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Abstract. In this work, we study risk aware sequential decision making
in a Markov Decision Process (MDP). Unlike many works in the litera-
ture, where MDPs are solved by optimizing expected rewards (ER), and
thus assuming neutrality w.r.t. risk, we use a more sophisticated opera-
tor: the Weighted Ordered Weighted Average (WOWA), a parameterized
operator that allows to model a wide range of behaviors, from extreme
risk seeking to extreme risk aversion (as well as compromises between
both behaviors). This operator has thus a high descriptive capacity, but
is rather difficult to optimize in an MDP because of its non-linearity
that makes standard solving algorithms sub-optimal. In this paper, we
introduce and justify a ranking algorithm that allows to determine an
optimal (or nearly optimal) policy for a wide range of attitudes w.r.t. risk
(averse, seeking, neutral, intermediate) using WOWA. Empirical results
are given to illustrate the relevance and the efficiency of the approach.

Keywords: Sequential decision making · Markov decision processes ·
decision theory under risk · preference modeling.

1 Introduction

Designing a decision support system or an automated decision making system
for sequential decision making under risk is a widely studied task [1, 2, 21]. On
the one hand, the need for such systems is considerably important as sequential
decision making under risk has applications in several fields (business, finance,
health, navigation, ...). On the other hand, dealing with risk in decision making
is a hard task, since it requires to both know and consider all the probable
consequences of a decision (or action) at short, medium and/or long term.

An agent faces risk when the outcomes of her decisions (or actions) are un-
certain. Uncertainty can be found in different forms, we consider here situations
where several outcomes can result from an action, and where the agents knows
these outcomes, as well as their probabilities, but cannot predict with certainty
which one will occur. For example, playing the roulette game enables to win
35 times the bet played with a probability 1/37, and to lose the bet other-
wise. In such decision processes, the uncertainty makes the decision complex,
and when decisions are taken sequentially, uncertainty can greatly increase, as
the succession of stochastic events can greatly increase the number of possible
consequences, making the decision much harder.
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Markov Decision Processes (MDPs) [19] provide natural tools to formalize
sequential decision making under risk processes. Thus, solving the decision prob-
lem consists in computing an optimal policy for the corresponding MDP. In the
literature, the most commonly used operator to solve an MDP is the expected
reward (ER) criterion, suggesting the (very strong) assumption that any agent,
human or artificial, is perfectly risk-neutral. Yet, this assumption is often unre-
alistic. Let us consider a simple example :

Example 1. An agent has to chose between two actions: action c that gives 15k$
with probability 2/3 and 0 otherwise; and action d that gives 10k$ for sure.

c d

2/3

1/3
1

15k

0

10k

In this example, both actions have the same ER value, yet, it seems obvious that
any rational agent would not choose indifferently one of the two actions. The first
option offers the opportunity of a greater gain in the best case, but it is riskier
as it involves having nothing at all in the worst case. It is clear that, in such
situations, optimality is subjective, and we can easily admit that neutrality does
not coincide with any agent behavior. Some, being strongly risk-averse, would
always prefer the certainty over the risk (choosing action d in the example), while
others, being strongly risk-seeking, would always be attracted by the possibility
of a bigger payoff (choosing action c in the example). And finally, some decision
makers would have intermediate behaviors being risk-averse in some situations
and risk-seeking in others. Using ER fails to express such basic behaviors, simply
because it does not allow to measure risk, even in the simple case where a random
variable X is opposed to the certain gain ER(X). Whereas in real-life situations,
agents are often faced with more complex situations where they have to chose
between actions representing different levels of risk.

As we will see in section 2, several works in the literature proposed to re-
place ER by other operators to model non-neutral attitudes w.r.t. risk. Most of
them focused on risk-averse decision making and by proposing pessimistic oper-
ators that evaluate the worst possible outcome(s): the min-max (optimizing the
worst possible outcome), the min-max regret (minimizing the worst regret over
a choice), the expected shortfall (optimizing the average reward of a given pro-
portion of the worst possible outcomes). However, it is important to note that
risk-averse decision making is not only about avoiding risk or danger, it is also
about the compromise between the risk and the potential benefit from this risk,
which can lead to intermediate behaviors that are not model by the cited opera-
tors. For example, many operators (including many of those discussed later) fail
to express the widely observed Allais paradox [3] that states that the indepen-
dence axiom (which is often considered as verified) is not always relevant. We
illustrate this paradox through the following example:



Flexible risk aware sequential decision making 3

Example 2. Before the agent of example 1 makes her choice, we flip a coin. If
the coin lands on head (with probability α), the agent chooses her action and
gets her reward as described in example 1. If it lands on tail (with probability
1 − α), she gets nothing. When α = 0.9, this game is equivalent to a choice
between actions c′ and d′ pictured below: The independence axiom states that

c′ d′

3/5

2/5

9/10

1/10

15k

0

10k

0

action c′ is preferred to d′ (c′ � d′) if and only if c � d (whatever the value of
α). Nevertheless, the experimental study of Allais showed that the majority of
surveyed agents violates this axiom.

