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QUASI-INVARIANCE OF GAUSSIAN MEASURES FOR THE 3d ENERGY

CRITICAL NONLINEAR SCHRÖDINGER EQUATION

CHENMIN SUN AND NIKOLAY TZVETKOV

Dedicated to Professor Carlos Kenig for his 70’s birthday with admiration

Abstract. We consider the 3d energy critical nonlinear Schrödinger equation with data dis-

tributed according to the Gaussian measure with covariance operator (1 − ∆)−s, where ∆ is

the Laplace operator and s is sufficiently large. We prove that the flow sends full measure sets

to full measure sets. We also discuss some simple applications. This extends a previous result

by Planchon-Visciglia and the second author from 1d to higher dimensions.

1. Introduction

1.1. Motivation. The seminal paper [17] initiated the study of Hamiltonian PDE’s with initial

data distributed according to the Gibbs measure which is constructed from the Hamiltonian

functional. The Gibbs measure construction is strongly inspired by earlier developments in

quantum field theory (see e.g. [20, 37]). These Gibbs measures are absolutely continuous

with respect to suitable Gaussian measures (or shifts of such Gaussian measures). They are at

least formally invariant under the corresponding Hamiltonian flow and therefore the underlying

Gaussian meaure (or its shift) are quasi-invariant under the flow.

In dimensions greater than or equal to two, in order to consider initial data distributed ac-

cording to the Gibbs measure a renormalization of the equation under consideration is required,

see e.g. [3, 6, 10, 12, 30, 33]. Such renormalizations have strong motivations from Physics but

they also make the results not so natural from a classical PDE perspective. A notable exception

is the cubic nonlinear Schrödinger equation for which a gauge transform links the (truncated)

equation and its renormalized version.

One may also observe that full Gibbs measure sets cover a very tiny part of the phase space

of a Hamiltonian PDE and also that the Gibbs measure plays no role in the dynamics of most of

the initial distributions of the initial data. Observe that this is in sharp contrast with Langevin

type dynamics where the (same) Gibbs measure plays a truly distinguished role because it

attracts all initial distributions.

Motivated by the above observations, in recent years there has been an activity aiming

to show that a more general set of gaussian measures are quasi-invariant under Hamiltonian

PDE’s, see [7, 11, 14, 15, 16, 18, 19, 21, 25, 26, 31, 32, 35, 34, 36, 38, 39]. Such results allow

to give a statistical description of the Hamiltonian flow for a larger class of initial distributions
1
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of the initial data (out of equilibrium dynamics). In particular, one obtains results for data

of arbitrary Sobolev regularity while the Gibbs measures live in low regularity Sobolev spaces.

Moreover, no renormalization of the equation is required (even if renormalized energies may be

used in the proof, see [36, 21, 39]). It is also worth to observe that it looks that the question

of quasi-invariance of gaussian measures for Hamiltonian PDE’s does not seem to have an

analogue in the context of dissipative PDE’s.

Most of the results quoted in the previous paragraph are dealing with 1d models. The only

results in dimensions ≥ 2 are [36, 21, 39]. They are dealing with non linear wave equations. The

approach used in these works, based on renormalized energies, does not apply to the nonlinear

Schrödinger equation (NLS) because of the lack of explicit smoothing in the equation. Our

goal here is to resolve this issue and prove the quasi-invariance of Gaussian measures supported

by sufficiently regular functions under the NLS flow in higher dimensions. Our approach is

based on normal form reductions as in [31, 32, 35] combined with a soft analysis initiated in

[25]. The main new idea in this paper is the identification of a remarkable cancellation of the

worse pairing when estimating the divergence of the Hamiltonian vector field with respect to

a weighted Gaussian measure (see Section 7 below). The weight is naturally produced by the

normal form reduction and therefore is related to the nature of the resonant set (while is the

wave equation case the weight is related to the potential energy). This remarkable cancellation

is certainly related to the Hamiltonian structure and hopefully may be used in other contexts.

Our result is only giving qualitative quasi-invariance for sufficiently regular initial distributions.

Therefore several challenging issues remain open (see the remarks after the statement of the

main result).

1.2. Main result. In this work we will study the most challenging model to which we succeeded

to make work our approach. Therefore, we consider the defocusing energy-critical NLS

i∂tu+∆u = |u|4u, (t, x) ∈ R× T
3, (1.1)

where T3 := R3/(2πZ)3. Equation (1.1) is a Hamiltonian system with the conserved mass and

energy:

M [u] :=

∫

T3

|u|2dx, H [u] :=
1

2

∫

T3

|∇u|2dx+ 1

6

∫

T3

|u|6dx.

These conservation laws allow to construct relatively easily global weak solutions of (1.1) in the

Sobolev spaces H1(T3) via basic compactness arguments. Unfortunately such techniques are

not suitable to prove uniqueness and propagation of higher Sobolev regularities. Thanks to the

remarkable work by Ionescu-Pausader [23] (based on the previous contributions [2, 4, 9, 22, 24])

we know that (1.1) is globally well posed in Hs(T3), s ≥ 1. Namely, for every u0 ∈ Hs(T3),

s ≥ 1 there exists a unique global solution of (1.1) in C(R;Hs(T3)) such that u(0, x) = u0(x).

Let us denote by Φ(t) the Ionescu-Pausader flow of (1.1).

When studying the statistical properties of (1.1), we assume that the initial data are dis-

tributed according to the Gaussian probability measure µs, formally defined as “ 1
Z e

− 1
2
‖u‖2

Hsdu”,
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induced by the random Fourier series

φω(x) :=
∑

k∈Z3

gk(ω)√
1 + |k|2s

eik·x , (1.2)

where (gk)k∈Z3 are independent, identically distributed standard complex Gaussian random

variables. Thanks to the Kakutani theorem we know that for at least s ≥ 10 the measure µs is

absolutely continuous with respect to the Gaussian measure with covariance operator (1−∆)−s

(see e.g. [36] for such an application of the Kakutani theorem). It is well-known that

supp(µs) = H(s− 3
2
)−(T3) :=

⋂

σ<s− 3
2

Hσ(T3)

and µs(H
s− 3

2 (T3)) = 0. Therefore bigger s is more regular are typical functions with respects

to µs. Thanks to [23], when s > 5
2
, the flow Φ(t) of (1.1) exists globally on Hσ(T3) for any

1 ≤ σ < s − 3
2
. In particular, a unique global solution exists for any initial data on supp(µs),

s > 5
2
. Our main result reads as follows.

Theorem 1.1. Assume that s ≥ 10. Then µs is quasi-invariant under Φ(t). More precisely,

for every t ∈ R, (Φ(t))∗µs ≪ µs ≪ (Φ(t))∗µs, where (Φ(t))∗µs is the push forward of µs by

Φ(t).

In the statement above, the notation µ≪ ν for two measures µ, ν means that µ is absolutely

continuous with respect to ν.

In the proof of Theorem 1.1 below, we retain us of using arithmetic arguments such as

the divisor bound. Therefore the result of Theorem 1.1 remains valid for irrational tori with

essentially the same proof.

In view of [1], it seems hopeless to construct a Gibbs measure for (1.1) (and any other

energy critical problem). This gives a further motivation for studying quasi-invariant Gaussian

measures for (1.1) or any other model for which the Gibbs measure construction fails.

The result of Theorem 1.1 remains true (with a simpler proof) for the cubic 3d NLS

i∂tu+∆u = |u|2u, (t, x) ∈ R× T
3,

and also for the 2d NLS with an arbitrary polynomial defocusing nonlinearity.

As already mentioned, Theorem 1.1 only gives qualitative quasi-invariance. It would be

interesting to obtain quantitative bounds on the resulting Radon-Nikodym derivatives. Such

quantitative bounds were obtained in some previous works on the subject, the most notable

being the paper by Forlano-Tolomeo [16] where such quantitative informations on the Radon-

Nikodym derivative are used in order to perform the Bourgain globalization argument, i.e.

quasi-invariance is used in order to construct the flow. The Forlano-Tolomeo argument is

performed for a 1d model and it would be very interesting to extend it to higher dimensions.

In particular, it would be interesting to decide whether Theorem 1.1 holds in the supercritical
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regime, i.e. for some s < 5
2
(in this regime the existence of the flow should rely on a probabilistic

well-posedness in the spirit of [28]). But at this stage it is even not clear to us how to prove

Theorem 1.1 in the natural subcritical range s > 5
2
. By using the dispersive effects we can relax

slightly the assumption s ≥ 10 but it would still be away for the natural subcritical assumption

s > 5
2
. In summary, much more remains to be understood concerning the transport of µs under

the NLS flow and its connection with the probabilistic well-posedness theory.

1.3. Applications. In this section we present two simple corollaries of Theorem 1.1. Recall

that the random field (1.2) is a stationary Gaussian process on T2. In particular, for each

fixed x ∈ T2, φω(x) is a complex Gaussian random variable with law NC(0, σ
2), where σ2 =

∑
k∈Z3

1
1+|k|2s . Consequently, the probability density of φω(x) is 1

2πσ
e−

|y|2

2σ dy on C = R2. In

particular, the law of φω(x) is absolutely continuous with respect to the Lebesgue measure. A

natural question is to study the regularity of the law for the random variable u(t, x), evolved by

(1.1) with the initial data φω. This type of problems has been intensively studied in the field of

Stochastic analysis. For many classes of stochastic (partial) differential equations, the regularity

of laws of solutions can be obtained via the Malliavin Calculus (see the book of Nualart [29]

and references therein). The Malliavin Calculus was originally developed by P. Malliavin [27]

to bring a new proof of Hörmander’s theorem for hypoelliptic operators. We do not intend to

include any element of the Malliavin Calculus in this article, but to give a simple application of

the quasi-invariance property to obtain the absolutely continuity for the law of solutions of NLS

with random initial data, which can be viewed as a pointwise version of the quasi-invariance

property of the NLS equation displayed by Theorem 1.1.

Corollary 1.2. Assume that s ≥ 10 and fix (t0, x0) ∈ R × T3. Let u(t, x, ω) be the solution

of (1.1) with data (1.2). Then the law of the complex random variable ω 7→ u(t0, x0, ω) has a

density with respect to the Lebesgue measure on C.

In order to prove Corollary 1.2, we observe that we need to study the composition of Φ(t)

and the evaluation map u 7→ u(t0, x0). Then it suffices to apply Theorem 1.1 for Φ(t) and

the observation before the statement of Corollary 1.2 for the evaluation map. It is likely that

the Malliavin Calculus can be useful to get regularity properties of the densities appearing in

the statement of Corollary 1.2. In Corollary 1.2, one may replace the evaluation map by other

finite dimensional projections. For instance, one may show that for every k ∈ Z3, the law of

the Fourier coefficient û(t, k, ω) has a density with respect to the Lebesgue measure on C.

Let us also emphasize that the Malliavin Calculus methods can be applied to prove quasi-

invariance for maps from infinite dimensional gaussian spaces to finite dimensional spaces, while

in Theorem 1.1 we deal with the more complex situation of a map from an infinite dimensional

gaussian space to itself.

Another simple consequence of Theorem 1.1 is the following L1-stability result.



QUASI-INVARIANT MEASURES FOR THE ENERGY CRITICAL NLS 5

Corollary 1.3. Assume that s ≥ 10. Let f1, f2 ∈ L1(dµs) and Φ(t) the flow of (1.1). Then

for any t ∈ R, the transports of measures f1(u)dµs(u), f2(u)dµs(u) by Φ(t) are given by

F1(t, u)dµs(u) and F2(t, u)dµs(u) respectively, for suitable F1(t, ·), F2(t, ·) ∈ L1(dµs). More-

over,

‖F1(t, ·)− F2(t, ·)‖L1(dµs) = ‖f1 − f2‖L1(dµs).

One may prove Corollary 1.3 by performing the computations from [40]. A more direct proof

can be given by observing that Φ(t) is a measurable map and therefore the total variation

distance between F1(t, u)dµs(u) and F2(t, u)dµs(u) is smaller than the total variation distance

between f1(u)dµs(u) and f2(u)dµs(u). This implies that

‖F1(t, ·)− F2(t, ·)‖L1(dµs) ≤ ‖f1 − f2‖L1(dµs).

Using the reversibility of the NLS flow we get the inverse inequality.

The remaining part of this paper is devoted to the proof of Theorem 1.1. In Section 2 we

perform the normal form reduction, we define accordingly suitable weighted Gaussian measures

and we state the key energy estimates. In Section 3 we perform the soft analysis leading from

the energy estimates to the quasi-invariance result stated in Theorem 1.1. In Section 4 we

introduce our basic counting tool and the Wiener chaos estimate useful for our purposes. In

Section 5 we decompose the divergence of the Hamiltonian vector field with respect to the

weighted Gaussian measures in several pieces according to the possible pairings. In Section 6

we estimates the contributions of the first generation. Section 7 deals with the most singular

contribution resulting from pairings between different generations. This is the most delicate

part of our analysis containing the remarkable algebraic cancellations mentioned above. In

Section 8 we treat the remainder terms in which the singular pairings are not presented. Finally

in an Appendix we prove some approximation results for (1.1), crucially exploited in Section 3.

Let us emphasize that because of the critical nature of the Cauchy problem for (1.1), the

approximation argument is much more delicate compared to the previous literature on quasi-

invariant Gaussian measures for Hamiltonian PDE’s.

Acknowledgments. This work is partially supported by the ANR project Smooth ANR-22-

CE40-0017. The authors would like to thank Alexis Knezevitch for pointing out an error in a

previous version of the manuscript.

2. Modified energy and the weighted Gaussian measure

2.1. An approximated system. Fix a radial cutoff function χ ∈ C∞
c (R3) such that χ ≡ 1 on

[−1
2
, 1
2
]3 and supp(χ) ⊂ {|x| < 1}. For N ∈ N, set χN(·) := χ(N−1·) and SN = χN (

√
−∆) the

smooth frequency truncation and ΠN = 1√
−∆≤N the sharp frequency truncation. By definition,

SNΠN = ΠNSN = SN , S∗
N = SN .
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The advantage of using the operator SN is that SN is uniformly bounded on Lp(T3) for 1 <

p <∞, which is crucial when taking the limit of the approximated system in the energy critical

case. Similar to the situation in [8], we consider the following smoothly approximated NLS

equation
{

i∂tuN +∆uN = SN(|SNuN |4SNuN),
uN |t=0 = u0 ∈ Hσ(T3).

(2.1)

As in [8], the solution of (2.1) can be decomposed as two components on EN := ΠNL
2(T3) and

E⊥N := (Id−ΠN )L
2(T3). This naturally leads to a splitting of µs as dµs = dµs,N⊗dµ⊥

s,N for every

N ∈ N, where µs,N is a measure on EN while µ⊥
s,N is a measure on E⊥N . The finite-dimensional

part of (2.1) on EN is a Hamiltonian system (see [8, Lemma 8.1]), while the infinite-dimensional

part is the linear evolution eit∆. Thanks to the Cauchy-Lipchitz theorem and the defocusing

nature, the solution of (2.1) is global and we denote by ΦN (t) its flow, which can be factorized

as (Φ̃N (t), e
it∆) on EN × E⊥N , where Φ̃N (t) is the restriction of ΦN(t) on the finite-dimensional

space EN , which is a Hamiltonian flow on EN . By convention, we denote Φ(t) by Φ∞(t).

2.2. Poincaré-Dulac normal form and the modified Energy. To construct suitable weighted

measures for our study, we must identify a modified energy functional. Consider a smooth so-

lution uN(t) of (2.1). We introduce a new unknown:

v(t) = e−it∆uN(t).

Expanding v(t) in the Fourier series, we have:

v(t, x) =
∑

k∈Z3

vk(t)e
ik·x,

from which it follows that vk(t) satisfies the equation:

i∂tvk(t) = χN(k)
∑

k1−k2+k3−k4+k5=k
e−itΩ(~k) ·

(
5∏

j=1

χN(kj)

)
· vk1(t)vk2(t) · · · vk5(t), (2.2)

where

Ω(~k) =
5∑

j=1

(−1)j−1|kj|2 − |k|2

is the resonant function.

To construct the modified energy, it is more convenient to use an equivalent of the Sobolev

norm for s ≥ 0:

|||f |||2Hs(T3) :=
∑

k∈Z3

(1 + |k|2s)|f̂(k)|2.
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A simple computation using symmetry of indices yields

1

2

d

dt
|||v(t)|||2Hs =−

1

6
Im

∑

k1−k2+···−k6=0

ψ2s(~k)e
−itΩ(~k)

( 6∏

j=1

χN (kj)
)
vk1vk2 · · · vk6 , (2.3)

where in the above expression, we abuse the notation slightly and denote

ψ2s(~k) =

6∑

j=1

(−1)j−1|kj|2s, Ω(~k) =

6∑

j=1

(−1)j−1|kj|2.

