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On Harder-Narasimhan slopes of direct images

Siarhei Finski

Abstract. For a polarized family of complex projective manifolds, we study the asymptotic dis-

tribution of Harder-Narasimhan slopes of direct image sheaves associated with high tensor powers

of the polarization. We establish a theorem of Mehta-Ramanathan type, showing that this asymp-

totic distribution can be recovered from the analogous asymptotic distributions associated with

base changes of the family over generic curves.
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1 Introduction

Consider a surjective flat holomorphic map π : X → B between complex projective manifolds X
and B of dimensions n +m and m respectively, n,m ∈ N. Let L be a holomorphic line bundle

over X , which is relatively ample with respect to π. We fix a multipolarization [ωB], which is a

collection of Kähler classes [ωB,i] ∈ H1,1(B), i = 1, . . . , m− 1. The goal of this paper is to study

the Harder-Narasimhan [ωB]-slopes of direct image sheaves Ek := R0π∗L
k of Lk for big k ∈ N.

More precisely, recall that a slope (or [ωB]-slope) of a coherent sheaf E over B is defined

as µ(E ) := deg(E )/rk(E ), where the degree, deg(E ), is given by deg(E ) :=
∫

B
c1(det(E )) ·

[ωB,1] · · · [ωB,m−1], where det E is Knudsen-Mumford determinant of E , see [29]. A torsion-free

coherent sheaf E is called semistable (or [ωB]-semistable) if for every coherent subsheaf F of

E , verifying rk(F) > 0, we have µ(F) ≤ µ(E ). When the multipolarization is symmetric, i.e.

[ωB,1] = · · · = [ωB,m−1], we recover the usual notion of slopes and semistability, as in [30].

Recall that any torsion-free coherent sheaf E on (B, [ωB]) admits a unique filtration by sub-

sheaves Ei, i = 1, . . . , s, also called Harder-Narasimhan filtration:

E = Es ⊃ Es−1 ⊃ · · · ⊃ E1 ⊃ E0 = {0}, (1.1)

such that for any 1 ≤ i ≤ s − 1, the quotient sheaf Ei/Ei−1 is the maximal semistable (torsion-

free) subsheaf of E /Ei−1, i.e. for any subsheaf of F of a (torsion-free) sheaf E /Ei−1, we have

µ(F) ≤ µ(Ei/Ei−1) and rk(F) ≤ rk(Ei/Ei−1) if µ(F) = µ(Ei/Ei−1). For the proof, see [28,

Theorem 1.6.7] for symmetric multipolarization and [21, Corollary 2.27] for the general case.

We define the Harder-Narasimhan slopes, µ1, . . . , µrk(E ) of E , so that µ(Ei/Ei−1) appears

among µ1, . . . , µrk(E ) exactly rk(Ei/Ei−1) times, and the sequence µ1, . . . , µrk(E ) is non-increasing.

We call µmin := µrk(E ) and µmax := µ1, the minimal and the maximal slopes respectively.

By the flatness of π, for k ∈ N big enough (which we assume implicitly from now on), the

coherent sheaves Ek are locally free, cf. [24, Theorem III.9.9]. We denote Nk := rk(Ek), and
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let µk
1, . . . , µ

k
Nk

be the Harder-Narasimhan slopes of Ek. Let µk
min, µ

k
max be the minimal and the

maximal slopes. We define the probability measure ηHN
k on R as follows

ηHN
k :=

1

Nk

Nk
∑

i=1

δ
[µk

i

k

]

, (1.2)

where δ[x] is the Dirac mass at x ∈ R. In Section 2, we establish the following result, serving as a

starting point of the current work.

Theorem 1.1. The sequence of measures ηHN
k converges weakly, as k → ∞, to a probability

measure ηHN on R, which is absolutely continuous with respect to the Lebesgue measure, except

perhaps for a point mass at ess sup ηHN . Also, the limits below exist and relate with ηHN as follows

ηHN
min := lim

k→∞

µk
min

k
≤ ess inf ηHN , ηHN

max := lim
k→∞

µk
max

k
= ess sup ηHN . (1.3)

When dimB = 1, the convergence part of Theorem 1.1 was established by Chen [7]. For

this, he verified that Harder-Narasimhan filtrations of Ek are submultiplicative, see (2.3), and µk
max

grows at most linearly in k. Theorem 1.1 then follows from the general theory of bounded sub-

multiplicative filtrations developed by Chen [7] and Boucksom-Chen [4], cf. Theorem 2.2. Our

contribution in Theorem 1.1 consists in extending the results of Chen for dimB > 1.

When the base of the family is a curve, the measure ηHN is easier to study for various reasons:

the subsheaves in the Harder-Narasimhan filtration become locally free, there is a very precise

relation between the slope and the number of holomorphic sections, cf. [8, Lemma 2.1], and the

notion of slope doesn’t depend on the choice of multipolarization.

The main goal of this article is to show that ηHN , ηHN
min , ηHN

max can be recovered from the analo-

gous quantities associated with base changes of our family over generic curves in B.

For this, we need to assume that the multipolarization [ωB] is integral and very ample, i.e.

[ωB,i] ∈ H2(X,Z) and very ample for any i = 1, . . . , m − 1. Consider a regular curve C =
C(l) ⊂ B given by Bertini theorem as an intersection of m − 1 generic divisors in the classes

li[ωB,i], i = 1, . . . , m − 1, where l ∈ N∗(m−1), l = (l1, . . . , lm−1). It is well-known, cf. Corollary

3.8, that for such generic curves C, the Harder-Narasimhan slopes of Ek|C do not depend on the

choice ofC (for a fixed parameter l ∈ N∗(m−1)). In particular, the sequence of probability measures

η
HN |C
k,l , defined for Ek|C analogously to ηHN

k , and their weak limits, as k → ∞, which we denote

by η
HN |C
l , as well as the limiting minimal and maximal slopes, cf. (1.3), which we denote by

η
HN |C
min,l , η

HN |C
max,l , are well-defined and exist by Theorem 1.1.

For a ∈ R∗, we introduce the homothety map Ha : R → R, x 7→ x/a.

Theorem 1.2. The measures H
l1···lm−1

∗ (η
HN |C
l ) converge weakly to ηHN , as l = (l1, . . . , lm−1) →

∞ (i.e. li → ∞, i = 1, . . . , m− 1). Moreover,

lim
l→∞

η
HN |C
min,l

l1 · · · lm−1
= ηHN

min , lim
l→∞

η
HN |C
max,l

l1 · · · lm−1
= ηHN

max. (1.4)

Remark 1.3. For the rationale behind the normalization by l1 · · · lm−1, see (2.8).
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As an application of Theorem 1.2 and a result from Xu-Zhuang [48], we give an algebraic

interpretation of ηHN
min and ηHN

max. More precisely, we say that α ∈ H1,1(X) is [ωB]-generically

fibered nef (resp. psef) with respect to π if there is l0 ∈ N∗, such that for any regular curve

C = C(l) ⊂ B, l = (l1, . . . , lm−1), li ≥ l0, defined as before Theorem 1.2, the restriction of

α to π−1(C) is nef (resp. psef), i.e. for any irreducible curve C ′ in π−1(C), the pairing
∫

C′
α

is non negative (resp. the restriction of α to π−1(C) contains a positive current). For families

given by projectivization of vector bundles, equivalent definition was given by Miyaoka [37], see

also Peternell [38]. In analogy with the definition of the nef (resp. psef) threshold, for a class

α ∈ H1,1(X), we then define the [ωB]-generic nef (resp. psef) threshold with respect to π as the

supremum over all T ∈ R, such that α − T (π∗[ωB,0]/
∫

B
[ωB,0] · · · [ωB,m−1]) is [ωB]-generically

fibered nef (resp. psef) with respect to π for some Kähler class [ωB,0] ∈ H1,1(B,C) (it is easy

to see that the definition is independent on the choice of [ωB,0], and for relatively ample α, this

supremum is finite).

Corollary 1.4. When the multipolarization [ωB] is integral, the quantity ηHN
min (resp. ηHN

max) equals

to [ωB]-generic nef (resp. psef) threshold of c1(L) with respect to π.

As we shall explain in Section 5, if dimB = 1, from the characterization of the pseudoeffective

cone [5] and [48], we can get the following numerical formulas

ηHN
min = inf

C∈Cirr

∫

C
c1(L)

deg(π|C)
, ηHN

max = inf
C∈Cmov

∫

C
c1(L)

deg(π|C)
, (1.5)

where Cirr is the set of irreducible curves C ⊂ X , such that π|C is surjective, Cmov ⊂ Cirr is the

subset of movable curves, i.e. curves which can be put in a family, which coverX , and deg(π|C) is

the topological degree of π|C . By Corollary 1.4, similar formulas can be established if dimB > 1.

