang-Mills functionals: generic nefness and semistability of
direct images. 2024. �hal-04778356�

https://hal.science/hal-04778356v1
https://hal.archives-ouvertes.fr


ar
X

iv
:2

40
2.

08
59

8v
2 

 [
m

at
h.

D
G

] 
 2

0 
Fe

b 
20

24

Lower bounds on fibered Yang-Mills functionals:

generic nefness and semistability of direct images

Siarhei Finski

Abstract. The main goal of this paper is to generalize a part of the relationship between mean

curvature and Harder-Narasimhan filtrations of holomorphic vector bundles to arbitrary polarized

fibrations. More precisely, for a polarized family of complex projective manifolds, we establish

lower bounds on a fibered version of Yang-Mills functionals in terms of the Harder-Narasimhan

slopes of direct image sheaves associated with high tensor powers of the polarization. We discuss

the optimality of these lower bounds and, as an application, provide an analytic characterisation of

a fibered version of generic nefness. As another application, we refine the existent obstructions for

finding metrics with constant horizontal mean curvature. The study of the semiclassical limit of

Hermitian Yang-Mills functionals lies at the heart of our approach.
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1 Introduction

Consider a holomorphic submersion π : X → B between compact complex manifolds X and B
of dimensions n +m and m respectively, n,m ∈ N. Let L be a holomorphic line bundle over X ,

which is relatively ample with respect to π. We fix a Gauduchon Hermitian form ωB on B, i.e. a

positive (1, 1)-form, such that ∂∂ωm−1
B = 0, see [37]. The main goal of this paper is to study the

relationship between the so-called horizontal mean curvature of the fibration, which is a certain

differential-geometric invariant of the family defined using ωB , and Harder-Narasimhan ωB-slopes

of direct images Ek := R0π∗L
k, which are algebraic invariants.

More precisely, consider a Hermitian metric hL on L, which is positive along the fibers of π.

We denote by ω(hL) :=
√
−1
2π

RL the first Chern form of (L, hL), where RL is the curvature of the

Chern connection. When hL is clear from the context, we omit it from the above notation.

As ω is positive along the fibers, it provides a (smooth) decomposition of the tangent space

TX of X into the vertical component T VX , corresponding to the tangent space of the fibers,

and the horizontal component THX , corresponding to the orthogonal complement of T VX with

respect to ω. The form ω then decomposes as ω = ωV + ωH , ωV ∈ C ∞(X,∧1,1T V ∗X), ωH ∈
C ∞(X,∧1,1TH∗X). Upon the natural identification of THX with π∗TB, we may view ωH as an

element from C ∞(X,∧1,1π∗T ∗B). The triple (π, ω, THX) then defines a Kähler family in the

sense of [6, Definition 1.4]. We define the horizontal mean curvature, ∧ωB
ωH(h

L) ∈ C ∞(X), as

∧ωB
ωH(h

L) :=
ωH(h

L) ∧ ωm−1
B

ωm
B

. (1.1)
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We say that hL is fibered Einstein if ∧ωB
ωH(h

L) is a constant. By decomposition into horizontal

and vertical components, it is easy to see that this condition is equivalent to

ω(hL)n+1 ∧ π∗ωm−1
B = c · ω(hL)n ∧ π∗ωm

B , (1.2)

where c is a constant. By integrating (1.2), we see that the constant c is independent of hL, since

ωB is Gauduchon, see Section 4 for details. Remark the similarity of (1.2) with the J-equation if

m = 1, and with optimal symplectic connection equation of Dervan-Sektnan, see [26, Proposition

2.7], if the fibers are Fano. For families of manifolds given by projectivizations of vector bundles,

the condition (1.2) was introduced by Kobayashi [46], who called such metrics Finsler-Einstein

metrics; then Feng-Liu-Wan [33] generalized it for general Kähler submersions, and called such

metrics geodesic Einstein metrics. If instead of a closed manifold B, one considers manifolds with

boundary, the equation (1.2) was studied extensively in the past: if B is a 1-dimensional annuli and

c = 0, this is a geodesic equation in Mabuchi space [57], see Semmes [67] or Donaldson [30], if

B is a bounded smooth strongly pseudoconvex domain in Cn, c = 0 and ωB is the standard Kähler

form, (1.2) was called Wess-Zumino-Witten equation in [30] due to its connection with [73].

Remark that in the important case when X := P(E∗) for some holomorphic vector bundle E
over B, L := O(1), and hL is induced by a Hermitian metric hE on E, (L, hL) is fibered Einstein

if and only if (E, hE) is Hermite-Einstein, cf. Remark 3.4 for details.

The first main observation of this paper is that the correspondence between fibered Einstein

and Hermite Einstein equations is much tighter. Indeed, as we shall see, relying on the work of

Ma-Zhang [55], [56], cf. Theorem 2.2, the fibered Einstein equation for L is mutatis mutandis the

semi-classical limit (i.e. k → ∞) of the Hermite-Einstein equation for Ek := R0π∗L
k. Let us now

explain the first manifestation of this correspondence.

Recall that a slope (or ωB-slope) of a coherent sheaf E over B is defined as µ(E ) :=
deg(E )/rk(E ), where the degree, deg(E ), is given by deg(E ) :=

∫

B
[c1(det E )] · [ωm−1

B ]; here

and after the intersection product is for Bott-Chern and Aeppli cohomology classes, ωm−1
B repre-

sents an Aeppli cohomology class since ωB is Gauduchon, see Section 4 for details, and det E
is the Knudsen-Mumford determinant of E , see [45]. A torsion-free coherent sheaf E is called

semistable or ωB-semistable if for every coherent subsheaf F of E , verifying rk(F) > 0, we have

µ(F) ≤ µ(E ). When dimB = 1, these notions clearly do not depend on ωB.

Theorem 1.1. Assume that L admits an approximate fibered Einstein metric, i.e. there is c ∈ R,

such that for any ǫ > 0, there is a relatively positive metric hL
ǫ on L, verifying the following bound

∣

∣ ∧ωB
ωH(h

L
ǫ )− c

∣

∣ < ǫ. (1.3)

Then the vector bundles Ek := R0π∗L
k are asymptotically semistable, i.e. for any quotient sheaves

Qk of Ek, rk(Qk) > 0, and any ǫ > 0 for k big enough, we have µ(Qk) ≥ (1− ǫ) · µ(Ek).

Remark 1.2. It is likely that there is an even closer relationship between fibered Einstein metrics

on L and Hermite Einstein metrics on Ek, paralleling the known correspondence between constant

scalar curvature and balanced metrics, see Donaldson [31].

When Theorem 1.1 is applied to π : P(E∗) → B for some vector bundle E over B, and

L := O(1), due to a precise relation between the slopes of SymkE = R0π∗L
k, k ∈ N, and

E, see [17, §3.2], we recover the well-known fact, cf. [47, Theorem 6.10.13], that if E admits

approximate Hermite-Einstein metrics, then E is semistable.
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The asymptotic semistability condition from Theorem 1.1 seems rather difficult to verify at first

sight. We will now discuss some numerical obstructions for it. More precisely, for an irreducible

complex analytic subspace Y ⊂ X of dimension k +m, k ≥ 0, such that the restriction of π to Y ,

π|Y : Y → B, is a surjection, we define the ωB-slope, µ(Y ), as

µ(Y ) =
1

k + 1
·
∫

Y
[c1(L)

k+1] · [ωm−1
B ]

∫

Y
[c1(L)k] · [ωm

B ]
. (1.4)

By Serre vanishing theorem, for k ∈ N∗ big enough, the sheaf Qk := R0π|Y,∗L|kY can be realized

as a quotient of Ek through the restriction map, see proof of Proposition 4.7 for details. By the

asymptotic version of Riemann-Roch-Grothendieck theorem, see Theorem 4.1, which we establish

in our singular setting, we can calculate the asymptotics of the slopes of Qk and Ek, as k → ∞.