The basic estimate for ψ2s(~k) is

|ψ2s(~k)| . |k(1)|2s−2(|k(3)|2 + |Ω(~k)|),
where |k(1)| ≥ |k(2)| ≥ · · · ≥ |k(6)| is rearrangement of k1, · · · , k6 and k1− k2 + · · · − k6 = 0 (see

Lemma 4.1 below). Note that each vkj will be accompanied with χN (kj), and the capital N

plays no role in our analysis, we will simply write wkj := χN(kj)vkj in the sequel. Note that

i∂twk = χN(k)
2

∑

k1−k2+k3−k4+k5=k
e−itΩ(~k) · wk1wk2 · · ·wk5 . (2.4)

In order to truncate the level set of the resonant function, we further introduce the symmetric

factor

λ(~k) =
( 6∑

j=1

|kj|2
) 1

2
.

As the resonant function Ω(~k) takes integer values1, we will decompose the set of indices

k1, · · · , k6 according to the level set of Ω(~k). In order to perform the differentiations by parts

in time, we further write

1

2

d

dt
|||v(t)|||2Hs =−

1

6
Im

∑

k1−k2+···−k6=0

χ
( Ω(~k)

λ(~k)δ0

)
ψ2s(~k)e

−itΩ(~k)wk1wk2 · · ·wk6

− 1

6
Im

∑

k1−k2+···−k6=0

(
1− χ

( Ω(~k)

λ(~k)δ0

)) ψ2s(~k)

−iΩ(~k)
∂t

(
e−itΩ(~k)wk1wk2 · · ·wk6

)

+
1

6
Im

∑

k1−k2+···−k6=0

(
1− χ

( Ω(~k)

λ(~k)δ0

)) ψ2s(~k)

−iΩ(~k)
e−itΩ(~k)∂t(wk1wk2 · · ·wk6), (2.5)

where 0 < δ0 <
2
3
is close to 2

3
(here we denote by χ a standard bump function from R to R).

Motivated by the above formula, we define the modified energy (with w = χN(
√
−∆)v)

Es,t(v) :=
1

2
|||v|||2Hs(T2) +Rs,t(w), (2.6)

1This fact is not essential for our result and the proof. Though we keep to work on the rational torus for

convenience.
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where

Rs,t(w) :=
1

6
Im

∑

k1−k2+···−k6=0

(
1− χ

( Ω(~k)

λ(~k)δ0

)) ψ2s(~k)

−iΩ(~k)
e−itΩ(~k)wk1wk2 · · ·wk6.

Changing back to the variable u, the modified energy is

Es,t(v) = Es,N(u) :=
1

2
|||u|||2Hs(T2) +Rs,N(u), (2.7)

where

Rs,N(u) :=
1

6
Im

∑

k1−k2+···−k6=0

(
1− χ

( Ω(~k)

λ(~k)δ0

)) ψ2s(~k)

−iΩ(~k)
·
( 6∏

j=1

χN (kj)
)
· ûk1ûk2 · · · ûk6 . (2.8)

We define Rs(u) as Rs,N(u) without
∏6

j=1 χN (kj). Sometimes Rs(u) will be denoted by Rs,∞(u).

We similarly define Es(u) which may also be denoted by Es,∞(u).

The modified energy (2.7) will play a crucial role in our analysis. We refer to [42] for a survey

on the use of modified energies in the analysis of dispersive PDE’s.

Then from (2.5) and the equation (2.2) of uN(t), and symmetry of indices, we have (with

wk = χN(k)vk)

d

dt
Es,N(uN(t)) =

d

dt
Es,t(v) = −

1

6
Im

∑

k1−k2+···−k6=0

χ
( Ω(~k)

λ(~k)δ0

)
ψ2s(~k)e

−itΩ(~k)wk1wk2 · · ·wk6

+
1

2
Im

∑

k1−k2+···−k6=0

(
1− χ

( Ω(~k)

λ(~k)δ0

))ψ2s(~k)

Ω(~k)

×
∑

k1=p1−p2+···+p5

e−it
(
Ω(~k)+Ω(~p)

)
χN (k1)

2wp1wp2 · · ·wp5wk2 · · ·wk6

− 1

2
Im

∑

k1−k2+···−k6=0

(
1− χ

( Ω(~k)

λ(~k)δ0

))ψ2s(~k)

Ω(~k)

×
∑

k2=q1−q2+···+q5

e−it
(
Ω(~k)−Ω(~q)

)
χN(k2)

2wk1wq1 · · ·wq5wk3 · · ·wk6 ,

(2.9)

where

Ω(~p) =

5∑

j=1

(−1)j−1|pj|2 − |k1|2, Ω(~q) =

5∑

j=1

(−1)j−1|qj|2 − |k2|2.

2.3. The weighted measure. Using the modified energy, we define the weighted Gaussian

measure for given R > 1

dρs,R,N(u) = χR(‖u‖Hσ) · e−Rs,N (u)dµs,N(u), dρs,R,N(u) := dρs,R,N ⊗ dµ⊥
s,N , (2.10)

where the functional Rs,N(u) is defined by (2.8) and χR(·) = χ(R−1·) is a cutoff.
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Proposition 2.1 (Local existence of the weighted measure). Let s ≥ 10, R ≥ 1, σ < s − 3
2
,

close to s − 3
2
and N ∈ N. Then for any p ∈ [1,∞), there exists a uniform in N constant

C(p, s, R) > 0, such that
∥∥χR(‖u‖Hσ) · e|Rs,N (u)|∥∥

Lp(dµs)
≤ C(p, s, R).

Moreover, for fixed R > 0,

lim
N→∞

∥∥χR(‖u‖Hσ)e−Rs,N (u) − χR(‖u‖Hσ)e−Rs(u)
∥∥
Lp(dµs)

= 0.

Recall that ΦN (t) is the flow of (2.1) while Φ∞(t) = Φ(t) is the flow of (1.1). Another key

proposition is the following weighted energy estimate:

Proposition 2.2 (Weighted energy estimate). Let s ≥ 10, R ≥ 1, σ < s − 3
2
, close to s − 3

2

and N ∈ N ∪ {∞}. Set
Qs,N(u) =

d

dt
Es,N(ΦN (t)u)|t=0

and denote by BHσ

R the centered ball in Hσ(T3) of radius R. Then there exist constants

C(s, R) > 0 and β ∈ (0, 1), such that for all p ∈ [2,∞) and N ∈ N ∪ {∞},
‖1BHσ

R
(u) ·Qs,N(u)‖Lp(dµs) ≤ C(s, R)pβ.

Thanks to Proposition 2.1, we have also for all N ∈ N ∪ {∞}, p ∈ [1,∞),

‖1BHσ

R
(u) ·Qs,N(u)‖Lp(ρs,R,N ) ≤ C(s, R)pβ.

The proof of above two propositions will occupy the main part of the article. To prove the

quasi-invariance of the full system, we need to pass to the limit N → ∞ in the approximated

equation (2.1). This will be done in the next section.

3. Proof of the quasi-invariance assuming energy estimates

In this section we prove Theorem 1.1, assuming Proposition 2.1 and Proposition 2.2.

3.1. Approximation theory for the energy-critical NLS.

Proposition 3.1. Assume that σ ≥ 1. There exists a constant Λ(R, T ) > 0, depending only

on T > 0, R > 0 and σ ≥ 1, such that for any u ∈ BHσ

R ,

sup
|t|≤T
‖Φ(t)u‖Hσ + sup

|t|≤T
‖ΦN (t)u‖Hσ ≤ Λ(R, T ), ∀N ∈ N.

Proposition 3.2. Assume that σ ≥ 1. Let K be a compact subset of Hσ(T3) and T > 0. Then

uniformly in |t| ≤ T and u ∈ K,

lim
N→∞

‖ΦN(t)u− Φ(t)u‖Hσ = 0.
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Observe that since ΦN(t) and Φ(t) are continuous we have that for any |t| ≤ T and N ∈ N,

ΦN (t)(K),Φ(t)(K) are also compacts in Hσ(T3). The proof of Proposition 3.1, Proposition 3.2

will be given in the Appendix.

3.2. Proof of quasi-invariance. First, we prove:

Lemma 3.3. Let T ≥ 1. Let A ⊂ BHσ

R be a Borel measurable set. Then there exist ǫ0 > 0 and

Cs,R,T > 0, such that for all N ∈ N and |t| ≤ T , µs(ΦN(t)(A)) ≤ Cs,R,T · µs(A)
1−ǫ0

4 .

Proof. Let Λ(R, T ) > 0 be the constant in Proposition 3.1, such that for all R > 0, N ∈ N∪{∞},

ΦN(t)(B
Hσ

R ) ⊂ BHσ

Λ(R,T ), |t| ≤ T.

Denote R1 := Λ(Λ(R, T ), T ), and we consider the weighted measure

dρs,R1,N(u) =ρs,R1,N(u)⊗ dµ⊥
s,N

=χR1(‖u‖Hσ)
1

ZN
e−Es,N (u)

( ∏

|k|≤N
dûk

)
⊗ dµ⊥

s,N ,

where ZN > 0 is the normalizing constant appearing in the finite-dimensional truncation of the

Gaussian measure

dµs,N(u) =
1

ZN
e−

1
2

∑
|k|≤N (1+|k|2s)|ûk|2

( ∏

|k|≤N
dûk

)
.

For A ⊂ BHσ

R , from Proposition 3.1, for any |t1|, |t2| ≤ T and N ∈ N,

ΦN (t2) ◦ ΦN (t1)(A) ⊂ BHσ

R1
.

In particular, for any u ∈ A, |t| ≤ 2T , ‖ΦN(t)u‖Hσ ≤ R1. Now for |t0| ≤ T, |t| ≤ 1, using that

for χR1(‖ΦN(t)u‖Hσ) ≡ 1 for u ∈ A, as in [35, 36, 38], we can obtain the following change of

variable formula

ρs,R1,N(ΦN (t0 + t)(A)) =

∫

A

1

ZN
e−Es,N (ΠNΦN (t0+t)u)

∏

|k|≤N
dûk dµ

⊥
s,N(u).

Observe that

Qs,N(u) =
d

dt
Es,N(ΦN (t)u)|t=0 =

d

dt
Es,N(ΠNΦN (t)u)|t=0 .

Taking the time derivative of the above equality and evaluate it at t = 0, we obtain the identity

d

dt
ρs,R1,N(ΦN (t0 + t)(A))|t=0 =−

∫

A

1

ZN
Qs,N(ΦN (t0)u) e

−Es,N (ΠNΦN (t0)u)
∏

|k|≤N
dûk dµ

⊥
s,N(u)

=−
∫

ΦN (t0)(A)

1

ZN
Qs,N(u) e

−Es,N(ΠNu)
∏

|k|≤N
dûk dµ

⊥
s,N(u),
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where we again used the change of variable formula. As for u ∈ ΦN(t0)(A), 1 ≤ χR1(‖u‖Hσ),

we obtain the inequality
∣∣∣ d
dt
ρs,R1,N(ΦN (t)(A))|t=t0

∣∣∣

≤
∫

ΦN (t0)(A)

χR1(‖u‖Hσ)
1

ZN
|Qs,N(u)| e−Es,N(ΠNu)

∏

|k|≤N
dûk dµ

⊥
s,N(u)

=

∫

ΦN (t0)(A)

|Qs,N(u)|dρs,R1,N(u)

≤‖Qs,N(u)‖Lp(dρs,R1,N
) · ρs,R1,N(ΦN (t0)(A))

1− 1
p .

Thanks to the last assertion of Proposition 2.2, the function

F (t) := ρs,R1,N(ΦN (t)(A)),

satisfies the inequality

F ′(t) ≤ Cs,R · pβF (t)1−
1
p , ∀|t| ≤ T, p <∞

Integrating the differential inequality above, we obtain that

F (t) ≤
(
F (0)

1
p + Cs,R · p−(1−β)t

)p ≤ F (0)eCR,stp
βF (0)

− 1
p

.

Without loss of generality, we assume that F (0) = µs(A) > 0. By optimizing the choice

p = 2 + log
( 1

F (0)

)
,

we conclude that there exists ǫ0 ∈ (0, 1), such that

F (t) ≤ CR,s,TF (0)
1−ǫ0, ∀|t| ≤ T,

namely

ρs,R1,N(ΦN (t)(A)) ≤ CR1,s,Tρs,R1,N(A)
1−ǫ0, ∀|t| ≤ T.

Finally, as ΦN(t)(A) ⊂ BHσ

R1/2
,

µs(ΦN (t)(A)) =

∫

ΦN (t)(A)

χR1(‖u‖Hσ) · eRs,N (u)dρs,R,N(u).

By Cauchy-Schwarz and the L2-integrability of χR1(‖u‖Hσ)·eRs,N (u) with respect to dµs (Propo-

sition 2.1),

µs(ΦN(t)(A)) ≤‖χR1(‖u‖Hσ)eRs,N (u)‖L2(dρs,R,N )ρs,R,N(Φ(t)(A))
1
2

≤‖χR1(‖u‖Hσ)e|Rs,N (u)|‖
1
2

L1(dµs)
·
√
CR1,s,Tρs,R1,N(A)

1−ǫ0
2

≤ C ′
R1,s,Tρs,R1,N(A)

1−ǫ0
2 , (3.1)

Again, since A ⊂ BHσ

R ⊂ BHσ

R1
,

ρs,R1,N(A) ≤ ‖χR1(‖u‖Hσ)eRs,N (u)‖L2(dµs)µs(A)
1
2 ≤ CR1,sµs(A)

1
2 .
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Plugging into (3.1), we complete the proof of Lemma 3.3. �

Proof of Theorem 1.1. Let T > 0, we first show that for any compact set K ⊂ BHσ

R , |t| ≤ T ,

µs(Φ(t)(K)) ≤ Cs,2R,T · µs(K)
1−ǫ0

4 .

Indeed, applying the approximation theory (Proposition 3.2) to the set Φ(t)(K), which is

compact, for any small ǫ > 0, there exists N0 ∈ N, such that for all N ≥ N0,

ΦN (−t)(Φ(t)(K)) ⊂ Φ(−t)(Φ(t)(K)) +BHσ

ǫ = K +BHσ

ǫ ,

thus Φ(t)(K) ⊂ ΦN (t)(K +BHσ

ǫ ), consequently,

µs(Φ(t)(K)) ≤ µs(ΦN(t)(K +BHσ

ǫ )).

Since for small ǫ > 0, K +BHσ

ǫ ⊂ BHσ

2R , Lemma 3.3 implies that

µs(Φ(t)(K)) ≤ µs(ΦN (t)(K +BHσ

ǫ )) ≤ Cs,2R,T · µs(K +BHσ

ǫ )
1−ǫ0

4 . (3.2)

We are going to take the limit ǫ→ 0 in the inequality above, using the fact that µs is regular.

Before doing that, we have to show that for any open set G ⊃ K, there exists ǫ > 0, such that

G ⊃ K +BHσ

ǫ .

Since K is compact, for any open set G ⊃ K, there exist finitely many balls B1, · · ·Bm of Hσ

such that

K ⊂
m⋃

j=1

Bj ⊂
m⋃

j=1

2Bj ⊂ G,

where 2Bj is the ball with the same center as Bj and with radius twice of Bj. In particular,

there exists ǫ1 > 0, such that for all 0 < ǫ < ǫ1,

K +BHσ

ǫ ⊂ G.

To see this, we take ǫ1 <
1
4
min{radius(Bj) : j = 1, · · · , m}. Then for any u ∈ K + Bσ

ǫ1 , there

exists u0 ∈ K, such that ‖u− u0‖Hσ < ǫ1. As K is covered by Bj , there is a ball, say B1 with

center u1, such that ‖u0 − u1‖Hσ < radius(B1). Hence u ∈ 2B1 ⊂ G.

Recall that Gaussian measures are regular, namely, for any Borel set A

µs(A) = inf{µs(G) : G ⊃ A, G open in Hσ}
=sup{µs(F ) : F ⊂ A, F compact and Borel in Hσ}

we can take ǫ→ 0 on the right hand side of (3.2) to obtain the estimate

µs(Φ(t)(K)) ≤ Cs,2R,T · µs(K)
1−ǫ0

4 , (3.3)

as desired.
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Finally we assume that A ⊂ BHσ

R is an arbitrary Borel set. Since Φ(t) is a continuous

bijection on Hσ(T3), Φ(t)(A) is also a Borel set (view Φ(t)(A) = (Φ(−t))−1(A)). Thus there

exists a sequence of compact sets Kn ⊂ Φ(t)(A), such that

µs(Φ(t)(A)) = lim
n→∞

µs(Kn).

For fixed |t| ≤ T , set Fn = Φ(−t)(Kn), by the bijectivity of Φ(t), Kn = Φ(t)(Fn). Since Fn are

also compact (Proposition 3.2), we deduce that

µs(Kn) = µs(Φ(t)(Fn)) ≤ CR1,s,T · µs(Fn)
1−ǫ0

4 .