To prove Theorem 1.2, we use a theorem of Mehta-Ramanathan [36], showing that semista-

bility behaves well under restriction over generic curves of sufficiently big degrees. Using this

theorem, in (4.8), we show that the coupling of ηHN with an arbitrary test function on R can be

calculated as a double limit, where the first limit is taken in l (corresponding to the degree of the

generic curve, C) and the second limit is in k (corresponding to the index of the direct image

sheaves, Ek). The main content of Theorem 1.2 is that we can interchange the order of these lim-

its. Philosophically, even though we do not literally pursue this direction, this means that there is a

certain weak uniformity in the degree of the generic curve required in Mehta-Ramanathan theorem

for the vector bundles Ek for all parameters k ∈ N. In order to show that we can change the order

of limits, we rely on the techniques of Shatz [44], to describe how Harder-Narasimhan slopes be-

have under the variation of the manifold (in our case, a specialization of the generic curve) and on

the analysis of Chen [7] on the study of submultiplicative filtrations.

Let us finally mention that recently there’s been a surge of interest in the study of asymptotics

of Harder-Narasimhan slopes, especially when the base of the family is a curve. Chen studied its

applications in Arakelov geometry in [7] and algebraic geometry in [8]. It was applied in the study

of the moduli space of K-stable Fano varieties by Codogni-Patakfalvi [11], Xu-Zhuang [48] and

more recently by Hattori [25]. Related ideas have been used in diophantine approximations, see

Faltings-Wüstholz [15], cf. Grieve [22]. Sektnan-Tipler [42] have studied a related question of

semistability of pullbacks along submersions. These developments were part of the motivation for

the current work. Another motivation comes from the sequel of this article, cf. [18], where we

study the relation between ηHN and differential geometry using some results from this paper.
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This article is organized as follows. In Section 2, we recall some crucial facts from the theory

of submultiplicative filtrations and establish Theorem 1.1. In Section 3, we study how Harder-

Narasimhan filtrations behave in families. The results of that section will be particularily important

in Section 4, where we establish Theorem 1.2. Finally, in Section 5, we establish Corollary 1.4.

Notation. A word generic in this article means outside a countable union of proper analytic

subspaces in some connected complex manifold. We say that a curve C ⊂ B is a complete

intersection in an integral multipolarization [ωB] = ([ωB,1], . . . , [ωB,m−1]), if it coincides with the

intersection of m−1 divisors in B in the classes [ωB,i], i = 1, . . . , m−1. For l = (l1, . . . , lm−1) ∈
N∗(m−1), we denote l[ωB] := (l1[ωB,1], . . . , lm−1[ωB,m−1]). By an abuse of notations, a m− 1 tuple

of ample line bundles on B will also be called a multipolarization.

A sequence an ∈ N, n ∈ N, is called multiplicative if there is bn ∈ N∗, such that an+1 = an ·bn.

A sequence an ∈ R, n ∈ N, is called subadditive (resp. superadditive) if for any n,m ∈ N, we

have an+m ≤ an + am (resp. an+m ≥ an + am). We say that a property holds eventually if it holds

for sufficiently big parameters.

Acknowledgement. I would like to thank CNRS and École Polytechnique for their support. A

part of this paper was written in the Fall of 2023 during a visit in Columbia University. I would

like to thank the mathematical department of Columbia University, especially Duong H. Phong,

for their hospitality and Alliance Program for their support.

2 Submultiplicative nature of Harder-Narasimhan filtrations

The main goal of this section is to prove Theorem 1.1. For this, we will first recall some crucial

points of the theory of submultiplicative filtrations on section rings.

Recall that a non-increasing R-filtration F of a vector space V is a map from R to vector

subspaces of V , t 7→ F tV , verifying F tV ⊂ F sV for t > s, and such that F tV = V for

sufficiently small t and F tV = {0} for sufficiently big t. We say that F is graded if it respects

the grading of V . It is left-continuous if for any t ∈ R, there is ǫ0 > 0, such that F tV = F t−ǫV
for any 0 ≤ ǫ ≤ ǫ0. All filtrations in this article are assumed to be non-increasing left-continuous

and graded if applicable. We associate with any filtration the probability measure, η(F , V ), on R,

which we also call the jumping measure, defined as follows

η(F , V ) :=
1

dim V

dimV
∑

j=1

δ
[

η(F , j)
]

, (2.1)

where η(F , j) are the jumping numbers, defined as follows η(F , j) := sup{t ∈ R : dimF tV ≥
j}. Alternatively, we can define this measure as η(F , V ) = − 1

dimV
d
dλ

dimFλV .

Now, for an ample line bundle L over a complex projective manifold Y , define the section ring

R(Y, L) := ⊕∞
k=1H

0(Y, Lk). (2.2)

A graded filtration F on R(Y, L) is called submultiplicative if for any t, s ∈ R, k, l ∈ N, we have

F tH0(Y, Lk) · F sH0(Y, Ll) ⊂ F t+sH0(Y, Lk+l). (2.3)

We say that F is bounded if there is C > 0, such that for any k ∈ N∗, FCkH0(Y, Lk) = {0}.

Remark that it is an immediate consequence of the submultiplicativity and the fact that R(Y, L) is

a finitely generated ring that there is C > 0, such that F−CkH0(Y, Lk) = H0(Y, Lk).
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We let Nk = dimH0(Y, Lk), and denote by ηF(1, k) ≥ · · · ≥ ηF(Nk, k) the jumping num-

bers of the filtration F on H0(X,Lk). We denote by ηF ,max(k) := ηF(1, k) the maximal and

by ηF ,min(k) := ηF (Nk, k) the minimal jumping numbers. The following result is well-known,

cf. [7, Propositions 3.2.4, 3.2.6].

Proposition 2.1. For any submultiplicative filtration F on R(Y, L), the sequence ηF ,max(k) (resp.

ηF ,min(k)), k ∈ N, is (resp. eventually) superadditive. In particular, the following limits exist

limk→∞ ηF ,max(k)/k, limk→∞ ηF ,min(k)/k, in R ∪ {+∞}, and they are finite if F is bounded.

Define the sequence of jumping measures ηF ,k, k ∈ N∗, of F on R as follows

ηF ,k :=
1

Nk

Nk
∑

j=1

δ
[ηF(j, k)

k

]

= Hk
∗

(

η(F , H0(X,Lk))
)

, (2.4)

where Hk is the homothety map, defined before Theorem 1.2.

Theorem 2.2 (Chen [7], Boucksom-Chen [4]). For any bounded submultiplicative filtration F
on R(Y, L), the jumping measures ηF ,k, k ∈ N∗, converge weakly, as k → ∞, to a probability

measure ηF . Moreover, the following holds

lim
k→∞

ηF ,min(k)

k
≤ ess inf ηF , lim

k→∞

ηF ,max(k)

k
= ess sup ηF . (2.5)

Also, the measure ηF is absolutely continuous with respect to the Lebesgue measure, except per-

haps for a point mass at ess sup ηF .

Remark 2.3. Boucksom-Chen in [4] gave an explicit expression of ηF in terms of the Okounkov

body associated with F . Witt Nyström [47] gave an expression of ηF in terms the geodesic ray

in the space of positive metrics on L associated with the filtration, when the filtration is given by

the weight of a C∗-action; Hisamoto [26] later generalized it for any finitely generated filtrations;

then, the author in [16] further generalized it to all bounded submultiplicative filtrations by giving

a different proof, based purely on complex pluripotential theory and semiclassical input from Tian

[45] and Phong-Sturm [39]. This was further generalized by the author in [17] in the relative

setting, following Chen-Maclean [9], cf. also Boucksom-Jonsson [6], and relying on the results of

Zeldtich [49], Chen-Sun [10], Berndtsson [2], Dai-Liu-Ma [12], Ma-Marinescu [32], [33] and [16].

Now, for any λ ∈ R, we consider the subalgebraR(λ)(Y, L) := ⊕∞
k=0F

λkH0(Y, Lk) ofR(Y, L).

Theorem 2.4 (Boucksom-Chen [4]). For any λ ∈ R, the following limit exists

vol(R(λ)(Y, L)) := lim
k→∞

dimFλkH0(Y, Lk)

Nk

=

∫ +∞

λ

dηF . (2.6)

Moreover, the function λ 7→ vol(R(λ)(Y, L))1/dimY is concave on ]−∞, ess sup ηF [.

Now, we specialize this general theory to the case of Harder-Narasimhan filtrations. We use

the notations from Introduction. We introduce the (non-increasing) filtrations Fk(λ), λ ∈ R, of Ek

by coherent (torsion-free) subsheaves (defined over B) so that Fk(λ) is the maximal subsheaf of

Ek such that all of its Harder-Narasimhan slopes are bigger than λ. Clearly, the filtration Fk is just

a “renaming” of the Harder-Narasimhan filtration of Ek.

