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The penetration of a spherical vortex into turbulence is studied theoretically and experi- 8

mentally. The characteristics of the vortex are first analysed from an integral perspective 9

that reconciles the far-field dipolar flow with the near-field source flow. The influence of 10

entrainment on the vortex drag force is elucidated, extending the Maxworthy (1977) 11

model to account for turbulent entrainment into the vortex movement and vortex 12

penetration into an evolving turbulent field. 13

The physics are explored numerically using a spherical vortex (initial radius R0, speed 14

Uv0), characterised by a Reynolds number Re0(= 2R0Uv0/ν, ν is the kinematic viscosity) 15

of 2000, moving into decaying homogeneous turbulence (rms u0, integral scale L). When 16

the turbulence is absent (It(= u0/Uv0) = 0), a wake volume flux leads to a reduction 17

of vortex impulse that causes the vortex to slow down. In the presence of turbulence 18

(It > 0) , the loss of vortical material is enhanced and the vortex speed decreases until 19

it is comparable to the local turbulent intensity and quickly fragments, penetrating a 20

distance that scales as I−1
t . 21

An experimental study is performed on a vortex (Re0 ∼ 5000−20000) propagating into 22

statistically steady, spatially varying turbulent field (Ive = 0.02 to 0.98). The penetration 23

distance is observed to scale with the inverse of the turbulent intensity. 24

Incorporating the spatially and temporally varying turbulent fields into the integral 25

model gives a good agreement with the predicted trend of the vortex penetration 26

distance with turbulent intensity and insight into its dependence on the structure of 27

the turbulence. 28

Key words: vortex dynamics, turbulence, entrainment 29

1. Introduction 30

Vortex rings, dipoles and line vortices (see Pullin & Saffman 1998) are fundamental 31

components of turbulence (see Synge & Lin 1943; Saffman 1997). As these vortical struc- 32

tures are basic elements of complex flows, their interactions with flow inhomogeneities 33

provide a crucial starting point for exploring fundamental flow processes. In this paper, 34

we investigate the interaction between a vortex ring and turbulence as an initial step 35

toward examining critical layers between regions of turbulence. 36

The pivotal advance in understanding the dynamics of turbulent vortex rings came 37

from Maxworthy’s (1974) interpretation of Osborne Reynolds’ observation that vortices 38
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lose mass and slow down. Figure 1(a) (see also figure 10, discussed later) depicts a39

turbulent vortex propagating into a quiescent flow, with the mass loss evident from the40

detrainment of dyed fluid behind the vortex, as is discussed in more detail in §6. This41

mass loss leads to a decrease in the vortex impulse and a reduction in the vortex speed,42

which is often incorrectly interpreted as a drag force. This interpretation has a wider43

significance beyond the dynamics of vortices, such as in problems where entrainment44

exerts an equivalent force (or impulse decrease) that occurs even in the absence of solid45

boundaries. Maxworthy (1974) noted that vortex progression in stationary fluids is not46

universally consistent over time but develops through well-defined sequential steps, each47

with distinct scaling laws.48

While most idealised studies have considered a vortex propagating in a quiescent49

flow, real-world scenarios typically involve some level of ambient turbulence affecting the50

longevity and persistence of these structures. Many related studies have considered well-51

behaved laminar vortex rings in an ambient fluid at rest, dominated by diffusive dynamics52

and relatively small entrainment effects (see e.g. recent works such as Tinaikar et al.53

2018, and references therein). Maxworthy (1977) demonstrated how external processes54

like buoyancy, stratification and turbulence, dramatically influence a vortex’s lifetime.55

Arnold (1974) conducted the first detailed experimental study of a vortex ring moving56

into turbulence created in a water channel. The vortices were observed to grow faster57

in size and slow down more rapidly due to the background turbulence (Arnold 1974;58

Maxworthy 1977). Although the reduction of the vortex speed and increase in vortex59

radius was evident, the final stages of the vortex propagation and arrestment were not60

observed. This forms an essential component to this study.61

Several relevant studies have examined vortices interacting with turbulence, including62

experimental and theoretical studies of line vortices created by a lifting surface in a63

turbulent flow (see van Jaarsveld et al. 2011), and a single line vortex interacting with64

turbulence (Marshall & Beninati 2005). The latter example demonstrated the critical65

change in the external turbulence structure caused by the differential rotation imparted66

by the line vortex. The case of a propagating three-dimensional vortex is quite different67

from monopolar and line vortices owing to the flow perturbation decaying more rapidly68

with distance in three-dimensions, and the vorticity maximum (within the vortex) lying69

close to the bounding streamline.70

In this paper, we address a key missing element in the vortex dynamics: the interaction71

between a spherical vortex and turbulence. The dramatic effect of turbulence on a72

vortex is shown by contrasting figure 1(b) with figure 1(a). The turbulence significantly73

decreases the vortex speed by enhancing the growth of the vortex size through enhanced74

entrainment by the external turbulence and loss of vortical fluid in the vortex wake. Part75

of the challenge of incorporating the effect of turbulence into the description of the vortex76

is to understand the distinction between enhanced entrainment across the vortex edge and77

its influence on the overall ’force’ experienced by the vortex. An integral perspective gives78

greater clarity about the different effects on entrainment and detrainment on the vortex79

properties, helping to reconcile the dipolar nature of the vortex with the monopolar flow80

created by the loss of impulse. Drawing on reanalysis of Maxworthy (1977), the additional81

effect of a spatially and temporally varying turbulent field on the vortex is proposed and82

analysed.83

Numerical simulations are performed on the idealised interaction of a Hill’s spherical84

vortex moving into decaying homogeneous turbulence. An analysis of the dynamics85

requires the development of both Lagrangian and Eulerian measures of impulse and86

momentum, which are intrinsically linked to the integral perspective offered.87

An experimental study is developed to examine the vortex penetration into a turbulent88
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Figure 1. Visualisation of a ring vortex moving steadily into (a,b) a quiescent flow and
(c,d) a turbulent field generate by an oscillating grid, both at 4.6 and 17.0 seconds,
respectively, after vortex generation. The Reynolds number of the initial vortex, based on
velocity and distance between the vortices, is 3200. Experimental parameters correspond
to experiment T in Table 1. The image is 50 cm wide.
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flow (see figure 1) with the fundamental difference between the numerical and experimen-89

tal study being the turbulence distribution. In the experimental study a piston-driven90

vortex is generated that moves into a grid generated turbulent flow field. The strength91

of the turbulence is sufficiently high that a finite penetration distance of the vortices92

is realised, in contrast to the experiments of Arnold et al.(2012), where the level of93

turbulence is weak. The two strands of study are brought together through a comparison94

with the integral vortex model.95

The paper is structured as follows. In continuation of the introduction, to analyse the96

gross features of the interaction, integral measures are introduced (in §2) which provides97

an opportunity to elaborate on Maxworthy’s model, particular the role of entrainment98

in the impulse analysis and extension to incorporate the effect of external turbulence99

on their dynamics. The computational and experimental methodologies are described in100

§3 and §4 respectively. The basic building block of a spherical vortex moving through a101

quiescent region is analysed in §5, focusing not just on the vortical dynamics but also how102

fluid elements external to the vortex are displaced and distorted. In §6, the numerical and103

experimental results are analysed. The primary results concern the relationship between104

penetration distance into turbulence and the turbulent structure, which is discussed using105

the integral model. Finally, the results are put into a general context in §7.106

2. Integral measures of the flow processes107

2.1. Integral measures108

Integral measures of momentum, impulse, circulation, and kinetic energy are useful for109

analysing the gross dynamics of complex flows, even for processes involving changes in110

flow topology (Benjamin & Ellis 1966; Eames 2008). A challenge of using these measures111

is that they may need to be reconciled for the presence of flow boundaries (Theodorsen112