By comparing the asymptotics of these slopes, we obtain in Section 4 the following result.

Theorem 1.3. If the vector bundles Ek are asymptotically semistable, then X is numerically

semistable, i.e. for any Y as above, we have µ(Y ) ≥ µ(X). Moreover, if dimB = 1, then

asymptotic semistability of Ek is equivalent to numerical semistability of X .

Remark 1.4. A combination of Theorems 1.1 and 1.3 shows that existence of approximate fibered

Einstein metrics on L implies µ(Y ) ≥ µ(X) for Y above. Feng-Liu-Wan [33, Theorem 2.2], cf.

also Wan-Wang [72], established this by different means under an assumption, requiring among

others that the projection of the singular locus of Y to B has codimension at least 2.

As we explain later, Theorem 1.1 is a direct consequence of a more refined result concerning

lower bounds on fibered Yang-Mills functionals. More precisely, for any relatively positive metric

hL on L and any c ∈ R, p ∈ [1,+∞[, we define the fibered Yang-Mills functional as

FYMp,c(π, h
L) :=

∫

X

∣

∣ ∧ωB
ωH(x)− c

∣

∣

p
ωn ∧ π∗ωm

B (x),

FYM+∞,c(π, h
L) := sup

x∈X

∣

∣ ∧ωB
ωH(x)− c

∣

∣.
(1.5)

We will now show that asymptotic Harder-Narasimhan slopes of Ek, as k → ∞, yield lower

bounds for this functionals. To readers familiar with Hermitian Yang-Mills theory, see Atiyah-

Bott [2, Proposition 8.20], Donaldson [28, Proposition 5] and Daskalopoulos-Wentworth [20, §2.3,

2.4], this will sound very natural. Indeed, again from the work of Ma-Zhang [55], [56], one can

view the horizontal mean curvature of L as the semi-classical limit (i.e. k → ∞) of the mean

curvature of Ek. From this, we establish the lower bounds on the fibered Yang-Mills functionals

through the limits of the lower bounds on the Hermitian Yang-Mills functionals of Ek.

To explain this in details, recall first that any torsion-free coherent sheaf E on (B, [ωB]) admits

a unique filtration by subsheaves Ei, i = 1, . . . , s, also called Harder-Narasimhan filtration:

E = Es ⊃ Es−1 ⊃ · · · ⊃ E1 ⊃ E0 = {0}, (1.6)

such that for any 1 ≤ i ≤ s − 1, the quotient sheaf Ei/Ei−1 is the maximal semistable (torsion-

free coherent) subsheaf of E /Ei−1, i.e. for any subsheaf of F of a (torsion-free coherent) sheaf

E /Ei−1, we have µ(F) ≤ µ(Ei/Ei−1) and rk(F) ≤ rk(Ei/Ei−1) if µ(F) = µ(Ei/Ei−1). For

the proof of this result in the setting of Gauduchon form ωB, see either Bruasse [14] or Greb-

Kebekus-Peternell [38, Corollary 2.27]. We define the Harder-Narasimhan slopes, µ1, . . . , µrk(E )
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of E , so that µ(Ei/Ei−1) appears among µ1, . . . , µrk(E ) exactly rk(Ei/Ei−1) times, and the sequence

µ1, . . . , µrk(E ) is non-increasing. We let µmin := µrk(E ), µmax := µ1.

We denote Nk := rk(Ek), and let µk
1, . . . , µ

k
Nk

be the Harder-Narasimhan slopes of Ek, and

µk
min, µ

k
max be the minimal and the maximal slopes. Define the probability measure ηHN

k on R as

ηHN
k :=

1

Nk

Nk
∑

i=1

δ
[µk

i

k

]

, (1.7)

where δ[x] is the Dirac mass at x ∈ R. Our lower bounds for the fibered Yang-Mills functionals

will build upon the following result.

Theorem 1.5. The sequence of measures ηHN
k converges weakly, as k → ∞, to a probability

measure ηHN on R, and the limits below exist and relate with ηHN as follows

ηHN
min := lim

k→∞

µk
min

k
≤ ess inf ηHN , ηHN

max := lim
k→∞

µk
max

k
= ess sup ηHN . (1.8)

Remark 1.6. The proof of Theorem 1.5 follows the arguments from Chen [16] and [36, Theorem

1.1], establishing Theorem 1.5 in the projective setting for flat maps π : X → B, for dimB = 1
and dimB ≥ 1 respectively. The only difference is that due to the lack of algebraicity, the proofs

from [16] and [36] of the linear upper bound on µk
max in k ∈ N∗, crucial for Theorem 1.5, do not

work. Here this bound is obtained by a differential-geometric argument, see Proposition 2.3.

We are finally ready to state our lower bounds for the fibered Yang-Mills functionals.

Theorem 1.7. For any c ∈ R, p ∈ [1,+∞[, and any relatively positive metric hL on L, we have

FYMp,c(π, h
L) ≥

∫

R

∣

∣x− c
∣

∣

p
dηHN(x) ·

∫

X

[ωn] · π∗[ωm
B ],

FYM+∞,c(π, h
L) ≥ max

{

|ηHN
min − c|, |ηHN

max − c|
}

.

(1.9)

Remark 1.8. a) Clearly, the second bound is equivalent to the following one

inf
x∈X

∧ωB
ωH(x) ≤ ηHN

min , sup
x∈X

∧ωB
ωH(x) ≥ ηHN

max, (1.10)

which clarifies that Theorem 1.7 refines Theorem 1.1, see Proposition 4.5 for details.

b) We stress out that while the left hand-side of (1.9) depends on hL, the right-hand side doesn’t.

Remark that similar lower bounds in the context of constant scalar curvature metrics were

obtained by Donaldson [32] for Calabi functional. Here, as in [32], we expect the bounds from

Theorem 1.7 to be tight. In other words, it seems likely that the following conjecture holds.

Conjecture. In the notations of Theorem 1.7, for any p ∈ [1,+∞[, c ∈ R, we have

inf
hL

FYMp,c(π, h
L) =

∫

R

∣

∣x− c
∣

∣

p
dηHN(x) ·

∫

X

[ωn] · π∗[ωm
B ],

inf
hL

FYM+∞,c(π, h
L) = max

{

|ηHN
min − c|, |ηHN

max − c|
}

,
(1.11)
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where the infimum is taken among all relatively positive metrics hL on L.

Remark that if the above Conjecture holds, it will provide a geometric interpretation of ηHN ,

as Radon measures of compact support on R are determined by their shifted absolute moments.

Also, by Proposition 4.5, it will imply the inverse implication to Theorem 1.1.

For π : P(E∗) → B, L = O(1), where E is some holomorphic vector bundle over a complex

compact manifold B, one can show that Conjecture holds by the existence of the approximate

critical hermitian structures on vector bundles, cf. Daskalopoulos-Wentworth [20, Definition 3.9],

and the calculation of the asymptotic slopes of SymkE = R0π∗L
k, due to Chen [17, Theorem 1.2].

By (1.10), the following result is another partial justification of the Conjecture.

Theorem 1.9. The following identity holds suphL infx∈X ∧ωB
ωH(x) = ηHN

min , where the supremum

is taken among all relatively positive metrics hL on L.

We assume now that B (and, hence, X) is projective. Recall that a line bundle L on X is

called nef if for any irreducible curve C in X ,
∫

C
c1(L) ≥ 0. It is well-known that this condition is

equivalent to the existence of metrics with an arbitrary small negative part of the curvature, see [22,

Proposition 4.2] for a precise statement. One of the fundamental concerns in complex geometry

is the study of variations of this statement, giving a “dictionary” between algebraic and analytic

definitions of various positivity conditions. As examples, we have the numerical characterization

of the Kähler cone due to Demailly-Păun [25], the characterization of pseudoeffectivity in terms of

pairing with movable curves due to Boucksom-Demailly-Păun-Peternell [13], or Andreotti-Grauert

theorem [1] and its partial converses, cf. Demailly [23] or Yang [77]. Further down this line, let’s

explain an application of Theorem 1.9 towards generic fibered nefness.