The main idea behind the above “renaming” of Harder-Narasimhan filtration is that the filtra-

tion then becomes submultiplicative. More precisely, for any b ∈ B, we denote by Fb the filtration

induced by Fk(λ) on R(Xb, Lb) = ⊕∞
k=0H

0(Xb, L
k
b ), for Xb = π−1(b), Lb = L|Xb

, b ∈ B.
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Proposition 2.5. The filtration Fb is submultiplicative for generic b ∈ B.

When dimB = 1, Proposition 2.5 is due to Chen [7, §4.3.2], and the statement holds non-

generically. The proof of the general case remains verbatim modulo some technical modifications

which enter into play due to the fact that Harder-Narasimhan filtrations are filtrations by subsheaves

(and not by vector bundles) if dimB > 1. More precisely, we need the following basic results.

Lemma 2.6. For any λ > 0, we have µHN
max(Ek/Fk(λ)) < λ.

Proof. It follows directly from the definition of Fk(λ).

For the following result, we recall that the determinant line of a coherent sheaf is canonically

trivial if the support of the sheaf has codimension at least 2, cf. [30, Proposition 5.6.14]. In par-

ticular, Harder-Narasimhan filtrations can be defined for coherent sheaves, which are torsion-free

in codimension 2, cf. [28, Theorem 1.6.7]. In this case, the filtration will be given by coherent

subsheaves, which are torsion-free in codimension 2, and their subsequent quotients will also be

torsion-free in codimension 2. In particular, the notions of maximal and minimal slopes are well-

defined. We borrow for those notions the previously-defined notations of the maximal and the

minimal Harder-Narasimhan slopes.

Lemma 2.7 ( [28, Proposition 1.2.7 and Theorem 1.6.6] ). Let φ : E → F be a map between

coherent sheaves E ,F , such that both E and F are torsion-free in codimension 2. Assume that

µHN
max(F) < µHN

min (E ). Then φ = 0 outside an analytic subset of codimension at least 2.

Remark 2.8. In [28], authors treat symmetric multipolarization, but the generalization is direct.

The reason why it is necessary to consider sheaves which are not torsion-free in the context of

this article is that in general a tensor product of two torsion-free coherent sheaves is not torsion-free

in general, cf. [41, p. 261]. However, the following result is true.

Lemma 2.9. Let E1, E2 be two torsion-free coherent sheaves, then their tensor product is torsion-

free in codimension 2. Similarly, for a torsion-free coherent sheaf E , the sheaves Symk
E , k ∈ N∗,

are torsion-free in codimension 2.

Proof. The statement follows directly from the fact that torsion-free coherent sheaves are locally-

free in codimension 2, cf. [30, Theorem 5.5.8, Corollary 5.5.15]

Proof of Proposition 2.5. It suffices to verify that the natural map Fk(λ)⊗Fl(µ) → Ek/Fk+l(λ+
µ) is zero outside a subset of codimension at least 2, for any λ, µ ∈ R, k, l ∈ N. But this is

a direct consequence of Lemmas 2.6, 2.7, 2.9, the fact that a tensor product of two semistable

sheaves is semistable (in the category of sheaves which are torsion free in codimension 2), and

the slope behaves additively with respect to tensor products. The last two results were established

by Maruyama [34] in the case of symmetric mutipolarization and by Greb-Kebekus-Peternell [21,

Theorem 4.2] in general.

The next result proves the boundness of submultiplicative filtrations. In the context of filtrations

associated with test configurations, the importance of such bounds in analytic approach to the study

of submultiplicative filtrations has been underlined by Phong-Sturm in [40, Lemma 4].

Proposition 2.10. The filtration Fb is bounded for any b ∈ B.
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When m := dimB = 1, this was established by Chen [7, Proposition 4.3.5] by relying on the

very explicit relation between the degree and the number of holomorphic sections of a stable vector

bundle (which doesn’t extend to higher dimensions), cf. also [48, Lemma-Definition 2.26]. We

will show below that the statement for projectiveB of any dimension reduces to the one considered

by Chen. For this, the following result will be crucial.

Lemma 2.11. Assume that the multipolarization [ωB] is integral and very ample. Let E be a

torsion-free coherent sheaf over B. Then for generic regular curves C ⊂ B, which are complete

intersections in l[ωB], l ∈ N∗(m−1), the restriction, E |C , of E to C is torsion-free, and we have

µ[ωB],max(E ) ≤ l1 · · · lm−1 · µmax(E |C),

µ[ωB],min(E ) ≥ l1 · · · lm−1 · µmin(E |C).
(2.7)

Proof. First, the statement about the torsion-free restriction is well-known, cf. [23, Théorème

12.1.1] or [28, Lemma 3.1.1]. Now, as C is a complete intersection in l[ωB], we have

µ(E |C) = l1 · · · lm−1 · µ[ωB](E ). (2.8)

Remark also that the maximal and the minimal slopes admit the following useful characterization

µ[ωB],max(E ) = max
{

µ[ωB](F) : F is a subsheaf of E

}

,

µ[ωB],min(E ) = min
{

µ[ωB](Q) : Q is a quotient sheaf of E

}

.
(2.9)

The result now follows from (2.8) and (2.9) applied for E and E |C .

Proof of Proposition 2.10. First of all, sinceB is projective, any multipolarization can be bounded

from above by an integral multipolarization. Remark that the slopes will only increase by this

procedure, so it is sufficient to assume that the multipolarization [ωB] is integral and very ample.

Now, by Lemma 2.11, the maximal Harder-Narasimhan [ωB]-slope of Ek is bounded from

above by the maximal Harder-Narasimhan slope of Ek|C , where C is a regular complete intersec-

tion curve in [ωB]. But since the maximal slopes of Ek|C grow at most linearly in k by the already

mentioned result of Chen, we deduce the same for the maximal slopes of Ek.

Proof of Theorem 1.1. It follows directly from Theorem 2.2 and Propositions 2.5, 2.10.

3 Relative slopes on degenerating families of varieties

The main goal of this section is to describe how Harder-Narasimhan filtrations behave in families.

More precisely, we first recall that in any flat family, Harder-Narasimhan slopes of the generic fiber

are well-defined. Following Shatz [44], we then make a relation between the Harder-Narasimhan

slopes of the generic fiber and the Harder-Narasimhan slopes of the specialization of the generic

fiber. As an application of this, we show that the sequence of measures composed of Harder-

Narasimhan slopes of the restrictions of a given torsion-free sheaf to generic curves of a given

degree satisfy certain subadditivity properties in terms of degrees of curves.

More precisely, our setting will be as follows. Let p : B → S be a proper surjective flat

holomorphic map of relative dimensionm between complex connected manifoldsB and S, and let

F = (F1, . . . , Fm−1) be a relative multipolarization, which means that Fi are relatively ample line
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bundles with respect to p on B, i = 1, . . . , m − 1. We assume for simplicity that p has a smooth

fiber, which implies that the set of smooth fibers is an open dense subset of S, see [23, Théorème

12.2.4]. Let E be a flat family of torsion-free coherent sheaves on the fibers of p, cf. [28, Definition

2.1.1]. The set of fibers of p such that the restriction of E to them is torsion-free is open in S
by [23, Théorème 12.1.1]. In particular, the Harder-Narasimhan filtrations (with respect to the

multipolarization c1(F )|Bs
:= (c1(F1)|Bs

, . . . , c1(Fm−1)|Bs
)) of the torsion-free coherent sheaf

E |Bs
are well-defined for generic s ∈ S.

Proposition 3.1. The c1(F )|Bs
-slopes of the Harder-Narasimhan filtrations of E |Bs

are constant

for generic s ∈ S.

The following two results will make the proof of Proposition 3.1.

Lemma 3.2 ( [20, Example 20.3.3] ). The c1(F )|Xs
-slopes of E |Bs

are constant for s ∈ S.

Theorem 3.3. There is a complex manifold T with a birational morphism f : T → S, such that

for p0 : B ×S T → B, there is a filtration of p∗0E by subsheaves:

p∗0E = HN(E )s ⊃ HN(E )s−1 ⊃ · · · ⊃ HN(E )1 ⊃ HN(E )0 = {0}, (3.1)

such that the factors HN(E )i/HN(E )i−1 are flat for i = 1, . . . , s, and there is a dense open

subset U ⊂ T , such that the restriction of the above filtration to a fiber at t ∈ U corresponds to

the Harder-Narasimhan filtration of the fiber.

Remark 3.4. The filtration above is called relative Harder-Narasimhan filtration. The proof of the

above statement for symmetric multipolarizations can be found in [28, Theorem 2.3.2], and in the

general case in [46, Corollary 6.6].

Proof of Proposition 3.1. It follows directly from Theorem 3.3 and Lemma 3.2, applied to all sub-

sheaves of the relative Harder-Narasimhan filtration.