1941; Darwin 1953; Eames et al. 1994). A key measure is the impulse associated with113

a region of the flow. The specific impulse of a vortical element within the region is114

proportional to the weighted integral of the moment of vorticity (ω)115

I =
1

2
x× ω, (2.1)

where the vorticity is defined as ω = ∇×u, where u is the velocity field and x is position.116

The impulse changes at a rate117

DI

Dt
= u× ω +

1

2
ω ·∇(x× u) +

1

2
x× ν∇2ω, (2.2)

which includes the diffusion of vorticity with ν, the kinematic viscosity. Half the contri-118

bution to the vortex force (u × ω) comes from the advection of the vorticity while the119

other half comes from stretching. The two remaining terms comes from the production of120

stretching of vorticity by angular momentum and the diffusion of vorticity. The specific121

impulse associated with free vorticity in a region V is122

Iv =

∫
V

1

2
x× ωdV. (2.3)

The rate of change of total impulse in a control volume V , whose boundary S moves
with velocity ub, can be evaluated by using the result of Saffman (1995, ch.3.2 eqn. 10
and 11) and the Reynolds Transport Theorem,

dIv
dt

=

∫
V

u× ωdV +

∫
S

1

2
((ω · n̂)x× u− (u · n̂)(x× ω)) dS
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123

+

∫
S

(ub · n̂)
(1
2
x× ω

)
dS +

∫
V

1

2
x× ν∇2ωdV, (2.4)

where n̂ is a unit vector pointing out of the control volume. For a large domain that 124

encloses a compact region of vorticity, the second and third integrals are zero and the 125

change in impulse is then expressed in terms of the total vortex force imposed on the 126

flow. As Saffman discusses, the consequence of the far field flow being dipolar is that the 127

impulse and dipole moment - which are intrinsically linked – are conserved/constant. 128

Our attention is on the behaviour of a vortex propagating and disintegrating as 129

it penetrates a turbulent flow. To distinguish between the vortex and the external 130

turbulence, we make use of a passive scalar field C and Lagrangian fluid particles to 131

tag the vortex. The passive scalar is set to be C = 1 within the vortex (of volume V0) 132

and zero outside. The Lagrangian perspective is developed by tagging Np fluid particles 133

initially within the vortex. The integral measures of A, based on either a Lagrangian or 134

Eulerian approach respectively, are defined as 135

A(L) =
1

Np
V0

Np∑
i=1

A(Xi), A(E) =

∫
V

CA(x, t)dV, (2.5)

respectively and distinguished by the superscript L or E (see Eames et al. (2004)). The 136

Eulerian and Lagrangian measures of vortex impulse, I
(E)
v and I

(E)
v respectively, are 137

defined in terms of A = 1
2x× ω. 138

2.2. Integral vortex model 139

In this section, the vortex dynamics are analysed from an integral perspective that 140

requires distinguishing between the vorticity that forms the main body of the vortex 141

and that which is deposited downstream. This distinction requires a separation of scales 142

between the size of the vortex and the distance over which the vortex has travelled. There 143

are several ways to identify the position of the vortex, including weighted measures of 144

the initial constituent material of the vortex and positions of local maxima of vorticity 145

magnitude; for consistency with the numerical calculations and experiments, the vortex 146

centre Xv is defined by following the initial fluid within the vortex (with A = x in (2.5)); 147

the superscript (L) is dropped. For the numerical simulation, the position is determined 148

by following (Lagrangian) fluid particles in time, while for the experiments, a dye is 149

followed in time. The vortex velocity, Uv, is defined as dXv/dt. 150

For unbounded flows, the dipole moment in the far field is unchanged in time, but this 151

needs to be reconciled with changes that occur in the vicinity of the vortex. Maxworthy 152

(1974) argued that the progressive loss of mass, evident through a visible wake loss, leads 153

to the vortex impulse decreasing in time. The integral analysis is applied over a volume 154

V that has a size larger than the size of the vortex, e.g. O(V
1/3
v ) (where Vv is the volume 155

of the vortex), and moving with velocity ub = Uvx̂ (figure 2(a)). Identifying Iv = Iv · x̂ 156

as the local impulse associated with the vortex, Maxworthy (1974) argued that, at high 157

Reynolds numbers, the third term in (2.4) was dominant, with the rate of change of the 158

vortex impulse being 159

dIv
dt

≈ −1

2

∫
Sd

UvσωϕdS, (2.6)

where σ is the radial distance from the centerline, ωϕ is the azimuthal vorticity component 160

and the integration is taken over the downstream surface Sd (see figure 2(a)). Equation 161
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Figure 2. (a) Schematic of the control volume V and surface S, moving with speed Uv

with the vortex, that is used in the analysis. (b) The flow perturbation associated with
the vortex moving from rest is characterised by a sink at the start and local source flow
(due to the loss of impulse) which reconciles the far field dipolar flow with the near field
monopolar flow and this is shown as a schematic.

(2.6) can be written as162

dIv
dt

≈ −QwUv, Qw =

∫
Sd

1

2
σωϕdS, (2.7a,b)

where Qw is the volume flux (deficit) behind the vortex. The volume flux generates a163

monopolar flow in the near-field (figure 2(b)). The combination of the sink flow created164

by the vortex starting, and the source flow created by drag, yields a far field flow which165

is dipolar in character. These types of source-sink flows are also created by rigid bodies166

impulsively set into motion; Hinch provides an extremely clear physical interpretation of167

the consequence of these impulsively driven flows on the forces experienced by moving168

bodies in Appendix D of Lovalenti & Brady (1993).169

The importance of the remaining terms in (2.4) was not discussed by Maxworthy170

and needs more analysis to unpick their link to the flow physics. Entrainment is in171

general mechanistically distinguished as having either an inviscid or a viscous component172

(da Silva et al. (2014)). The (inviscid) engulfment process leads to a net flow across an173

interface, while the viscous mechanism leads to boundary movement with a generally174

weaker boundary velocity. Without defining the features of such processes, we ascribe175

the flow due to entrainment as a volume flux, Qe, and the loss of vorticity in the wake176

being equivalent to a volume flux Qw. Due to the combination of the wake flow and177

entrainment, the flow in the region moving with the vortex (R0 ≪ |x−Xv| ≪ |Xv|) is178
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to leading order 179

u ∼ −Uvx̂+
Qw −Qe

4π

x−Xv

|x−Xv|3
, (2.8)

where the vortex position Xv may be defined in terms of the position of the original 180

constitutent fluid. We can use (2.8) to evaluate (2.4) more precisely than (2.6). The 181

components of the control surfaces that bound the sides of the cylinder Ss, the upstream 182

surface Su and the surface for the downstream wake, Sd, can be distinguished (see figure 183

2(a)). The vorticity is zero everywhere on Ss except on the surface Sd. Typically, ω is 184

perpendicular to the direction of motion so that (ω · n̂ = 0). Using 185

u× ω = −(u ·∇)u+∇
(1
2
q2
)
, (2.9)

where q = |u|, the rate of change of impulse can be written as 186

dIv
dt

=

∫
Ss+Su+Sd

−(u · n̂)udS +

∫
Sd

(
1

2
q2n̂− 1

2
(u · n̂)(x× ω)

)
dS. (2.10)

For an axisymmetric flow characterised by a large gradient in the cross-stream direction 187

ωϕ = −∂ux/∂σ, which means that the last integral is zero. Using (2.9), the first integral 188

over both control surfaces, Ss and Su, gives rise to a (Qw − Qe)Uv term. In total, the 189

rate of change of the vortex impulse is 190

dIv
dt

= (Qw −Qe)Uv − 2QwUv. (2.11)

The physical interpretation follows the discussion of Hunt & Eames (2002) and Eames 191