Observe that Kn = Φ(t)(Fn) ⊂ Φ(t)(A), again from the bijectivity, Fn ⊂ A, thus

µs(Kn) ≤ CR1,s,T · µs(A)
1−ǫ0

4 .

Letting n→∞, we deduce that

µs(Φ(t)(A)) ≤ CR1,s,T · µs(A)
1−ǫ0

4 .

In particular, if µs(A) = 0, we must have µs(Φ(t)(A)) = 0. This proves the quasi-invariance

property of µs along the flow Φ(t). �

4. Preliminaries for the energy estimates

In this section, we summarize several frequently used preliminary results as well as some

notations.

4.1. Deterministic tools. For a given set of frequencies k1, k2, · · · , km, we denote k(1), k(2), · · · , k(m)

a non-increasing rearrangement such that

|k(1)| ≥ |k(2)| ≥ · · · ≥ |k(m)|.
Similarly, for a given set of dyadic integers N1, N2, · · · , Nm, we denote N(1), N(2), · · · , N(m) a

non-increasing rearrangement such that

N(1) ≥ N(2) ≥ · · · ≥ N(m).

We have the following estimate on the the function ψs which measures the lack of conservation

of Hs based quantities.

Lemma 4.1. Set

ψ2s(~k) =

6∑

j=1

(−1)j−1|kj|2s, Ω(~k) =

6∑

j=1

(−1)j−1|kj|2.

Then for k1 − k2 + k3 − k4 + k5 − k6 = 0,

|ψ2s(~k)| . |k(1)|2s−2[|Ω(~k)|+ |k(3)|2].
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Proof. We can suppose that |k(3)| ≪ |k(2)|, otherwise the estimate reduces to the straightforward

bound |ψ2s(~k)| . |k(1)|2s. Essentially, there are two different cases : k(1) = k1, k(2) = k2 and

k(1) = k1, k(2) = k3. In the second case we can again use the bound |ψ2s(~k)| . |k(1)|2s. Let is
now suppose that k(1) = k1, k(2) = k2. By the mean-value theorem,

∣∣|k1|2s − |k2|2s
∣∣ . |k(1)|2(s−1)

∣∣|k1|2 − |k2|2
∣∣ . |k(1)|2s−2[|Ω(~k)|+ |k(3)|2].

This completes the proof of Lemma 4.1. �

For linear constraints, we denote

hkι11 k
ι2
2 ···kιmm := 1ι1k1+ι2k2+···+ιmkm=0,

where ιj ∈ {+1,−1}, identified also as {+,−}, the signature of frequencies k1, · · · , km. For

example,

hk+1 k
−
2 k

+
3 k

−
4 k

+
5 k

−
6
= 1k1−k2+k3−k4+k5−k6=0.

We will frequently use the following elementary counting bound:

Lemma 4.2. Assume that n ≥ 2 and given dyadic numbers N1, N2, · · ·Nn. Then uniformly in

K ∈ Z3, κ ∈ R and ιj ∈ {+1,−1}, we have

∑

k1,k2,··· ,kn
ιiki+ιjkj 6=0,∀i 6=j

1ι1k1+ι2k2+···+ιnkn=K · 1ιl1 |k1|2+···+ιln |kn|2=κ

( n∏

j=1

1|kj |∼Nj

)
. N2

(2)

n∏

j=3

N3
(j),

where we adopt the convention that when n = 2, the bound on the right hand side is N2
(2).

Remark 4.3. The counting bound stated here is very rough but it already fits our need. By

using some arithmetic, one can improve it when n ≥ 3 or n = 2 and ι1 = ι2. We refer to

Lemma 4.5 of [13] for such an improvement . The estimate of Lemma 4.2 has the advantage to

hold with the same (trivial) proof on a general torus.

Next we recall the following conditional Wiener chaos estimate for multi-linear expression of

complex Gaussian random variables. In the sequel we adopt the notation z+ = z and z− = z

for a complex number z ∈ C.

Lemma 4.4 (Wiener chaos estimate). Consider the multi-linear expression of Gaussian:

F (ω′, ω) =
∑

k1,··· ,kn

ck1,··· ,kn(ω
′) ·

n∏

j=1

g
ιj
kj
(ω),

where the random variables ck1,··· ,kn(ω
′) are independent of complex standard i.i.d. Gaussians

gkj(ω). Then for any p ≥ 2, we have

‖F (ω′, ω)‖Lp
ω
≤ Cp

n
2 ‖F (ω′, ω)‖L2

ω
.
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We state the Wiener chaos estimate in above form since later on we will use Lemma 4.4 for

Lp estimates for high-frequency Gaussians conditioning to some σ-algebra generated by low-

frequency Gaussians (see also [41] for a statement involving conditional expectation). Starting

from [5], in recent years such conditioned Wiener chaos estimates were extensively use in the

field of random dispersive PDE’s.

5. Decomposion of the differential of the modified energy

Recall from (2.9) that

Qs,N(w) = Im
(
− 1

6
R0(w) +

1

2
R1(w)−

1

2
R2(w)

)
,

where

R0(w) :=
∑

k1−k2+···−k6=0

χ
( Ω(~k)

λ(~k)δ0

)
ψ2s(~k)wk1wk2 · · ·wk6, (5.1)

R1(w) :=
∑

k1−k2+···−k6=0
k1=p1−p2+p3−p4+p5

(
1− χ

( Ω(~k)

λ(~k)δ0

))ψ2s(~k)

Ω(~k)
χN (k1)

2wp1wp2 · · ·wp5wk2 · · ·wk6 (5.2)

and

R2(w) :=
∑

k1−k2+···−k6=0
k2=q1−q2+q3−q4+q5

(
1− χ

( Ω(~k)

λ(~k)δ0

))ψ2s(~k)

Ω(~k)
χN (k2)

2wk1wq1 · · ·wq5wk3 · · ·wk6 . (5.3)

Comparing to the estimate for R0(w), the major difficulty in estimating R1(w),R2(w) is the

existence of pairing contributions between different generations (wkj and wpj (or wkj and wqj)).

Roughly speaking, the singular pairing contributions in R1(v) are (up to symmetry)

• |k1| ∼ |k2| ≫ |k3|+ |k4|+ |k5|+ |k6|, |k1| ∼ |k2| ≫ |p2|+ |p3|+ |p4|+ |p5| and p1 = k2;

• |k1| ∼ |k3| ≫ |k2|+ |k4|+ |k5|+ |k6|, |k1| ∼ |k3| ≫ |p1|+ |p3|+ |p4|+ |p5| and p2 = k3.

Now we identify these pairing contributions precisely:

Λ1,1 :=
{
(p1, · · · , p5, k2, · · · , k6) :

5∑

j=1

(−1)j−1pj +

6∑

i=2

(−1)i−1ki = 0,

k2 = p1,
∑

i∈{3,4,5,6}
|ki| ≤ |k1|θ + |k2|θ,

∑

j∈{2,3,4,5}
|pj | ≤ |k1|θ + |k2|θ

}

(5.4)
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and

Λ1,2 :=
{
(p1, · · · , p5, k2, · · · , k6) :

5∑

j=1

(−1)j−1pj +
6∑

i=2

(−1)i−1ki = 0,

k3 = p2,
∑

i∈{2,4,5,6}
|ki| ≤ |k1|θ + |k3|θ,

∑

j∈{1,3,4,5}
|pj| ≤ |k1|θ + |k3|θ

}
,

(5.5)

where 0 < θ < δ0
2
< 1

3
is close to 1

3
. We define correspondingly

S1,1(w) :=
∑

Λ1,1

χN(k1)
2|wk2|2

(
1− χ

( Ω(~k)

λ(~k)δ0

))ψ2s(~k)

Ω(~k)
wk3wk4wk5wk6 · wp2wp3wp4wp5 (5.6)

and

S1,2(w) :=
∑

Λ1,2

χN (k1)
2|wk3|2

(
1− χ

( Ω(~k)

λ(~k)δ0

))ψ2s(~k)

Ω(~k)
wk2wk4wk5wk6 · wp1wp3wp4wp5. (5.7)

Similarly, the pairing contributions in R2 are (up to symmetry)

S2,1(w) :=
∑

Λ2,1

χN(k2)
2|wk1|2

(
1− χ

( Ω(~k)

λ(~k)δ0

))ψ2s(~k)

Ω(~k)
wk3wk4wk5wk6 · wq3wq2wq5wq4 (5.8)

and

S2,2(w) :=
∑

Λ2,2

χN (k2)
2|wk4|2

(
1− χ

( Ω(~k)

λ(~k)δ0

))ψ2s(~k)

Ω(~k)
wk1wk3wk5wk6 · wq1wq3wq5wq4. (5.9)

where

Λ2,1 :=
{
(k1, q1, · · · , q5, k3, · · · , k6) :

5∑

j=1

(−1)jqj +
∑

i∈{1,3,4,5,6}
(−1)i−1ki = 0,

k1 = q1,
∑

i∈{3,4,5,6}
|ki| ≤ |k1|θ + |k2|θ,

∑

j∈{2,3,4,5}
|qj | ≤ |k1|θ + |k2|θ

}
,

(5.10)

and

Λ2,2 :=
{
(k1, q1, · · · , q5, k3, · · · , k6) :

5∑

j=1

(−1)jqj +
∑

i∈{1,3,4,5,6}
(−1)i−1ki = 0,

k4 = q2,
∑

i∈{1,3,5,6}
|ki| ≤ |k2|θ + |k4|θ,

∑

j∈{1,3,4,5}
|qj | ≤ |k2|θ + |k4|θ

}
.

(5.11)
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k6

p1

k1 k2

S1,1: p1 is paired with k2

k6

p2

k1 k3

S1,2: p2 is paired with k3

k6

k1

q1

k2

S2,1: q1 is paired with k1

k6

q2

k4k2

S2,2: q2 is paired with k4

Figure 1: Configurations of trees with two generations. The filled nodes

have a + sign, indicating the absence of a conjugate bar of the Fourier mode,

while the unfilled nodes have a − sign, signifying the presence of a conjugate

bar of the Fourier mode. Each parent node generates five children nodes,

displaying alternating signs. Up to symmetry, there are four distinct pairings

across the two generations, giving the contributions Si,j, i, j = 1, 2.

By symmetry, we have

R1(w) = 9S1,1(w) + 4S1,2(w) +R1,3(w), (5.12)

and

R2(w) = 9S2,1(w) + 4S2,2(w) +R2,3(w), (5.13)

where in the expression of remainders R1,3(w) we have either |k(3)| & |k(1)|θ or |k(3)| . |k(1)|θ
and the dominating frequencies are either non-paired or paired within the same generation.

Here k(1) · · · , k(10) is a rearrangement of leaves p1, p2, p3, p4, p5, k2, k3, k4, k5, k6 such that |k(1)| ≥
|k(2)| ≥ · · · ≥ |k(10)|. We define similarly the remainder R2,3(w). More precisely, we distinguish

three different types in R1,3(w) (and in R2,3(w)) with the corresponding constraints in the sum
∑

k1−k2+k3−k4+k5−k6=0
k1=p1−p2+p3−p4+p5

(· · · ) :

• Type A:
∑10

j=3 |k(j)| > |k(1)|θ + |k(2)|θ.
• Type B:

∑10
j=3 |k(j)| ≤ |k(1)|θ+ |k(2)|θ and {k(1), k(2)} ⊂ {k2, k3, k4, k5, k6} or {k(1), k(2)} ⊂

{p1, p2, p3, p4, p5}.
• Type C:

∑10
j=3 |k(j)| ≤ |k(1)|θ + |k(2)|θ, k(1) 6= k(2) and

k(1) ∈ {k2, k3, k4, k5, k6}, k(2) ∈ {p1, p2, p3, p4, p5}
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or

k(2) ∈ {k2, k3, k4, k5, k6}, k(1) ∈ {p1, p2, p3, p4, p5}.
Recall that we have to estimate the Lp(dµs) norm of

Qs,N(w) = −
1

6
ImR0(w) +

1

2
ImR1(w)−

1

2
ImR2(w).

In Section 6, we estimate the first generation contribution R0(w), and in Section 7, we estimate

the pairing contributions

Im(S1,j − S2,j), j = 1, 2.

Finally in Section 8, we finish the estimate for remainders in the second generationR1,3(w),R2,3(w).

6. Energy estimate I: the first generation

Denote

R(w) :=
∑

k1−k2+···−k6=0

(
1− χ

( Ω(~k)

λ(~k)δ0

))ψ2s(~k)

Ω(~k)
wk1wk2 · · ·wk6, (6.1)

R0(w) :=
∑

k1−k2+···−k6=0

χ
( Ω(~k)

λ(~k)δ0

)
ψ2s(~k)wk1wk2 · · ·wk6. (6.2)

Proposition 6.1. Assume that δ0 <
2
3
. There exists β ∈ (0, 1), such that for any R > 0 and

p ∈ [2,∞) we have

‖1BHσ

R
(w)R(w)‖Lp(dµs) + ‖1BHσ

R
(w)R0(w)‖Lp(dµs) ≤ C(R)pβ.

Proof. Before proceeding to the estimates, we first observe that without loss of generality, we

may assume that there is no pairing between frequencies with different signatures in the sum

defining R0(w) or R(w). Indeed, if this is the case, say k1 = k2 are paired, then the resonant

function will degenerate to |k3|2−|k4|2+|k5|2−|k6|2 and the energy weight ψ2s(~k) will degenerate

to |k3|2s−|k4|2s+ |k5|2s−|k6|2s. Therefore, this pairing contribution in R0(w) or R(w) reduces
to some power of ‖w‖2L2 times a similar term with two less degrees of homogeneity2, and the

treatment of such a reduced term is similar (simpler) than R0(w) or R(w). So in the sequel

of the proof, we implicitly assume that there is no pairing between frequencies with different

signatures in all the sums.

• Estimate of R0(w):

Pick α ∈ (0, 1), close enough to 1, we split R0(w) as I + II, where

I :=
∑

|k(3)|>|k(1)|α
k1−k2+···−k6=0

χ
( Ω(~k)

λ(~k)δ0

)
ψ2s(~k)wk1wk2 · · ·wk6

2For over pairing contributions, the over-paired part can be controlled by a power of ‖w‖2
L2 .
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and

II :=
∑

|k(3)|≤|k(1)|α
k1−k2+···−k6=0

χ
( Ω(~k)

λ(~k)δ0

)
ψ2s(~k)wk1wk2 · · ·wk6 .

To estimate I, we only exploit deterministic analysis. The order of wkj , wkj plays no significant

role in the analysis. Therefore, without loss of generality, we assume that in the sum, |k1| ≥
|k2| ≥ |k3| ≥ |k4| ≥ |k5| ≥ |k6|. Taking the absolute value in the sum, we have

I .
∑

|k3|>|k1|α
k1−k2+···−k6=0,

1|Ω(~k)|.|k1|δ0 1|k1|≥|k2|≥···≥|k6| · |k1|2s−2(|k3|2 + |Ω(~k)|)|wk1 · · ·wk6|

.
∑

N1≥N2≥···N6
N3&Nα

1

IN1,···N6 ,

where the summations are performed on the dyadic values of N1, · · ·N6 and

IN1,···N6 :=
∑

|κ|.Nδ0
1

∑

|k3|>|k1|α
k1−k2+···−k6=0

Ω(~k)=κ

N2s−2
1 N2

3

6∏

j=1

1|kj |∼Nj
|wkj |,

provided that α > 1
3
thanks to the restriction 0 < δ0 <

2
3
. Using the Cauchy-Schwarz inequality

in the k1, k2 summations, we can write

IN1,···N6 . N2s−2
1 N2

3‖PN1w‖L2‖PN2w‖L2

6∏

j=3

(∑

kj∈Z
1|kj |∼Nj

|wkj |
)
,

where PN is the frequency projector to |k| ∼ N . Therefore, for N3 & Nα
1 and w ∈ BHσ

R , we

have a crude estimate

IN1,···N6 . R6N2s−2
1 N2

3 N
−2σ
1 N

3
2
−σ

3 .R N
3
2
+2s−2σ

1 N−ασ
1 ,

which is conclusive as far as (2+α)σ > 2s+ 3
2
. The last restriction is easily satisfied by taking

α close to 1 as far as s > 15
2
.

Next, we estimate II. We decompose II dyadically as
∑

N1,··· ,N6
IIN1,··· ,N6, where

IIN1,··· ,N6 :=
∑

|k(3)|≤|k(1)|α
k1−k2+···−k6=0

χ
( Ω(~k)

λ(~k)δ0

)
ψ2s(~k)wk1wk2 · · ·wk6

6∏

j=1

1|kj |∼Nj
.

For this contribution, we mainly rely on the Wiener chaos estimates.

