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Abstract—Unmanned Aerial Vehicle (UAV) path planning
optimizes trajectory for efficient target reach with minimal
energy consumption. This study enhances the Target Interception
method (TI), to address wind-related challenges. We introduce
two adaptations: TI Dynamic Path and TI External Influences.
Implementing these methods in a dynamic wind environment
yields results demonstrating enhanced reliability and efficiency.
This research marks a significant stride in developing more
effective UAV path planning algorithms.

Index Terms—UAV, Obstacle Avoidance, Path planning algo-
rithms, Optimization.

I. INTRODUCTION

Nowadays, the use of Unmanned Aerial Vehicles (UAVs)
is no longer limited to military purposes [1] or environmental
monitoring [2]. UAVs are now utilized in various domains,
such as delivering products, as seen in Amazon’s service called
Prime Air [3], or delivering food [4].
The main goal of the researchers is to find the most suitable
path to ensure safe navigation of the drones, reaching their
destinations using the shortest and most time-efficient flight
paths. UAV trajectory planning has seen a proliferation of com-
bined methodologies aimed at optimizing trajectory planning.
The integration of various techniques has led to substantial
advances in terms of efficiency, accuracy, and adaptability.
In particular, the integration of multiple methods has shown
promise in addressing the complexities of real-world scenarios.
In this context, our research lies at the intersection of this
evolving landscape. Building on our previous work [5], where
path planning is divided into two categories:
Global path planning (GPP) and Local path planning (LPP).
GPP aims to identify the optimal route for a UAV to travel
from its starting point to its destination within a given en-
vironment, while avoiding obstacles and complying with any
constraints, such as restricted airspace or minimum altitude
requirements. Four subgroups of GPP: optimization methods,
geometric methods, grid methods, and differential games [5].

We are set to further enhance UAV trajectory planning by
introducing two new approaches. The first approach involves
periodic reassessment of the shortest path. If the calculated
path differs from the current trajectory, the drone will adjust
its route accordingly. The second approach incorporates real-
time wind dynamics into our methodology. By considering
the effects of wind, we aim to enhance the accuracy and ro-
bustness of trajectory planning, taking a critical environmental
factor into account. This new approach is categorized as a
hybrid method, representing a new subsection within GPP, as
illustrated in Fig 1. This paper is organized as follows: In
Section 2, we provide an overview of related work, discussing
existing literature and studies related to UAV path planning in
windy conditions and also present our new proposal. Section
3 contains the implementations that have been done and the
results, which highlight the advantages and limitations of each
method. Section 4 concludes the paper.

Fig. 1. The UAV Path Planning Classification Categories

II. RELATED WORK

Many researchers have been actively exploring the impact
of wind on drone movement, suggesting new approaches. In
[6], the author introduces a cost-effective approach that allows
drones to follow designated routes, maintaining stable camera
focus on targets without the need for costly wind sensors. This
innovation enhances UAV navigation, addressing wind effects



with improved efficiency and affordability. Furthermore, re-
searchers are refining established methods by incorporating
the wind factor, emphasizing the increasing acknowledgment
of wind’s influence on drone navigation. These endeavors
reflect the continuous quest for more reliable flight strategies.
In [7], the author introduces wind-aware trajectory planning,
integrating wind formations and quadcopter kinematics. They
formulate A* cost functions considering distance and wind
data. A* has a major limitation in generating paths in dynamic
environments, such as those containing wind [8]. In addition,
the study proposes a collision verification method applied
to outdoor terrain scenarios with different wind types. In
a recent study [9], the author proposes an efficient particle
swarm optimization (PSO) metaheuristic algorithm to reduce
energy consumption, which is known as a non-computationally
intensive algorithm [10], assuming that the UAV operates
within a two-dimensional plane and flies at a fixed altitude.
They also utilize the Voronoi Diagram [9], to simplify the
urban environment, accounting for no-fly zones. A path cost
function is formulated by considering total energy consump-
tion. This approach [9] aims for a near-optimal solution while
significantly reducing computational time, offering a practical
and efficient method for UAV path planning in complex urban
settings. A new technique for outdoor quadcopter trajectory
planning was proposed [7]. This work is an enhanced version
of the well-known A* algorithm cost functions, combining
distance and wind data for optimized navigation. A collision
avoidance technique helps to avoid obstacles, and an intelligent
approach to graph creation takes into account the complexity
of winds. The comparative analysis favors probabilistic route
map (PRM) graphs, demonstrating their effectiveness. Prob-
abilistic Route Map (PRM) is an algorithm used in robotics
to find and improve the route from the robot’s starting point
to its intended destination [11]. The study recommends the
hybrid A* angle for conflicting wind scenarios and emphasizes
the advantages of on-board processing in UAVs, specifically
probabilistic roadmapping. This research establishes founda-
tions for wind-optimized global planning, enhancing quad-
copter navigation amid real-time wind changes and limited
communication resources.
in order to calculate how the wind will affect an aircraft, the
authors in [12] assume that the aircraft flies at a constant flight
level and at a constant true airspeed, and under this assumption
they use the following equation of motion (1):