We fix a very ample integral multipolarization [ωB,1], . . . , [ωB,m−1] on B, which is a collection

of very ample classes from H1,1(X,C) ∩ H2(X,Z). We say that a Q-line bundle L on X is

([ωB,1], . . . , [ωB,m−1])-generically fibered nef with respect to π if there is l0 ∈ N∗, such that for

any regular curve C = C(l) ⊂ B, l = (l1, . . . , lm−1) ∈ N∗(m−1), li ≥ l0, i = 1, . . . , m − 1,

given by a complete intersection of generic divisors from classes l1[ωB,1], . . . , lm−1[ωB,m−1], the

restriction of c1(L) to π−1(C) is nef. When π is the projectivization of a vector bundle, equivalent

definition was given by Miyaoka [59], see also Peternell [60]. The general case was introduced

in [36]. We say L is stably ([ωB,1], . . . , [ωB,m−1])-generically fibered nef with respect to π if for

some (or any) ample line bundle L0 on X , for any ǫ > 0, ǫ ∈ Q, the Q-line bundle L ⊗ Lǫ
0 is

([ωB,1], . . . , [ωB,m−1])-generically fibered nef with respect to π. Recall that L is called relatively

nef with respect to π if its restriction to every fiber is nef. As we explain in Section 3, from the

previously obtained algebraic description of ηHN
min from [36, Corollary 1.4], Theorem 1.9 can be

used to prove the following result.

Theorem 1.10. Consider a holomorphic submersion π : X → B between projective manifolds

B,X . A relatively nef line bundle L on X is stably ([ωB,1], . . . , [ωB,m−1])-generically fibered nef

if and only if for any (or some) Kähler forms ωB,1, . . . , ωB,m−1 on B in [ωB,1], . . . , [ωB,m−1], and

any (or some) Kähler form ωX on X , for any ǫ > 0, there is a Hermitian metric hL
ǫ on L, such that

ω(hL
ǫ ) ∧ π∗ωB,1 ∧ · · · ∧ π∗ωB,m−1 ≥ −ǫ · ωm

X , (1.12)

where by this we mean that the volume forms obtained by the restriction to every m-dimensional

complex hyperplane of each side of (1.12) compares as required in (1.12), cf. [24, (III.1.6)].



Lower bounds on fibered Yang-Mills functionals 6

Remark 1.11. Curiously, even though the forms ωB,1, . . . , ωB,m−1 are Kähler, if these forms are

different, then in the proof of Theorem 1.10, we need to apply Theorem 1.9 for a non-Kähler

Gauduchon form ωB, constructed from ωB,1, . . . , ωB,m−1. This was our main motivation to write

this article in the current generality. However, Theorem 1.10 is new even if the forms are equal.

In conclusion, it seems for us that a proof of the Conjecture should rely either on the tech-

niques of geometric flows or continuity method as in Donaldson [28] and Uhlenbeck-Yau [71].

In this vein, the recent apriori bounds on for Monge-Ampère and Hessian equations established

by Guo-Phong-Tong [40] and Guo-Phong-Tong-Wang [41] will likely play an important role. We

also mention that due to the appearance of the numerical obstructions from Theorem 1.3 and the

resemblance of our equation with J-equation, it is very likely that the recent result of Chen [15]

and Datar-Pingali [21] on numerical criterion for solutions of J-equation will be useful as well.

Remark that for Hermitian Yang-Mills functional, the analogous conjecture holds due to results

of Atiyah-Bott [2], Daskalopoulos-Wentworth [20], Sibley [68], Jacob [44] and Li-Zhang-Zhang

[49], cf. Theorem 3.5 for a precise statement. Recall also that Sjöström Dyrefelt established

optimal lower bounds for Donaldson’s J-functional in [69]. This should be related with the above

Conjecture, as in the context of constant scalar curvature metrics, it is known that finding metrics

with approximately constant scalar curvature is related with lower bounds on Mabuchi K-energy,

see Bando [3] or Phong-Song-Sturm-Weinkove [62]. Finally, we mention recent works of Xia [75],

Hisamoto [43] and Dervan-Székelyhidi [27], cf. also Collins-Hisamoto-Takahashi [19], proving

versions of the above Conjecture in the context of constant scalar curvature metrics.

In a different direction, when B is a bounded smooth strongly pseudoconvex domain in Cn,

c = 0 and ωB is the standard Kähler form on B ⊂ Cn, Donaldson [29] and Coifman-Semmes [18]

established that Dirichlet problem associated with the Hermite-Einstein equation has solutions

for any vector bundle over B (in particular for Ek, k ∈ N). Wu in [74] showed that Dirichlet

problem associated with (1.2) has always weak solutions, and these solutions can be obtained as the

semiclassical limit of the solutions of the Hermite-Einstein equations on Ek, cf. also [63], [65], [70]

for earlier results in this direction. In other words, a phenomenon similar to Theorem 1.7 is present:

there is a relation between Hermite-Einstein equation and Wess-Zumino-Witten equation. The

major difference between these developments and our paper is that in our boundaryless setting,

neither Hermite-Einstein equations nor fibered Einstein equations have solutions in general, and

the methods of [29], [18], [74] do not apply.

This article will be organized as follows. In Section 2, we will establish Theorems 1.5 and 1.7.

We discuss how horizontal curvature behaves with respect to a restriction to a subfamily in Section

3, and using this, we establish Theorems 1.9, 1.10. Finally, in Section 4, we establish a numerical

obstruction for asymptotic semistability of direct images from Theorem 1.3.

Acknowledgement. I had a privilege to discuss the results of this paper with Sébastien Bouck-

som, Paul Gauduchon, Duong H. Phong, Lars M. Sektnan, Jacob Sturm and Richard A. Wentworth,

whom I thank for their interest. I acknowledge the support of CNRS and École Polytechnique. A

part of this paper was written in the Fall of 2023 during a visit in Columbia University. I would

like to thank the mathematical department of Columbia University, especially Duong H. Phong,

for their hospitality and Alliance Program for their support.

2 Fibered Yang-Mills functionals through the semiclassical limit

The main goal of this section is to prove Theorems 1.5 and 1.7. The theory of Toeplitz operators

and Hermitian Yang-Mills theory, which we recall below, will be particularly useful for that.
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We begin by recalling some facts about Toeplitz operators. Let Y be a complex projective

manifold of dimension n with an ample line bundle L. We fix a positive Hermitian metric hL on L.

We denote by ω its first Chern form, c1(L, h
L). For smooth sections f, f ′ of Lk, k ∈ N, over Y , we

define the L2-scalar product using the pointwise scalar product 〈·, ·〉hL induced by hL as follows

〈f, f ′〉L2(Y ) :=

∫

Y

〈f(x), f ′(x)〉hL · ωn(x). (2.1)

Recall that the Bergman projector Bk is given by the orthogonal projection (with respect to the

scalar product (2.1)) from the space of L2-sections of Lk to H0(Y, Lk). For any bounded function

f on Y , we then define the Toeplitz operator, Tk(f) : H
0(Y, Lk) → H0(Y, Lk), as follows

Tk(f)(s) = Bk(f · s), s ∈ H0(Y, Lk). (2.2)

Proposition 2.1. For any bounded function f : Y → R, the following inequalities hold

inf f · IdH0(Y,Lk) ≤ Tk(f) ≤ sup f · IdH0(Y,Lk), (2.3)

where by A ≤ B we mean that the difference B−A is positive definite. Moreover, if f is smooth,

then for any continuous function φ : R → R, we have

lim
k→∞

Tr
[

φ(Tk(f))
]

dimH0(Y, Lk)
=

∫

x∈Y φ(f(x))ωn(x)
∫

Y
[ωn]

,

lim
k→∞

∥

∥φ(Tk(f))
∥

∥ = max
{

| supφ(f)|, | inf φ(f)|
}

,

(2.4)

where ‖ · ‖ is the operators norm.