The aim of this work is to propose a generic approach to solve sequential
decision making problems under risk, considering as many behaviors as possible
w.r.t. risk, including the one highlighted by the Allais paradox. For this, we will
focus on the Weighted Ordered Weighted Average operator (WOWA for short).
An operator that offers a rich descriptive power thanks to its parameter which,
when well chosen, allows to model a wide range of attitudes w.r.t. risk. We will
see that the main drawback of WOWA is its non-linearity and its lack of time-
consistency, which prevents the use of standard algorithms like dynamic and
linear programming. We propose in this paper a ranking algorithm that allows
to determine a WOWA-optimal or nearly WOWA-optimal policy in an MDP.

2 Related works

There are many works in the literature addressing risk-aware optimization in
MDPs. The most popular operator used to substitute ER is the expected utility
(EU) criterion [25], that consists in replacing the reward values in ER by their
subjective utility values. Thus, in order to determine an optimal policy following
a risk-averse (resp. risk-seeking) attitude, EU is optimized using a concave (resp.
convex) utility function [15, 23]. However, this operator has some descriptive
limits, including the inability to explain the Allais paradox described above.
Other criticisms of this operator can be found in [7, 12,16].

Prospect theory [16], that generalizes EU, has been proposed to overcome the
limits of ER and EU. The main idea is to use a transform function on probability
values in order to express the subjective way agents perceive them. Nevertheless,
this model has not been widely used in the literature because it can promote
dominated solutions.

Another popular risk measure is the Conditional Value at Risk (CVaR), a.k.a.
expected shortfall. It consists in optimizing the total mean reward in the worst
α-fraction of runs, α being a parameter to be priorly fixed. This operator has
been widely used to solve MDPs [5,8,9,22], but it has two major drawbacks: first,
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it only allows to model more or less pessimistic attitudes w.r.t. risk, and second,
it can promote dominated solutions since the evaluation is focused on the worst
possible consequences. Authors of [20] indeed show that there could exist several
policies that optimize the CVaR value, and thus, an algorithm optimizing CVaR,
without considering all the consequences of the policies, would indifferently re-
turn one of them, whether dominated or not. Authors of [20] introduced in their
paper a lexicographic method that returns the best ER policy among the CVAR-
optimal ones, thus responding to the criticism of the dominated solutions. But
the lack of flexibility in terms of descriptive capacity remains.

To sum up, many papers studied the question of modeling an agent’s attitude
w.r.t. risk, but these papers have two main limits that we want to overcome in
this paper. First, they are focused on the representation of risk-averse attitudes
while other types of behaviors can be observed (risk-seeking and intermediate
behaviors). Secondly, they suffer from a lack of flexibility regarding the modeling
of different levels of attitudes. An agent can in fact be more or less risk-averse
than another, or even have a behavior mixing the two attitudes (as in the Allais
paradox). There are therefore an infinite number of possible behaviors that are
not modeled by many operators used in the literature.

In this paper, we will focus on the Weighted Ordered Weighted Average op-
erator (WOWA for short) [26]. A parameterized operator that offers a rich de-
scriptive power. It allows to model different levels of risk-aversion, risk-seeking,
and intermediate behaviors. However, optimizing WOWA in an MDP is a chal-
lenging issue because of its non-linearity and time inconsistency. Thus, the use
of standard algorithms as dynamic and linear programming is not possible (or
at least not obvious). Note that there exists an LP formulation for optimizing
WOWA [18], but this solution does not apply here. The linear program indeed
only apply to cases were the number of scenarios/consequences is fixed and pri-
orly known. In an MDP, as we will see in the next section, policies have a variable
(see example 1) and unpredictable number of outcomes. We propose in this pa-
per a ranking algorithm that allows to determine a WOWA-optimal or nearly
WOWA-optimal policy. The idea of a ranking algorithm is not new. Outside the
MDP framework, the authors of [6] proposed a ranking algorithm to determine
a robust solution for the assignment and shortest path problems. They assume
that the result of a decision is certain but the satisfaction of the agent is not.
This uncertainty is related to the existence of a fixed and known number of
scenarios. The adaptation of their method to MDPs is not easy as the context
is different. The number of consequences is neither known or fixed in our case.
In addition, their approach focused on the case of risk-averse behaviors, while
we extend the method to deal with a larger range of behaviors, we will see next
that this generalization implies additional difficulties.