ẋ(t) = Va cos(θ(t)) +Wx(x, y)

ẏ(t) = Va sin(θ(t)) +Wy(x, y) (1)

with (x, y) the aircraft position, θ the heading angle, Va the
True Airspeed, Wx(x, y) the east component of the wind and,
Wy(x, y) the north component of the wind.

A. Target Interception (TI)

Target interception is to collide with the target or what can
be considered as a collide in case of using thresholds below
which any distance can be considered as a collision. The target
must be in motion or in displacement, then the drone must

calculate the future location of the target precisely, taking
into account its speed and heading angle, or predict it based
on other features. For example, using the linear regression to
predict the future positions based on past position. The second
step is to generate a feasible and safe trajectory from current
position of the mobile robot to the target point [13]. In our
previous research [5], We tackled the challenge of docking a
drone onto a mobile station in a 2D dynamic environment
with wind effects and without obstacles. We consider this
use case as a cooperative scenario, meaning that neither the
landing station nor the drone would take any premeditated
actions to prevent the goal from being reached. To meet
this challenge, we applied two Differential games methods:
Homicidal chauffeur (HC) and target interception (TI). To
detect any external influences on the drone, we compare the
actual location with the assumed location using constant speed
and heading to ensure the drone is on the right trajectory. If
external influences are detected, the drone will generate a new
path based on the new coordinates and new heading angles of
both drone and landing station. This process is described in
detail in Algorithm 1.
Based on our previous results, we extend our work with
proposing two new ideas considered as an enhanced version
of the well-known differential game method, TI.
The first novel approach is TI Dynamic Path Adaptation (TI
DPA). the drone recalculates the shortest path to intercept
the moving landing station every 1 second using equations
(1, 2). This method exempts the drone from calculating the
wind effect at each step, unlike our previous proposal, which
required such a calculation. However, it requires more complex
calculations, as explained in Algorithm 2.
Second novel approach is TI External Influences Adaptation
(TI EIA). The drone calculates the original path using the same
method as the original TI method. The novelty of this approach
lies in its ability to detect and measure external influences. If
external influences are detected, the drone generates a new
path, taking into consideration the strength of these influences
Algorithm 3.

III. IMPLEMENTATION AND RESULTS

In order to compare our new proposal with our previous
research [5], we extend our study to dynamic environments
with mobile destinations. We present two improved versions
of the target interception methods: TI DPA and TI EIA. Both
methods are specifically adapted to scenarios where a drone is
tasked with intercepting a moving landing station. To establish
a comprehensive evaluation, we apply these methods in the
context of our research, allowing us to make meaningful
comparisons with our previous work.
This implementation aims to mimic the implementation of our
work [5], which addresses the challenge of docking a drone
to a mobile station in a dynamic 2D environment with wind
effects and no obstacles. The use case is considered to be
a cooperative scenario, where neither the landing station nor
the drone will undertake any premeditated actions to prevent
the goal from being achieved. In our previous implementation,



we used a Python script to generate paths based on differential
game algorithms (HC, TI). We also used JSBSIM FDM [14],
to simulate the wind effects, with an altitude-hold autopilot
to simplify the implementation to a 2D environment. In our
current work, we choose to calculate the wind effect on the
drone using (1) instead of JSBSIM, in order to improve
calculation speed. The transition was essential to mitigate
the substantial computing power required by the simulations,
especially for TI DPA, where a lot of calculations had to
be made every second to re-evaluate the shortest route. To
calculate the UAV heading angle regarding its limited turn
radius, we use (2) as defined in [15]. Where V denote the speed
of UAV, and θ denote its heading angle, counted clockwise
from the Y axis. Also, R defines the minimum radius of
curvature of UAV’s trajectory.