Proof. The statement (2.3) follows from the trivial fact that if f is a positive function, then the op-

erator Tk(f) is positive-definite. The statement (2.4) is a restatement of the weak convergence of

spectral measures of Toeplitz operators due to Boutet de Monvel-Guillemin [48, Theorem 13.13].

For an alternative proof through Bergman kernel expansion, see Ma-Marinescu [50, Theorem

7.4.1], Barron-Ma-Marinescu-Pinsonnault [4, Theorem 3.8] or [34, Appendix A]. See also Ma-

Marinescu [52], [53], [54], [51] for generalizations and more refined results.

Now, the reason why Toeplitz operators are relevant to this paper is because they appear as

the principal term in the asymptotic expansion of the curvature of L2-metrics on direct images of

a polarized fibrations. More precisely, consider a proper holomorphic submersion π : X → B
between complex manifolds X and B of dimensions n + m and m respectively, n,m ∈ N. Let

L be a holomorphic line bundle over X , which is relatively ample with respect to π. Endow L
with a relatively positive Hermitian metric hL. Let k ∈ N be big enough so that Ek := R0π∗L

k is

locally free. The L2-product (2.1) then defines a smooth Hermitian metric hEk on Ek. We denote

by REk ∈ C ∞(B,∧2T ∗B ⊗ End(Ek)) the curvature of its Chern connection.

Theorem 2.2 ( Ma-Zhang [56, Theorem 0.4] ). There are C > 0, k0 ∈ N, such that for any k ≥ k0,

∥

∥

∥

√
−1

2π
REk − k · Tk(ωH)

∥

∥

∥
≤ C, (2.5)

where ‖ · ‖ is the operator norm, and we naturally extended the definition of Toeplitz operators

from functions to bounded sections of π∗ ∧2 T ∗B.
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As we shall explain below, Theorem 2.2 is the crucial ingredient connecting fibered Yang-

Mills functionals with Hermitian Yang-Mills functionals. But before this, let us mention another

application of Theorem 2.2 to the study of Harder-Narasimhan slopes of direct images.

We fix now a Gauduchon Hermitian form ωB on B. As before Theorem 1.5, we denote by

µk
max the maximal Harder-Narasimhan ωB-slope of Ek.

Proposition 2.3. There is C > 0, such that µk
max ≤ Ck for any k ∈ N∗.

Proof. For p = 1, . . . , rk(Ek), we denote by R∧pEk the curvature of the Chern connection on

∧pEk, induced by the metric h∧pEk induced by hEk . By Theorem 2.2, we conclude that there is

C > 0, such that for any k ∈ N∗, we have

√
−1

2π
∧ωB

R∧pEk ≤ Cpk · Id∧pEk
. (2.6)

Let L be a line subbundle of ∧pEk. We denote by hL the Hermitian metric on L, induced by

the metric hEk . By (2.6) and the well-known principle that curvature decreases in holomorphic

sub-bundles, cf. [24, (V.14.6)], we deduce

∧ωB
c1(L, h

L) ≤ Cpk. (2.7)

However, it is classical, cf. [47, Proofs of Lemma 5.7.16 and Theorem 5.8.3], that we have

µk
max ≤ max

p=1,...,rk(Ek)
sup

L⊂∧pEk

1

p

∫

B

c1(L, h
L) ∧ ωm−1

B , (2.8)

where the second supremum is taken over line subbundles L. We conclude by (2.7) and (2.8).

Proof of Theorem 1.5. Taking into account the linear bound from Proposition 2.3, the proof of

Theorem 1.5 is the same as in Chen [16] and [36, Theorem 1.1]. Let us briefly recall the main steps

for completeness. We introduce the (non-increasing) filtrations Fk(λ), λ ∈ R, of Ek by coherent

(torsion-free) subsheaves (defined over B), so that Fk(λ) is the maximal subsheaf of Ek such that

all of its Harder-Narasimhan slopes are bigger than λ. The filtration Fk is just a “renaming” of the

Harder-Narasimhan filtration of Ek. Now, for any b ∈ B, we denote by Fb the filtration induced

by Fk(λ) on R(Xb, Lb) = ⊕∞
k=0H

0(Xb, L
k
b ) of the fiber Xb = π−1(b), Lb = L|Xb

, b ∈ B. It was

established in [16] for dimB = 1 and in [36, Proposition 2.5] for any projective B, that for generic

b ∈ B, the above filtration is submultiplicative, i.e. for any t, s ∈ R, k, l ∈ N, we have

F t
bH

0(Xb, L
k
b ) · F s

bH
0(Xb, L

l
b) ⊂ F t+s

b H0(Xb, L
k+l
b ). (2.9)

Remark, however, that the projectivity assumption was never used in [36, Proposition 2.5], and so

submultiplicativity holds for general complex manifolds B. Theorem 1.5 is then a formal conse-

quence of the submultiplicativity and Proposition 2.3, saying that the above filtration is bounded in

the terminology of [12]. For the (different) proofs of this last result, see [16, Théorème 3.4.3], [12,

Theorem A] and [35, Theorem 1.9].

Let us now recall some crucial facts from Hermitian Yang-Mills theory, following the pi-

oneering work of Atiyah-Bott [2] and later developments by Donaldson [28], Daskalopoulos-

Wentworth [20] and others. We fix a compact complex manifold B of dimension m with a Gaudu-

chon Hermitian form ωB on B. Let E be a holomorphic vector bundle of rank r over B. For a
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Hermitian metric hE on E, we denote by RE its curvature. For any p ∈ [1,+∞[, c ∈ R, we define

the Hermitian Yang-Mills functional as

HYMp,c(E, hE) :=

∫

B

Tr
∣

∣

∣

√
−1

2π
∧ωB

RE
x − c · IdE

∣

∣

∣

p

ωm
B (x),

HYM+∞,c(E, hE) := sup
x∈X

∥

∥

∥

√
−1

2π
∧ωB

RE
x − c · IdE

∥

∥

∥
,

(2.10)

where ‖ · ‖ means the operator norm.

As in (1.7), we denote the Harder-Narasimhan ωB-slopes of E by µ1, . . . , µr. Let µmin := µr,

µmax := µ1, be the minimal and the maximal slopes. We define the probability measure

µE :=
1

r

r
∑

i=1

δ[µi]. (2.11)

The following result lies at the heart of this paper.

Theorem 2.4. For any c ∈ R, p ∈ [1,+∞[, and any Hermitian metric hE on E, we have

HYMp,c(E, hE) ≥ r ·
∫

R

|x− c|pdµE(x) ·
∫

B

[ωm
B ],

HYM+∞,c(E, hE) ≥ max
{

|µmin − c|, |µmax − c|
}

.

(2.12)

For the proof of Theorem 2.4, remark first that for p = +∞, it follows directly from Theorem

2.4 for p ∈ [1,+∞[ by taking p-th root and then a limit p → +∞. For the proof of Theorem 2.4 for

p ∈ [1,+∞[, see Atiyah-Bott [2, Proposition 8.20] if dimB = 1, Daskalopoulos-Wentworth [20,

Lemma 2.17, Corollary 2.22, Proposition 2.25] if B is Kähler of any dimension (even though the

article [20] is written for surfaces, cf. Sibley [68, §3.2]), and Li-Zhang-Zhang [49, Theorem 1.6

and Corollary 4.4] for the non-Kähler case of any dimension. It is a remarkable that the bounds

from Theorem 2.4 are actually tight, see Theorem 3.5 for a precise statement.

Proof of Theorem 1.7. Conserving the notations introduced in (1.7), define the probability mea-

sure, ηHN
k,0 , k ∈ N, on R as

ηHN
k,0 :=

1

Nk

Nk
∑

i=1

δ
[

µk
i

]

, (2.13)

We apply Theorem 2.4 for (Ek, h
Ek), for any c ∈ R, p ∈ [1,+∞[, k ∈ N, to get

HYMp,ck(Ek, h
Ek) ≥ Nk ·

∫

R

|x− ck|pdηHN
k,0 (x) ·

∫

B

[ωm
B ],

HYM+∞,ck(Ek, h
Ek) ≥ max

{

|µk
min − ck|, |µk

max − ck|
}

.