We will now apply this general theory to study Harder-Narasimhan filtrations of the restrictions

of a given sheaf to generic curves. We fix a complex projective manifold B of dimension m
with very ample line bundles F1, . . . , Fm−1. For l = (l1, . . . , lm−1) ∈ N∗(m−1), we consider the

space Sl := P(H0(B,F l1
1 )) × · · · × P(H0(B,F

lm−1

m−1 )), parametrizing dimB − 1 hyperplanes in

H0(B,F l1
1 )∗, . . . , H0(B,F

lm−1

m−1 )
∗. We define the incidence variety Cl as follows

Cl :=
{

(b ∈ B, s ∈ Sl) : b lies in the intersection of hypeplanes parametrized by s
}

, (3.2)

where we implicitly identified B with its images in P(H0(B,F li
i )

∗), i = 1, . . . , m − 1, through

the Kodaira map. We then have the natural maps p : Cl → Sl and p0 : Cl → B. It is classical,

cf. [28, §3.1], that p0 is a locally trivial bundle with fibers given by the product of projective spaces.

In particular, Cl is a smooth manifold. The fibers of the projection p are given by the intersection

of the dimB−1 divisors given by the zero-locus of sections parametrized by a point in Sl. Hence,

these fibers are generically curves. More precisely, the following result holds true.

Proposition 3.5. The set U ⊂ Sl (resp. V ⊂ U) such that the fibers of p at U have dimension 1
(resp. of regular values of p) is a non-empty open subset in Zariski topology, i.e. its complement

is an analytic subset.
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Proof. The statement for V is the Bertini theorem, cf. [24, Theorem II.8.18]. Let us now establish

the statement about U . Define the function n : Sl → N as

n(s) = maximal dimension of an irreducible component of p−1(s). (3.3)

Since p−1(s) is given by the intersection of dimB − 1 divisors, by Serre’s inequality on height,

cf. [13, Execrice II.11.11], the dimension of every irreducible component of p−1(s), s ∈ Sl, is at

least 1. In particular, we have U := {s ∈ Sl : n(s) < 2}. But Cl is projective and, hence, p is

proper. In particular, the function n is upper semicontinuous, cf. [23, Théorème 13.1.5]. Hence,

the set {s ∈ Sl : n(s) < 2} is open, which finishes the proof.

Proposition 3.6. The restriction of p to p−1(U) is flat.

Remark 3.7. The same statement appeared in [35, Proposition 1.5] with a different proof.

Proof. Since both U and p−1(U) are smooth manifolds, and the dimension of the fibers of p over

p−1(U) equals to 1 by the definition of the set U , and dim Cl − dimSl = 1 by a simple dimension

count, the result follows from the miracle flatness theorem, cf. [24, Exercise III.10.9].

Corollary 3.8. Assume [ωB] is very ample. For any torsion-free coherent sheaf E over B, the

Harder-Narasimhan slopes of the restriction, E |C , (locally free by Lemma 2.11) to a generic regular

curve C ⊂ B, which is a complete intersection in [ωB], do not depend on the choice of C.

Proof. It is a direct consequence of Propositions 3.1, 3.5, 3.6.

In the second part of this section, we discuss the relation between the slopes of generic and

special fibers of the family. For this, we need to introduce a certain order on filtrations.

Let E be a torsion-free coherent sheaf of rank r over a complex Kähler manifold B with a

fixed multipolarization [ωB]. We fix an arbitrary filtration of E by coherent subsheaves E = Fs ⊃
Fs−1 ⊃ · · · ⊃ F1 ⊃ F0 = {0}, and define the polytope of the filtration as the graph of a partially

linear function, defined on [0, r], as a linear interpolation of nodes (rk(Fi), deg(Fi)), i = 0, . . . , s,
where the degree is calculated with respect to [ωB]. A polytope is then a certain piecewise linear

path, connecting (0, 0) with (r, deg(E)). We say that a polytope dominates another polytope if it

lies above it.

The following alternative description of this order will be particularly useful in what follows.

We define the slopes of the filtration as a non-increasing sequence of numbers µF
1 , . . . , µ

F
r , such

that µ(Fr/Fr−1) appears exactly rk(Fr/Fr−1) times. We fix two filtrations of E by subsheaves,

and denote their slopes by µF ,j
1 , . . . , µF ,j

r , j = 1, 2. Then by [1, (12.1)], the first filtration dominates

the second one if and only if

µF ,1
1 + · · ·+ µF ,1

k ≥ µF ,2
1 + · · ·+ µF ,2

k , (3.4)

for any k = 1, . . . , r − 1. Remark that we always have µF ,1
1 + · · · + µF ,1

r = rk(E ) · µ(E ) =
µF ,2
1 + · · ·+ µF ,2

r . Alternatively, we define the probability measures µF ,j , j = 1, 2, as in (1.2):

µF ,j :=
1

r

r
∑

i=1

δ
[

µF ,j
i

]

. (3.5)
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Then by [27], cf. Atiyah-Bott [1, (12.2)], the above partial order is equivalent to the following one:

for any convex function φ : R → R, we have
∫

φµF ,1 ≥

∫

φµF ,2. (3.6)

More generally, for arbitrary probability measures µ1, µ2 on R, we say that µ1 dominates µ2 if the

analogue of (3.6) holds.

The relevance of this partial order to Harder-Narasimhan filtrations comes from the following

extremal characterization of them.

Theorem 3.9 (Shatz [44, Theorem 2 and Remark on p.174]). Harder-Narasimhan filtration of a

torsion-free coherent sheaf dominates all the other filtrations by coherent subsheaves.

Remark 3.10. The article [44] is written for symmetric multipolarization, but it readily extends to

the general case, as it only relies on Lemma 2.7 and the existence of relative Harder-Narasimhan

filtrations, which holds for non-symmetric multipolarization, cf. Theorem 3.3.

As we shall see below, the above partial order is also useful in the study of how Harder-

Narasimhan filtrations behave under specialization. For this, we assume from now on that our

family of manifolds, p : B → S, is defined over a unit disc, i.e. S = D := {z ∈ C : |z| < 1}.

We then decompose the central fiber, B0, as
∑

nj · B
j
0, where Bj

0, j = 1, . . . , t, are irreducible

components, which we assume to be smooth for simplicity, and nj are the multiplicities. We define

the probability measure µHN
0 on R as follows

µHN
0 =

1

r

r
∑

i=1

δ
[

t
∑

j=1

nj · µ
0,j
i

]

, (3.7)

where µ0,j
i , j = 1, . . . , t, i = 1, . . . , r, are the slopes of the Harder-Narasimhan filtrations of E |Bj

0

(which we assume to be torsion-free) with respect to c1(F )|Bj
0

. We denote by µHN
∗ the probability

measure composed of the slopes of the Harder-Narasimhan filtrations of the restriction of E to

generic fibers (this doesn’t depend on the choice of generic fiber by Proposition 3.1). In other

words, by Theorem 3.3, we have

µHN
∗ =

1

r

r
∑

i=1

δ
[

µ∗
i

]

, (3.8)

where µ∗
i are the slopes of the restriction of the relative Harder-Narasimhan filtration HN(E )i,

i = 0, . . . , s, from Theorem 3.3 to fibers.

Theorem 3.11. The probability measure µHN
0 dominates µHN

∗ .

Remark 3.12. When B = B0 × D, and p : B → D is the natural projection, the result is due to

Shatz [44, Theorem 3]. When p is of relative dimension 1, see [35, Proposition 4.3] for another

related result. Our proof of the general case is very much inspired by [44].

In the proof of Theorem 3.11, we will use the following simple result.

Lemma 3.13. Let µj
i =

1
N

∑N
r=1 δ[a

j
i,r], i, j = 1, 2, be probability measures on R for some aji,r ∈

R, ordered in such a way that aji,r are non-increasing in r, and such that
∑

a1i,r =
∑

a2i,r. Assume

that the measure µ1
i dominates µ2

i for i = 1, 2. Then for the measures µj := 1
N

∑N
r=1 δ[a

j
1,r + aj2,r],

µ1 dominates µ2.



On Harder-Narasimhan slopes of direct images 11

Proof. It follows directly from the characterization (3.4).

Proof of Theorem 3.11. By the flatness of the family and the factors HN(E )i/HN(E )i−1, cf. [20,

Example 20.3.3], we conclude that

µ∗
i =

t
∑

j=1

nj · µ
(

(HN(E )i/HN(E )i−1)|Bj
0

)

. (3.9)

Now, using the notations introduced in (3.7), for any j = 1, . . . , t, we define the measures

µHN
0,j :=

1

r

r
∑

i=1

δ
[

µ0,j
i

]

,

µHN
∗,j :=

1

r

r
∑

i=1

δ
[

µ
(

(HN(E )i/HN(E )i−1)|Bj
0

)]

.

(3.10)

By Theorem 3.9, we conclude that the measures µHN
0,j dominate µHN

∗,j . We deduce Theorem 3.11

from this, Lemma 3.13 and (3.7), (3.8), (3.9), (3.10).