Without loss of generality, we assume that N1 ∼ N2 ∼ N(1), N(3) = N3 (since the analysis of

cases N1 ∼ N3 ∼ N(1), N2 ∼ N(3) or N1 ∼ N3 ∼ N(1), N5 ∼ N(3) are similar or simpler).

Denote B≪N1 the σ-algebra generated by Gaussians (gk(ω))|k|≤N1/100. Note that we have the

constraint N3 ≤ Nα
1 for some α < 1, close to 1, and we only need to consider the contribution
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where N1 is sufficiently large so that Nα
1 ≪ N1

100
. Consequently, 1|kj |wkj , j = 3, 4, 5, 6 are all

B≪N1 measurable and the random function

∑

|k|∼N1

gk(ω)√
1 + |k|2s

eik·x

is independent of B≪N1 , we have

‖IIN1,··· ,N6 · 1BHσ

R
(w)‖Lp(dµs) ≤‖IIN1,··· ,N6 · 1BHσ

R
(P≤N1/100w)‖Lp(dµs)

≤
∥∥‖IIN1,··· ,N6‖Lp(dµs |B≪N1

) · 1BHσ

R
(P≤N1/100w)

∥∥
L∞(dµs)

,

where P≤N1/100 is the frequency projection to |k| ≤ N1/100 and Lp(dµs|B≤N1/100) means the

Lp norm conditioned to the σ-algebra B≤N1/100. By the conditional Wiener-chaos estimate (see

Lemma 4.4 ), we have

‖IIN1,··· ,N6‖Lp(dµs|B≪N1
) . p‖IIN1··· ,N6‖L2(dµs|B≪N1

)

. p(N1N2)
−s
( ∑

|k1|∼N1

|k2|∼N2

∣∣∣
∑

k3,k4,k5,k6
k3−k4+k5−k6=k2−k1

|Ω(~k)|.Nδ0
1

ψ2s(~k)wk3wk4wk5wk6

6∏

j=3

1|kj |∼Nj

∣∣∣
2) 1

2
.

(6.3)

By Cauchy-Schwarz,

∑

|k1|∼N1

|k2|∼N2

∣∣∣
∑

k3,k4,k5,k6
k3−k4+k5−k6=k2−k1

|Ω(~k)|.Nδ0
1

ψ2s(~k)wk3wk4wk5wk6

6∏

j=3

1|kj |∼Nj

∣∣∣
2

≤
( ∑

|k1|∼N1

|k2|∼N2

∑

k3,k4,k5,k6
k3−k4+k5−k6=k2−k1

|Ω(~k)|.Nδ0
1

|ψ2s(~k)|2|wk6|2
6∏

j=3

1|kj |∼Nj

)

× sup
|k1|,|k2|∼N

∑

k3−k4+k5−k6=k2−k1

|wk3wk4wk5|2
6∏

j=3

1|kj |∼Nj
.

Since |ψ2s(~k)|2 . N
4(s−1)
1 (N4

3 + |Ω(~k)|2), the first sum on the right hand-side can be bounded

by (below we implicitly insert the constraint |kj| ∼ Nj)
∑

|k6|∼N6

|wk6|2
∑

|κ|.Nδ0
1

∑

k1,k2,k3,k4,k5

N
4(s−1)
1 (N4

3 + κ2) hk1k2k3k4k5k6(κ)

.N−2σ
6 ‖w‖2HσN

4(s−1)
1

(
N4

3N
δ0
1 N2

2 (N3N4N5)
3 +N3δ0

1 N2
2 (N3N4N5)

3
)

.‖w‖2HσN−2σ
6 N4s−4

1 (N4
3N

δ0
1 +N3δ0

1 )N2
2N

3
3N

3
4N

3
5 ,
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where we used Lemma 4.2 and the notation

hk1k2k3k4k5k6(κ) := 1k1−k2+k3−k4+k5−k6=0 · 1Ω(~k)=κ.

Plugging into (6.3), we obtain that

‖IIN1,··· ,N6‖Lp(dµs|B≪N1
) . pN−1

1 (N2
3N

δ0
2

1 +N
3δ0
2

1 )N
3
2
3 N

−σ
3

6∏

j=3

‖wNj
‖Hσ

. p
(
N

δ0
2
−1

1 N
7
2
−σ

3 +N
3δ0
2

−1

1 N
3
2
−σ

3

)
‖w‖4Hσ .

Since δ0 <
2
3
and σ > 7

2
, the above quantity can be controlled by

pN
−(1− 3δ0

2
)

1 ‖w‖4Hσ .

Hence

‖IIN1,··· ,N61BHσ

R
(w)‖Lp(dµs) . pN

−(1− 3δ0
2

)

(1) R4.

Here since we gain a negative power in N(1), by interpolating with the crude deterministic

estimate

|IIN1,··· ,N61BHσ

R
(w)| . N2s−2σ

(1) ‖w‖6Hσ ≤ N
2(s−σ)
(1) R6,

we conclude the estimate for R0(w).

• Estimate of R(w): The estimate for R(w) is similar (simpler) to the estimate for R0(w)

and we only sketch the proof. Indeed, comparing to the estimate of R0(w), the only difference

is that the weight χ
(

Ω(~k)

λ(~k)δ0

)
is now replaced by

(
1− χ

( Ω(~k)

λ(~k)δ0

)) 1

Ω(~k)
.

We similarly split R(w) similarly as I′ + II′, where

I′ :=
∑

|k(3)|>|k(1)|α
k1−k2+···−k6=0

(
1− χ

( Ω(~k)

λ(~k)δ0

))ψ2s(~k)

Ω(~k)
wk1wk2 · · ·wk6 ,

II′ :=
∑

|k(3)|≤|k(1)|α
k1−k2+···−k6=0

(
1− χ

( Ω(~k)

λ(~k)δ0

))ψ2s(~k)

Ω(~k)
wk1wk2 · · ·wk6

and we invoke the inequalities

∑

N
δ0
(1)

.|κ|.N2
(1)

1

|κ| . log(N(1)),
∣∣∣ψ2s(~k)

Ω(~k)

∣∣∣ . |k(1)|2s−2(|k(3)|2 + 1).

The proof of Proposition 6.1 is now complete. �
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7. Energy estimate II: the pairing contributions in the second generation

In this section, we estimate the singular contributions. Recall the definition of Si,j in (5.6)-

(5.9).

Proposition 7.1. There exist C > 0 and β = β(θ, s) ∈ (0, 1), such that for j ∈ {1, 2}, R ≥ 1

and p ∈ [2,∞), we have

‖ Im
(
S1,j(w)− S2,j(w)

)
1BHσ

R
(w)‖Lp(dµs) ≤ CpβR10.

Remark 7.2. To explain the difficulty, we remark that the singular contributions Si,j(w)
(i, j ∈ {1, 2}) prevents us to use Wiener-chaos estimate to gain the square root cancellation.

Nevertheless, it turns out that there is an extra cancellation when one takes the imaginary part

of Si,j(w). To understand the hidden cancellation, for S1,1(v), one can think about the sum is

taken over |k3|, · · · , |k6|, |p2|, · · · , |p5| = O(1), then

ψ2s(~k)

Ω(~k)
≈ |k1|

2s − |k2|2s
|k1|2 − |k2|2

,

and the second sum in the definition of S1,1 is completely decoupled and we have

S1,1(w) =−
∑

k1,k2

χN(k1)
2|wk2|2

|k1|2s − |k2|2s
|k1|2 − |k2|2

∣∣∣
∑

|k3|+|k4|+|k5|+|k6|≤|k2|θ
k3−k4+k5−k6=k2−k1

wk3wk4wk5wk6

∣∣∣
2

+ error ,

where the main contribution is obviously real.

Remark 7.3. However, it turns out that the cancellation described in Remark 7.2 alone is

not enough to conclude, as the error term in the formula above is not negligible if we estimate

individually S1,j(w) and S1,j(w), j = 1, 2. What saves us is that these expressions there is

some symmetric structure so that we can exploit some extra probabilistic cancellation and a

deterministic smoothing. Let us explain theses points with more details. With the identification

of (q3, q2, q5, q4) = (p2, p3, p4, p5) (without changing kj), we observe that Λ2,1 = Λ1,1 and

S2,1(w) =
∑

Λ1,1

χN(k2)
2|wk1|2

ψ2s(~k)

Ω(~k)

(
1− χ

( Ω(~k)

λ(~k)δ0

))
wk3wk4wk5wk6 · wp2wp3wp4wp5. (7.1)

Therefore,

ImS1,1(w)− ImS2,1(w) = Im
∑

Λ1,1

(χN(k1)
2|wk2|2 − χN (k2)2|wk1|2)

ψ2s(~k)

Ω(~k)

(
1− χ

( Ω(~k)

λ(~k)δ0

))

× wk3wk4wk5wk6 · wp2wp3wp4wp5. (7.2)
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For j = 2, due to the special position, there is no such cancellation in Im
(
S1,2(w)− S2,2(w)

)
.

Indeed,

S2,2(w) =
∑

k2,k4

χN(k2)
2|wk4|2

∑

k1+k3+k5−k6=k2+k4
q1+q3+q5−q4=k2+k4

|k1|+|k3|+|k5|+|k6|≤|k2|θ+|k4|θ
|q1|+|q3|+|q4|+|q5|≤|k2|θ+|k4|θ

ψ2s(~k)

Ω(~k)

(
1− χ

( Ω(~k)

λ(~k)δ0

))
wk1wk3wk5wk6 · wq1wq3wq5wq4

By switching the indices (k1, k3, k5) with (k2, k4, k6) and identifying (q1, q3, q4, q5) as (p1, p3, p4, p5)

in Λ2,2, we deduce that

S2,2(w) = S1,2(w),

where we used the fact that ψ2s(~k)

Ω(~k)
is invariant by the switching of indices (k1, k3, k5) and

(k2, k4, k6). Therefore,

ImS1,2(w)− ImS2,2(w) = −2 ImS2,2(w). (7.3)

The good news is that in the expression ImS1,2(v), we only need to exploit the first cancellation

explained in Remark 7.2, since the resonant function Ω(~k) ≈ |k1|2 + |k3|2 ∼ |k(1)|2 has a

significantly larger size which provides a smoothing effect.

Proof of Proposition 7.1. We separate the analysis for j = 1 and j = 2.

• Estimate for j = 1:

Set

Ψ(~k) :=
ψ2s(~k)

Ω(~k)

(
1− χ

( Ω(~k)

λ(~k)δ0

))
− |k1|

2s − |k2|2s
|k1|2 − |k2|2

(
1− χ

( |k1|2 − |k2|2
(|k1|2 + |k2|2)δ0/2

))
.

We need an elementary lemma:

Lemma 7.4. On Λ1,1 defined in (5.4), for sufficiently large |k(1)|, we have

|Ψ(~k)| . |k(1)|
2s−2|k(3)|2

|Ω(~k)|
1|Ω(~k)|&|k(1)|δ0 ,

where we recall that in the definition of Λ1,1, θ <
δ0
2
.

Proof. Note that on Λ1,1, {k1, k2} = {k(1), k(2)} and |k(3)|2 . |k(1)|2θ ≪ λ(~k)δ0 . Thanks to the

support property of χ, if |Ω(~k)| ≪ |k(1)|δ0 ∼ λ(~k)δ0 , we must have

Ψ(~k) = −|k1|
2s − |k2|2s

|k1|2 − |k2|2
(
1− χ

( |k1|2 − |k2|2
(|k1|2 + |k2|2)δ0/2

))
,

and ||k1|2 − |k2|2| & (|k1|2 + |k2|2)δ0/2 ∼ λ(~k)δ0 , otherwise Ψ(~k) = 0. Thus

|k(1)|δ0 . ||k1|2 − |k2|2| = |Ω(~k)| −O(|k(3)|2),
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which contradicts to the fact that |k(3)|2 ≪ |k(1)|δ0. Therefore, we assume that |Ω(~k)| & |k(1)|δ0
and consequently |k1| 6= |k2| in the sequel.

Set

G = |k3|2 − |k4|2 + |k5|2 − |k6|2, F = |k3|2s − |k4|2s + |k5|2s − |k6|2s

and write

ψ2s(~k) =
|k1|2s − |k2|2s
|k1|2 − |k2|2

(Ω(~k)−G) + F.

Hence

Ψ(~k) =
|k1|2s − |k2|2s
|k1|2 − |k2|2

[(
1− G

Ω(~k)

)(
1− χ

( Ω(~k)

λ(~k)δ0

))
−
(
1− χ

( |k1|2 − |k2|2
(|k1|2 + |k2|2)δ0/2

))]

+
F

Ω(~k)

(
1− χ

( Ω(~k)

λ(~k)δ0

))
.

Since |F | . |k(3)|2s, |G| . |k(3)|2 and

∣∣∣ |k1|
2s − |k2|2s

|k1|2 − |k2|2
∣∣∣ . |k(1)|2s−2,

we deduce that

|Ψ(~k)| . |k(1)|
2s−2|k(3)|2
|Ω(~k)|

(
1− χ

( Ω(~k)

λ(~k)δ0

))
+ |k(1)|2s−2

∣∣∣χ
( Ω(~k)

λ(~k)δ0

)
− χ

( |k1|2 − |k2|2
(|k1|2 + |k2|2)δ0/2

)∣∣∣.

(7.4)

The first term on the right hand side of (7.4) satisfies the claimed bound. It remains to evaluate

the second one. By the mean value theorem, there exists α ∈ [0, 1] such that

χ
( Ω(~k)

λ(~k)δ0

)
− χ

( |k1|2 − |k2|2
(|k1|2 + |k2|2)δ0/2

)
= χ′(ξα)

( Ω(~k)

λ(~k)δ0
− |k1|2 − |k2|2

(|k1|2 + |k2|2)δ0/2
)
,

where

ξα =
Ω(~k)

λ(~k)δ0
− α

( Ω(~k)

λ(~k)δ0
− |k1|2 − |k2|2

(|k1|2 + |k2|2)δ0/2
)
.

Thanks to the support properties of χ′, when the second term on the right hand side of (7.4)

is non zero, we must have |ξα| ∼ 1. In this case, a direct computation yields

Ω(~k)

λ(~k)δ0
− |k1|2 − |k2|2

(|k1|2 + |k2|2)δ0/2
=

Ω(~k)

λ(~k)δ0
· (|k1|

2 + |k2|2)δ0/2 − λ(~k)δ0
(|k1|2 + |k2|2)δ0/2

+
G

(|k1|2 + |k2|2)δ0/2
.

Note that |(|k1|2 + |k2|2)δ0/2 − λ(~k)δ0 | . |k(3)|δ0 , we deduce that

∣∣∣ Ω(
~k)

λ(~k)δ0
− ξα

∣∣∣ . α
|k(3)|δ0
λ(~k)δ0

∣∣∣ Ω(
~k)

λ(~k)δ0
− ξα

∣∣∣ + α
|k(3)|δ0
λ(~k)δ0

|ξα|+
|G|
λ(~k)δ0

.
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As |G| . |k(3)|2 . λ1(~k)
2θ ≪ λ(~k)δ0 for large enough |k(1)|, we deduce that

∣∣∣ Ω(
~k)

λ(~k)δ0
− ξα

∣∣∣ . |k(3)|2λ(~k)−δ0 . λ(~k)−δ0+2θ ≪ 1.

Since |Ω(~k)| & |k(1)|δ0 , the second term on the right hand side of (7.4) is bounded by

1|Ω(~k)|∼|k(1)|δ0 ·
|k(1)|2s−2|k(3)|2

λ(~k)δ0
∼ 1|Ω(~k)|∼|k(1)|δ0 ·

|k(1)|2s−2|k(3)|2

|Ω(~k)|
.

This completes the proof of Lemma 7.4. �

The key observation is that

∑

Λ1,1

(χN(k1)
2|wk2|2 − χN (k2)2|wk1|2)

[ψ2s(~k)

Ω(~k)

(
1− χ

( Ω(~k)

λ(~k)δ0

))
−Ψ(~k)

]

× wk3wk4wk5wk6 · wp2wp3wp4wp5

=
∑

k1,k2

(χN(k1)
2|wk2|2 − χN(k2)2|wk1|2)

|k1|2s − |k2|2s
|k1|2 − |k2|2

(
1− χ

( |k1|2 − |k2|2
(|k1|2 + |k2|2)δ0/2

))

×
∣∣∣

∑

k3−k4+k5−k6=k2−k1
|k3|+|k4|+|k5|+|k6|≤|k1|θ+|k2|θ

wk3wk4wk5wk6

∣∣∣
2

is real-valued and it disappears when taking the imaginary part.

Therefore it suffices to show that there exists β = β(s, θ, δ0) ∈ (0, 1), such that

‖J(w)1‖w‖Hσ≤R‖Lp(dµs) . pβR10. (7.5)

where

J(w) :=
∑

Λ1,1

Ψ(~k)(χN(k1)
2|wk2|2 − χN (k2)2|wk1|2)wk3wk4wk5wk6 · wp2wp3wp4wp5. (7.6)

Since in the above expression, the contribution of k1 = k2 is zero, below we always implicitly

assume that k1 6= k2.