(2.14)

Directly from Theorem 2.2 and Proposition 2.1, for any p ∈ [1,+∞[, c ∈ R, we have

lim
k→∞

HYMp,ck(Ek, h
Ek)

kp ·Nk

=
FYMp,c(π, h

L)
∫

Xb
[ωn]

,

lim
k→∞

HYM+∞,ck(Ek, h
Ek)

k
= FYM+∞,c(π, h

L),

(2.15)
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where b ∈ B is an arbitrary point, and Xb is the fiber of π at b.
We now divide both sides of the first inequality of (2.14) by kp ·Nk, take the limit k → ∞, and

apply Theorem 1.5 and (2.15) to deduce

FYMp,c(π, h
L) ≥

∫

R

∣

∣x− c
∣

∣

p
dηHN(x) ·

∫

Xb

[ωn] ·
∫

B

[ωm
B ]. (2.16)

This establishes Theorem 1.7 for p ∈ [1,+∞[, as
∫

Xb
[ωn] ·

∫

B
[ωm

B ] =
∫

X
[ωn] · π∗[ωm

B ]. To get

Theorem 1.7 for p = +∞, we divide both sides of the second inequality of (2.14) by k, take limit

k → ∞, and apply Theorem 1.5 and (2.15).

3 Horizontal curvature on subfamilies and generic fibered nefness

The main goal of this section is to establish Theorems 1.9, 1.10. For this, we construct a sequence

of metrics on the polarizing line bundle from a sequence of Hermitian metrics on direct images.

To show that horizontal mean curvature behaves well under this procedure, we rely on a fibered

analogue of the principle that “a curvature of a vector bundle increases under taking quotients”.

More precisely, consider a holomorphic submersion π : X → B between compact complex

manifolds X and B. We denote m := dimB. Consider an embedding ι : Y →֒ X of a smooth

complex manifold Y , such that restriction of π, π|Y : Y → B, is a submersion. We fix a (1, 1)-
form ωX on X , which is positive along the fibers of π, and denote ωY := ι∗ωX . We fix a Hermitian

(1, 1)-form ωB on B, and denote by ∧ωB
ωY,H ∈ C ∞(Y ), ∧ωB

ωX,H ∈ C ∞(X), the horizontal

mean curvatures of ωY and ωX respectively.

Lemma 3.1. For any y ∈ Y , we have ∧ωB
ωY,H(y) ≥ ∧ωB

ωX,H(ι(y)).

Remark 3.2. An equivalent result was established in [33, (2.2)] by a slightly different method.

Proof. Let us fix y ∈ Y , and denote by b := π|Y (y), x := ι(y), and by e1, . . . , em an orthonor-

mal basis of T 1,0
b B with respect to ωB. We denote by eX1 , . . . , e

X
m ∈ T 1,0

x X the horizontal lifts of

e1, . . . , em, defined with respect to ωX , i.e. dπ(eXi ) = ei, i = 1, . . . , m and eX1 , . . . , e
X
m are orthog-

onal (with respect to ωX ) to the tangent space of the fibers, T VX , of π. Similarly, we denote by

eY1 , . . . , e
Y
m ∈ T 1,0

y Y the horizontal lifts of e1, . . . , em, defined with respect to ωY . Clearly, using

implicitly the embedding of TyY in TxX through ι, we can write eYi = eXi + vi, where vi ∈ T V
x X .

But then, since eXi and vi are orthogonal with respect to ωX , and ωX is positive in the vertical direc-

tions, we obtain
√
−1ωY (e

Y
i , e

Y
i ) =

√
−1ωX(e

X
i , e

X
i ) +

√
−1ωX(vi, vi) ≥

√
−1ωX(e

X
i , e

X
i ). By

taking a sum of the above inequality over all i = 1, . . . , m, we establish the needed inequality.

Another ingredient we need is the calculation of the horizontal mean curvature for projectiviza-

tions of vector bundles. More precisely, let (F, hF ) be a Hermitian vector bundle over B of rank r.

Let O(1) be the hyperplane bundle over P(F ∗), π : P(F ∗) → X . We endow O(1) with the metric

hO(1) induced by hF . We denote by RF the curvature of the Chern connection on (F, hF ), by ω the

first Chern class of (O(1), hO(1)), and by ωH its horizontal component.

Lemma 3.3. In the above notations, for any x ∈ X , we have

inf
y∈P(F ∗

x )
∧ωB

ωH(y) = inf
f∈Fx,‖f‖hF =1

〈

√
−1

2π
∧ωB

RFf, f
〉

hF
. (3.1)
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Proof. We fix some local coordinates z := (z1, . . . , zn) on B, centered at x ∈ B, and a local

normal frame f1, . . . , fr of F at x, defined in a neighborhood U of x. By a normal frame we mean

the one satisfying 〈fi, fj〉hF = δij −
∑

λµ dλµijzλzµ+O(|z|3) for some constants dλµij . We denote

by f ∗
1 , . . . , f

∗
r the dual frame of F ∗. The above data defines a trivialization of U ×P(Cr) → P(F ∗)

near π−1(x) as follows. For a := (a1, . . . , ar), where ai ∈ C, 1 ≤ i ≤ r, and not all ai are equal

to zero, the trivialization is given by the map (z, [a]) → [
∑r

i=1 aif
∗
i (z)] ∈ P(F ∗). Now we take

a1 = 1 and denote bi := ai, 2 ≤ i ≤ r, b := (bi). Then (z, b) gives a chart for P(F ∗). The

well-known formula, cf. [24, Formula (V.15.15)], shows that at the point (x, [f ∗
1 ]) ∈ P(F ∗), the

curvature, RO(1), of the hyperplane bundle (O(1), hO(1)), can be expressed as follows

R
O(1)
(x,[f∗

1
]) =

∑

2≤j≤r

dbj ∧ dbj + 〈RFf1, f1〉hF . (3.2)

In particular, we see that the vertical part of the form ω = c1(O(1), hO(1)) is the Fubini-Study

form induced by hF , and the horizontal part of ω, ωH , evaluated at (x, [f ∗
1 ]) ∈ P(E∗), coincides

with
√
−1
2π

〈RFf1, f1〉hF . The result follows directly from this.

Remark 3.4. From the proof of the above lemma, we see that ∧ωB
ωH is constant if and only if

∧ωB
RF is the identity endomorphism up to a constant, which means that ω is fibered Einstein if

and only if (F, hF ) is Hermite Einstein.

Finally, the last ingredient we need is about the optimality of the bounds on the Hermitian

Yang-Mills functional from Theorem 2.4.

Theorem 3.5. In the notations Theorem 2.4, for any c ∈ R, p ∈ [1,+∞[, we have

inf
hE

HYMp,c(E, hE) = r ·
∫

R

|x− c|pdµE(x) ·
∫

B

[ωm
B ],

inf
hE

HYM+∞,c(E, hE) = max
{

|µmin − c|, |µmax − c|
}

.
(3.3)

where the infimum is taken over all Hermitian metrics hE on E.

For the proof of Theorem 3.5 for p ∈ [1,+∞[, see [2, Proposition 8.20] if dimB = 1. For

higher dimensions, this is a direct consequence of the existence of Lp-approximate critical her-

mitian structure on E, see [20, Definition 3.9] for the definition, and [20, Theorem 3.11] and

Sibley [68, Theorem 1.3] for the proofs if B is Kähler of dimension 2 and any dimension respec-

tively. See also Jacob [44, Theorems 2, 3] for an alternative proof in the Kähler setting. In the

non-Kähler setting and for p = +∞, the result was established in [49, Theorems 1.2, 1.7].