We will now apply this general theory to the study of measures associated with restrictions of

torsion-free coherent sheaves. For this, we fix a torsion-free coherent sheaf E of generic rank r
over B. Assume that the multipolarization [ωB] is very ample. For any l ∈ N∗(m−1), we denote by

µHN
i (E |C , l), i = 1, . . . , r, the Harder-Narasimhan slopes of the restriction of E to a generic curve

C, given by a complete intersection in l[ωB], cf. Corollary 3.8. We denote by µHN
min (E |C , l) and

µHN
max(E |C, l) the minimal and maximal slopes respectively. We define the sequence of probability

measures, ηl, l ∈ N∗(m−1), on R as follows

ηl :=
1

r

r
∑

i=1

δ
[µHN

i (E |C , l)

l1 · · · lm−1

]

. (3.11)

We can now state the main result of this section.

Theorem 3.14. For any convex function φ : R → R, the sequence of real numbers al :=
l1 · · · lm−1 ·

∫

φdηl, l = (l1, . . . , lm−1) ∈ N∗(m−1), is coordinatewise subadditive, i.e. for any

l′ ∈ N∗(m−2), l11, l
2
1 ∈ N∗, we have al0 ≤ al1 + al2 , for l0 := (l11 + l21, l

′), l1 := (l11, l
′), l2 := (l21, l

′),
and similarly for other coordinates.

We will now establish Theorem 3.14. All the curves considered below will naturally be given

as fibers of p, which would parametrize them by points in Sl, see (3.2). The following result will

be crucial for the proof of Theorem 3.14.

Proposition 3.15. For any l′ = (l2, . . . , lm−1) ∈ N∗(m−2), l11, l
2
1 ∈ N∗, we let l1 := (l11, l

′), l2 :=
(l21, l

′), and fix some curves C1, C2 ⊂ B, given by a complete intersection in l1[ωB], l
2[ωB], as

a zero set of holomorphic sections s11 ∈ H0(B,F
l1
1

1 ), si ∈ H0(B,F li
i ), i = 2, . . . , m − 1, and

s21 ∈ H0(B,F
l2
1

1 ), si, i = 2, . . . , m− 1, respectively. Then there is a smooth manifold C and a flat

proper map p : C → D, such that the central fiber of p is given by C1 +C2, and the general fiber is

a complete intersection in l0[ωB], where l0 := (l11 + l21, l
′). Moreover, for any countable union of

analytic subsets in Sl0 , we can choose p as a base change along a holomorphic disc in Sl0 , which

doesn’t lie within any of the analytic subsets.
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Proof. Remark first that there is a canonical embedding P(H0(B,F l1
1)) × P(H0(B,F l2

1)) →֒
P(H0(B,F l1

1
+l2

1)), given by a composition of the Segre map and the multiplication in the sec-

tion ring of B. The needed family can then be constructed by the base change of the family Cl0
along a holomorphic disc in Sl0 , which is not contained in the countable union of analytic sub-

sets from the statement, and which passes through the image of the point representing (C1, C2) in

(Sl1 , Sl2), viewed as a point in Sl0 through the above embedding.

The flatness of the resulting map is a consequence of Proposition 3.6 and the fact that flatness

is preserved by base changes, see [24, Proposition 9.2]. The identification of the central fiber

follows from the nature of the Segre map: if the holomorphic sections s11, s2, . . . , sm−1 (resp.

s21, s2, . . . , sm−1) vanish along C1 (resp. C2) with multiplicity 1, then the holomorphic sections

s11 · s
2
1, s2, . . . , sm−1 vanish along C1 + C2 with multiplicity 1.

We will also need the following technical lemma.

Lemma 3.16. Let B1, B2, B be compact complex manifolds, and A1 ⊂ B1 × B, A2 ⊂ B2 × B,

be proper analytic subsets. Then there are x1 ∈ B1, x2 ∈ B2, y ∈ B, such that (x1, y) /∈ A1 and

(x2, y) /∈ A2.

Proof. Let A be a proper analytic subspace in C × B, where C is a compact complex manifold.

We denote by D ⊂ B, the locus of x ∈ B, such that A doesn’t contain C × {x}. By using the

properness of the projection map p : A→ B and properness of A, we argue similarly to (3.3), that

D is open in B (in Zariski topology). It is also non-empty since A is a proper subset of C × D.

By applying this for A1 and A2, we see that the locus of y ∈ B, such that Ai doesn’t contain

Bi × {x}, i = 1, 2, is non-empty. It suffices then to pick any y ∈ B from this locus, and choose

x1, x2 arbitrarily away from A1, A2.

Proof of Theorem 3.14. From Corollary 3.8, the slopes of the Harder-Narasimhan filtrations of

E |C are constant for curves C ⊂ B given by a complete intersection in li[ωB], i = 0, 1, 2, located

away from a proper analytic subset,A(li), in Sli . Using Lemma 3.16, we fix curvesCi ∈ Sli\A(l
i),

given by complete intersection in li[ωB], i = 1, 2, as required in Proposition 3.15. By Proposition

3.15, C1 + C2 can be put as a central fiber in a flat family of curves, obtained as a base change

along a holomorphic disc from Sl0 , not contained inA(l0). Since the generic curve from this family

doesn’t lie in A(l0), the Harder-Narasimhan slopes of the restriction of E to a generic curve in this

family will then coincide with the Harder-Narasimhan slopes of the restriction of E to generic

curves given by complete intersection in l0[ωB]. Directly from this, Theorem 3.11 and (3.6),

r
∑

i=1

φ
(

µHN
i (E |C , l

1) + µHN
i (E |C, l

2)
)

≥
r

∑

i=1

φ
(

µHN
i (E |C, l

0)
)

. (3.12)

By making a homothety and using the convexity of φ, we finish the proof.

As a byproduct of Theorem 3.14 and (3.4), we deduce the following.

Proposition 3.17. For any l = (l1, . . . , lm−1) ∈ N∗(m−1), we have

µHN
min (Ek|C , l) ≥ l1 · · · lm−1 · µ

HN
min (E |C , (1, . . . , 1)),

µHN
max(Ek|C , l) ≤ l1 · · · lm−1 · µ

HN
max(E |C , (1, . . . , 1)).

(3.13)
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4 Generic base changes and asymptotic distribution of slopes

The main goal of this section is to show that the asymptotic distribution of Harder-Narasimhan

slopes of direct images can be calculated through generic base changes, i.e. to establish Theorem

1.2. The following famous result will be at the heart of our approach.

Theorem 4.1. For any semistable torsion-free coherent sheaf E over a complex projective manifold

B with an integral multipolarization [ωB], there is l0 ∈ N, such that for any generic curve C ⊂ B,

which is a complete intersection in l[ωB], l = (l1, . . . , lm−1) ∈ N∗(m−1), li ≥ l0, i = 1, . . . , m− 1,

the restriction of E to C is semistable.

Remark 4.2. When the multipolarization is symmetric, the theorem is due to Mehta-Ramanathan

[35, Theorem 6.1], cf. also [28, Theorem 7.11] and [36]. The proof for the general multipolariza-

tion remains verbatim.

In particular, from Theorem 4.1 and (2.8), we conclude that for any torsion-free coherent sheaf

E over B, the restriction of Harder-Narasimhan filtration of E over generic curves C ⊂ B as in

Theorem 4.1 coincides with the Harder-Narasimhan filtration of E |C .

The main difficulty in the proof of Theorem 1.2 is due to the fact that the value l0 from Theo-

rem 4.1 depends heavily on E . Despite many works on the effective version of Mehta-Ramanathan

theorem, see for example Flenner [19] or Bogomolov [3], cf. [28, §7], it seems that all known ef-

fective bounds on l0 depend on the rank and the discriminant of E . However, in the notations from

Introduction, when k → ∞, both rank and discriminant of Ek tend to infinity, and so it seems im-

plausible that the value l0 can be chosen uniformly for all k ∈ N. Remark also that there are some

results that relate the Harder-Narasimhan slopes of a sheaf with the Harder-Narasimhan slopes of

its restriction to a curve associated with any fixed value l0, see for example Grauert-Mülich theo-

rem, cf. [28, §3], or Langer [31, Theorem 3.1]. To the best of authors knowledge, none of these

implies Theorem 1.2 directly. Our approach for Theorem 1.2 is then, by necessity, a different one,

and it relies on subadditive properties enjoyed by the measures η
HN |C
l and ηHN , coming from the

submultiplicative nature of Harder-Narasimhan filtrations and the results of Section 3.

We will first establish the easier part of Theorem 1.2 about the minimal slopes. For this, we

conserve the notations from Introduction and (3.11). Directly from Theorem 4.1, the remark below

it and Lemma 2.11, we deduce the following result.