To conclude this section, it is important to note that WOWA has already
been used in the MDP framework but for multi-criteria decision making [17].
The main difference with our work lies in the policy evaluation, which implies
both a descriptive difference and different algorithmic issues. They associate a
reward vector to each pair (state, action) to describe the immediate reward of
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the pair according to every considered criterion. A policy is then associated to
a vector giving, for every criteria, the expected discounted reward of the policy.
Thus assuming neutrality to obtain every criterion value. WOWA is only used to
evaluate the compromise between criteria values. While in our paper, we consider
only one reward function, and evaluate a policy with a lottery that summarizes
all its possible consequences (thus not assuming neutrality). The lottery is then
evaluated using WOWA. Thus, the difference between both works is similar to
the difference with [6] except that one considers different criteria while the other
considers different scenarios.

3 Backround and notations

We define a Risk aware MDP (R-MDP) by a tuple M = 〈S,A,P,R, H, f〉
where S is a finite set of fully observable states; A is a finite set of actions; P :
S×A×S → [0, 1] is the transition function where P(s, a, s′) gives the probability
of reaching state s′ after performing action a in state s;R : S×A×S → R+ is the
reward function where R(s, a, s′) is the reward value obtained when performing
action a in state s and reaching state s′; H is the maximum time step; and finally
f is a function that model the attitude of the agent w.r.t. risk. Depending on the
considered problem, an R-MDP can be defined with two additional elements: an
initial state s0 ∈ S and a set of final states Sf ⊂ S if applicable.

A solution of an MDP is a policy π : H × S → A that gives the action
to perform in state s ∈ S at time step h < H. Due to the stochasticity of the
process, the result of an action is uncertain, and thus, a policy π induces a lottery
〈rπ1 : pπ1 , . . . , r

π
|Tπ| : p

π
|Tπ|〉 where Tπ = {tπ1 , . . . , tπ|Tπ|} is the set of trajectories

induced by π, each trajectory tπi occurring with probability pπi (defined by P)
and leading to a cumulative reward rπi (defined by R). Note that we can obtain
the lottery using a dynamic programming method similar to value iteration [4].

In order to evaluate policies, function f will generally be defined on its in-
duced lottery. Thus, solving an R-MDP means determining the best policy ac-
cording to f . We call such a policy an f -optimal policy. In the literature, the
most commonly used operator to evaluate policies is the Expected Reward (ER):

ER(π) =

|Tπ|∑
i=1

pπi r
π
i (1)

As ER is linear, equation (1) can be formulated dynamically thanks to Bellman’s
equations. Thus, the value of each state s ∈ S at each time step h ∈ {0, . . . ,H−1}
is given by:

V πh (s) =
∑
s′∈S
P(s, π(h, s), s′) ×

[
R(s, π(h, s), s′) + V πh+1(s

′)
]

(2)

with V πH(s′) = 0. Using equation (2), an ER-optimal policy can be obtained with
linear programming [11] or using the well known value or policy iteration [4,14].
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As illustrated in the introduction, ER’s has descriptive limits that represent
a serious drawback when it comes to model realistic behaviors in risky situations.
Thus, we will not use it to model the agent preferences w.r.t. risk, but it is still
useful as we will see in the remaining of the paper. The following section gives
a definition of the operator we use to better model risk-aware agents as well as
the motivation behind this choice.

4 WOWA model for risk-aware optimization

The Weighted Ordered Weighted Average (WOWA) model is also known as the
Yaari’s model [24,26] because it has been introduced and justified by Yaari in [26]
in the context of decision making under risk. It is a parameterized model that
generalizes ER and offers a much richer descriptive power. It is define as follows.

Definition 1 For any policy π and transform probability function ϕ : [0, 1] →
[0, 1] that is continuous, increasing and such that ϕ(0) = 0 and ϕ(1) = 1, we
have:

Wϕ(π) =

|Tπ|∑
i=1

[
(rπσ(i) − r

π
σ(i−1))

]
ϕ

|Tπ|∑
k=i

pπσ(k)

 (3)

where rπσ(0) = 0, and σ is a permutation of {1, . . . , |Tπ|} that reorders the ele-
ments of rπ in the increasing order of reward values, i.e., rπσ(1) ≤ · · · ≤ r

π
σ(|Tπ|).