& Hunt (2004) – the source term gives rises to a Lamb thrust force (Qw −Qe)Uv, while 192

the momentum flux in the wake generates a drag −2QwUv. Thus, the change in the local 193

vortex impulse (2.11) becomes 194

dIv
dt

= −(Qw +Qe)Uv, (2.12)

with entrainment now accounted for in this new description. This explanation provides 195

the first clear and consistent link between the wake-drag model of Maxworthy and the 196

entrainment drag-law discussed in the context of cross-flow jets (see Coelho & Hunt 197

(1989) for a discussion of the key physics for strong cross-flow jets). The consequence 198

of the local flow being dominated by a source (2.8) is still consistent with the global 199

perspective of a far field dipole moment. Taking into account the loss of impulse and its 200

change along the vortex path is equivalent to a line distribution of sinks whose total sum 201

is equal to Qe −Qw, as shown in figure 2(b). The global impulse, created by the trailing 202

wake and the head of the vortex, is thus conserved. 203

The volume flux can be expressed in terms of an average wake flow Uw and equivalent 204

wake radius Rw 205

Qw = πR2
wUw. (2.13)

Maxworthy (1974) interpreted the volume flux as an equivalent drag force FD = ρUvQw 206

to which he ascribed an equivalent drag coefficient CQ = 2Qw/πR
2
vUv. The wake-width 207

behind a vortex Rw is expected to be smaller than that behind a solid sphere because the 208

growth of the vortex-wake-width is due to significant negative strain at its rear rather 209

than due to boundary layer separation, so that Rw/R0 = β. With the velocity deficit 210

Uw/Uv = η, these estimates can be combined into 211

Qw = β2ηπR2Uv, (2.14)
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so that CQ = 2β2η. The wake width is still much narrower than that of a rigid body with212

estimated values β ∼ 1/3 and η ∼ 1/4. An a priori estimate of CQ ∼ 0.12 is close to213

the value CQ = 0.1 that Maxworthy inferred from lines-of-fit to his experimental data.214

To account for the growth of the vortex, Maxworthy (1974) introduced an additional215

integral equation describing the increase in volume due to an effective entrainment rate216

α217

dVv

dt
= Qw = 4παR2

vUv, (2.15)

based on generalising the entrainment concept of Morton et al. (1956). Here entrainment218

is ascribed over the whole surface of the vortex and CQ = 8α. Maxworthy (1974) defined219

a lumped parameter CD = CQ/4α which was determined to have a value that spans220

from 1.9 to 2.7 in his tests. The growth of the vortex arises due to the wake volume221

flux (Qw) and entrainment (Qe + Qw), that gives an effective entrainment coefficient222

α = CQ/8. This closure gives a fixed value of CD = 2 which sits in the range estimated223

by Maxworthy (1974). This also explains why the effective entrainment rate is in the224

range α ∼ 0.010 − 0.0012 (see Maxworthy 1977, figure 24, and table 1), i.e. by an225

order of magnitude smaller than the entrainment coefficient of a jet which is typically226

α ∼ 0.065− 0.08 (see van Reeuwijk & Craske (2015)).227

2.3. Interaction with turbulence228

The bulk model of vortex movement, described by Maxworthy (1974), is developed229

to include the approximate effects of external turbulence on the vortex dynamics. This230

proves a fruitful avenue to pursue because it enables the influence of a spatially and231

temporally varying turbulent field on the gross dynamics of a vortex to be assessed.232

The external turbulence is effective at dispersing material shed behind the vortex but233

this influence on the vortex impulse is of secondary importance compared to the growth234

of the vortex through entrainment. The effect of external turbulence on the vortex is235

parameterised in terms of its entrainment through the vortex surface (Sv = 4πR2
v),236

Qe = Svαeue. (2.16)

The growth of the vortex occurs through entrainment caused by the turbulence exterior237

to the vortex surface and the wake volume flux, a process which is parameterised by238

dVv

dt
= Qe +Qw. (2.17)

The impulse of the vortex is239

Iv = (1 + Cm)UvVv, (2.18)

and for an approximately spherical vortex, Cm = 1/2 (Saffman 1995). Combined with240

(2.12), this means that the dynamics of the vortex are described by241

dRv

dt
= αeue(x, t) + αUv (2.19)

dUv

dt
= −2 + Cm

1 + Cm

Uv(Qw +Qe)

Vv
(2.20)

dXv

dt
= Uv. (2.21)

The model (2.19-2.21) differs from Maxworthy (1974) with the inclusion of effect of en-242

trainment caused by external turbulence that is included in (2.19) and (2.20). Combining243
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(2.20) and (2.17) gives 244

Uv

Uv0
=

(
Rv

R0

)−5

, (2.22)

regardless of how the turbulent intensity varies in time or space. The influence of external 245

turbulence is parameterised to have an external entrainment coefficient, αe ∼ 0.12, that 246

is more typical of turbulent jets (eg van Reeuwijk & Craske (2015)), and the internal 247

entrainment coefficient taken to be α ∼ 0.012, which was inferred by Maxworthy (1977) 248

from the growth of the size of the turbulent vortex. 249

The dynamics of a dipolar vortex can be understood by integrating the coupled system 250

of equations (2.19-2.21). This system of equations admits a number of useful analytical 251

results for the case of ue = 0 (from Maxworthy) or ue constant. When ue = 0, 252

Uv

Uv0
=

(
1 +

6αUv0t

R0

)− 5
6

, (2.23)

which on integration gives 253

Xv

R0
=

1

α

((
1 +

6αUv0t

R0

) 1
6

− 1

)
. (2.24)

For a field of turbulence maintained at a constant turbulent intensity u0, the penetration 254

distance can be evaluated from 255

Xmax =

∫ 0

Uv

dUv

dUv

dt
dt

dXv

=
R0

5α

(
α

αeIt

) 1
5
∫ α

αeIt

0

dŨ

Ũ1/5(1 + Ũ)
. (2.25)

When αeIt/α ≫ 1, 256

Xmax

R0
∼ 1

4αeIt

(
1− 4

9

α

αeIt

)
. (2.26)

The vortex model, based on the enhancement of boundary movement caused by entrain- 257

ment, predicts a maximum penetration distance that varies inversely with It. Arnold et al. 258

(2013) developed a ballistic model, based on large-scale vortices leading to differential 259

advection of the vortex, with the maximum penetration distance scaling as Xmax/R0 ∼ 260

1/((L/R)It). 261

3. Numerical approach 262

The three-dimensional numerical component of the study examines the movement of 263

an idealised vortex moving into a turbulent field. There are a number of choices for both 264

the idealised vortex form (including a thin-cored vortex ring, Hill’s spherical vortex) 265

and turbulent field (forced or decaying homogeneous turbulence). In this paper, a Hill’s 266

spherical vortex (with Re0 = 2000) moving into a decaying homogeneous turbulence is 267

chosen. Other studies have initialised the flow with a Hill’s spherical vortex (e.g. Camassa 268

et al. (2013)), but at lower Reynolds numbers (30-300). 269

3.1. Problem definition 270

A Hill’s (1894) spherical vortex, with an initial radius R0 and speed Uv0, moves into 271

homogeneous turbulence, characterised by an initial rms-velocity u0 and integral length- 272

scale L. The incompressible flow evolves according to the Navier-Stokes equation and the 273
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differential form of the conservation of mass, or274

ρ
(∂u
∂t

+ u ·∇u
)
= −∇p+ µ∇2u, ∇ · u = 0. (3.1)

The fluid has a density ρ and dynamic viscosity µ. It is pertinent to evaluate the properties275

of a vortex evolving in time. Since the vortex moves through turbulence, the use of276

vorticity to discriminate the vortex edge, commonly applied to discriminate interfaces277

that separate turbulent from non-turbulent regions (see da Silva et al. 2014) is not viable.278