Lemma 4.3. The following convergence takes place

lim
l→∞

µHN
min (Ek|C , l)

l1 · · · lm−1

= µHN
min (Ek), (4.1)

where l = (l1, . . . , lm−1) ∈ N∗(m−1). Moreover, the above limit becomes stationary for l big

enough (i.e. for big enough l0 ∈ N, and li ≥ l0, i = 1, . . . , m− 1), and we always have

µHN
min (Ek|C , l)

l1 · · · lm−1

≤ µHN
min (Ek). (4.2)

Remark 4.4. The same proof shows that the analogous statements hold (with inverse sign in (4.2))

for the maximal slope.

We will also use the following statement, the proof of which is left to the reader.
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Lemma 4.5. Let ck,l ∈ R, k ∈ N, l ∈ N∗(m−1), be such that ck,l increases in k ∈ N, and the limit

liml→∞ ck,l exists and satisfies ck,l ≤ liml→∞ ck,l. Then liml→∞ limk→∞ ck,l = limk→∞ liml→∞ ck,l.

Proof of the first convergence of (1.4). By (4.1) and the definitions of η
HN |C
min,l and ηHN

min , we see that

the first convergence of (1.4) is equivalent to the following statement

lim
l→∞

lim
k→∞

µHN
min (Ek|C , l)

kl1 · · · lm−1
= lim

k→∞
lim
l→∞

µHN
min (Ek|C , l)

kl1 · · · lm−1
, (4.3)

where k goes to infinity along any subsequence which we assume from now on to be mul-

tiplicative (as k = 2r, r ∈ N). Remark, however, that by Proposition 2.1, the sequence

µHN
min (Ek|C , l)/k increases in k, when k runs over a multiplicative subsequence. By this and

Lemma 4.3, the assumptions of Lemma 4.5 are satisfied for the restriction of the sequence ck,l :=
µHN
min (Ek|C , l)/(kl1 · · · lm−1) to multiplicative subsequences in k, which finishes the proof.

Remark 4.6. Curiously, the analogous proof for the maximal slope doesn’t work due to Remark

4.4 and the fact that the analogue of Lemma 4.5 with inverse inequality sign doesn’t hold.

We will now concentrate on the proof of the rest of Theorem 1.2. For this, we define the

sequence of probability measures, ηk,l, k ∈ N∗, l ∈ N∗(m−1), on R as follows

ηk,l :=
1

Nk

Nk
∑

i=1

δ
[µHN

i (Ek|C , l)

kl1 · · · lm−1

]

, (4.4)

where Nk = rk(Ek), and we used the notations from (3.11).

The key in the proof of Theorem 1.2 lies in the following result, the proof of which we defer to

the end of this section.

Theorem 4.7. For any convex non-increasing Lipschitz function φ : R → R, and any k ∈ N∗,

l ∈ N∗(m−1), we have the following decomposition

k

∫

φdηk,l = ak,l + kbk,l, (4.5)

where bk,l → 0, as k → ∞, uniformly on l ∈ N∗(m−1), and ak,l is subadditive in k ∈ N over

multiplicative subsequences.

We will also use the following statement, the proof of which repeats the proof of classical

Fekete’s Subadditive Lemma, and is left to the interested reader.

Lemma 4.8. Let ck,l ∈ R, k ∈ N∗, l = (l1, . . . , lm−1) ∈ N∗(m−1), be such that ck,l is coordinatewise

subadditive in l ∈ N in the sense of Theorem 3.14, and it admits the following decomposition

ck,l = ak,l + kbk,l, where bk,l → 0, as k → ∞, uniformly on l ∈ N∗(m−1), and ak,l is subadditive in

k ∈ N. Then liml→∞ limk→∞
ck,l

kl1···lm−1

= limk→∞ liml→∞
ck,l

kl1···lm−1

.

Proof of Theorem 1.2. We will first establish the weak convergence of measures. The statement

about the convergence of maximal slopes will follow from the convergence of measures.

Clearly, to verify weak convergence, it suffices to verify that for any smooth test function

φ : R → R of compact support, as l → ∞ over multiplicative subsequences, we have

lim
l→∞

∫

φdH lm−1

∗ (η
HN |C
l ) =

∫

φdηHN . (4.6)
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Remark now that any smooth function of compact support can be represented as a difference of

two convex non-increasing Lipschitz functions (to see this, it suffices to decompose φ = (φ +
Amin(x−a, 0)2)−Amin(x−a, 0)2 for carefully chosen a, A), and, hence, it suffices to establish

(4.6) for such functions. We, hence, assume from now on that φ is convex, non-increasing and

Lipschitz. By the definition of η
HN |C
l , we have

lim
l→∞

∫

φdH lm−1

∗ (η
HN |C
l ) = lim

l→∞
lim
k→∞

∫

φdηk,l. (4.7)

From Theorem 4.1 and the remark after it, we also have
∫

φdηHN = lim
k→∞

lim
l→∞

∫

φdηk,l. (4.8)

B Theorem 3.14, the sequence (k, l) 7→ kl1 · · · lm−1

∫

φdηk,l, k ∈ N∗, l = (l1, . . . , lm−1) ∈
N∗(m−1), is coordinatewise subadditive in l. We establish (4.6) by Theorem 4.7, Lemma 4.8 and

(4.7), (4.8).

We will now establish the second convergence of (1.4). First of all, from Lemma 2.11, we see

lim inf
l→∞

η
HN |C
max,l

l1 · · · lm−1
≥ ηHN

max. (4.9)

Now, by Theorem 2.4, the cumulative function FHN(λ) :=
∫∞

λ
dηHN (resp. FHN,l(λ) :=

∫∞

λ
dH lm−1

∗ (η
HN |C
l )) is such that F

1/n
HN (resp. F

1/n
HN,l) is concave on ]−∞, ess sup ηHN [. In particu-

lar, the function FHN is continuous on R\ ess sup ηHN . Recall that weak convergence of measures

implies pointwise convergence of the cumulative functions over the continuity set. In particular,

FHN,l(λ) converge pointwise, as l → ∞, to FHN(λ) away from ess sup ηHN .

Assume now, for the sake of contradiction, that we have a strict inequality

lim sup
l→∞

η
HN |C
max,l

l1 · · · lm−1
> ηHN

max. (4.10)

Upon restricting to a subsequence in l, we may assume that we have lim inf instead of lim sup in

(4.10). Let ǫ > 0 be such that the inequality (4.10) is still satisfied if we replace ηHN
max by ηHN

max+4ǫ.

We assume that l is big enough so that ηHN
max + 2ǫ < η

HN |C
max,l /(l1 · · · lm−1). Remark that by Theorem

2.2, ηHN
max coincides with the essential supremum of ηHN , hence FHN(η

HN
max − ǫ) is strictly positive.

By the concavity of F
1/n
HN,l on the interval ] − ∞, ηHN

max + 2ǫ] ⊂] − ∞, η
HN |C
max,l /(l1 · · · lm−1)[, the

fact, following from the first part of the proof, that FHN,l(η
HN
max − ǫ) converges, as l → ∞, to

FHN(η
HN
max − ǫ), which is strictly positive, and the fact that FHN,l(η

HN
max + ǫ) is non-negative, we

conclude that there is a constant δ > 0, such that FHN,l(λ) > δ for any λ ∈]−∞, ηHN
max + ǫ]. This

clearly contradicts the fact that FHN,l(η
HN
max+ǫ) converges to FHN(η

HN
max+ǫ) = 0. Hence, the initial

assumption (4.10) was false, which finishes the proof.

We will now prove Theorem 4.7, and for this, the following result will be crucial.

Proposition 4.9 ( Chen [7, Proposition 3.3.3] ). For any convex non-increasing function φ : R →
R and any submultiplicative filtration F on the ring SymV := ⊕∞

k=0Sym
kV for some vector space

V , the sequence k 7→ k
∫

φ · dHk
∗ (η(F , Sym

kV )) is subadditive.
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Remark that if the fibers of p were projective spaces, then Theorem 4.7 would already follow

from Proposition 4.9, as the section ring of the projective space polarized by a hyperplane bundle

is isomorphic to the symmetric tensor algebra. Proposition 4.9, however, seemingly doesn’t hold

if the ring SymV is replaced by a section ring of an arbitrary complex projective manifold. To

circumvent this problem, we need a more refined argument, and our solution, which is inspired

by [7, §3.4.2], goes through the use of Noether normalization lemma.

More precisely, Noether normalization lemma, cf. [14, Theorem 13.3], says that for any pro-

jective manifold Y of dimension n, and an ample line bundle L over Y , there is d ∈ N∗, and

s1, . . . , sn+1 ∈ H0(Y, Ld), which are algebraically independent in the section ring, R(Y, L), and

such that the subring,R(d)(Y, L), ofR(Y, L), defined asR(d)(Y, L) = ⊕∞
k=0H

0(Y, Lkd), is a finitely

generated module over the (polynomial) subring A ⊂ R(d)(Y, L) induced by s1, . . . , sn+1, i.e.