For dyadic numbersN1, N2, N3, N4, N5, N6,M2,M3,M4,M5, we decompose accordingly w
Nj

kj
=

wkj1|kj |∼Nj
and wMi

pi
= vpi1|pi|∼Mi

. It suffices to show that

‖JN1,··· ,N6;M2,··· ,M5(w)1‖w‖Hσ≤R‖Lp(dµs) . pβN−γ
(1)R

10 (7.7)

for some β ∈ (0, 1) and γ > 0, where JN1,··· ,N6;M2,··· ,M5 is the same expression as J(w) by

replacing the inputs wkj , wpi to w
Nj

kj
, wMi

pi
. By definition of Λ1,1, we have N1 ∼ N2 and

N3 + · · ·+N6 +M2 + · · ·+M5 . N θ
1 .
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By Lemma 7.4 and the fact that |Ω(~k)| & N δ0
(1) > N2θ

(1) & N2
(3), a crude deterministic estimate

leads to

|JN2,··· ,M5(w)| .
∑

Λ1,1

N
2(s−1)
1 N2

(3)

|Ω(~k)|
1k1 6=k2(|wN2

k2
|2 + |wN1

k1
|2)|wN3

k3
· · ·wN6

k6
| · |wM2

p2
· · ·wM5

p5
|

.
∑

Λ1,1

N
2(s−1)
1 1k1 6=k2(|wN2

k2
|2 + |wN1

k1
|2)|wN3

k3
· · ·wN6

k6
| · |wM2

p2 · · ·wM5
p5 |,

and the right hand side ca be bounded by

N
2(s−1)
1 (‖wN1

k1
‖2l2 + ‖wN2

k2
‖2l2)‖wN3

k3
‖l1 · · · ‖wN6

k6
‖l1‖wM2

p2 ‖l1 · · · ‖wM5
p5 ‖l1

.N
2(s−1)
1 N−2σ

1 (‖wN1

k1
‖2hσ + ‖wN2

k2
‖2hσ)‖wN3

k3
‖hσ · · · ‖wM5

p5
‖hσ · (N3 · · ·M5)

−σ+ 3
2

.N
2(s−1−σ)
1 (N3 · · ·M5)

−σ+ 3
2‖w‖10Hσ .

Therefore, we obtain the first bound

|JN1,··· ,M5(w)|1‖w‖Hσ≤R . N
2(s−1−σ)
1 (N3 · · ·M5)

−(σ− 3
2
)R10. (7.8)

As σ < s− 3
2
, we need to improve the above bound using Wiener chaos estimates. We further

split

JN1,··· ,M5(w) := J̃N1,··· ,M5(w) +RN1,··· ,M5(w),

where

J̃N1,··· ,M5(w) :=
∑

Λ1,1

Ψ(~k)
[
χN(k1)

2
(
|wN2

k2
|2 − 1√

1 + |k1|2s
)
− χN(k2)2

(
|wN1

k1
|2 − 1√

1 + |k2|2s
)]

×wN3
k3
wN4
k4
wN5
k5
wN6
k6
· wM2

p2
wM3
p3
wM4
p4
wM5
p5
, (7.9)

and

RN1,··· ,M5 :=
∑

Λ1,1

Ψ(~k)
( χN (k1)

2

√
1 + |k2|2s

− χN(k2)
2

√
1 + |k1|2s

)
wN3

k3
wN4

k4
wN5

k5
wN6

k6
· wM2

p2 w
M3
p3 w

M4
p4 w

M5
p5 .

For |k1| ∼ |k2| ∼ N1 ∼ N2, by the mean-value theorem and the fact that χN(k1)−χN (k2) takes
the form χ̃(|k1|2/N2)− χ̃(|k2|2/N2), we have

∣∣∣ χN (k1)
2

√
1 + |k2|2s

− χN(k2)
2

√
1 + |k1|2s

∣∣∣ .
|Ω(~k)|+ |k(3)|2
|k(1)|2(s+1)

.
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Thus the remainder term RN1,··· ,M5 can be estimated by the previous deterministic manipulation

(recall that |Ω(~k)| & N δ0
(1) > N2θ

(1) in the sum)

N
2(s−1)+2θ−2(s+1)
1

∑

Λ1,1

1k1 6=k2
|Ω(~k)|+N2θ

1

|Ω(~k)|
|wN3

k3
· · ·wM5

p5 |

.N−4+2θ
1 ·N3

1‖wN3
k3
‖l1 · · · ‖wM5

p5
‖l1

.N−1+2θ
1 ‖wN3

k3
‖hσ · · · ‖wM5

p5
‖hσ(N3 . . .M5)

−σ+ 3
2

.N−1+2θ
1 (N3 · · ·M5)

−(σ− 3
2
)‖w‖8Hσ . N−1+2θ

(1) R8, (7.10)

which is conclusive as far as θ < 1
2
and σ > 3

2
.

We next estimate J̃N1,··· ,M5. We will not make use of the cancellation in the difference

χN(k1)
2

√
1 + |k2|2s

− χN(k2)
2

√
1 + |k1|2s

so we treat separately and in the same manner the contribution of each term. .

Let B≪N1 be the σ-algebra generated by Gaussians gkj , |kj| ≪ N1 and P≪N1 the frequency

projector to |k| ≪ N1. In particular, gk1, gk2 for |k1| ∼ N1, |k2| ∼ N2 are independent of the

σ-algebra B≪N1 . We have

‖J̃N1,··· ,M5(w)1‖w‖Hσ≤R‖pLp(dµs)
≤ E

µs [Eµs [|J̃N1,··· ,M5(w)1‖P≪N1
w‖Hσ≤R|p|B≪N1 ]].

As P≪N1w,w
N3
k3
, · · · , wM5

p5 are B≪N1-measurable, by the Wiener chaos estimate conditional to

B≪N1 ,

(
E
µs [|J̃N1,··· ,M5(w)1‖P≪N1

w‖Hσ≤R|p|B≪N1]
) 1

p

≤Cp
( ∑

|k2|∼N2

1

〈k2〉4s
∣∣∣

∑

k3−k4+k5−k6=p2−p3+p4−p5

Ψ(~k)wN3

k3
· · ·wM5

p5

∣∣∣
2) 1

2 · 1‖P≪N1
w‖Hσ≤R.

By Lemma 7.4 and Cauchy-Schwarz, we bound the above expression by

CpN−2+2θ
2

( ∑

Λ1,1,k1 6=k2

1

|Ω(~k)|2
) 1

2‖wN3
k3
‖l2 · · · ‖wM5

p5 ‖l2 · 1‖P≪N1
w‖Hσ≤R

.CpN−2+2θ
2 ·N2‖wN3

k3
‖hσ · · · ‖wM5

p5
‖hσ(N3 · · ·M5)

−σ+ 3
2 · 1‖P≪N1

w‖Hσ≤R

.CpN−1+2θ
1 R8,

provided that σ > 3
2
. Therefore,

‖J̃N1,··· ,M5(w)1‖w‖Hσ≤R‖Lp(dµs) . pN−1+2θ
1 R8.
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Combining with (7.10) and interpolating with (7.8), we deduce that there exist constants C > 0,

β = δ(s, θ) ∈ (0, 1), such that for any p ≥ 2 and R ≥ 1,

‖JN1,··· ,M5(w)1‖w‖Hσ≤R‖Lp(dµs) ≤ CpβN−1+2θ
(1) R10, (7.11)

which is conclusive since θ < 1
3
.

• Estimate for j = 2: It suffices to estimate ImS1,2(w). Recall that

S1,2(w) :=
∑

Λ1,2

χN(k1)
2|wk3|2

(
1− χ

( Ω(~k)

λ(~k)δ0

))ψ2s(~k)

Ω(~k)
wk2wk4wk5wk6 · wp1wp3wp4wp5,

and on Λ1,2, |Ω(~k)| ∼ |k(1)|2 ≫ λ(~k)δ0 , thus

ψ2s(~k)

Ω(~k)

(
1− χ

( Ω(~k)

λ(~k)δ0

))
=
ψ2s(~k)

Ω(~k)
.

Set

Ψ̃(~k) :=
ψ2s(~k)

Ω(~k)
− |k1|

2s + |k3|2s
|k1|2 + |k3|2

.

By mean-value theorem, we easily deduce that:

Lemma 7.5. On Λ1,2 defined in (5.5), for sufficiently large |k(1)|, we have

|Ψ̃(~k)| . |k(1)|
2s−2|k(3)|2
|Ω(~k)|

1|Ω(~k)|∼|k(1)|2.

Since

∑

k1,k3

χN(k1)
2|wk3|2

|k1|2s + |k3|2s
|k1|2 + |k3|2

∑

k2+k4−k5+k6=k1+k3
p1+p3−p4+p5=k1+k3

|k2|+|k4|+|k5|+|k6|≤|k1|θ+|k3|θ
|p1|+|p3|+|p4|+|p5|≤|k1|θ+|k3|θ

wk2wk4wk5wk6 · wp1wp3wp4wp5

equals to

∑

k1,k3

χN(k1)
2|wk3|2

|k1|2s + |k3|2s
|k1|2 + |k3|2

∣∣∣
∑

k2+k4−k5+k6=k1+k3
|k2|+|k4|+|k5|+|k6|≤|k1|θ+|k3|θ

wk2wk4wk5wk6

∣∣∣
2

,

which is real-valued, we deduce that

Im(S1,2(w)) = I(w) :=
∑

Λ1,2

χN(k1)
2|wk3|2Ψ̃(~k)wk2wk4wk5wk6 · wp1wp3wp4wp5. (7.12)
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As for the case j = 1, we will split the sum into dyadic pieces. For dyadic numbers Nj ,Mj, we

decompose accordingly w
Nj

kj
= wkj1|kj|∼Nj

and wMi
pi

= wpi1|pi|∼Mi
. It suffices to show that for

some β ∈ (0, 1).

‖IN1,··· ,N6;M2,··· ,M5(w)1‖w‖Hσ≤R‖Lp(dµs) . pβN
− 1

100

(1) R10, (7.13)

where IN1,··· ,N6;M2,··· ,M5 is the same expression as I(w) by replacing the inputs wkj , wpi to

w
Nj

kj
, wMi

pi
.

It turns out that only deterministic estimates suffice. Indeed, from the fact that |Ω(~k)| ∼ N2
(1),

by Lemma 7.5, we have

|IN1,··· ,M5(w)| .
N2s−2

(1) N2
(3)

N2
(1)

∑

k3

|wN3

k3
|2

∑

k2,k4,k5,k6

∑

p1,p3,p4,p5

|wN2

k2
wN4

k4
wN5

k5
wN6

k6
wM1
p1
wM3
p3
wM4
p4
wM5
p5
|,

which is bounded by

N
2(s−2)
(1) N2

(3)‖wN3
k3
‖2l2‖wN2

k2
‖l1 · · · ‖wN6

k6
‖l1‖wM1

p1
‖l1 · · · ‖wM5

p5
‖l1

.N
2(s−2−σ)+2θ
(1) (N2N4N5N6M1M3M4M5)

−(σ− 3
2
)‖w‖10Hσ

≤N2(s−2−σ)+2θ
(1) ‖w‖10Hσ ,

provided that σ > 3
2
, which is conclusive when θ < 1

2
and σ close enough to s − 3

2
. This

completes the proof of Proposition 7.1. �

8. Energy estimate III: Remainders in the second generation

In this section, we will estimate R1,3(w),R2,3(w). More precisely, we have the following

statement:

Proposition 8.1. Let θ < 1
3
, close enough to 1

3
and δ0 ∈ (2θ, 2

3
), close enough to 2

3
. There

exist C > 0 and β = β(θ, s) ∈ (0, 1), such that for j ∈ {1, 2}, R ≥ 1 and p ∈ [2,∞), we have

‖R1,3(w)1BHσ

R
(w)‖Lp(dµs) + ‖R2,3(w)1BHσ

R
(w)‖Lp(dµs) ≤ CpβR10.

Since the estimate for R2,3(w) is similar, we only do it for R1,3(w). Recall in the expression

of R1,3(w), we distinguish three types of contributions in the decomposition of the sum
∑

k1−k2+k3−k4+k5−k6=0
k1=p1−p2+p3−p4+p5

(· · · ).

Recall that k(1) · · · , k(10) is a rearrangement of leaves p1, p2, p3, p4, p5, k2, k3, k4, k5, k6 such that

|k(1)| ≥ |k(2)| ≥ · · · ≥ |k(10)|.
• Type A:

∑10
j=3 |k(j)| > |k(1)|θ + |k(2)|θ.

• Type B:
∑10

j=3 |k(j)| ≤ |k(1)|θ+ |k(2)|θ and {k(1), k(2)} ⊂ {k2, k3, k4, k5, k6} or {k(1), k(2)} ⊂
{p1, p2, p3, p4, p5}.
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• Type C:
∑10

j=3 |k(j)| ≤ |k(1)|θ + |k(2)|θ, k(1) 6= k(2) and

k(1) ∈ {k2, k3, k4, k5, k6}, k(2) ∈ {p1, p2, p3, p4, p5}

or

k(2) ∈ {k2, k3, k4, k5, k6}, k(1) ∈ {p1, p2, p3, p4, p5},
and k(1), k(2) have different signatures.

Let us denote by ΛA, ΛB, ΛC the sets of indices k1, . . . , k6, p1, . . . , p5 that satisfy the linear

constraints

k1 − k2 + k3 − k4 + k5 − k6 = 0, k1 = p1 − p2 + p3 − p4 + p5

and the conditions for Type A, B, C respectively. Furthermore, we denote R(A)
1,3 ,R(B)

1,3 ,R(C)
1,3 the

corresponding contributions to R1,3(w). We will need the following elementary lemma.

Lemma 8.2. Assume that f (j) satisfies f
(j)
kj

1|kj |∼Mj
= f

(j)
kj

for j = 1, 2, 3, 4, 5, 6 with Mj ∈ 2N.

Then

∑

k1−k2+k3−k4+k5−k6=0

ψ2s(~k)

|Ω(~k)|

(
1− χ

( Ω(~k)

λ(~k)δ0

)) 6∏

j=1

|f (j)
kj
|

.M2s−2
(1) M2

(3)(M(3)M(4)M(5)M(6))
3
2

6∏

j=1

‖f (j)‖l2 ,

whereM(1) ≥M(2) ≥ · · · ≥M(6) is non-increasing rearrangement of dyadic integersM1,M2, · · · ,M6.

Proof. Since signature of kj plays no significant role in the proof, without loss of generality,

we assume that M1 ≥ M2 ≥ · · · ≥ M6. Since |ψ2s(~k)| . M2s−2
1 (M2

3 + |Ω(~k)|), using the

Cauchy-Schwarz inequality in the k1 and k2 summation, we obtain the bound

M2s−2
(1) M2

(3)

2∏

j=1

‖f (j)‖l2
6∏

j=3

‖f (j)‖l1.

It remains to use the Cauchy-Schwarz inequality to pass from l1 to l2. This completes the proof

of Lemma 8.2. �

Remark 8.3. Since the crude bound is enough for our need, we do not make use of the

denominator 1

|Ω(~k)| in the estimate above.

Proof of Proposition 8.1. Since the proof follows from tedious estimates, we split it into three

different parts, according to Type A,B,C. We will split the function w into dyadic pieces, and

we denote wK = PKw in the sequel which means that wKk = 1|k|∼Kwk.

• Estimate of Type A contribution:
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We decompose the expression

R(A)
1,3 :=

∑

ΛA

ψ2s(~k)

Ω(~k)

(
1− χ

( Ω(~k)

λ(~k)δ0

))
χN(k1)

2wp1 · · ·wp5wk2 · · ·wk6

dyadically by

∑

M1,··· ,M6,P1,··· ,P5

R(A)
1,3 (M1, · · · , P5),

where R(A)
1,3 (M1, · · · , P5) is

∑

ΛA

ψ2s(~k)

Ω(~k)

(
1− χ

( Ω(~k)

λ(~k)δ0

))
χN (k1)

2wP1
p1
· · ·wP5

p5
wM2
k2
· · ·wM6

k6
· 1|k1|∼M1

.

We denote by N(1) ≥ N(2) ≥ · · ·N(10) the non-increasing rearrangement of dyadic integers

P1, P2, P3, P4, P5,M2,M3,M4,M5,M6.

Note that the constraint
∑10

j=3 |k(j)| > |k(1)|θ + |k(2)|θ implies that N(3) & N θ
(1) for non-zero

terms R(A)
1,3 (M1, · · · , P5). Write

|R(A)
1,3 (M1, · · · , P5)| ≤

∑

k1−k2+k3−k4+k5−k6=0

ψ2s(~k)

|Ω(~k)|

(
1− χ

( Ω(~k)

λ(~k)δ0

)) 6∏

j=1

|f (j)
kj
|,

where f
(j)
kj

= w
Mj

kj
for j = 2, 3, 4, 5, 6 and

f
(1)
k1

=
∑

p1−p2+p3−p4+p5=k1

1|k1|∼M1
wP1
p1
· · ·wP5

p5
.