Experimentally, interfaces are typically discriminated using a passive dye represented as279

a scalar C(x, t) whose evolution in time is described by280

∂C

∂t
+∇ · (uC) = D∇2C, (3.2)

where D is the diffusivity of the scalar. In experimental studies with water, the diffusivity281

of dyes are 3 orders of magnitude smaller than the kinematic viscosity, the computational282

challenge of dealing with high Schmidt numbers generally precludes using scalars as a283

diagnostic to analyse vortex movement. An alternative approach is to use a Lagrangian284

method where fluid particles are tracked in time. A fluid particle located at X0 at t = 0285

moves to X in time t, where286

dX

dt
= u(X, t), X(0) = X0, (3.3)

and this has the advantage of enabling the fluid exchange between the vortex and external287

flow to be assessed.288

3.2. Flow initialisation289

The initial flow u(x, 0) = uv +ut is created by the superposition of a spherical vortex290

(uv) and a homogeneous turbulent field (ut) defined in a region starting a normal distance291

Xf from the vortex centre. The flow generated by the Hill’s spherical vortex (Hill 1894),292

uv = (ur, uθ) is set internally by293

(uvr, uvθ) = Uv0

((5
2
− 3

2

r2

R2
0

)
cos θ,

(
− 5

2
+

3r2

R2
0

)
sin θ

)
, (3.4)

where r = |x|, θ = cos−1(x · x̂/r) and the internal azimuthal vorticity field is294

ωvϕ =
15Uv0

2R2
0

r sin θ. (3.5)

Outside the vortex, the flow is described by295

(uvr, uvθ) = Uv0

(
R3

0

r3
cos θ,

R3
0

2r3
sin θ

)
, (3.6)

and corresponds to the irrotational flow past a sphere. The Eulerian impulse and moment296

of the vortex are297

I
(E)
v0 = (1 + Cm)Uv0V0, M

(E)
v0 = Uv0V0, (3.7)

respectively, where V0 = 4πR3
0/3 and Cm, the added-mass coefficient, takes a value of298

1/2.299

An incompressible homogeneous random flow is constructed by a summation of Fourier300

modes chosen to satisfy a specified energy spectrum E(k) (see Kraichnan 1959; Fung et al.301

1992). The turbulent field is defined to start a distance Xf in front of the vortex center so302



Penetration of a spherical vortex into turbulence 11

that it does not interfere with the initial stability of the vortex. This standard technique 303

is based on an incompressible velocity field of the form 304

ut(x) =

Nm∑
n=1

an × k̂n cos(kn · x+ ϕn)H(x−Xf ), (3.8)

where ϕn is a random phase, kn is a wave number vector, k̂n is a unit vector with random 305

direction, and an is chosen so that the velocity field has the statistical properties of a 306

prescribed energy spectrum E(k). A range of wave numbers are chosen to span the 307

spectrum. Here we set Nm = 300 and wave numbers k = kn range from 0.2k0 to 10k0 308

(where k0 = 2π/L). The wave vectors kn = knk̂n and an are chosen from a distribution 309

that satisfies 310

⟨an⟩ = 0, ⟨|an|2⟩ = 2

∫ kn+δk/2

kn−δk/2

E(k)dk. (3.9)

We follow Fung et al. (1992) and prescribe an energy spectrum of the form 311

E(k) =
γg2(k/k0)

4(
g1 + (k/k0)2)

)17/6 u2
0

k0
, k0 =

2π

L
, (3.10)

where 312

g1 =
πΓ 2(5/6)

Γ 2(1/3)
, g2 =

55

9

g
5/6
1

π
. (3.11)

γ is a correction factor caused by limiting the wave number range and Γ is the Gamma 313

function (Abramowitz & Stegun 1964). The vorticity field associated with (3.8) is 314

ωt(x) = ∇× ut =

Nm∑
n=1

ankn sin(kn · x+ ϕn). (3.12)

The initial rms speed, urms(0), was evaluated from the initialised velocity field with the 315

ratio urms(0)/u0 varying from 0.975 to 1.02. 316

3.3. Numerical solution 317

Equations (3.1, 3.2) were solved using OpenFOAMv1706, which is a general computa- 318

tional framework for object orientated solutions to multiphysics problems through finite 319

volume and Lagrangian particle tracking. 320

To study the vortex-turbulence interaction, the domain size was chosen to be 30R0 × 321

8R0 × 8R0. The effect of flow boundedness is expected to have a 1/82 effect on the 322

mean vortex speed. The vortex is initialised at a distance of 3R0 from the inlet plane, 323

with Xf = 5R0. A uniform block mesh was used - a variety of sizes were tested and 324

settled for 1000 × 260 × 260. Slip boundary conditions were applied to the walls of 325

the domain and the simulations ran to time t̃(= Uv0t/R0) = 50. Mesh convergence was 326

tested by analysing the vortex position as a function of time and this showed less than 2% 327

difference in vortex position between simulations running at 8.45 million cells, compared 328

to 67.6 million cells. The evolution of the rms speed of the homogeneous turbulence was 329

calculated as a function of time and fitted with a power-law of the form 330

ue

u0
=

(
1 +

2.0u0t

L

)n

, (3.13)

with a decay index of n = −0.7, which is typical for decaying homogeneous turbulence 331

(Wilczek et al. 2011). 332
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Figure 3. (a) Schematic of the experimental setup, showing the piston dimensions
(diameter Dp, stroke length Lp) and grid dimensions (stroke distance S and bar
separation M). The grid mass was increased with metal weights (not shown) to stabilise
its motion. The box turbulence is characterised in terms of (b) the scaled turbulent
velocity, urms/fS, fitted with an exponential a+ b exp(−c z), (see legend and (4.1)) and
(c) turbulent lengthscale, ℓ, plotted against height z above the grid. The origin z = 0
corresponds to the maximum height of the grid (see Hopfinger & Toly 1976), i.e. ≈ 5 cm
above the bottom of the tank.

The vortex center, Xv, was calculated from the Lagrangian position of fluid particles333

that were initially located within the vortex:334

Xv =
1

Np

Np∑
i=1

Xi. (3.14)

Since the fluid particles are advected by the local fluid velocity (see (3.3)), the vortex335

velocity is336

Uv =
1

Np

Np∑
i=1

dXi

dt
=

M
(L)
x

V0
. (3.15)

The vortex radius was defined in terms of the standard deviation from the vortex centre,337

so that Rstd = (Xi −Xv)2
1
2 . The vortex was seeded with Np = 104 particles.338



Penetration of a spherical vortex into turbulence 13

4. Experimental setup and measurements 339

In the laboratory, the interaction of a vortex with turbulence is studied in a cubic 340

Plexiglass tank of 1.0× 1.0× 0.90 m3 filled with tap water to a height 89 cm as shown in 341

figure 3(a). About thirty minutes prior to the vortex generation near the fluid surface, 342

the turbulence generation is started near the bottom of the tank by the vertical (and 343

sinusoidal) oscillation of a grid with a mesh size close to that used in Hopfinger & Toly 344

(1976). To visualise the flow, the fluid is seeded with spherical particles of a diameter of 345

60 µm and density of approximately ρ = 1.03g cm−3, while the vortex is coloured with a 346

fluorescent dye (Rhodamine 6G). A small amount of sodium hydrochlorate is added to the 347

water in order to slowly bleach the dye and to be able to repeat the experiment in the same 348

fluid. The flow is illuminated by a vertical laser sheet passing through the centre of the 349

tank, generated with a 2 W Spectra Physics Millenia Pro laser and cylindrical lens. For 350

the recording and flow measurements a Dalsa 1M60 Pantera camera is used with a frame 351

rate between 5 to 20 Hz (see figure 3) and in addition a Sony Alpha III camera. These 352

recordings are processed with the Particle Image Processing program UVmat (http:// 353

servforge.legi.grenoble-inp.fr/projects/soft-uvmat), developed at LEGI, which 354

allowed for the measurements of the rms velocity of the turbulence as well as the vorticity 355

fields, whereas the dye visualisations are processed with ImageJ (https://imagej.net/). 356