In what follows, we will only need the following result, which is a direct consequence of

Theorem 3.5 for p = +∞.

Corollary 3.6 ( [49, Theorem 1.3] ). For any ǫ > 0, there is a Hermitian metric hE
ǫ on E, such that

the associated curvature, RE
ǫ , for any b ∈ B, e ∈ Eb, verifies

√
−1
2π

∧ωB
RE

ǫ ≥ (µmin − ǫ) · IdE .

Proof of Theorem 1.9. First of all, for a given ǫ > 0, let k ∈ N be such that
µk
min

k
> ηHN

min − ǫ
2
. Using

Corollary 3.6, we construct a metric hǫ
k on Ek such that for the associated curvature, REk

ǫ , we have

√
−1

2π
∧ωB

REk
ǫ ≥

(

µk
min −

ǫ

2

)

· IdEk
. (3.4)
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We denote by ωk the (1, 1)-form on P(E∗
k), given by the first Chern class of the curvature of the

hyperplane line bundle induced by the metric hǫ
k. We denote by ωH,k the horizontal part of this

curvature. From Lemma 3.3, the choice of k ∈ N and (3.4), we deduce

inf
x∈P(E∗

k
)
∧ωB

ωH,k(x) ≥ k · (ηHN
min − ǫ). (3.5)

We will now assume that k was chosen big enough so that Lk is relatively ample. Consider now

the Kodaira embedding ιk : X →֒ P(E∗
k). It is well-known that there is a canonical isomorphism

between ι∗kO(1) and Lk. We denote by hL
ǫ the metric induced on L by the pull-back; then ω(hL

ǫ ) =
1
k
ι∗kωH,k. By Lemma 3.1 and (3.5), we conclude that infx∈X ∧ωB

ωH(h
L
ǫ ) ≥ ηHN

min − ǫ. Since ǫ > 0
can be taken arbitrarily small, we deduce suphL infx∈X ∧ωB

ωH(h
L) ≥ ηHN

min . In combination with

the upper bound from (1.10), this finishes the proof.

Now, let us establish Theorem 1.10. As in the statement of Theorem 1.10, we fix any Kähler

forms ωB,1, . . . , ωB,m−1, ωX . Then the form ωB,1 ∧ · · · ∧ ωB,m−1 is positive in the sense of [24,

(III.1.1)]. By Michelsohn [58, (4.8)], there is a Hermitian form ωB on B, verifying

ωm−1
B = ωB,1 ∧ · · · ∧ ωB,m−1. (3.6)

Remark that ωB is automatically Gauduchon, but not necessarily Kähler. Since the form ωB is

Gauduchon, it makes sense to define the ωB-degree and study the Harder-Narasimhan ωB-slopes,

as we did before Theorem 1.1. Remark that due to a relation (3.6), this ωB-degree coincides with

the degree associated with a multipolarization ([ωB,1], . . . , [ωB,m−1]), as defined in [36, before

(1.1)]. Below, the invariant ηHN
min and other quantities are calculated with respect to ωB. The

following result, alongside with Theorem 1.9, lie at the core of the proof of Theorem 1.10.

Proposition 3.7 ( [36, Proposition 5.2]). A relatively ample line bundle L over X is stably

([ωB,1], . . . , [ωB,m−1])-generically fibered nef with respect to π if and only if ηHN
min ≥ 0.

Proof of Theorem 1.10. Let us first establish Theorem 1.10 under an additional assumption that L
is relatively ample. We assume first that L is stably ([ωB,1], . . . , [ωB,m−1])-generically fibered nef

with respect to π. By Theorem 1.9 and Proposition 3.7, we establish that for any ǫ > 0, there is a

relatively positive Hermitian metric hL
ǫ on L, such that ∧ωB

ωH(h
L
ǫ ) > −ǫ. From the definition of

∧ωB
and the trivial fact that there is C > 0, such that ωm

B < Cωm
X , we establish

ωH(h
L
ǫ ) ∧ π∗ωB,1 ∧ · · · ∧ π∗ωB,m−1 ≥ −Cǫ · ωm

X . (3.7)

But the form ω(hL
ǫ ) is relatively positive, so (3.7) implies (1.12) for ǫ := Cǫ, which finishes the

proof of one direction of Theorem 1.10 under an additional assumption that L is relatively ample.

To prove the opposite direction under the same additional assumption that L is relatively ample,

assume that we have a sequence of metrics hL
ǫ , verifying (1.12). We will now show that one can

cook up a sequence of relatively positive metrics, hL
ǫ,0, verifying similar bounds. Indeed, let us fix

an arbitrary relatively positive metric hL
0 on L. By (1.12), it is easy to see that there is c > 0, such

that for any ǫ > 0, over the fibers, the following inequality is satisfied c1(L, h
L
ǫ ) ≥ −ǫc · c1(L, hL

0 ).
Then an easy calculation shows that the sequence of metrics hL

ǫ,0 := (hL
ǫ )

1−2cǫ · (hL
0 )

2cǫ is positive

along the fibers and verifies the inequality (1.12) with Cǫ in place of ǫ, for some C > 0. Then as

in (3.7), there is C > 0, such that for any ǫ > 0, we have ∧ωB
ωH(h

L
ǫ,0) > −Cǫ. By Theorem 1.9,
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we then conclude that ηHN
min ≥ 0, which implies that L is stably ([ωB,1], . . . , [ωB,m−1])-generically

fibered nef by Proposition 3.7.

We now only assume that L is relatively nef. We assume first that L is stably

([ωB,1], . . . , [ωB,m−1])-generically fibered nef with respect to π. Now, for any δ ∈ Q, δ > 0,

consider the Q-line bundle Lδ := L ⊗ Lδ
0, where L0 is some ample line bundle on X . Clearly,

Lδ is relatively ample, and it is also stably ([ωB,1], . . . , [ωB,m−1])-generically fibered nef with

respect to π. The already established relatively ample case of Theorem 1.10 says that Lδ is

([ωB,1], . . . , [ωB,m−1])-generically fibered nef if and only if for any ǫ > 0, there is a Hermitian

metric hLδ
ǫ on Lδ, such that the analogue of (1.12) holds. Let hL

0 be now an arbitrary positive met-

ric on L0. It is easy to see that if δ and ǫ are sufficiently small, then the metric hL
ǫ on L, which is

constructed as the only metric verifying hLδ
ǫ = hL

ǫ · (hL
0 )

δ, will satisfy the analogue of (1.12) (for

Cǫ instead of ǫ for some C > 0). This shows one direction of Theorem 1.10.

Inversely, if for any ǫ > 0 there is a metric hL
ǫ as in (1.12), then the metrics hLδ

ǫ , defined by

the above formula, will also satisfy a similar inequality. Hence, by the already established case

of Theorem 1.10, Lδ is then stably ([ωB,1], . . . , [ωB,m−1])-generically fibered nef for any δ ∈ Q,

δ > 0. In particular, for any δ ∈ Q, δ > 0, the line bundle L2δ = Lδ ⊗Lδ
0 is ([ωB,1], . . . , [ωB,m−1])-

generically fibered nef for any δ ∈ Q, δ > 0, which means that L is stably ([ωB,1], . . . , [ωB,m−1])-
generically fibered nef, as L2δ = L⊗ L2δ

0 . This finishes the proof.

4 Asymptotic Riemann-Roch-Grothendieck and semistability

The main goal of this section is to prove a numerical obstruction for asymptotic semistability of

direct images from Theorem 1.3. This will be based on an asymptotic version of Riemann-Roch-

Grothendieck theorem, which we establish here in the singular setting.