A = Sym〈s1, . . . , sn+1〉.
Now, let F be an arbitrary bounded submultiplicative filtration on R(Y, L). The following

proposition says that the spectral measure of the filtration F on R(Y, L) can be reconstructed from

the spectral measure of the restriction of the filtration F to A ⊂ R(Y, L).

Proposition 4.10 ( Chen [7, proof of Theorem 3.4.3] ). For any convex non-increasing Lipshitz

function φ on R, there is C > 0, such that for any k ∈ N∗, we have

∣

∣

∣

∫

φ · dHkd
∗ (η(F , Akd))−

∫

φ · dHkd
∗ (η(F , H0(Y, Lkd)))

∣

∣

∣
≤
C

k
. (4.11)

Remark 4.11. A combination of Propositions 4.9 and 4.10, and a decomposition argument from

the proof of Theorem 1.2 was used in [7] to prove the weak convergence in Theorem 2.2.

Our proof for Theorem 4.7 will then be a combination of Proposition 4.9 and a uniform version

of Proposition 4.10. In order to explain the latter statement and its proof, we first recall the main

steps from [7] of the proof of Proposition 4.10.

Lemma 4.12 ( Chen [7, Proposition 1.2.5] ). Let 0 → V0 → V1 → V2 → 0 be a short exact

sequence of vector spaces. We fix a filtration F on V1, and induce the filtrations on V0, V2, which

we denote by an abuse of notation by the same letter. Then the following identity holds

dimV2 · η(F , V1) = dimV2 · η(F , V0) + dim V2 · η(F , V2), (4.12)

where the jumping measures, η(F , Vi), i = 0, 1, 2, are defined in (2.1).

We denote by Frac(A) the field of fractions of A. As R(d)(Y, L) is a finitely generated

module over A, the Frac(A)-vector space Frac(A) ⊗A R(d)(Y, L) is finitely generated. We de-

note by x1, . . . , xr, r ∈ N, some homogeneous elements of R(d)(Y, L), which form a basis

of the above vector space. Then the space B := x1A + · · · + xrA, B = ⊕∞
k=0Bkd, is a

free A-submodule of R(d)(Y, L), and the quotient R(d)(Y, L)/B is a A-torsion module, since

Frac(A) ⊗A R(d)(Y, L)/B = {0}. Then, as R(d)(Y, L) is a finitely generated A-module, the

annihilator, Ann(R(d)(Y, L)/B) ⊂ A, of R(d)(Y, L)/B is non-empty. Hence, the Krull dimension

of theA-moduleR(d)(Y, L)/B, which is defined as the Krull dimension ofA/Ann(R(d)(Y, L)/B),
is strictly smaller that the Krull dimension ofA. Since Krull dimension of a module coincides with

the degree of its Hilbert polynomial, see Serre [43, Proposition 6, p. 276], we conclude that there

is a constant such that the dimension of the k-th graded part, H0(Y, Lkd)/Bkd, of R(d)(Y, L)/B is
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smaller than CkdimY−1. We conclude by this and Lemma 4.12 that for any bounded function φ,

there is C > 0, such that for any k ∈ N∗, we have

∣

∣

∣

∫

φ · dHkd
∗ (η(F , Bkd))−

∫

φ · dHkd
∗ (η(F , H0(Y, Lkd)))

∣

∣

∣
≤
C

k
. (4.13)

By (4.13), we see that Proposition 4.10 will follow if we prove the following result.

Lemma 4.13. For any homogeneous element x ∈ H0(Y, Ld0), d0 ∈ N∗, d|d0, the spectral measures

of the restriction of the filtration F to the submodules xA and A compare as follows. For any

convex non-increasing function φ on R, there is C > 0, such that for any k ∈ N∗, we have

∣

∣

∣

∫

φ · dHkd
∗ (η(F , (xA)kd))−

∫

φ · dHkd
∗ (η(F , Akd))

∣

∣

∣
≤
C

k
. (4.14)

Proof. In order to prove this, remark that since the Frac(A)-vector space Frac(A) ⊗A R(d)(Y, L)
is finitely generated, there is N ∈ N∗, N ≤ r + 1, and homogeneous elements a0 ∈ Ad1 , a1 ∈
Ad1+d0 , . . . , aN ∈ Ad1+Nd0 , aN 6= 0, for some d1 ∈ N∗, such that d|d1 and a0x

N + a1x
N−1 + · · ·+

aN = 0. From [7, (61)], for any non-increasing function ψ on R, we have

∫

ψ · dη(F , Akd) ≥

∫

ψ · dη(F , (xA)kd+d0) ≥

∫

ψ · dη(F , (aNA)kd+d1+Nd0). (4.15)

Now, remark that the Krull dimension of the A-module A/aNA, is strictly smaller that the Krull

dimension of A, as aN 6= 0. Hence, as in (4.13), we deduce that for any bounded function ψ on R,

there is C > 0, such that we have

∣

∣

∣

∫

ψ · dη(F , (aNA)kd)−

∫

ψ · dη(F , Akd)
∣

∣

∣
≤
C

k
. (4.16)

Also, for any Lipschitz function ψ on R, and any d3 ∈ R, by the boundness of the filtration F ,

there is C > 0, such that for any k ∈ N∗, we have

∣

∣

∣

∫

ψ · dHkd
∗ η(F , Akd)−

∫

ψ · dHkd+d3
∗ η(F , Akd)

∣

∣

∣
≤
C

k
. (4.17)

From (4.15), (4.16), (4.17) and the fact that the limit, as k → ∞, of
∫

ψ · dHkd
∗ η(F , Akd) exists,

which follows from Proposition 4.9, we deduce (4.14).

We will now explain that a part of the above reasoning can be done in a family setting. More

precisely, consider a surjective flat holomorphic map π : X → B between complex projective

manifolds X and B of dimensions n + m and m. Let L be a holomorphic line bundle over

X , which is relatively ample with respect to π. We argue that there is a subset S ⊂ B, which

is a countable union of analytic subsets, and d∗ ∈ N, such that the following holds. For any

b ∈ B \S, there is d(b) ∈ N∗, verifying d(b) ≤ d∗, and s1(b), . . . , sn+1(b) ∈ H0(Xb, L|
d(b)
Xb

), which

are algebraically independent in the section ring, R(Xb, L|Xb
), and such that R(d(b))(Xb, L|Xb

) is

a finitely generated module over the (polynomial) subring A(b) ⊂ R(d(b))(Xb, L|Xb
) induced by

s1(b), . . . , sn+1(b). Moreover, there are r∗, d∗0 ∈ N and C > 0, such that for any b ∈ B \ S, there

are r(b), d0(b) ∈ N∗, verifying r(b) ≤ r∗, d0(b) ≤ d∗0, and x1(b), . . . , xr(b)(b) ∈ H0(Xb, L|
d0(b)
Xb

),
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such that the A(b)-module B(b) := x1(b)A(b) + · · · + xr(b)(b)A(b) is a free A(b)-submodule of

R(d(b))(Xb, L|Xb
), such that

dimH0(Xb, L|
d(b)k
Xb

)− dimB(b)d(b)k ≤ Ckn−1. (4.18)

To see this, we first recall that in an arbitrary vector bundle, the rank of a set of holomorphic

sections at a given point is a lower semicontinuous function (in Zariski topology). We pick an

arbitrary b0 ∈ S, and construct the sections s1(b0), . . . , sn+1(b0) ∈ H0(Xb0 , L|
d(b0)
Xb0

) by Noether

normalization lemma as we did above. Extend them holomorphically (as sections of R0π∗L
d(b0))

to s1(b), . . . , sN(b0)(b) ∈ H0(Xb, L|
d(b0)
Xb

) for b in a small neighborhood U of b0.

We argue that away from a countable union of analytic subsets in U , the sections

s1(b), . . . , sn+1(b) ∈ H0(Xb, L|
d(b0)
Xb

) are algebraically independent. Indeed, this follows from

the above lower semicontinuity property, as for any k ∈ N∗, the set of k-homogeneous monomials

in s1(b), . . . , sn+1(b), b ∈ U , is free away from an analytic subset (which is a proper subset of U ,

as it doesn’t contain b0).

Now, we fix homogeneous elements x1(b0), . . . , xr(b0)(b0), in R(d(b0))(Xb0 , L|Xb0
), such that

the associated A(b0)-module B(b0) := x1(b0)A(b0) + · · · + xr(b0)(b0)A(b0) is free, and there is

C > 0, such that for any k ∈ N∗, we have (4.18) for b := b0. We extend x1(b0), . . . , xr(b0)(b0)
holomorphically in a neighborhood of b0. A similar argument to the one before shows that for any

b in this neighborhood away from a countable union of analytic subsets, the A(b)-module B(b),

defined analogously to B(b0), is free. Then, since by the flatness, dimH0(Xb, L|
d(b)k
Xb

) is a locally

constant function of b ∈ S, cf. [24, Theorem III.9.9], we conclude that inequality (4.18) holds for

b in this neighborhood away from a countable union of analytic subsets.