The distance of the vortex centre from its start, Xv, and vortex radius, Rv, defined in 357

terms of the separation of the vortex cores are determined from vorticity maxima and dye 358

visualisation, as functions of time. The vortex speed, Uv, is deduced from the displacement 359

of the vortex centres. The turbulence of the grid is calibrated, such that the turbulent 360

velocity, ue, and length scale ℓ, are known from the forcing parameters. 361

The vortices are injected a few cm below the tank free surface, at about z = 84 cm, 362

such that the vortex centres of the formed vortex are at about z = 73 cm above the 363

virtual origin in figures 3(b,c). The translation velocity Uv of the vortex is measured 364

from the dye and for some cases, verified with the displacement of the vorticity maxima 365

from PIV measurements. Below the details of the vortex generation, and the turbulence 366

generation are discussed. 367

4.1. Vortex generation 368

The vortex was generated by the movement of a piston, controlled by a stepper motor, 369

which drives flow through a pipe with internal diameter Dp = 11 cm or Dp = 4 cm 370

diameter. The initial speed of this vortex, Uv0, is proportional to the piston velocity, 371

whereas the circulation is determined by the distance travelled by the piston, and the 372

size of the vortex is mainly determined by the diameter of the cylinder (see Gharib 373

et al. 1998, for details). The displacement distance of the piston to generate the vortex 374

ring, Lp,was kept constant and is equal to 13.65 cm during each experiment, so that the 375

vortex formation number, Lp/Dp, is fixed at a value of 1.24, and 3.41 in case of the small 376

vortex. Since this vortex formation number is below 4 in this study, only isolated vortex 377

rings are generated with no (or hardly any) trailing wake (e.g. Gharib et al. 1998). The 378

Reynolds number of the vortex, based on the initial velocity Uv0 and diameter D0 just 379

after generation, Re0 = D0Uv0/ν, was varied between 1490 and 5660 (see Table ??). 380

4.2. Turbulence generation and properties 381

A turbulent field is generated with a vertically oscillating grid, made of square bars of 382

thickness d = 1.5 cm, separation M = 6 cm covering an area 97 cm × 97 cm. The gap 383

between the grid and the sidewall of the tank is minimized with 5mm thick matt black 384

http://servforge.legi.grenoble-inp.fr/projects/soft-uvmat
http://servforge.legi.grenoble-inp.fr/projects/soft-uvmat
http://servforge.legi.grenoble-inp.fr/projects/soft-uvmat
https://imagej.net/
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Perspex plates. This also improves the quality of the recordings. The stroke of the grid,385

S, was varied at the values 5.4, 7.4, and 10.4 cm.386

The characteristics of the turbulence are set by the grid forcing frequency (f) and
amplitude of forcing (S), with the characteristic velocity and length-scale set by velocity
and the dimensions of the grid. Turbulence statistics are obtained from long time statistics
of planar PIV measurements in a vertical plane. The in-plane rms velocity u0,2D and
integral length-scale L are expressed in terms of the in-plane velocity fluctuation u′,
through

u0,2D = (u′2)
1/2

,

and

L =

∫ RL

0

u′(r)u′(r + x)dr/(u′2),

where RL upper bound for the correlation integral. The results for u0,2D and L are387

shown in figure 3(b,c) as a function of distance z. At larger distances from the grid, the388

turbulence intensity and integral lengthscale tend to a constant where the small structures389

between the plumes that are generated by the moving bars, are dissipated. Similar results390

of a constant u0,2D and length scale L were also obtained for faster grid motion (f ∼1391

Hz) and a smaller stroke S (personal communication with J. Sommeria). Close to the392

moving grid, the turbulent intensity increases and the integral scale decreases as the393

flow is dominated by the shedding of small intense vortices from the grid. In view of the394

present interest of knowing the turbulence intensity at a particular level, an exponential395

fit was employed396

u0,2D

fS
= 0.036 + 0.4 exp

(
− z

(SM)1/2

)
, (4.1)

which is shown in figure 3(b). The saturation of the turbulence near a constant value of397

urms and L has not been observed in Hopfinger & Toly (1976) and more recently Poulain-398

Zarcos et al. (2022) since in these experiments the measurement region is limited to a399

distance of 35 cm of the grid position. In Hopfinger & Toly (1976) the grid oscillated at400

mid depth in 80 cm height tank with a ten times faster oscillation frequency, leaving an401

effective 35 cm distance from the grid, as also in Poulain-Zarcos et al. (2022). Further, a402

ten times lower frequency was used to keep the turbulence weak compared to the vortex.403

Figures 3(b,c) show indeed that at z > 30 cm the length scale L stagnates around a404

value of ≈ 7.5± 1.5 cm, corresponding to the mesh size, while
u0,2D

fS3/2 ≈ 0.013, implying a405

maximum Reynolds number of Ret = u0,2DL/ν roughly between 120 and 240.406

In Hopfinger & Toly (1976), the grid oscillated at the tank mid height, and the virtual407

origin (where L = 0) corresponded to the position ztop − (S/2 + 0.01m), with ztop the408

maximum position of the grid, thus slightly below centre position of the grid. This is also409

taken as the reference position (z = 0) in figures 3(b,c). In the present experiments, the410

grid oscillates near the bottom, and the level with L = 0 corresponding to the bottom of411

the tank, showing the effects of a near boundary on the turbulence.412

The turbulent intensity in the vicinity of the vortex changes as the vortex descends. To413

compare the experimental results with the numerical simulations, a consistent definition414

of the turbulent intensity is taken415

It =
(3/2)1/2u0,2D

Uv0
, (4.2)

that is expressed in terms of u0,2D which is determined by averaging u0,2D over the path416
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Exp. Label f (Hz) S (cm) Dp (cm) Uv0 (cm/s) D0 (cm) u0,2D (cm/s) Xmax/R0 Uv0/u0,2D

A 0.63 5.4 4 2.778 5.358 0.123 12.971 22.548
B 0.63 5.4 4 3.083 6.222 0.154 14.588 19.974
C 0.65 5.4 4 4.128 5.915 0.168 13.665 24.548
D 0.65 7.4 4 1.553 6.250 0.173 4.599 8.960
E 0.65 7.4 4 9.279 5.967 0.193 19.639 48.082
F 0.65 7.4 4 9.346 6.603 0.219 18.541 42.652
G 0.65 7.4 4 7.546 6.029 0.193 16.862 39.024
H 0.5 5.4 11 2.203 14.550 0.120 9.138 18.312
I 0.625 5.4 11 2.103 14.847 0.131 7.761 16.041
J 0.625 5.4 11 2.180 14.605 0.139 8.651 15.705
K 0.625 5.4 11 3.283 14.725 0.155 9.177 21.206
L 0.65 10.4 11 3.235 17.485 0.311 4.494 10.395
M 0.67 10.4 11 1.408 14.732 0.252 1.212 5.583
N 0.50 10.4 11 1.232 14.337 0.189 2.379 6.510
O 0.55 10.4 11 1.320 11.827 0.212 4.264 6.219
P 0.55 10.4 11 1.452 11.041 0.210 4.448 6.918
Q 0.60 10.4 11 0.528 14.094 0.226 1.117 2.335
R 0.60 10.4 11 0.264 13.525 0.226 0.484 1.170
S 0.60 10.4 11 1.056 11.833 0.226 1.544 4.674
T 0.65 7.4 11 2.219 14.537 0.198 6.034 11.206