To begin, let us recall some basic facts about Bott-Chern and Aeppli cohomologies. Let Y be

a compact complex manifold of dimension n. We denote by Ω(p,q)(Y ) the vector space of (p, q)-
differential forms on Y , p, q ∈ N, and define ∂ : Ω(p,q)(Y ) → Ω(p+1,q)(Y ), ∂ : Ω(p,q)(Y ) →
Ω(p,q+1)(Y ), as usual. Recall that Bott-Chern cohomology, Hp,q

BC(Y ), is defined as

Hp,q
BC(Y ) :=

(ker ∂ : Ω(p,q)(Y ) → Ω(p+1,q)(Y )) ∩ (ker ∂ : Ω(p,q)(Y ) → Ω(p,q+1)(Y ))

im∂∂ : Ω(p−1,q−1)(Y ) → Ω(p,q)(Y )
. (4.1)

Recall that Aeppli cohomology, Hp,q
A (Y ), is defined as

Hp,q
A (Y ) :=

ker ∂∂ : Ω(p,q)(Y ) → Ω(p+1,q+1)(Y )

(im∂ : Ω(p−1,q)(Y ) → Ω(p,q)(Y )) + (im∂ : Ω(p,q−1)(Y ) → Ω(p,q)(Y ))
. (4.2)

It is standard that for compact Kähler manifolds, the two cohomologies coincide. For p, q =
0, . . . , n, we have the natural (non-degenerate, see [66, §2.c]) pairing

∧ : Hp,q
BC(Y )×Hn−p,n−q

A (Y ) → C, (4.3)

given by the wedge product and integration. If p : Y → B is a holomorphic map between compact

complex manifolds, then for s := dimY − dimB, we have a natural map p∗ : Hp,q
BC(Y ) →

Hp−s,q−s
BC (B), defined by the pairing (4.3) and the pull-back p∗.

The Bott-Chern cohomology can be generally defined for arbitrary complex analytic spaces Y
in the sense of [24, Definition II.5.2], where one considers differential forms on Y obtained by
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pullbacks of smooth differential forms through local embeddings of the space into complex vector

spaces. Due to a theorem of Lelong, cf. [24, Theorem III.2.7], the intersection pairing (4.3) can still

be defined in this setting, and so the slope (1.4) is well-defined. Also, using the non-degeneracy of

the wedge product (4.3) for compact manifolds, we can extend the definition of the pushforward

for maps between a compact complex analytic spaces Y and a compact manifold B.

Now, let E be a holomorphic vector bundle over Y . Using Chern-Weil theory, one can construct

for any Hermitian metric hE on E a corresponding Chern character form, ch(E, hE), which is a

d-closed form in ⊕+∞
p=0Ω

(p,p)(Y ). Bott-Chern in [11] showed that the resulting class in Bott-Chern

cohomology doesn’t depend on the choice of the metric. This gives a definition of the Chern

character, ch(E) of a vector bundle E with values in Bott-Chern cohomology.

Following earlier work by Qiang [64], Bismut-Shu-Wei in [7] generalized the definition of

the Chern character with values in Bott-Chern cohomology for any coherent sheaf E on Y . If E
has a has a finite locally free projective resolution (which is always the case if Y is projective),

this construction corresponds to the one given by the alternating sum of Chern characters of the

resolution. By [7, §8.6], the (k, k)-component of the Chern character, chk(E ), we have

ch0(E ) = rk(E ), ch1(E ) = c1(det E ), (4.4)

where det E is the Knudsen-Mumford determinant [45]. Without entering into details of the con-

struction, we mention that the absence of finite locally free projective resolutions of coherent

sheaves for general complex manifolds is circumvented in [7] by the use of so-called antiholo-

morphic superconnections, introduced by Block [8], see [7, Theorem 6.7].

Now, recall that for any proper holomorphic map p : Y → B, and any coherent sheaf E ,

Grauert theorem tells that the direct image sheaves Rqp∗E , q ∈ N, are coherent. The main result

of this section goes as follows.

Theorem 4.1. Let Y be an irreducible compact complex analytic space, L an arbitrary line bundle

on Y and E a coherent sheaf on Y . Let p : Y → B be a holomorphic map to a compact complex

manifold B. Then for any r ∈ N, and s := dimY − dimB + r, in the Bott-Chern cohomology

lim
k→∞

1

ks

dimY
∑

t=0

(−1)tchr(R
tp∗(E ⊗ Lk)) =

rk(E )

s!
· p∗(c1(L)s). (4.5)

Remark 4.2. Despite a huge amount of literature, we were not able to find the proof of this result

under the stated hypothesizes (even for projective Y,B). For flat maps p and relatively ample

L, this result can be alternatively established using Knudsen-Mumford expansions, see [45] and

Phong-Ross-Sturm [61, Theorem 3]. Note, however, that flatness doesn’t pass through subfamilies,

and there is no flatness assumption in Theorem 1.3.

The proof of this result relies on the recent result of Bismut-Shu-Wei [7] establishing the

Riemann-Roch-Grothendieck theorem in Bott-Chern cohomology for arbitrary holomorphic maps

between (smooth!) complex manifolds, relying on the Hypoelliptic Laplacian of Bismut [5], and

generalizing previous results as [10]. More precisely, the main result of [7] says the following.

Theorem 4.3. Let p : Y → B be a holomorphic map between compact complex manifolds. Then

for any coherent sheaf E on Y , the following identity holds in Bott-Chern cohomology

Td(TB) ·
dimY
∑

t=0

(−1)tch(Rtp∗(E )) = p∗(Td(TY ) · ch(E )), (4.6)
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where Td(TB), Td(TY ) are the Todd classes.

Proof of Theorem 4.1. Remark first that for smooth manifolds Y , the result follows directly from

Theorem 4.3 by (4.4) and the fact that the 0-degree part of the Todd class is identity. If dimY = 0,

then Y is automatically smooth, and, hence, Theorem 4.1 holds as stated.

We will argue by induction on the dimension of Y . For this, we consider a resolution of

singularities f : Ŷ → Y of Y . For any q = 1, . . . , dimY , we define the sheaves Qq on Y as

Qq := Rqf∗f
∗E , where f ∗E := f−1E ⊗f−1OY

OŶ . We define the sheaf Q0 on Y by the following

short exact sequence

0 → E → R0f∗f
∗E → Q0 → 0. (4.7)

By Grauert theorem, the sheaves Qq, q = 0, . . . , dimY , are coherent. Since the resolution of

singularities is biholomorphic away from a subset of singular points of Y , and over the locally free

locus of E , by projection formula, cf. [42, Exercise II.5.1d)], we have R0f∗f
∗E = E , the supports

of the sheafs Qq, q = 0, . . . , dimY , are proper analytic subsets of Y , which, by irreducibility of

Y , have strictly smaller dimension than Y , cf. [24, Proposition II.4.2.6]. By this and the usual de-

vissage techniques, see [39, Théorème 3.1.2], cf. [42, Proposition I.7.4], for any q = 0, . . . , dimY ,

there is r(q) ∈ N, and complex analytic subspaces ιi,q : Zi,q →֒ Y , with some ideal sheaves Ji,q

on Zi,q and a filtration Fi,q of Qq, i = 0, . . . , r(q), F0,q = {0}, Fr(q),q = Qq, Fi−1,q ⊂ Fi,q,

i = 1, . . . , rq, such that for any i = 1, . . . , r(q), we have Fi,q/Fi−1,q = ιi,q,∗(Ji,q). We denote

pi,q := p ◦ ιi,q, i = 1, . . . , r(q), p̂ := p ◦ f . We argue that for any k ∈ N, we have

dimY
∑

t=0

(−1)tch(Rtp∗(E ⊗ Lk)) =

dimY
∑

t=0

(−1)tch(Rtp̂∗(f
∗E ⊗ f ∗Lk))

−
dimY
∑

t,u=0

(−1)t+u

r(q)
∑

i=1

ch(Rt(pi,u)∗(Ji,u ⊗ ι∗i,uL
k)). (4.8)

Once (4.8) is established, Theorem 4.1 would follow by induction, as the space Ŷ is smooth, and

so for the first summand on the right-hand side of (4.8), the smooth version of Theorem 4.1 applies,

and the second summand doesn’t contribute to the asymptotics by induction hypothesis, as all Zi,q

have strictly smaller dimensions than Y .