We then repeat this procedure for every point b0 ∈ B, and use the compactness of B, to extract

a finite cover of B by open subsets. In conclusion, a direct repetition of the argument in the proof

of Proposition 4.10 yields the following result.

Proposition 4.14. There is a countable union of proper analytic subsets S in B, such that the

following holds. For any D > 0, any sequence bl ∈ B \ S, l ∈ N, any family of submultiplicative

filtrations F(l) on R(Xbl, L|Xbl
), which is uniformly bounded in the sense that the absolute value

of the maximal and the minimal jumping numbers on degree k-part are bounded by Dk (uniformly

on l), and any convex Lipshitz function φ on R, there is C > 0, such that for any sufficiently

divisible k ∈ N∗, and any l ∈ N∗, we have

∣

∣

∣

∫

φ · dHk
∗ (η(F(l), Ak(bl)))−

∫

φ · dHk
∗ (η(F(l), H0(Xbl , L|

k
Xbl

)))
∣

∣

∣
≤
C

k
. (4.19)

Finally, to finish the argument, we need the following statement.

Proposition 4.15. There is C > 0, such that for any k ∈ N∗, l = (l1, . . . , lm−1) ∈ N∗(m−1), for any

generic regular curve C, which is a complete intersection in l[ωB], we have

µHN
min (Ek|C , l) ≥ −Ckl1 · · · lm−1, µHN

max(Ek|C , l) ≤ Ckl1 · · · lm−1. (4.20)

Proof. The result now follows from the linear (in k) bounds on µHN
min (Ek|C , (1, . . . , 1)),

µHN
max(Ek|C , (1, . . . , 1)), cf. Proposition 2.10, and Proposition 3.17.
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Proof of Theorem 4.7. We denote by S the subset from Proposition 4.14. For any l =
(l1, . . . , lm−1) ∈ N∗(m−1), consider a generic regular curve C = C(l) ⊂ B, which is a complete

intersection in l[ωB], and which is not contained in S. We consider an arbitrary point bl ∈ C(l)\S,

and denote by F(l) the filtration on R(Xbl , L|Xbl
) induced by the Harder-Narasimhan filtration on

Ek|C with slopes, divided by l1 · · · lm−1. Then by Proposition 4.15, the family of filtrations F(l)
is uniformly bounded in the sense of Proposition 4.14. By the results of Section 2, the filtrations

F(l) are submultiplicative. Then by Propositions 4.10 and 4.14, the decomposition (4.5) holds for

the sequence ak,l = k
∫

φdHk
∗ (η(F(l), Ak(bl))).

5 Numerical expressions for asymptotic slopes

The main goal of this section is to prove Corollary 1.4. For this, let us first recall the results of Xu-

Zhuang from [48]. We conserve the notations from the introduction, and assume for the moment

that dimB = 1. For a class α ∈ H1,1(X), we then define the nef (resp. psef) threshold of α with

respect to π as the supremum over all T ∈ R, such that α − T (π∗[ωB,0]/
∫

B
[ωB,0]) is nef (resp.

psef) for some Kähler class [ωB,0] on B.

Proposition 5.1. If dimB = 1, then ηHN
min (resp. ηHN

max) equals to nef (resp. psef) threshold of c1(L)
with respect to π. Moreover, we have ηHN

min = ess inf ηHN .

Proof. In [48, Proposition 2.28], authors proved that ess sup ηHN equals to psef threshold of c1(L)
with respect to π. From this and Theorem 2.2, we deduce the statement of Proposition 5.1 for ηHN

max.

In the proof of [48, Lemma 2.26], authors established that ηHN
min is not smaller than nef threshold

of c1(L) with respect to π. This finishes the proof of Proposition 5.1, as by Theorem 2.2, we have

ηHN
min ≤ ess inf ηHN , and by [48, Proposition 2.28], ess inf ηHN equals to nef threshold of c1(L)

with respect to π.

Let us now deduce formulas (1.5) from Proposition 5.1. By the definition of nefness, we see

that the nef threshold of c1(L) with respect to π equals

inf
C∈Cirr

∫

C
c1(L) ·

∫

C
π|∗C[ωB,0]

∫

B
[ωB,0]

, (5.1)

where Cirr was defined before (1.5). This gives us the first formula from (1.5) by the definition of

the topological degree. The proof of the second formula is identical, except that it is necessary to

use the characterization of the dual to the pseudoeffective cone in terms of movable curves due to

Boucksom-Demailly-Paun-Peternell [5, Theorem 2.2].

Proof of Corollary 1.4. Directly from Proposition 5.1, we have

η
HN |C
min,l = sup

{

T ∈ R : the class c1(L)|C − T ·
π∗[ωB,0]|C
∫

C
[ωB,0]

is nef

}

, (5.2)

where the curves C = C(l) are as in Theorem 1.2. Similar formulas hold for the maximal asymp-

totic slope. We deduce Corollary 1.4 by (5.2), the identity
∫

C
[ωB,0] = lm−1 ·

∫

B
[ωB,0] · · · [ωB,m−1]

and Theorem 1.2.

Let us now give another interpretation of Corollary 1.4. We say that a relatively ample Q-

line bundle L on X is stably ([ωB,1], . . . , [ωB,m−1])-generically fibered nef with respect to π if for

some (or any) ample line bundle L0 on X , for any ǫ > 0, ǫ ∈ Q, the Q-line bundle L ⊗ Lǫ
0 is

([ωB,1], . . . , [ωB,m−1])-generically fibered nef with respect to π.
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Proposition 5.2. A relatively ample line bundle L is stably ([ωB,1], . . . , [ωB,m−1])-generically

fibered nef with respect to π if and only if ηHN
min ≥ 0.

Proof. We assume first that ηHN
min ≥ 0. By Corollary 1.4, for any ǫ > 0, ǫ ∈ Q, the Q-line bundle

L ⊗ π∗Lǫ
1 is ([ωB,1], . . . , [ωB,m−1])-generically fibered nef with respect to π. But then for any

ample line bundle L0 on X , any ǫ > 0, ǫ ∈ Q, the Q-line bundle L⊗ Lǫ
0 is ([ωB,1], . . . , [ωB,m−1])-

generically fibered nef with respect to π, which means that L is stably ([ωB,1], . . . , [ωB,m−1])-
generically fibered nef with respect to π.

Inversely, assume that L is stably ([ωB,1], . . . , [ωB,m−1])-generically fibered nef with respect to

π. Let N ∈ N∗ be such that the line bundle L0 := L ⊗ π∗LN
1 is ample (such N exists since L is

relatively ample). Then for any ǫ > 0, ǫ ∈ Q, the Q-line bundle L ⊗ Lǫ
0 is ([ωB,1], . . . , [ωB,m−1])-

generically fibered nef with respect to π. However, since L⊗ Lǫ
0 = L1+ǫ ⊗ π∗LNǫ

1 , we see that the

([ωB,1], . . . , [ωB,m−1])-generic fibered nef threshold of c1(L) is non-negative, which by Corollary

1.4 means that ηHN
min ≥ 0, and this finishes the proof.

Remark 5.3. From the proof, we see that in the definition of stably ([ωB,1], . . . , [ωB,m−1])-
generically fibered nefness with respect to π, instead of ample line bundle L0 over X , we can

consider the pull-back of an ample line bundle over the base.

References

[1] M. F. Atiyah and R. Bott. The Yang-Mills equations over Riemann surfaces. Philos. Trans.

R. Soc. Lond., Ser. A, 308:523–615, 1983.

[2] B. Berndtsson. Probability measures associated to geodesics in the space of Kähler metrics.

In Algebraic and analytic microlocal analysis. AAMA, Evanston, Illinois, USA, May 14–

26, 2012 and May 20–24, 2013. Contributions of the workshops, pages 395–419. Cham:

Springer, 2018.

[3] F. A. Bogomolov. Stable vector bundles on projective surfaces. Russ. Acad. Sci., Sb., Math.,

81(2):1, 1994.

[4] S. Boucksom and H. Chen. Okounkov bodies of filtered linear series. Compos. Math.,

147(4):1205–1229, 2011.
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[44] S. S. Shatz. The decomposition and specialization of algebraic families of vector bundles.

Compos. Math., 35:163–187, 1977.

[45] G. Tian. On a set of polarized Kähler metrics on algebraic manifolds. J. Diff. Geom.,

32(1):99–130, 1990.

[46] M. Toma. Bounded sets of sheaves on relative analytic spaces. Ann. Henri Lebesgue, 4:1531–

1563, 2021.

[47] D. Witt Nyström. Test configurations and Okounkov bodies. Compos. Math., 148(6):1736–

1756, 2012.

[48] C. Xu and Z. Zhuang. On positivity of the CM line bundle on K-moduli spaces. Ann. Math.

(2), 192(3):1005–1068, 2020.
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