Table 1. Data of the vortex in oscillating grid turbulence. The parameters f , S, Dp and
D0 (which is ≈ 2R0) are defined in figure 3(a); Uv0 and u0,2D are the vortex and rms in-
plane turbulent velocities at t = 0, respectively, whereasXmax/R0 is the scaled maximum
travelled distance by the vortex. The vortex starts in turbulence so that Xf = 0.

of the vortex. The prefactor (3/2)1/2 is used to convert the in-plane rms velocity to the 417

rms of the three-dimensional velocity field. 418

5. Numerical results: Vortex movement into a quiescent region 419

5.1. Vortex induced transport 420

To distinguish between the effect of the vortex on transport outside the vortex from the 421

processes that occur within the vortex, two groups of fluid particles were followed in time 422

– see figure 4. Drift is associated with differential movement of fluid and was quantified 423

using a distribution of particles in the plane z = 0 in the form of a structured grid. 424

The lateral displacement of the grid lines parallel to the direction of vortex propagation 425

gives an indication of blocking and source strength, while the distortion of the grid 426

lines perpendicular to the vortex propagation indicates Darwin drift. To characterise 427

the transport by the vortex 10 000 particles are seeded randomly within the vortex and 428

followed in time. The two groups of fluid particles are distinguished by colour (see figure 429

4(a)) with those initially inside the vortex are blue, and those initially outside the vortex 430

are red. 431

The drift profiles confirm the longitudinal displacement profiles reminiscent of those 432

identified by Darwin and Maxwell. Drift profiles have been used to analyse the kinematic 433

transport by dipolar vortices (Eames & Flor (1998)). The stretching of fluid elements 434

passing close to the stagnation points is clear, leading to a tilting of fluid elements 435
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along the x-axis. The lines of fluid particles parallel to the propagation direction are436

laterally displaced, as a consequence of the volume flux deficit behind the vortex. The437

lateral divergence is a consequence of the presence of the source flow due to the drag438

on the vortex. The lateral displacement behind the vortex is approximately constant439

over a period of these simulations. The volume flux behind the vortex changes when the440

manner in which the vorticity is deposited in the wake is interrupted and this is observed441

to occur when the vortex is undergoing an inviscid adjustment, corresponding to a time442

beyond t̃ = 40. Consequently the drag on the vortex is approximately constant up until443

this time. In the external flow around the vortex, the accumulation and stretching of444

fluid particles near the leading stagnation point highlights the front of the vortex. Their445

motion confirms that the fluid enters the rear of the vortex and circulates the vortex446

core. At a later time (t̃ ∼ 40), the edge of the vortex is difficult to distinguish from447

the side view due to three-dimensionality of the flow. The non-uniform radial particle448

distribution within the vortex indicates the entrainment of ambient fluid which does not449

contain particles.450

5.2. Velocity and vorticity field451

Hill’s spherical vortex is based on a steady inviscid model where the initial strength452

of ωϕ varies linearly with distance from the centreline (see (3.5)). The most significant453

process is the loss of vorticity due to the diffusive flux across the bounding streamline454

which leads to vorticity being deposited behind the vortex. It is this loss which leads to a455

faster reduction of the maximum vorticity in the vortex than vorticity annihilation. The456

width of the vortical wake behind the vortex is βR0, (where β ∼ 1/3) is smaller than for a457

solid body because of the absence of flow separation that arises from the no-slip condition;458

the vorticity strength on the surface of the solid body scales as U0/R0Re1/2. The vortex459

wake is much larger than a clean spherical bubble (Moore (1963)), even through the460

vortical strength is comparable (U0/R0), because of the kinematic constraint imposed by461

the bubble surface. The width of the downstream vortex wake is largely determined by462

cross-stream diffusion in a negatively strained flow, which tends to greatly widen the wake463

(Hunt & Eames 2002). Viscous diffusion of oppositely signed vorticity on the centre-line464

of the vortex leads to vorticity annihilation. This effect is far weaker than Maxworthy465

identified because vortex compression leads to ωϕ tending to zero on the centreline. At a466

later time of t̃ = 40, the azimuthal instability has grown sufficiently large that the vortex467

starts to become asymmetric. This instability is likely due to the mechanism explained468

by Widnall (Widnall & Sullivan 1973) and appears for Re ≳ 2000 (see Maxworthy 1977).469

The planar streamline pattern, in the frame moving with the vortex, is shown in figure470

5(a), along with the distribution of the vorticity component that is normal to the page.471

The vortex center and velocity are determined from the fluid particles initially released472

inside the vortex. The permanent cross-stream displacement of streamlines originating473

upstream of the vortex, seen in figure 5(a), are indicative of a source flow, or equivalently,474

a drag on the vortex.475

As the vortex propagates, the vortex core changes shape and material is shed into476

its wake. Cross-stream slices of the scalar distribution are shown in figures 5(b)(i-v).477

Material is lost from the vortex through a diffusive flux at the side of the vortex (see478

figure 5a) with a trail of vorticity and tracer in the wake. The diffusivity of the tracer is479

set the same as that of vorticity. The overall growth of the three-dimensional effects are480

affected by both, mesh resolution and mesh shape.481
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Figure 4. (a) Time sequence showing the displacement and transport of fluid particles
by a Hill’s spherical vortex moving with initial Reynolds number Re0 = 2000. The red
particles were initially placed in a grid arrangement with planes that lie perpendicular
and parallel to the initial velocity of the vortex; the green particles were placed randomly
within the vortex. The panels are shown for t̃ = 5, 10, 20, 30 and 40 where t̃ = Uv0t/R0.
The vortex is represented as an iso-surface of the second-invariant of the velocity gradient
tensor, II = 1

2 (||Ω||2 − ||S||2), where Ω = (∇u − (∇u)T )/2 and S = (∇u + (∇u)T )/2
(Hunt et al. (1988)). The iso-surface II = 0.02 s−2 is plotted. (b) The projected view of
vortex shown iso-contour of II = 0.02 s−2 and |ω| = 0.1 s−1.

5.3. Speed, shape and impulse 482

The vortex position was calculated from the mean and the maximum distance moved 483

by marked internal fluid particles and both gave substantially the same result, as shown 484

in figure 6(a). Figure 6(a) shows a comparison with the model and α = 0.012. This agrees 485

for short time during which the three-dimensional deformation of the vortex ring is still 486

small, since from figure 6(c), CQ = Qw/πR
2
0Uv0 ∼ 0.10, giving α ∼ 0.0125. At around 487

t̃ ∼ 40, the azimuthal instability mentioned above starts to grow and the simple drag 488

model is not applicable. The vortex decreases faster than anticipated apparently due to 489

the rapid increase in its radius. 490
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Figure 5. (a) The distribution of vorticity ωz in the plane z = 0, is shown for t̃ =
5, 10, 20, 30 and 40. The streamlines are plotted in the the frame moving with the vortex,
where the vortex speed is determined from the average Lagrangian velocity. (b) The
distribution of scalar, C, initially set as C = 1 within the vortex, is indicated for times
t̃ = 5, 10, 20, 30 and 40.