θ̇ =
V

R
· ϕ |ϕ| ≤ 1 (2)

Where ϕ is the ratio of minimum radius of curvature to actual
radius of curvature.

A. Analyzing TI DPA Performance
In this paper three scenarios were implemented. In the first

scenario, we compared the regular TI with TI DPA. We chose
to exclude TI EIA from this comparison because it essentially
mirrors the regular TI in windless conditions. This decision
was crucial as it allowed us to concentrate our efforts on the
unique qualities of TI and TI DPA. In addition to measuring
their effectiveness in dynamic environments with moving des-
tinations, our study also explored the execution time for each
method. The execution time was determined using Python’s
time.time() function, which records the start and end times of
the script, with the difference representing the total execution
time. While this method provides a straightforward way to
measure elapsed time, it can be influenced by factors such
as system load, background processes, and available system
resources, leading to potential variability between runs. To
ensure precision, the script was executed multiple times, and
the resulting execution times were found to be very consistent.
Additionally, since the study compares two methods, both
methods were timed under identical conditions on the same
machine, with each method’s execution time measured multi-
ple times. This thorough approach not only gave us detailed
insights into how these methods differ in performance but
also provided valuable information about their computational
efficiency. By taking into account both accuracy and execution
time. We use a fixed starting location for the landing station
during the implementations (X=250, Y=340), which is 422
meters away from the UAV. The heading angles are varied as
follows: 90, 60, 45, 30, 0, 120 and 100. The implementation
results show that both methods produce nearly identical paths,
especially in scenarios without wind effects. However, there
is a noticeable variation in the total execution times across the
8 tests. These results are presented in Table I. The results
are as expected since TI DPA recalculates the most suitable
path every second, a feature unnecessary in scenarios without
external influences affecting the drone.

B. Landing station angle adjustment in wind

In the second implementation we use the same coordination
of landing station (X=250, Y=340) at t0. Additionally, we
maintained a steady wind speed of 5 m/s, which hit the
drone at a 25-degree angle from t=10s onward. Meanwhile, we
implemented with different landing station heading angles in
order to test the efficiency and limitations of the three methods
in windy environments. Fig. 2, 3, and 4 show the trajectories
generated when the Landing Station (LS) orientation angle
is set to 90°, with the TI EIA providing the most efficient
trajectory when the UAV is affected by wind.

The results presented in Tables II and Table III show
that TI EIA is the best method, in terms of both path quality
and execution time in the presence of wind. However, it’s
important to note a significant issue: The TI EIA may not
reach the landing point because it relies on initial wind
conditions without adapting to subsequent changes. With this
speed advantage comes the risk that the drone may miss
its destination in the event of unexpected wind variations.
Nevertheless, the other two methods, TI and TI DPA, had
their own issues. TI failed to reach the landing station when
the heading angle was set to 100 or 120 degrees. TI DPA failed
at 100 degrees but successfully reached the landing station at
120 degrees. Despite this, TI DPA has made progress in terms
of execution time, and the gap between the methods narrowed
in this implementation, as TI had to readjust its path each time
the drone faced significant wind changes after t = 10s.

Fig. 2. TI Trajectory at LS Heading 90° and WS 5 m/s.

Fig. 3. TI DPA Trajectory at LS Heading 90° and WS 5 m/s



Fig. 4. TI EIA Trajectory at LS Heading 90° and WS 5 m/s.

Input: Initialize landing station start position (Lx, Ly),
heading angle (Lh) and speed (Ls).

Input: Initialize drone start position (Dx, Dy), drone speed
(Ds), drone heading angle (Dh=0) and drone limited
turn radius (Ltr) (0.1).