Now, let us establish (4.8). First of all, since in derived category, there is a canonical isomor-

phism between the functors Rp̂∗ and Rp∗Rf∗, [9, Proposition I.9.15], cf. [7, (3.13)], and the con-

struction of Chern character, defined using derived category of coherent sheaves, factors through

the K-theory of the derived category of coherent sheaves [7, Theorem 8.11 and §8.9], we have

dimY
∑

t=0

(−1)tch(Rtp̂∗(f
∗E ⊗ f ∗Lk)) =

dimY
∑

t,u=0

(−1)t+uch(Rtp∗(R
uf∗(f

∗E ⊗ f ∗Lk)). (4.9)

Now, from the exact sequence (4.7), using again the fact that the construction of the Chern character

passes through the formation of K-theory, we obtain

dimY
∑

t=0

(−1)tch(Rtp∗(R
0f∗(f

∗E ⊗ f ∗Lk))
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=

dimY
∑

t=0

(−1)tch(Rtp∗(E ⊗ Lk)) +

dimY
∑

t=0

(−1)tch(Rtp∗(Q0 ⊗ Lk)). (4.10)

Similarly, for any q = 0, . . . , dimY , we obtain

dimY
∑

t=0

(−1)tch(Rtp∗(Qq ⊗ Lk)) =

dimY
∑

t=0

(−1)t
r(q)
∑

i=0

ch(Rtp∗(ιi,q,∗(Ji,q)⊗ Lk)). (4.11)

Remark, however, that since ιi,q is a closed embedding, ιi,q,∗ is an exact functor, so we have

Rvιi,q,∗ = 0 for v = 1, . . . , dimY , and R0ιi,q,∗ = ιi,q,∗. Moreover, by the projection formula,

cf. [42, Exercise II.5.1d)], we have R0ιi,q,∗(Ji,q)⊗Lk = R0ιi,q,∗(Ji,q ⊗ ι∗i,qL
k). In particular, for

any t, q = 0, . . . , dimY , i = 1, . . . , r(q), we can write

ch(Rtp∗(ιi,q,∗(Ji,q)⊗ Lk)) =

dimY
∑

v=0

(−1)vch(Rtp∗(R
vιi,q,∗(Ji,q ⊗ ι∗i,qL

k))). (4.12)

But using the same argument as in (4.9), we have

dimY
∑

t,v=0

(−1)t+vch(Rtp∗(R
vιi,q,∗(Ji,q ⊗ ι∗i,qL

k))) =
dimY
∑

t=0

(−1)tch(Rt(pi,q)∗(Ji,q ⊗ ι∗i,qL
k)). (4.13)

Now, a combination of (4.9), (4.10), (4.11), (4.12) and (4.13), gives us (4.8).

Now, let us finally establish an application of Theorem 4.1 towards the study of Harder-

Narasimhan slopes of direct images. We fix an irreducible compact complex analytic space Y
of dimension k +m, k ≥ 0, with a surjective holomorphic map π : Y → B. Let ωB be a Gaudu-

chon Hermitian form on B. Let L be a relatively ample line bundle on Y . Recall that in (1.4), we

defined the slope of Y , and before Theorem 1.1, we defined the slopes of coherent sheafs.

Lemma 4.4. The following identity holds µ(Y ) ·
∫

B
[ωm

B ] = limk→∞ µ(R0π∗L
k)/k.

Proof. By Serre vanishing theorem, the higher direct images Rvπ∗L
k, v ≥ 1, vanish. By (4.4), we

conclude that

µ(R0π∗L
k) =

∫

Y
[ch1(R

0π∗L
k)] · [ωm−1

B ]

ch0(R0π∗Lk)
. (4.14)

The result now follows directly from Theorem 4.1.

Proposition 4.5. The vector bundles Ek are asymptotically semistable if and only if ηHN
min = ηHN

max.

Moreover, if Ek are asymptotically semistable, then for any subsheaves Fk of Ek, rk(Fk) > 0, and

any ǫ > 0, for k big enough, we have µ(Fk) ≤ (1 + ǫ) · µ(Ek).

Proof. Remark first that the maximal and the minimal slopes satisfy

µk
max = sup

{

µ(Fk) : Fk is a subsheaf of Ek

}

,

µk
min = inf

{

µ(Qk) : Qk is a quotient sheaf of Ek

}

.
(4.15)
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Now, by Theorem 1.5, as k → ∞, we have

lim
k→∞

µ(Ek)

k
=

∫

R

xdηHN(x). (4.16)

From (4.15) and (4.16), we see that Ek are asymptotically semistable if and only if ηHN
min =

ess sup ηHN . However, by Theorem 1.5, ess sup ηHN coincides with ηHN
max, which finishes the proof

of the first part of the theorem. The proof of the second statement of Proposition 4.5 follows

directly by (4.15) and the first part.

Remark 4.6. From [36, Proposition 5.1], cf. also [76], we know that if dimB = 1, then ess inf ηHN

coincides with ηHN
min . The above proof shows that for dimB = 1, the condition on the quotient

sheaves is equivalent to asymptotic semistability.

Proposition 4.7. For any complex analytic subspace Y of X as in Theorem 1.3, the following

bound holds µ(Y ) ·
∫

B
[ωm

B ] ≥ ηHN
min .

Proof. Consider the following short exact sequence of sheaves associated with Y

0 → JY → OX → ι∗OY → 0, (4.17)

where JY is the ideal sheaf of Y , consisting of local holomorphic functions on X , vanishing

along Y , and OY is the structure sheaf of Y associated with the reduced scheme structure of Y , i.e.

defined by (4.17). By considering a long exact sequence of direct images associated with (4.17)

and the map π, and using Serre vanishing theorem, we conclude that the restriction map R0π∗L
k →

R0π|Y,∗L|kY is surjective. Then, in the notations of Theorem 1.5, we have µk
min ≤ µ(R0π|Y,∗L|kY ).

We deduce Proposition 4.7 from Lemma 4.4 by diving by k and passing to the limit k → ∞.

Proof of Theorem 1.3. First of all, by Lemma 4.4, we conclude that

lim
k→∞

µ(Ek)/k = µ(X) ·
∫

B

[ωm
B ] ≥ ηHN

min . (4.18)

Moreover, since ess sup ηHN coincides with ηHN
max by [36, Theorem 1.1], by (4.16), we conclude that

the equality in the above inequality holds if and only if ηHN
min = ηHN

max, i.e. when Ek is asymptotically

semistable by Proposition 4.5. In particular, if Ek is asymptotically semistable, then by ηHN
min =

ηHN
max, Proposition 4.7 and (4.18), we establish the first part of Theorem 1.3.

Let us now establish the second part. By a reformulation of the result of Xu-Zhuang [76,

Lemma 2.26 and Proposition 2.28] from [36, (1.5)], we have

ηHN
min = inf

C⊂X
µ(C) ·

∫

B

[ωm
B ], (4.19)

where C runs over all irreducible curves in X , with project surjectively to B. In particular, from

(4.19), we conclude that

ηHN
min ≥ inf

Y⊂X
µ(Y ) ·

∫

B

[ωm
B ], (4.20)

where Y are as in Theorem 1.3. A combination of (4.18) and (4.20) shows that if infY⊂X µ(Y ) =
µ(X), then both (4.18) and (4.20) are actually equalities. By the remark after (4.18), this implies

that Ek is asymptotically semistable, which finishes the proof.
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Remark 4.8. It is interesting to know if the second part of Theorem 1.3 continues to hold for

dimB > 1. There are several potential pitfalls for that. First, since B is not necessarily projective,

there might be very few analytic subspaces Y ⊂ X , projecting surjectively to B. Second, even for

projective B, the main result of [36, Theorem 1.4] implies that the analogue of the bound (4.19)

becomes tight if one considers among Y all subcurves in X projecting to generic curves over the

base. But it seems that there is much more curves like that than analytic subspaces projecting

surjectively to the base.
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