To explore the adjustment from an axisymmetric vortex ring to a ring with a series491

of modes, the shape of the vortex was analysed using information from the Lagrangian492

particles. Projecting the particles onto a normal plane enabled the outer edge of the493

vortex Rm(θ) to be determined (see figure 6(b) insert), from which the average (Rm),494

maximum and minimum (max(Rm),min(Rm)) are determined. We would speculate,495

based on Maxworthy’s (1977) observations, that the vortex will ultimately break down.496

The volume flux Qw, downstream of the vortex, is evaluated from (2.8b) as a function497

of distance from the vortex centre, and shown in figure 6(c) for four times. During the498

initial movement of the vortex, the diffusive flux of vorticity into the wake tends to occur499

at a constant rate, giving rise to a constant volume flux except beyond the starting point500
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Figure 6. (a) The vortex position, Xv, determined from Lagrangian particle information,
is plotted as a function of time (see legends for symbols). (b) Characterisation of the
cross-sectional shape of the vortex (determined from the maximum radial distance Rm(θ)
mean and minimum of Rm of Lagrangian particles from the centreline). (c) Volume flux
Qw, determined from (2.8b) as a function of distance behind the vortex, for different
times (see insert); (d) Scaled Lagrangian and Eulerian measures of momentum (Mx) and
impulse (Ix) as functions of time.

where the flow is irrotational. The volume flux behind the vortex starts to decrease at 501

around t̃ = 20, as the inviscid adjustment causes the size to increase and the vortex 502

entrainment becomes pronounced. This is also evident in figure 5(b) where the tracer 503

concentration in the near wake is also diminished. 504

6. Vortex moving into a region of turbulence 505

6.1. Numerical results 506

Figure 7(a) shows the movement of the initially spherical vortex, for different back- 507

ground levels of turbulence (It = 0.1, 0.2 and 0.5). The vortex is visualised by placing fluid 508

particles within the vortex and following their evolution in time. The vortex is initially 509

compact in the non-turbulent region and then quickly loses mass through the wake as 510

it moves into the region of turbulence. With increasing strength of external turbulence, 511

the rate at which the vortex loses mass increases. Its head remains initially coherent and 512

while the tagged fluid elements tend to be dispersed in the longitudinal direction, the 513

size of the head of the vortex increases more slowly. At a later stage, the growth of the 514

vortex tends to be dominated by passive dispersion. The presence of turbulence leads 515

to the vortex tending to slow down with an increased sensitivity to being deflected by 516
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Figure 7. (a) Lagrangian transport of fluid particles by a vortex moving into a turbulent
flow for contrasting levels of ambient turbulence (i) It = 0.1, (ii) 0.2 and (iii) 0.5; in
each case L/R0 = 4, at times t̃ = 5, 10, 20, 30, 40 and 50. A red line is plotted along the
center of the domain, starting from the initial vortex position, to give perspective to the
images. The position of the vortex is shown in (b,i) and the normalised velocity plotted
against the vortex radius in (b,ii). A horizontal line is plotted at Xf/R0 = 5.0. The decay
of the vortex velocity is shown in (c,i) for contrasting levels of turbulent intensity. The
Lagrangian measures of vortex for (c,i) momentum, (c,ii) impulse, (c,iii) vortex force and
(c,iv) diffusive flux of impulse are shown as functions of time.
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the ambient turbulence. The mutual distance between the vortices increases while they 517

deform, and flatten the more they enter in the turbulent region. With higher levels of 518

turbulence, the vortex is blocked over a shorter distance and deforms faster, so that the 519

penetration distance decreases. These effects become more pronounced with the intensity 520

of the turbulence. 521

Figure 7(a) shows the vortex position as a function of time and indicates that over the 522

period of the tests, the vortex slows down faster as it penetrates into the turbulent region 523

(figure 7(c,i)). At the higher values of turbulent intensity, the vortex is largely arrested 524

and is observed to penetrate a finite distance into the turbulence. The impulse of the 525

vortex decreases due to the loss of vorticity but it has a very specific tendency to increase 526

as it interacts with the interface between the turbulent and non-turbulent region. This 527

blocking effect is similar to a vortex impacting a wall which causes the vortex to flatten, 528

vorticity to increase via stretching, leading to an increase in the vortex impulse (see 529

Verzicco et al. 1995). This is evident in figure 7(c,ii) for the highest external turbulence 530

(It = 0.5). The change of vortex impulse due to vorticity diffusion is negative except for 531

short periods with It = 0.5, when detrained fluid elements pick up vorticity from the 532

ambient turbulence. 533

Figure 8 shows the turbulent field and vortex, as isocontours of Q, for different time 534

and turbulent intensity. The colour in the images shows the (normalised) concentration 535

of the scalar tracer and gives an indication of the material that was originally within 536

the vortex. The decaying turbulence leads to an increase in the integral lengthscale and 537

decrease in the rms velocity, which is seen by the increased space between vortical tubes. 538

The interface between the turbulent and non-turbulent region is deflected by the initial 539

penetration into the turbulence, and eventually disperses. The sequences show that the 540

coherence of the vortex is quickly lost as the strength of the external vorticity increases. 541

The size of the vortex, evident from the highest concentration of passive scalar, grows in 542

time. For the lowest level for turbulent intensity (It = 0.1), the shed material is aligned 543

to the direction of motion of the vortex, with the wake vorticity quickly dispersed by the 544

external turbulence. 545

The penetration of the vortex into homogeneous turbulence is thus accompanied by a 546

reduction in the vortex speed associated with the loss of wake material and vortex growth 547

in size. The vortex speed Uv is determined from the Lagrangian measure of momentum 548

(ML
x /V0). For It = 0.1, the reduction of speed leads to an approximately linear decrease of 549

velocity with distance with a rate faster than in the absence of turbulence (figure 9(a)). 550

Both, the ambient turbulence and the vortex speed, decrease in time but at different 551

rates; initially the ambient turbulence decreases faster than the vortex speed, leading to 552

Uv/u0 increasing, but since the loss of mass from the vortex is continuous, the vortex 553

ultimately slows down faster than the rate at which the turbulence decays. 554

6.2. Experimental results 555

Typical visualisations of the evolution of the vortex moving in turbulence generated 556

by the oscillating grid near the bottom of the tank are shown in figure 10(a-f) for the 557

vortex generated with the 11 cm (inner) diameter tube. During an initial stage, the vortex 558

develops and grows as a result of entrainment (see figure 10(a)) showing relatively little 559

influence of the ambient turbulence for the large vortex. Small turbulent vortices in the 560

ambient are advected around the spherical vortex, and either strained in the wake of the 561

spherical vortex, or entrained into the spherical vortex leading to its intensification (see 562

figures 10(b,c)). During this latter process, the spherical vortex moves outwards and then 563

inwards causing oscillations in vortex radius. Inversely, by conservation of momentum, 564

the propagation velocity decreases and increases, respectively. With distance smaller but 565
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Figure 8. A cross-section of the flow structure is shown for (a) It = 0.1, (b) 0.2 and (c)
0.5. The iso-volume contours for the second invariant of the velocity gradient tensor Q are
shown, with values QR2

0/U
2
v0 shown greater than 0.025, 0.0125 and 0.0005 respectively

for (a), (b) and (c). The time instances correspond to those in figure 7(a). The colour
field corresponds to the scalar field C and varies from cyan to yellow (from C = 0 to
maximum C). The reference red line is the centreline of the simulations. The lateral span
of the box indicates the vortex start and the end of the computational domain, which is
smaller than the computational domain.

intenser turbulent vortices are confronted, leading to the breakup of the sharp vortex front566

into smaller vortices (see figures 10(d-e)). When the vortex approaches the top position567

of the grid (at about z = 20 cm), the vortex is eventually destroyed by the turbulent568

jets generated by the oscillating grid (see figure 10(f)). Although the same sequence was569

observed for the smaller vortices (generated with the 4 cm diameter tube), the turbulent570

vortices are now comparable to the size of the grid, which deviates, intensifies or weakens571
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Figure 9. The vortex speed, Uv (3.15), determined from the numerical simulations, is
shown as a function of the distance the vortex has moved. In (a), the contrasting influence
of turbulent intensity is shown. In (b), the ratio of the Uv/ue is shown as a function of
vortex position, where ue is determined from (3.13).