Input: Initialize an array xi with values [Drone
coordination, Drone heading angle, landing station
coordination]

xi ← [Dx,Dy,Dh,Lx,Ly];

Input: Initialize an empty array arr L
for n = 1, . . . , 10000 do

xn ←Wn sin(θ);
yn ←Wn cos(θ);
Append (xn, yn) to arr L;

end

Input: Function distance(x0, y0, x1, y1): return√
(x0 − x1)2 + (y0 − y1)2;

Input: Function angle(X): return angle between Drone
and landing station;

Input: Function landing(arr L)
i← 0;
Initialize an empty array Result array;
while i < len(arr L) do

Lx← Lx +
Ls cos(angle(Dx, Dy, arr L [0][i], arr L [1][i]));

Ly← Ly +
Ls sin(angle(Dx, Dy, arr L [0][i], arr L [1][i]));

if distance(Dx, Dy, arr L [x], arr L [y]) < Ds then
Append i distance to Result array;
i← i+ 1;

end
i← i+ 1;
return min(Result array);

end

Input: Function run(xi,Phi,Psi)
theta dot← speed

Lts ;
˙xD ← x + Ds× sin(Phi) + theta dot;
˙yD ← y + Ds× cos(Phi) + theta dot;
ẋL ← x + LS× sin(Phi);
ẏL ← y + Ls× cos(Phi);
return ˙xD ˙yD ẋL ẏL;

Function start(xi, angle,Lh)
nb seconds← 0;
X← [xi];
phi← angle(X);
while true do

next step← run(X[-1],phi, Lh);
X.append(next step);
if 50 < nb seconds then

Dx += wind effect x;
Dy += wind effect y;
nb seconds += 1;

end
if distance(X[-1,0], X[-1,1], X[-1,3], X[-1,4]) <

Ds then
Print(”Landing station has been reached after ”,

nb seconds, ” seconds”);
Break;

end
if nb seconds ≥ 10000 then

Print(”Limit time has been reached”);
Break;

end
end
if Dx ̸= predicted Dx[i] and Dy ̸= predicted Dy[i] then

Calculate new Phi
i← i+ 1

end
else

i← i+ 1

end
return X;

Input: xi: Initial state, angle: angle method, Lh: Heading
angle

Output: X: Trajectory path
X ← runSim(xi, angle, Eheading);

Algorithm 1: Target Interception

TABLE I
EXECUTION TIMES IN SECONDS: TI DPA VS. TRADITIONAL TI

(WINDLESS SCENARIOS)

Table method sum of execution time average of execution time
TI 1.308 0.163

TI DPA 20.198 2.524

TABLE II
UAV DISTANCE WITH CHANGING LANDING POSITION IN WIND

Distances traveled by the UAV in meters

LS Method TI TI DPA TI EIA

90 540.9 502.7 492
60 547 543.5 536
45 553.5 550.4 536.3
30 641.3 552.5 Failed
0 587.2 544.5 Failed

120 Failed Failed 460
100 Failed 500.1 477.4



......
Function start(xi, angle,Lh)

nb seconds← 0;
X← [xi];
while true do

phi← angle(X);
next step← run(X[-1],phi, Lh);
X.append(next step);
if 50 < nb seconds then

Dx += wind effect x;
Dy += wind effect y;
nb seconds += 1;

end
if distance(X[-1,0], X[-1,1], X[-1,3], X[-1,4]) <

Ds then
Print(”Landing station has been reached after ”,

nb seconds, ” seconds”);
Break;

end
if nb seconds ≥ 10000 then

Print(”Limit time has been reached”);
Break;

end
end

return X;

Input: xi: Initial state, angle: angle method, Lh: Heading
angle

Output: X: Trajectory path
X ← runSim(xi, angle, Eheading);

Algorithm 2: Target Interception Dynamic Path Adapta-
tion (TI DPA)

TABLE III
EXECUTION TIMES IN SECONDS FOR THE THREE METHODS DURING THE

SECOND IMPLEMENTATION

Execution time in seconds

LS Method TI TI DPA TI EIA

90 0.23 0.33 0.17
60 0.24 0.35 0.17
45 0.23 0.34 0.18
30 0.26 0.33 0
0 0.26 0.35 0

120 0 0 0.2
100 0 0.45 0.17

TABLE IV
UAV DISTANCE WITH VARIED WIND SPEED (353 METER TO LANDING

STATION)

Wind Speed variation
Method 5m/s 7m/s 9 m/s

TI 437.17 449.27 17251.27
TI DPA 429.36 434.94 456.11
TI EIA 419.20 420.15 421.19

......
Input: Function run(xi,Phi,Psi)
theta dot← speed

Lts ;
if nb = False then

˙xD ← x + Ds× sin(Phi) + theta dot;
˙yD ← y + Ds× cos(Phi) + theta dot;
ẋL ← x + LS× sin(Phi);
ẏL ← y + Ls× cos(Phi);

end
else

˙xD ← x + Ds× sin(Phi) + theta dot−
ExternalInfluencesP ower[0];
˙yD ← y + Ds× cos(Phi) + theta dot−
ExternalInfluencesP ower[1];