Applying Lemma 8.2, we have

|R(A)
1,3 (M1, · · · , P5)| .M2s−2

(1) M2
(3)(M(3)M(4)M(5)M(6))

3
2

6∏

j=1

‖f (j)‖l2

.M2s−2
(1) M2

(3)(M(3)M(4)M(5)M(6))
3
2‖f (1)‖l2

6∏

j=2

(M−σ
j ‖wMj‖Hσ).

where M(1) ≥ M(2) ≥ · · · ≥ M(6) is a non-increasing rearrangement of M1,M2, · · · ,M6. By

Cauchy-Schwarz, we have

‖f (1)‖l2 . (P(2)P(3)P(4)P(5))
3
2

5∏

j=1

(P−σ
j ‖wPj‖Hσ),
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where P(1) ≥ P(2) ≥ P(3) ≥ P(4) ≥ P(5) is a non-increasing rearrangement of P1, P2, P3, P4, P5.

Thus we obtain that

|R(A)
1,3 (M1, · · · , P5)|

.M2s−2
(1) M2

(3)(M(3)M(4)M(5)M(6))
3
2 (M2 · · ·M6)

−σ P−σ
(1) (P(2) · · ·P(5))

3
2
−σ‖w‖10Hσ .

Since we are in the regime s ≥ 10 and σ is close to s− 3
2
, we control the right hand side by

N
2(s−1−σ)
(1) N

7
2
−σ

(3) ‖w‖10Hσ . N
2(s−1−σ)
(1) N

−θ(σ− 7
2
)

(1) ‖w‖10Hσ .

For s ≥ 10, σ close to s − 3
2
and θ is close to 1

3
the last expression can be estimated by

N
−ǫ0(θ,σ)
(1) ‖w‖10Hσ for some ǫ0(θ, σ) > 0 which is conclusive.

• Estimate of Type B contribution:

Denote ΛB1 the set of (k1, · · · , p5) ∈ ΛB such that k(1), k(2) ∈ {k2, k3, k4, k5, k6} and ΛB2 the

set of (k1, · · · , p5) ∈ ΛB such that k(1), k(2) ∈ {p1, p2, p3, p4, p5}, and denote by R(B1)
1,3 ,R(B2)

1,3 the

corresponding multilinear expressions.

• Subcase: Contribution R(B1)
1,3 : We first estimate R(B1)

1,3 . By symmetry of indices, we may

assume that k(1) = k3, k(2) = k2. Then other frequencies satisfy the constraint

5∑

j=1

|pj|+
6∑

j=4

|kj| < |k2|θ + |k3|θ

on ΛB1. We decompose R(B1)
1,3 by the dyadic sum

∑

M1,··· ,M6,P1,··· ,P5

R(B1)
1,3 (M1, · · · , P5)

as in the estimate for Type (A) terms. Under the constraint of ΛB and our convention that

{k(1), k(2)} = {k3, k2}, we must have M2 ∼M3 ∼ N(1) and max{M1,M4,M5,M6} ≤ N(3).

Note that for the pairing part k2 = k3 in R(B1)
1,3 (M1, · · · , P5), we have |ψ2s(~k)| . |k(3)|2s, thus

we can control it simply by

‖wM2‖2l2 ·
∑

k1−k4+k5−k6=0
k1=p1−p2+p3−p4+p5

|k(3)|2s
5∏

j=1

|wPj
pj
|

6∏

j=4

|wMj

kj
|

.N−2σ
(1) N

2s
(3)‖w‖10Hσ . N2sθ−2σ

(1) ‖w‖10Hσ , (8.1)

thanks to σ > 3
2
. As θ < 1

3
, s ≥ 10 and σ is close enough to s − 3

2
, the right hand side is

bounded by a negative power of N(1) times ‖w‖10Hσ , which is conclusive.
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It remains to consider the non-pairing contribution in R(B1)
1,3 (M1, · · · , P5). Recall that

R(B1)
1,3 (M1, · · · , P5)

=
∑

k2 6=k3
|k2|∼M2,|k3|∼M3

wM2
k2
wM3
k3

∑

k4,k5,k6,p1,··· ,p5
p1−···+p5−k2+···−k6=0

ψ2s(~k)

Ω(~k)

(
1− χ

( Ω(~k)

λ(~k)δ0

))
wM4
k4
wM5
k5
wM6
k6
wP1
p1
· · ·wP5

p5
.

Denote B≪M2 the σ-algebra generated by (gk)|k|≤M2/100. Without loss of generality, we assume

that M2 ∼ N(1) is large enough such that N(3) . N θ
(1) ≪ M2

100
. Consequently, with respect to µs,

wM4, wM5, wM6, wP1, · · · , wP5 are independent of wM2, wM3.

By conditional Wiener chaos estimate, we have

‖R(B1)
1,3 (M1, · · · , P5)1BHσ

R
(w)‖Lp(dµs) ≤‖R(B1)

1,3 (M1, · · · , P5)1BHσ

R
(P≪M2w)‖Lp(dµs)

=
∥∥‖R(B1)

1,3 (M1, · · · , P5)1BHσ

R
(P≪M2w)‖Lp(dµs|B≪M2

)

∥∥
Lp(dµs)

. p
∥∥‖R(B1)

1,3 (M1, · · · , P5)‖L2(dµs|B≪M2
) · 1BHσ

R
(P≪M2w)

∥∥
Lp(dµs)

.

It suffices to show that

‖R(B1)
1,3 (M1, · · · , P5)‖L2(dµs |B≪M2

) .N
− 1

2

(1) ‖w‖8Hσ . (8.2)

Indeed, the above estimate yields

‖R(B1)
1,3 (M1, · · · , P5)1BHσ

R
(w)‖Lp(dµs) . pN

− 1
2

(1) R
8.

Since we have left a negative power of N(1), by interpolating with the crude deterministic bound

which is of the form N
O(1)
(1) , we obtain the desired estimate.

Now we prove (8.2). Thanks to the fact that k2 6= k3, we deduce that3

‖R(B1)
1,3 (M1, · · · , P5)‖L2(dµs|B≪M2

)

.(M2M3)
−s
( ∑

k2 6=k3

( ∑

k4,k5,k6,p1,··· ,p5
p1−···+p5−k2+···−k6=0

ψ2s(~k)

Ω(~k)

(
1− χ

( Ω(~k)

λ(~k)δ0

))
wM4
k4
wM5
k5
wM6
k6
wP1
p1 · · ·wP5

p5

)2) 1
2

.N−2s
(1)

( ∑

k2 6=k3

∑

k4,k5,k6,p1,··· ,p5
p1−···+p5−k2+···−k6=0

|ψ2s(~k)|2
1 + |Ω(~k)|2

|wN(3)

k(3)
|2
) 1

2
(

sup
k2 6=k3

∑

k4,k5,k6,p1,··· ,p5
p1−···+p5−k2+···−k6=0

|wN(4)

k(4)
· · ·wN(10)

k(10)
|2
) 1

2

.N−2s
(1)

( 10∏

j=4

‖wN(j)‖L2

)
·
( ∑

k2 6=k3,k4,k5,k6,p1··· ,p5
p1−···+p5−k2+···−k6=0

M
4(s−1)
(1) (M4

(3) + |Ω(~k)|2)
1 + |Ω(~k)|2

|wN(3)

k(3)
|2
) 1

2

.

3In the summation below, we implicitly assume that |k2| ∼M2, |k3| ∼M3.
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By Lemma 4.2, the last sum on the right hand side can be estimated as

∑

k4,k5,k6,p1,··· ,p5

|wN(3)

k(3)
|2

∑

k2 6=k3
k2−k3=p1−···+p5−k4+k5−k6

N
4(s−1)
(1) (N4

(3) + |Ω(~k)|2)
1 + |Ω(~k)|2

.
∑

k4,k5,k6,p1,··· ,p5

|wN(3)

k(3)
|2N4(s−1)

(1) (N4
(3)N

2
(1) +N3

(1))

.‖wN(3)‖2L2N
4(s−1)
(1) (N4

(3)N
2
(1) +N3

(1))
10∏

j=4

N3
(j),

thus

‖R(B1)
1,3 (M1, · · · , P5)‖L2(dµs |B≪M2

) .N
−2
(1) (N

3
2

(1) +N2
(3)N(1))

( 10∏

j=3

‖wN(j)‖L2

)( 10∏

j=4

N
3
2

(j)

)

.N
− 1

2

(1) N
−σ
(3)

10∏

j=4

N
−σ+ 3

2

(j) · ‖w‖8Hσ +N−1
(1)N

−σ+2
(3)

10∏

j=4

N
−σ+ 3

2

(3) · ‖w‖8Hσ

.N
− 1

2

(1) ‖w‖8Hσ ,

which is conclusive, thanks to the fact that s ≥ 10 and that σ is close to s− 3
2
.

• Subcase: ContributionR(B2)
1,3 : Next we estimateR(B2)

1,3 for which k(1), k(2) ∈ {p1, p2, p3, p4, p5}.
By symmetry of indices, we assume that k(1) = p1, k(2) = p2, then

5∑

j=3

|pj|+
6∑

j=2

|kj| ≤ |p1|θ + |p2|θ

on ΛB2. Similarly, we decompose R(B2)
1,3 by dyadic sum

∑

M1,··· ,M6,P1,··· ,P5

R(B2)
1,3 (M1, · · · , P5),

and this time, P1 ∼ P2 ∼ N(1) and max{M1,M2, · · · ,M6} . N(3). In particular, the energy

weight ψ2s(~k) satisfies |ψ2s(~k)| . N2s
(3) which is much smaller than in the previous case.

The pairing contribution p1 = p2 in R(B2)
1,3 (M1, · · · , P5) can be controlled in the same way by

the same bound as (8.1). We omit the detail.

For the non-pairing contribution in R(B2)
1,3 , again we apply the Wiener chaos estimate. Denote

B≪P1 the σ-algebra generated by (gk)|k|≤P1/100. Without loss of generality, we assume that

P1 ∼ N(1) is large enough such that N(3) . N θ
(1) ≪ P1

100
. Consequently, with respect to µs,
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wM2, · · · , wM6, wP3, wP4, wP5 are independent of wP1, wP2. Recall that

R(B2)
1,3 (M1, · · · , P5)

=
∑

p1 6=p2
|p1|∼P1,|p2|∼P2

wP1
p1
wP2
p2

∑

k2,··· ,k6,p3,p4,p5
p1−···+p5−k2+···−k6=0

ψ2s(~k)

Ω(~k)

(
1− χ

( Ω(~k)

λ(~k)δ0

))
wP3
p3
wP4
p4
wP5
p5
wM2

k2
· · ·wM6

k6
.

By conditional Wiener chaos estimate, we have

‖R(B2)
1,3 (M1, · · · , P5)1BHσ

R
(w)‖Lp(dµs) ≤‖R(B2)

1,3 (M1, · · · , P5)1BHσ

R
(P≪P1w)‖Lp(dµs)

=
∥∥‖R(B2)

1,3 (M1, · · · , P5)1BHσ

R
(P≪P1w)‖Lp(dµs|B≪P1

)

∥∥
Lp(dµs)

. p
∥∥‖R(B2)

1,3 (M1, · · · , P5)‖L2(dµs|B≪P1
) · 1BHσ

R
(P≪P1w)

∥∥
Lp(dµs)

.

As in the estimate of R(B1)
1,3 , here it suffices to show that

‖R(B2)
1,3 ‖L2(dµs|B≪P1

) . N
− 1

2

(1) ‖w‖8Hσ . (8.3)

Thanks to the non-pairing condition p1 6= p2, we deduce that4

‖R(B2)
1,3 (M1, · · · , P5)‖L2(dµs |B≪P1

)

.(P1P2)
−s
( ∑

p1 6=p2

( ∑

k2,··· ,k6,p3,p4,p5
p1−···+p5−k2+···−k6=0

N2s
(3)|wP3

p3w
P4
p4w

P5
p5w

M2
k2
· · ·wM6

k6
|
)2) 1

2

.N−2s
(1) N

2s
(3)

( ∑

p1−p2+···+p5−k2+···−k6=0

|wP3
p3w

P4
p4w

P5
p5w

M2
k2
· · ·wM6

k6
|2
) 1

2

×
(

sup
p1 6=p2

∑

k2,··· ,k6,p3,p4,p5
p1−···+p5−k2+···−k6=0

1
) 1

2

.N
−2s+ 3

2

(1) N2s
(3)‖w‖8Hσ . N

−2s+ 3
2
+2sθ

(1) ‖w‖8Hσ . N
− 1

2

(1) ‖w‖8Hσ ,

thanks to the fact that s ≥ 10 that θ is close to 1
3
and the restriction N(3) . N θ

(1).

• Estimate of Type C contribution:

4In the summation below, we implicitly assume that |p1| ∼ P1, |p2| ∼ P2.
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Without loss of generality, we assume that k(1) = p1 and k(2) = k2, since the other cases can

be treated in the same way. In particular, P1 ∼ M2 ∼ N(1). We write

R(C)
1,3 (M1, · · · , P5)

=
∑

p1 6=k2
|p1|∼P1,|k2|∼M2

wP1
p1w

P2
p2

∑

p2··· ,p5,k3,··· ,k6
p1−···+p5−k2+···−k6=0

ψ2s(~k)

Ω(~k)

(
1− χ

( Ω(~k)

λ(~k)δ0

))
wP2
p2 · · ·wP5

p5w
M3
k3
· · ·wM6

k6
.

Denote B≪P1 the σ-algebra generated by (gk)|k|≤P1/100. Without loss of generality, we assume

that P1 ∼ N(1) is large enough such that N(3) . N θ
(1) ≪ P1

100
. Consequently, with respect to µs,

wM3, · · ·wM6, wP2, · · · , wP5 are independent of wP1, wM2.

By conditional Wiener chaos estimate, we have

‖R(C)
1,3 (M1, · · · , P5)1BHσ

R
(w)‖Lp(dµs) ≤‖R(C)

1,3 (M1, · · · , P5)1BHσ

R
(P≪P1w)‖Lp(dµs)

=
∥∥‖R(C)

1,3 (M1, · · · , P5)1BHσ

R
(P≪P1w)‖Lp(dµs|B≪P1

)

∥∥
Lp(dµs)

. p
∥∥‖R(C)

1,3 (M1, · · · , P5)‖L2(dµs|B≪P1
) · 1BHσ

R
(P≪P1w)

∥∥
Lp(dµs)

.

As in the estimate for Type (B) terms, it suffices to show that

‖R(C)
1,3 (M1, · · · , P5)‖L2(dµs |B≪P1

) .N
− 1

2

(1) ‖w‖8Hσ .

Since p1 6= k2(recall that the contribution where p1 = k2 is contained in S1,1), we estimate5

‖R(C)
1,3 (M1, · · · , P5)‖L2(dµs|B≪P1

)

.(P1M2)
−s
( ∑

p1 6=k2

( ∑

p2,··· ,p5,k3,··· ,k6
p1−···+p5−k2+···−k6=0

ψ2s(~k)

Ω(~k)

(
1− χ

( Ω(~k)

λ(~k)δ0

))
wP2
p2
· · ·wP5

p5
wM3
k3
· · ·wM6

k6

)2) 1
2

.N−2s
(1)

( ∑

p1 6=k2

∑

p2··· ,p5,k3,··· ,k6
p1−···+p5−k2+···−k6=0

|ψ2s(~k)|2
1 + |Ω(~k)|2

|wN(3)

k(3)
|2
) 1

2
(

sup
p1 6=k2

∑

p2··· ,p5,k3,··· ,k6
p1−···+p5−k2+···−k6=0

10∏

j=4

|wN(j)

k(j)
|2
) 1

2

.N−2s
(1)

( 10∏

j=4

‖wN(j)‖L2

)
·
( ∑

p1 6=k2,k3,··· ,k6,p2··· ,p5
p1−···+p5−k2+···−k6=0

|ψ2s(~k)|2
1 + |Ω(~k)|2

|wN(3)

k(3)
|2
) 1

2

. (8.4)

The estimate the last sum on the right hand side is very similar as for the estimate of R(B1)
1,3 .