Figure 10. Typical vortex evolution in quiescent ambient fluid (top), and with ambient
turbulence generated by an oscillating grid near the base of the tank (bottom) at (a)
t = 3.5 , (b) 10.8 (c) 17.2 (d) 24.7 (e) 30.9 and (f) 35.3s after the vortex generation.
The internal diameter of the cylinder is 11 cm (see experiment Q in Table 1, and same
parameters for top images without turbulence). The frames are 50 cm wide, and the
position of the grid is represented in (f) by the black area near the bottom.

the initial vortex during its development stage increasing the variance of the speed and 572

size. 573

The position of the vortex centres, Xv, are determined by manual segmentation of 574

images, such as figure 10, and also from the vorticity extremes obtained from PIV 575
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Figure 11. Results from the experimental study of (a) the vortex velocity Uv and (b)
the normalised vortex velocity Uv/ue, as a function of distance from vortex starting for
contrasting values Ive.

measurements. Following the dye that is captured in the vortex centres, the vortex576

velocity was then calculated by differentiating Xv with time. The turbulence intensity at577

the vortex centre is obtained by interpolating the u0 relation shown in figure 3(b). The578

initial position of the vortex, Xfe, is considered as the moment the vortex was formed.579

The vortex radius, R0, is measured shortly after injection as half the distance between the580

two vortex centres when it has reached its mature state, i.e. it has a circular shape and581

slightly increases in speed. In case this is not possible because the vortex was perturbed582

by ambient vortices, its maximum velocity shortly after injection has been taken.583

Figure 11 shows the evolution of the vortex velocity with penetration distance. The584

oscillations in Uv/Uv0 and Uv/ue are due to the small turbulent vortex structures that are585

advected to the rear of the spherical vortex where they are entrained. Subsequently, these586

small scale vortices are swept internally to the front of the vortex. During this entrainment587

process the spherical vortex slightly expands in size, and by conservation of impulse,588

decreases in speed (figure 11(a)). Figure 11(b) shows the relative strength of the vortex589

to the local turbulent intensity which decreases rapidly with distance; by comparing590

figure 9(b) and figure 11(b), the vortex appears to be arrested when Uv/ue ∼ 2− 5.591

6.3. Comparison of numerical, experimental and integral models592

The numerical model is based on decaying, homogeneous turbulence and contrasts with593

the box-turbulence in the experimental study which is statistically steady but spatially594

varying. The integral model (2.19)-(2.21) provides a means of understanding these general595

influences of the vortex dynamics.596

Figure 12 shows the results of the integral model with the turbulent intensity (3.13)597

being defined at a distance x > Xf (for Xf = 5R0), consistent with the numerical model598

of a spherical vortex moving through a quiescent region prior to penetrating the decaying599

turbulence. The predicted trend for the velocity and position (figure 12a,c), as a function600

of time, show quite similar trends to the numerical model, in particular the abrupt change601

in the vortex speed as it penetrates into the turbulent region. The reduction of the vortex602

speed is a consequence of the loss of vortical fluid (reducing impulse) and entrainment603
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Figure 12. Predictions for vortex dynamics based on integral model (2.19)–(2.20) for (a)
radius, (b) velocity and (c) position with time, and (d) speed with vortex position, where
the turbulence decays according to (3.13) for n = −0.7.

that causes the vortex size to grow. As is evident from figures 7(a) and 10, the increase 604

in the vortex radius is less than 50% during the rapid decrease in vortex speed. The later 605

stage of the spherical vortex dynamics, where Uv/ue < λc, is characterised by the vortex 606

essentially stopping and spreading rapidly in a diffusive manner, a process that is not 607

captured by the integral model. The critical ratio λc can be approximately determined 608

from figure 9(b) to be λc ∼ 3, while the experimental results (figure 11) suggest λc ∼ 5. 609

Figure 13 shows a compendium of the penetration distance of a vortex versus the 610

inverse strength of the turbulence, for the experiments, numerical simulations and integral 611

model. The legend lists the specific configuration for the integral model, with the start of 612

the turbulent region and exponent for the turbulence growth listed. Three configurations 613

are listed, specifically decaying turbulence (n = −0.7), sustained turbulence (n = 0) and 614

growing turbulence (n = 2), with the later chosen to mimic the scenario of the vortex 615

moving into progressively stronger turbulence that occurs in the experiments. 616

The curves for decaying turbulence show the vortex penetration distance at t = 617

50R0/Uv0, while the remaining curves describe the ultimate penetration distance. The 618

numerical simulations were repeated with the vortex starting in turbulence (Xf/R0 < 0) 619

to contrast the case of a vortex moving into turbulence (Xf/R0 = 5). Starting in 620

turbulence meant that its influence on the vortex dynamics was rapid, reducing the 621

penetration distance, giving a consistent trend similar to the integral model, with the 622

distance varying approximately with I−1
t . The initial turbulence also affected the vortex 623

stability 624

For turbulence whose intensity is sustained, the integral model recovers the asymptotic 625

result (2.26), where the penetration distance scales with I−1
t . This approximately linear 626
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Figure 13. The variation of the penetration distance into turbulence (Xmax − Xf ) is
plotted against the inverse of turbulent intensity, It, with the results determined by
experiments, computations and the integral model. For the experimental study, It is
defined by (4.2). The results from the integral model are plotted as full curves and the
decay law and turbulent front as listed in the legend. The numerical results for the case of
a vortex starting in turbulence (◦) or moving into turbulence (•). The experimental results
are distinguished between weak and strong vortices, ▲ and △, respectively and plotted
as a function of the inverse. The asymptotic expression (2.26), for strong turbulence, is
compared against the integral model for sustained turbulence.

trend is also evident in the experimental results. There is scatter in measurements of627

the penetration distance for intense turbulence (high It) and which is expected when628

the spherical vortex starts to interact with coherent structures shed from the oscillating629

bars. The integral model is shown for n = 2 where the vortex moves into a region of630

turbulence whose strength progressively increases in time. Although this does not match631

the spatial dependence seen in figure 3, it does highlight the significant reduction of the632

penetration distance (compared to decaying and forced turbulence) with a reported trend633

quite similar to the experimental observations.634

7. Conclusion635

This paper provides a detailed theoretical and experimental study of the arrestment of636

a spherical vortex penetrating a region of turbulence. The complexity of the new elements637

required a combination of different techniques to unravel the key physics.638

An integral perspective of vortex dynamics in quiescent flow is able to reconcile the639

far field dipolar nature of the vortex flow with the near field source flow generated by640

entrainment and impulse loss. This result also holds for vortices moving in turbulence641

because the turbulence is generally characterised by a negligible total impulse. The vortex642

model of Maxworthy (1977) is extended to account for the effect of external turbulence643
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in terms of increased entrainment and reconciles the results from the numerical and 644

experimental studies. A modest level of background turbulence causes the vortex to slow 645

down more rapidly and grow faster, leading to a finite penetration distance that scales 646

with I−1
t . Ultimately the vortex speed becomes comparable to the external turbulence 647

after which the vortex stops and rapidly spreads as it is dispersed by the ambient 648

turbulence. The evolution the vortex has been assessed by tracking a large number 649

of fluid particles. This Lagrangian technique turns out to be a fruitful technique for 650

understanding vortex-turbulence interactions in the future. The consistent feature of the 651

experimental and theoretical model is the small growth rate of the vortex but a significant 652

increase in the loss of vortical fluid at the rear. 653

The paper has examined the impact of external turbulence on the vortex from an 654

integral perspective, specifically analyzing the vortex’s movement and determining the 655

penetration distance. The distortion and modification of external turbulence are complex 656

phenomena. Disentangling these general flow processes will be the focus of our future 657

research efforts. 658
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