ẋL ← x + LS× sin(Phi);
ẏL ← y + Ls× cos(Phi);

end
return ˙xD ˙yD ẋL ẏL;
Function start(xi, angle,Lh)

nb seconds← 0;
X← [xi];
phi← angle(X);
while true do

next step← run(X[-1],phi, Lh);
X.append(next step);
if 50 < nb seconds then

Dx += wind effect x;
Dy += wind effect y;
nb seconds += 1;

end
if distance(X[-1,0], X[-1,1], X[-1,3], X[-1,4]) <

Ds then
Print(”Landing station has been reached after ”,

nb seconds, ” seconds”);
Break;

end
if nb seconds ≥ 10000 then

Print(”Limit time has been reached”);
Break;

end
end
if Dx ̸= predicted Dx[i] and Dy ̸= predicted Dy[i] then

External Influences Power[0]←
D x− predicted Dx[i]
External Influences Power[1]←
D y− predicted Dy[i]
External Influences← True
i← i+ 1

end
else

i← i+ 1

end
return X;
Input: xi: Initial state, angle: angle method, Lh: Heading

angle
Output: X: Trajectory path
X ← runSim(xi, angle, Eheading);

Algorithm 3: Target Interception External Influences
Adaptation (TI EIA)

C. Wind and Distance Impact on UAV Path Planning
In the third implementation, our primary objective was to

assess the impact of wind and the initial distance between



TABLE V
UAV DISTANCE WITH VARIED WIND SPEED (707 METER TO LANDING

STATION)

Wind Speed variation
Method 5m/s 7m/s 9 m/s

TI 16903.20 16855.90 failed
TI DPA 871.55 910.28 18210.56
TI EIA 838.64 839.88 841.21

the drone and the landing station on all three methods. To
conduct this evaluation, we standardized the landing station’s
heading angle at 90◦ (π2 radians) and set the wind direction
to hit the drone at an angle of π

2 radians (90 degrees) with
respect to the horizontal axis. Throughout this implementation,
we systematically varied the wind speeds, experimenting with
5 m/s, 7 m/s, and 9 m/s to observe their effects on the
performance of the methods. Additionally, we adjusted the
initial distance between the drone and the landing station
at t = 0. One configuration placed the landing station at
coordinates (250, 250), resulting in a distance of 353 meters
between the two, while the other configuration set the landing
station at (500, 500), creating an initial distance of 707 meters.
The results presented in Tables IV and V clearly indicate the
significant impact of wind speed and direction on UAV path
planning across all six tests. Among the methods assessed,
TI EIA emerged as the most effective, followed by TI DPA
in second place, and the regular TI in third place, with one
failing to reach the landing station.

D. Results

The results show that Regular TI generated the least efficient
path among the three, although it still remains a viable option.
TI EIA, on the other hand, gave the best results in terms
of path length and execution time. However, it occasionally
failed because it relied heavily on wind power and direction
to generate a new path. This dependency meant that as wind
conditions changed throughout the flight, the algorithm strug-
gled to adapt effectively. TI DPA showed promise in reaching
the landing station in all tests, but in some cases, the method
failed to generate an efficient path. It required higher execution
times, especially in windless conditions, due to unnecessary
computations. The overall pattern suggests that each method
has the potential to perform exceptionally well depending on
the specific characteristics present in the environment.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper, we explored the Hybrid subcategory within
global path planning for UAVs, building upon our previous
research where we introduced the classification categories and
their respective subcategories for UAV global path planning.
We have implemented two new scenarios, designed as im-
proved hybrid versions of the classic TI method. These
methods were developed to handle dynamic tasks, specifically
docking a drone to a mobile landing station while considering
wind as a significant external influencing factor. The results

show that the proposed method is more reliable than the
classical TI method, which was proven to be the most reliable
among the methods we tested in our previous work. However,
in this study, our newly proposed method demonstrated even
greater reliability compared to TI. This highlights a significant
advancement in our approach and underscores the progress
we’ve achieved.
As future work, more validation is needed to assess the reli-
ability and robustness of the proposed scenario in real-world
settings. Furthermore, we plan to integrate these methods into
machine learning models for UAV trajectory planning.
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