The only difference here is that we might have the pairing of k1 = p1 − p2 + p3 − p4 + p5 and

k2, although p1 6= k2. Note that in the case of pairing

k1 = p1 − (p2 − p3 + p4 − p5) = k2

5In the summation below, we implicitly assume that the sum is taken in the range |p1| ∼ P1, |k2| ∼M2.
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we have |ψ2s(~k)| . N2s
(3), thus we control the paired contribution crudely by

∑

p1 6=k2

∑

p2··· ,p5,k3,··· ,k6
p1−···+p5=k2

k3−k4+k5−k6=0

N4s
(3)|w

N(3)

k(3)
|2 . N3

(1)N
4s
(3)‖wN(3)‖2L2

10∏

j=4

N3
(j)

For the non-pairing contribution, we can argue exactly as the last part of the estimate of R(B1)
1,3

by using Lemma 4.2:

∑

k3··· ,k6,p2··· ,p5

|wN(3)

k(3)
|2

∑

k1 6=k2
k1=p1−p2+p3−p4+p5

k1−k2+k3−k4+k5−k6=0

M
4(s−1)
(1) (M4

(3) + |Ω(~k)|2)
1 + |Ω(~k)|2

. (8.5)

For fixed p2, · · · , p5, k3, · · · , k6,

|Ω(~k)| = |p1 − p|2 − |k2|2 + c

with p = p2 − p3 + p4 − p5 and c = |k3|2 − |k4|2 + |k5|2 − |k6|2. When p 6= p1 − k2, by Lemma

4.2, the choices of p1, k2 such that p1 − p − k2 = k = k3 − k4 + k5 − k6 are bounded by M2
(1),

hence (8.5) is bounded by

N
4(s−1)
(1) (N4

(3)N
2
(1) +N3

(1))‖wN(3)‖2L2

10∏

j=4

N3
(j).

Therefore, the right hand side of (8.4) can be bounded by

(
N

−2s+ 3
2

(1) N2s
(3) +N−2

(1) (N
3
2

(1) +N2
(3)N(1))

) 10∏

j=3

‖wN(j)‖L2 ·
( 10∏

j=4

N
3
2

(j)

)
. N

− 1
2

(1) ‖w‖8Hσ ,

thanks to the fact that s ≥ 10, that θ < 1
3
, θ close to 1

3
and that N(3) . N θ

(1). This completes

the proof of Proposition 8.1. �

Appendix A. Long time approximations

In this appendix, we prove the approximation results used in Section 3. The proof is a

consequence of the global regularity theory of [23].

A.1. Ingredients in the global regularity theory for the energy critical NLS on T3.

In the sequel, we follow the notations in [23] and [22] about basic definitions and properties for

function spaces Up, V p, Up
∆, V

p
∆ related to critical problems. Let us briefly recall some related
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function spaces as well as multilinear estimates from [22] and [23] that we will use. For s ∈ R,

‖u‖X̃s(R) :=
(∑

k∈Z3

〈k〉2s‖eit|k|2(Fu)(t, k)‖2U2
t

) 1
2
, (A.1)

‖u‖Ỹ s(R) :=
(∑

k∈Z3

〈k〉2s‖eit|k|2(Fu)(t, k)‖2V 2
t

) 1
2
. (A.2)

We have the continuous embedding property:

X̃s(R) →֒ Ỹ s(R) →֒ L∞(R;Hs(T3)).

For intervals I ⊂ R, the space Xs(I) is defined via the restriction norms:

‖u‖Xs(I) := sup
J⊂I,|J |≤1

inf
v1J (t)=u1J (t)

‖v‖X̃s.

Similarly for the space Y s(I). Note that by definition, for linear solution u(t) = eit∆φ,

‖u(t)‖Xs(I) ≤ ‖φ‖Hs(T3). (A.3)

The critical Strichartz type norm is defined via the norm

‖u‖Z(I) :=
∑

p∈{p0,p1}
sup

J⊂I,|J |≤1

( ∑

N∈2N
N5− p

2‖PNu(t)‖pLp
t,x(J×T3)

) 1
p

, p0 = 4 + 1/10, p1 = 100,

where PN = P≤N−P≤N/2, and P≤N are square Littlewood-Paley projectors defined in Section 2

of [23].

By definition we remark that if T ≥ 1 and IT = [−T, T ],

‖u‖Z(IT ) ∼T
∑

p∈{p0,p1}
‖u(t)‖

Lp
t ([−T,T ];B̃

5
p− 1

2
p,p (T3))

,

while if T < 1
2
,

‖u‖Z(IT ) =
∑

p∈{p0,p1}
‖u(t)‖

Lp
t ([−T,T ];B̃

5
p− 1

2
p,p (T3))

where B̃s
p,q are Besov spaces related to the Littlewood-Paley projectors PN .

The inhomogeneous term on an interval I = (a, b) will be controlled by the N s(I) norm:

‖F‖Ns(I) :=
∥∥∥
∫ t

a

ei(t−t
′)∆F (t′)dt′

∥∥∥
Xs(I)

.

It turns out that ([22], Proposition 2.11)

‖F‖Ns(I) ≤ sup
G∈Y −s(I)

‖G‖
Y −s(I)≤1

∣∣∣
∫

I

∫

T3

F (t, x)G(t, x)dxdt
∣∣∣.

Recall the key Strichartz estimate:
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Lemma A.1 ([23], Corollary 2.2). Let p ∈ (4,∞) and PC the frequency projector to some cube

C of size N . For any interval I ⊂ R, |I| ≤ 1,

‖PCu‖Lp
t,x(I×T3) . N

3
2
− 5

p‖u‖Up
∆(I;L2

x)
,

where the implicit constant is independent of intervals I.

As a consequence of Lemma A.1 and the embedding X0(I) →֒ Up
∆(I;L

2
x) (basically since

U2 →֒ Up) for p > 2, we have

‖u‖Z(I) . ‖u‖X1(I) (A.4)

for any interval I, where the implicit constant is uniform. The key multilinear estimate we will

use reads:

Lemma A.2 ([23], Lemma 3.2). Let σ ≥ 1. For uj ∈ X1(I), j = 1, 2, 3, 4, 5, |I| ≤ 1. the

estimate
∥∥∥

5∏

j=1

u±j

∥∥∥
Nσ(I)

.
∑

σ∈S5

‖uσ(1)‖Xσ(I)

∏

j≥2

‖uσ(j)‖
1
2

Z(I)‖uσ(j)‖
1
2

X1(I) (A.5)

holds true, where S5 is the permutation group of 5 elements and u±j ∈ {uj, uj}, and the implicit

constant in the inequality is independent of intervals I such that |I| ≤ 1.

We remark that [23] treats the case σ = 1. For σ > 1, the proof follows in the similar way

by the more precise estimate
∫

I×T3

∣∣∣
∑

N0,N1≥N2≥N3≥N4≥N5

5∏

j=0

PNj
u±j

∣∣∣dxdt

.
(N0

N1

)σ(N5

N1

+
1

N3

)δ(N4

N0

+
1

N2

)δ
‖PN1u1‖Y σ(I)‖PN0u0‖Y −σ(I)

5∏

j=2

‖PNj
uj‖

1
2

Z(I)‖PNj
uj‖

1
2

X1(I)

for some δ > 0. We omit the details of the proof.

Finally, we recall the global regularity theory of Ionescu-Pausader. Following Section 6 of

[23], given R > 0 and τ ≥ 0, consider the non-negative function (possibly ∞)

Σ(R, τ) := sup
{
‖u‖2Z(I) : H(u) ≤ R, |I| ≤ τ

}
,

where H(u) is the energy of u and the supremum is taken over all strong solutions of (1.1) of

energy less than or equal to R and all intervals I of length |I| ≤ τ . As an increasing function

in τ , the limit (possibly ∞ in a priori)

Σ∗(R) := lim
τ→0+

Σ(R, τ)

exists. Moreover, Σ(R, τ) is quasi subadditive in τ :

Σ(R, τ1 + τ2) . Σ(R, τ1) + Σ(R, τ2)
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for any τ1, τ2 > 0.

The global regularity result of Ionescu-Pausader can be stated as:

Theorem A.1 ([23]). For any R > 0, Σ∗(R) <∞. Consequently, for any τ > 0, Σ(R, τ) <∞
and moreover

Σ(R, τ) ≤ Σ(R, 1)eC0(1+τ),

where C0 > 0 is an absolute constant. In particular, for any φ ∈ H1(T3) of energy smaller than

or equal to R, the strong solution u(t) of (1.1) with initial data φ is global and

‖u(t)‖Z([0,τ ]) ≤ Σ(R, 1)eC0(1+τ).

Finally,

‖u‖X1([0,τ ]) ≤ C(R, ‖u‖Z([0,τ ])).

We denote Φ(t) the global flow of (1.1) in H1(T3). The following corollary shows that the

Hσ(T3), σ ≥ 1 regularity is propagated by Φ(t).

Corollary A.2. Let σ ≥ 1. Then Φ(t)(Hσ(T3)) = Hσ(T3) for every t ∈ R.

Proof. Assume that φ ∈ Hσ(T3) such that H(φ) ≤ R. Denote u(t) = Φ(t)φ. From Theo-

rem A.1,

‖u‖Z([−T,T ]) ≤ Σ(R, T ), ‖u‖X1([−T,T ]) ≤ C(R, T ),

where C(R, T ) depends only on R and T . By the Duhamel formula and (A.5) of Lemma A.2,

for any I = (a, b) ⊂ [−T, T ],

‖u‖Xσ(I) ≤‖ei(t−a)∆u(a)‖Xσ(I) + ‖|u|4u‖Nσ(I)

≤‖u(a)‖Hσ
x
+ C‖u‖Xσ(I)‖u‖2X1(I)‖u‖2Z(I)

≤‖u(a)‖Hσ
x
+ C(R, T )‖u‖2Z(I)‖u‖Xσ(I),

where C(R, T ) is a constant depending only on R and T that can change from line to line.

Next, we partition [0, T ] =
⋃κ
j=1[aj−1, aj] such that ‖u‖Z([aj−1,aj ]) <

1√
2C(R,T )

, hence for all

j = 1, 2, · · · , k,
‖u‖Xσ([aj−1,aj ]) ≤ 2‖u(aj−1)‖Hσ

x
.

By the embedding property, for all j ≥ 1,

‖u‖Xσ([aj ,aj+1]) ≤ C‖u‖Xσ([aj ,aj−1]).

This shows that for all t ∈ [−T, T ],

‖u(t)‖Hσ ≤ Cκ‖φ‖Hσ
x
.

Therefore Φ(t)(Hσ(T3)) ⊂ Hσ(T3). Using the time reversibility completes the proof. �
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Remark A.3. When σ > 1, the above argument does not give a uniform control of the Hσ

norm for the solution, since the index κ depends on the profile of each individual global H1-

solution u(t). Later we shall strengthen the Hσ-estimate uniformly on any bounded ball of Hσ

by choosing a uniform partition of [0, T ].

A.2. Local convergence and stability. From now on, denote Φ(t) the flow of the energy

critical NLS. Denote ΦN(t) the flow of the truncated NLS:

i∂tuN +∆uN = SN(|SNuN |4SNuN), (A.6)

where SN is the smooth Fourier truncation at size N defined at the beginning of Section 2.

Proposition A.4 (Local convergence). Assume that σ ≥ 1. Let φ, φ̃ ∈ Hσ(T3) and I ⊂ R

be an interval and t0 ∈ I. Suppose ‖φ‖Hσ
x
≤ A, ‖φ̃‖Hσ

x
≤ A. Then for any ǫ > 0, there exist

δ = δ(A, ǫ) > 0 such that if

‖ei(t−t0)∆φ‖Z(I) < δ, ‖φ− φ̃‖Hσ
x
< δ,

there exist unique solutions u = Φ(t−t0)φ and uN = ΦN(t−t0)φ̃ in C(I;Hσ
x )∩Xσ(I) satisfying

‖uN‖Xσ(I) + ‖u‖Xσ(I) ≤ C0A, ‖uN‖Z(I) + ‖u‖Z(I) < ǫ,

where C0 > 0 is an absolute constant. Moreover,

‖ΦN (t)φ̃− Φ(t)φ‖C(I ;Hσ
x )
≤ C0‖φ− φ̃‖Hσ

x
+ C0δN(A, ǫ, φ), (A.7)

where δN (A, ǫ, φ) → 0 as N → ∞, uniformly in φ on a compact set K of Hσ(T3) such that

‖φ‖Hσ
x
≤ A.

Remark A.5. Consequently, taking φ̃ = φ, under the hypothesis of Proposition A.4, we have

‖ΦN (t)φ− Φ(t)φ‖Xσ(I) → 0,

uniformly on any compact set of H1(T3). Taking the limit N → ∞ in (A.7), we obtain also

that under the hypothesis of Proposition A.4,

‖Φ(t)φ̃− Φ(t)φ‖Xσ(I) ≤ C0‖φ− φ̃‖Hσ
x
.

Proof. First we prove the case when σ = 1. Note that the existence of solutions on I is a direct

consequence of Proposition 3.3 of [23]. So we will only concentrate on the bounds for solutions

uN(t) and u(t). We argue by several steps.

Step 1: Uniform bound:

Without loss of generality, we assume that t0 = 0. By the Strichartz estimate (A.4) and

Lemma A.2, we have

‖u‖Z(I) ≤‖eit∆φ‖Z(I) + C‖|u|4u‖N1(I)

≤‖eit∆φ‖Z(I) + C‖u‖2Z(I)‖u‖3X1(I), (A.8)
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and

‖u‖X1(I) ≤‖eit∆φ‖Z(I) + C‖|u|4u‖N1(I)

≤‖φ‖H1
x
+ C‖u‖2Z(I)‖u‖3X1(I), (A.9)

where C > 0 is independent of I. Note that the same inequalities holds for uN , as the smooth

spectral projector SN is bounded from Lrx to Lrx for any 1 < r <∞. Then the desired control

for ‖u‖Z(I) and ‖u‖X1(I), as well as ‖uN‖Z(I), ‖uN‖X1(I) follow from the following elementary

lemma:

Lemma A.6. Let A > 0, C0 > 0 and f ∈ C([0, τ0]; [0,∞)) be an increasing continuous function

such that f(0) = 0 and h : [0, τ0]→ [0,∞) is increasing. Then for any small ǫ > 0, there exists

δ = δ(A, ǫ) > 0, such that if

f(t) ≤ δ + C0f(t)
4h(t), h(t) ≤ C0A+ C0f(t)

4h(t), ∀t ∈ [0, τ0],

then f(t) ≤ ǫ and h(t) ≤ 2C0A.

Proof. This follows from a standard continuity argument. Let τ ≤ τ0 be the largest time such

that f(t) ≤ ǫ (τ exists since f(0) = 0). We claim that if ǫ ≪ 1 is such that 16C0ǫ
4 < 1

2

and 32C2
0Aǫ

3 < 1
2
, then τ = τ0. By contradiction, if τ < τ0, by continuity of f , there exists

τ1 ∈ (τ, τ0) such that f(τ1) < 2ǫ. Then for all 0 ≤ t ≤ τ1, h(t) ≤ C0A + 16C0ǫ
4h(t) < 2C0A,

thanks to the smallness of ǫ. Plugging into the inequality of f(t), we deduce that for all

0 ≤ t ≤ τ1

f(t) ≤ δ + 32C2
0Aǫ

4.

Choosing δ < ǫ
2
, hence, δ + 32C2

0Aǫ
4 < ǫ, we obtain a contradiction. �

Step 2: Quantitative convergence:

By the same application of the Strichartz inequality, we get

‖uN − u‖X1(I) ≤ ‖φN − φ‖H1
x
+ ‖S⊥

N(|SNuN |4SNuN)‖N1(I) + ‖|SNuN |4SNuN − |u|4u‖N1(I).

By splitting SNuN = SMuN + S⊥
MSNuN , we observe that for M = N

16
, S⊥

N(|SMuN |4SMuN) = 0.

Therefore, by the uniform boundedness of SN , SM on Lrx (1 < r <∞) and on X1,

‖S⊥
N(|SNuN |4SNuN)‖N1(I) ≤C‖S⊥

MuN‖Z(I)‖uN‖3Z(I)‖uN‖3X1(I)

+C‖uN‖2Z(I)‖S⊥
MuN‖X1(I)‖uN‖2X1(I)

≤C‖S⊥
MuN‖X1(I)‖uN‖2Z(I)‖uN‖2X1(I) (A.10)

≤C(‖S⊥
Mu‖X1(I) + ‖uN − u‖X1(I))‖uN‖2Z(I)‖uN‖2X1(I)

≤CA2ǫ2(‖S⊥
Mu‖X1(I) + ‖uN − u‖X1(I)).
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For the other term, algebraic manipulation yields

‖|SNuN |4SNuN − |u|4u‖N1(I) ≤C‖SNuN − u‖X1(I)(‖SNuN‖2Z(I) + ‖u‖2Z(I))(‖SNuN‖2X1(I) + ‖u‖2X1(I))

≤CA2ǫ2(‖S⊥
Nu‖X1(I) + ‖uN − u‖X1(I))

≤CA2ǫ2(‖S⊥
Mu‖X1(I) + ‖uN − u‖X1(I)).

In summary, we have

‖uN − u‖X1(I) ≤‖φ− φ̃‖H1
x
+ CA2ǫ2(‖S⊥

N/16u‖X1(I) + ‖uN − u‖X1(I)). (A.11)

Furthermore, from the Duhamel formula of u and the similar argument as (A.10), we have the

recursive inequality

‖S⊥
Nu‖X1(I) ≤‖S⊥

Nφ‖H1
x
+ CA2ǫ2‖S⊥

N/16u‖X1(I). (A.12)

To conclude, we invoke the following elementary result:

Lemma A.7. Let {aj}, {bj} be two positive sequences and A0 > 0 is an absolute constant.

Assume that 0 < θ < 1 and for 1 ≤ j ≤ m,

aj ≤ A0bj + θaj−1.

Then we have

am ≤ A0

m−1∑

j=0

θjbm−j + θm−1a1.

In particular, if bm → 0, then am → 0.

The proof of this elementary lemma is straightforward hence we omit the detail.

Consequently, we have

‖S⊥
N/16u‖X1(I) ≤ A0

log16N−1∑

j=1

(CAǫ)j‖S⊥
N/16jφ‖H1

x
+ (CAǫ)log16N−1‖φ‖H1

x
,

where C,A > 0 are absolute constants and ǫ≪ 1 such that CAǫ < 1. We denote

δN (A, ǫ, φ) :=

log16N−1∑

j=1

(CAǫ)j‖S⊥
N/16jφ‖H1

x
+ (CAǫ)log16N−1‖φ‖H1

x
. (A.13)

Since ‖S⊥
Nφ‖H1

x
→ 0, uniformly on any compact set of H1, we deduce that δN (A, ǫ, φ) converges

to 0, uniformly on a compact set of H1(T3). Plugging into (A.11), we obtain that

‖uN − u‖X1(I) ≤ A0‖φ− φ̃‖H1
x
+ A0δN(A, ǫ, φ). (A.14)

By the embedding X1(I) →֒ L∞(I;H1
x) and the fact that uN(t), u(t) ∈ C(I;H1

x), we obtain

that

sup
t∈I
‖uN(t)− u(t)‖H1

x
≤ C0‖φ− φ̃‖H1

x
+ C0δN(A, ǫ, φ),
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for some absolute constant C0 > 0. This completes the proof of Lemma A.4 when σ = 1.

The general case σ > 1 follows from similar analysis. Here we only indicate the necessary

modification in the proof. Indeed, in Step 1, we replace X1, H1 norms by Xσ, Hσ norms

in (A.9), thanks to (A.5). In Step 2, all inequalities remain unchanged when replacing all

X1, H1, N1 norms by Xσ, Hσ, Nσ norms (up to change the numerical constants C in front of

each inequality), thanks to (A.5) and the trivial embedding Xσ →֒ X1. This completes the

proof Lemma A.4. �

Definition A.8 ((A, δ)-partition). Let A > δ > 0. Given an interval [−T, T ] and φ ∈ H1(T3),

we define an (A, δ)-partition with respect to φ a collection of finite intervals ([τj−1, τj])
m
j=1 such

that

−T = τ0 < τ2 < · · · < τm = T, ‖Φ(τj−1)φ‖H1
x
≤ A, ‖Φ(t)φ‖Z([τj−1,τj ]) < δ, ∀j = 1, · · · , m.

We collect some basic properties. The following property is immediate:

Proposition A.9 (Refinement of (A, δ)-partition). Any refinement of an (A, δ)-partition with

respect to φ is an (A, δ)-partition.

Proposition A.10. Assume that ([τj−1, τj ])
m
j=1 is an (A, δ)-partition with respect to φ. Then

for sufficiently small δ = δ(A) > 0,

‖ei(t−τj−1)∆Φ(τj−1)φ‖Z([τj−1,τj ]) < 2δ, ∀j = 1, · · · , m.

Proof. Denote u(t) = Φ(t)φ, then

ei(t−τj−1)∆u(τj−1) = u(t)− 1

i

∫ t

τj−1

ei(t−t
′)∆(|u(t′)|4u(t′))dt′.

The desired consequence follows from the Strichartz inequality as in the proof of Lemma A.4.

Hence we omit the detail. �

Proposition A.11 (H1-Stability of an (A, δ)-partition). Assume that ([τj−1, τj ])
m
j=1 is an

(A, δ)-partition with respect to φ. There exists δ1 > 0 such that for any δ < δ1, there ex-

ists ǫ0 = ǫ0(m,A, δ) > 0, such that for any φ1 in the ǫ0-neighborhood of φ (with respect to the

H1-topology), ([τj−1, τj ])
m
j=1 is an (2A, 2δ)-partition for φ1.

Proof. Denote u = Φ(t)φ and u1 = Φ(t)φ1. Fix an interval Ij = [τj−1, τj ]. By the Strichartz

inequality,

‖ei(t−τ0)∆(φ− φ1)‖Z(I1) ≤ C1‖ei(t−τ0)∆(φ− φ1)‖X1(I1) ≤ C1‖φ− φ1‖H1
x
≤ C1ǫ0

for some absolute constant C1 > 1. Pick δ < δ1 as in Lemma A.4, and for ǫ0 ≪ δ (so that

C1ǫ0 < δ) and for any φ1 in an ǫ0-neighborhood of φ (with respect to the Ḣ1-topology), the

solution u1 (which exists thanks to Lemma A.4) with initial data φ1 satisfies

‖u1‖X1(I1) ≤
3

2
A, ‖u1‖Z(I1) <

3

2
δ.
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Applying Lemma A.2, we have

‖u− u1‖X1(I1) ≤‖eit∆(φ− φ1)‖X1(I1) +
∥∥|u|4u− |u1|4u1

∥∥
N1(I1)

≤‖φ− φ1‖H1
x
+ C‖u− u1‖X1(I1)(‖u‖2Z(I1) + ‖u1‖2Z(I1))(‖u‖2X1(I1)

+ ‖u1‖2X1(I1)
)

≤‖φ− φ1‖H1
x
+ CA2δ2‖u− u1‖X1(I1).

Taking δ > 0 small enough such that 1− CA2δ2 > 1
2
, we deduce that

‖u− u1‖Z(I1) ≤ C1‖u− u1‖X1(I1) ≤ 2C1‖φ− φ1‖H1
x
< 2C2ǫ0.

In particular, by the embedding property X1(I) ←֓ L∞(I;H1
x) , for almost every τ ∗1 ∈ (τ0, τ1),

‖u(τ ∗1 )− u1(τ ∗1 )‖H1
x
≤ C2‖u− u1‖X1(I1) ≤ 2C2‖φ− φ̃‖H1

x
≤ 2C2ǫ0,

where C2 > 0 is another absolute constant. By the continuity of the flows t 7→ u(t), u(t1), we

have

‖u(τ1)− u1(τ1)‖H1
x
≤ 2C2ǫ0, ‖u1‖Z(I1) ≤ ‖u‖Z(I1) + ‖u− u1‖Z(I1) < δ + 2C1ǫ0,

hence

‖ei(t−τ1)∆(u(τ1)− u1(τ1))‖Z(I2) ≤ C1‖u(τ1)− u1(τ1)‖H1
x
≤ 2C1C2ǫ0.

By choosing ǫ0 small enough such that ǫ0
∑m

j=1(2C1C2)
j < δ, we can repeat the argument above

until Im. In particular, ‖u1‖Z(Ij) < 2δ, ‖u1‖X1(Ij) < 2A for all j = 1, 2, · · · , m This implies that

([τj−1, τj ])
m
j=1 is an (2A, 2δ)-partition with respect to φ1. The proof of Proposition A.11 is

complete. �

Now we are ready to prove:

Proposition A.12 (Long-time approximation). Given T ≥ 1 and φ ∈ H1(T3).

lim
N→∞

‖ΦN(t)φ− Φ(t)φ‖H1(T3) = 0, ∀t ∈ [−T, T ],

uniformly for φ on a compact set K ⊂ H1(T3). Moreover, for any |t| ≤ T and N ∈ N, the sets

Φ(t)(K),ΦN (t)(K) are compact in H1(T3).

Proof. Fix A > 0, T > 0 and K ⊂ BH1

A/2(0) := {φ : ‖φ‖H1 ≤ A/2} a compact set of H1(T3).

Note that for any φ ∈ BH1

A/2, H [φ] ≤ C0A
2. We divide the proof into several steps. Set

A1 = 4
√
C0A.

Step 1: Existence of a uniform (A1, δ)-partition:

Thanks to Theorem A.1, for any φ ∈ K in H1(T3), ‖Φ(t)φ‖Z([−T,T ]) ≤ Λ(C0A
2, T ) < ∞.

In particular, there exists an (A1

2
, δ
2
)-partition ([τj−1, τj ])

m
j=1 with respect to φ. By stability

(Proposition A.11), there exists ǫ0 = ǫ0(m,A1, δ) > 0, such that ([τj−1, τj])
m
j=1 is an (A1, δ)-

partition with respect to all φ1 ∈ BH1

ǫ0 (φ). Since K is compact, there exist finitely many

φ1, · · · , φn ∈ K, ǫi > 0, i = 1, · · · , n and (A, δ)-partitions ([τ
(i)
j−1, τ

(i)
j ])mi

j=1, i = 1, · · · , n, such
that
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(1) K ⊂ ⋃n
i=1B

H1

ǫu (φi);

(2) ([τ
(i)
j−1, τ

(i)
j ])mi

j=1 is an (A1, δ)-partition for all φ ∈ BH1

ǫi
(φi), i = 1, · · · , n.

Consider a refinement ([τj−1, τj ])
m
j=1 of partitions ([τ

(i)
j−1, τ

(i)
j ])mi

j=1. By Proposition A.9, ([τj−1, τj ])
m
j=1

is a uniform (A1, δ)-partition with respect to all φ ∈ K.

Step 2: Long-time convergence:

Now we are able to iterate Lemma A.4 (with the small parameter 2δ instead of δ in the

statement) from I1 = [τ0, τ1] to Im = [τm−1, τm]. Thanks to Proposition A.10 and the energy

conservation law, we have

‖ei(t−τj−1)∆Φ(τj−1)φ‖Z(Ij) < 2δ, ‖Φ(τj−1)φ‖H1
x
≤ A1.

In order to apply Lemma A.4 on each interval Ij with initial data ΦN(τj−1)φ and Φ(τj−1)φ, we

have to ensure that

‖ΦN (τj−1)φ− Φ(τj−1)φ‖H1
x
< 2δ. (A.15)

First, since δN (A1, 2δ, φ)→ 0 uniformly on the compact set K, we can choose N0 large enough,

such that for all N ≥ N0, φ ∈ K,

(C0 + C2
0 + · · ·+ Cm

0 )δN(A1, 2δ, φ) < δ.

Now we argue by induction that

‖ΦN (t)φ− Φ(t)φ‖C(Ij ;H1
x)
≤ (C0 + · · ·+ Cj

0)δN(A1, 2δ, φ). (A.16)

. When j = 1, ΦN(τ0)φ = Φ(τ0)φ, and from the last assertion of Lemma A.4, we have

‖ΦN (t)φ− Φ(t)φ‖C(I1;H1
x)
≤ C0δN(A1, 2δ, φ).

Assume that (A.16) holds for some j ≥ 1, in particular, (A.15) holds thanks to our choice.

Then we are able to apply Lemma A.4 on the time interval Ij+1 to obtain that

‖ΦN (t− τj−1)ΦN(τj−1)φ− Φ(t− τj−1)Φ(τj−1)φ‖C(Ij ;H1
x)

≤C0‖ΦN (τj−1)φ− Φ(τj−1)φ‖H1
x
+ C0δN (A1, 2δ, φ)

≤(C0 + C2
0 + · · ·+ Cj+1

0 )δN(A1, 2δ, φ).

Hence (A.16) holds for all j = 1, 2, · · · , m. In particular, we have

‖ΦN(t)φ− Φ(t)φ‖C([−T,T ];H1
x) ≤ (C0 + · · ·+ Cm

0 )δN(A1, 2δ, φ)

which converges to 0, as N →∞, uniformly in φ ∈ K.

This completes the proof of Proposition A.12. �

Now we are ready to accomplish the proof of Proposition 3.1 and Proposition 3.2:
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Proof of Proposition 3.1. If σ = 1, the H1-uniform bound for ΦN (t)φ and Φ(t)φ follows from

the defocusing feature of (1.1) and the conservation of energy. Now we assume that σ > 1.

By the compact embedding Hσ(T3) →֒ H1(T3), the ball BHσ

R is compact with respect to the

H1-topology. By the same argument as Step 1 in the proof of Proposition A.12, there exists a

uniform (A, δ)-partition (with A = R here and δ < 1√
2C(R,T )

as in the proof of Corollary A.2)

([τj−1, τj ])
m
j=1 of [−T, T ], where m depends only on the R, T and σ. Repeating the analysis in

the proof of Corollary A.2, we obtain that for all |t| ≤ T and N ∈ N,

‖Φ(t)φ‖Hσ
x
+ ‖ΦN (t)φ‖Hσ

x
≤ Cm‖φ‖Hσ

x
.

This completes the proof of Proposition 3.1. �

Proof of Proposition 3.2. We assume that σ > 1, otherwise, the proof is completed as Propo-

sition A.12. Let K be a compact set of Hσ(T3). In particular, K is bounded of Hσ(T3) and

compact with respect to the H1(T3)-topology. To prove the uniform convergence on K, we

follow the same scheme of analysis as in the previous section. By Proposition 3.1, there exists

a constant D(K, T ) depending only on T > 0 and the compact set K in Hσ, such that

sup
t∈[−T,T ]

‖Φ(t)φ‖Hσ + sup
t∈[−T,T ]

‖ΦN (t)φ‖Hσ ≤ D(K, T ) (A.17)

for all N ∈ N. At this stage, we are able to repeat the argument as in the proof of Proposi-

tion A.12 line by line if we replace the norms H1, X1, N1 everywhere by Hσ, Xσ, Nσ and the

constants A by D(K, T ). We omit the details and conclude. �

References

[1] M. Aizenman, H. Duminil-Copin, Marginal triviality of the scaling limits of critical 4D Ising and φ4 models,

Ann. of Math. (2), 194 (2021) 163–235,.

[2] H. Bahouri, P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations,

Amer. J. Math.121 (1999)131–175.

[3] J. Bourgain, Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys.

176 (1996) 421-445.

[4] J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case,

J. Amer. Math. Soc. 12 (1999), 145–171.

[5] B. Bringmann, Almost sure local well-posedness for a derivative nonlinear wave equation, Int. Math. Res.

Not. (2021), 8657–8697.

[6] B. Bringmann, Y. Deng, A. Nahmod, H. Yue, Invariant Gibbs measures for the three dimensional cubic

nonlinear wave equation, arXiv:2206.07589.

[7] N. Burq, L. Thomann, Almost sure scattering for the one dimensional nonlinear Schrödinger equation, to

appear in Mem. Amer. Math. Soc.

[8] N. Burq, L. Thomann, N. Tzvetkov, Long time dynamics for the one dimensional non linear Schrödinger

equation, Ann. Inst. Fourier. 63 (2013), no. 6, 2137–2198.

[9] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global well-posedness and scattering for the

energy-critical nonlinear Schrödinger equation in R3, Ann. of Math. 167 (2008), 767–865.



48 CHENMIN SUN AND NIKOLAY TZVETKOV

[10] C. Fan, Y. Ou, G. Staffilani, H. Wang, 2D-defocusing nonlinear Schrödinger equation with random data on

irrational tori, Stoch. Partial Differ. Equ. Anal. Comput. 9 (2021), 142–206.

[11] A. Debussche, Y. Tsustumi, Quasi-Invariance of Gaussian Measures Transported by the Cubic NLS with

Third-Order Dispersion on T, arXiv:2002.04899 (2020).

[12] Y. Deng, A. Nahmod, H. Yue, Invariant Gibbs measures and global strong solutions for 2D NLS,

arXiv:1910.08492.

[13] Y. Deng, A. Nahmod, H. Yue, Random tensors, propagation of randomness, and nonlinear dispersive

equations. Invent. Math. 228 (2022), no. 2, 539—686.

[14] J. Forlano, W. Trenberth, On the transport of Gaussian measures under the one-dimensional fractional

nonlinear Schrödinger equation, Ann. Inst. Henri Poincare, Anal. Non Lineaire, 36 (2019), 1987-2025.

[15] J. Forlano, K. Seong, Transport of Gaussian measures under the flow of one-dimensional fractional non-

linear Schrödinger equations, Comm. PDE (2022)1296–1337.

[16] J. Forlano, L. Tolomeo, Quasi-invariance of Gaussian measures of negative regularity for fractional non-

linear Schrödinger equations , arXiv:2205.11453.

[17] L. Friedlander, An invariant measure for the equation utt − uxx + u3 = 0, Comm. Math. Phys., 98 (1985)

1–16.
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