Example 3. Let us consider a policy π that induces the lottery : 〈0 : 1
3 , 10 :

1
2 , 15 : 1

6 〉, and a function ϕ(p) = p2,∀p ∈ [0, 1]. We have:

W(π) = 0 + (10−0)ϕ(1
2
+
1

6
) + (15−10)ϕ(1

6
) ≈ 4.58

The parameter function ϕ allows to model a subjective perception of the
probability values. Note that, as long as ϕ is increasing on [0, 1], the preferences
induced by Wϕ are monotonic with respect to the first order stochastic domi-
nance (FSD). FSD expresses the rational behavior of preferring ` to `′ as long
as for all x ∈ R, the probability of getting a reward higher than x with ` is
greater than with `′. In addition to this objective and rational preference, ϕ al-
lows to control the type of decision behavior we want to model, depending on its
specific shape: a convex function (resp. concave) allows to model risk-aversion
(resp. risk-seeking) [13, 26]; and a linear function allows to model neutrality
as Wϕ(π) = ER(π) when ϕ(p) = p, ∀p ∈ [0, 1]. We can also use S-shaped or
inverse S-shaped functions in order to model more sophisticated behaviors. In
particular, the function proposed by Kahneman and Tversky [16], defined by
ϕ(p) = exp−

√
−ln(p),∀p ∈ [0, 1], allows to express the behavior highlighted by

the Allais paradox. This is illustrated by the following examples.

Example 1 (continued) Table 1 gives WOWA values of actions c and d for
three different ϕ functions: p2,√p and exp−

√
−ln(p) (noted kt1) for short:

1 after Kahneman and Tversky
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action Wp2 W√p Wkt

c 6666.6667 12247.4487 7935.0431
d 10000 10000 10000

Table 1. Wowa values for actions c and d.

Here, unlike ER, WOWA gives different values for c and d. We can see that
the convex function ϕ(p) = p2 (as well as the Kahneman and Tversky function)
favors d which is less risky, while the concave function ϕ(p) =

√
p gives the

opposite preference order.

The following example shows that the precise definition of ϕ allows to model
different level of a certain type of preferences, as well as the behavior highlighted
by the Allais paradox.

Example 4. Let us consider a simple sequential decision problem modeled by the
decision tree pictured in figure 1, where circle nodes (s0 to s6) are states and
rectangle nodes (a to d) are actions. For any transition (s, a, s′), the probability
P(s, a, s′) is given above the edge (a, s′), and the reward R(s, a, s′) is given on
the right of node state s′.

s0

a

b

s1

s2

s3

c

d

s4

s5

s6

9/10

1/10

1

2/3

1/3

1

0

0

7.5k

15k

0

10k

Fig. 1. Decision tree of example 4.

There are three possible policies: choosing a in s0 and c in s1 noted πac;
choosing a in s0 and d in s1 noted πad; choosing b in s0 noted πb. The lotteries
induced by these policies and their evaluations with ER and WOWA with 4
different ϕ functions are given in table 2.

The table illustrates several aspect of the descriptive power of WOWA: 1. it
allows to discriminate between policies having equal ER values (πac and πad for
example), but also to favor a policy that is strictly dominated w.r.t. ER (πb and
πac for example); 2. different shapes for ϕ can give different preference orders.
We can also see that two functions modeling the same kind of behavior can also
give different preference orders as they represent different levels of the behavior.
For example, the two convex functions ϕ(p) = p2 and ϕ(p) = p5 do not give the
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Policy Induced lotteries ER Wp2 Wp5 W√x Wkt

πac 〈15k : 3
5
, 0 : 2

5
〉 9000 5400 1166.4 11618.95 7339.93

πad 〈10k : 9
10
, 0 : 1

10
〉 9000 8100 5904.9 9486.83 7228.21

πb 〈7.5k : 1〉 7500 7500 7500 7500 7500

Table 2. Lotteries of example 1 and their WOWA values.

same preference order for πad and πb; 3. WOWA explains the Allais paradox with
the Kahneman and Tversky function. We can indeed see that πac is preferred to
πad while table 1 shows that c is preferred to d (note that the lotteries induced
by πac and πad are the same as those induced by c′ and d′ in example 2); 4.
the preference orders in the previous point also show that WOWA is not time
consistent. Note that this is a consequence of the non-linearity of the operator,
which comes from the sorting operation in WOWA.

The absence of time consistency has a dual effect. On the one hand it reflects
a very realistic behavior, expressing (among other things) the Allais paradox. On
the other hand, it prevents the use of practical tools as linear programming and
value/policy iteration that are based on Bellman’s equations. In the remaining
of the paper, we introduce a ranking algorithm allowing to determine a WOWA-
optimal or nearly WOWA-optimal policy.

5 Computing a WOWA-optimal policy

The main idea of the algorithm is to enumerate policies using a linear opera-
tor, that is easier to optimize, until a satisfactory policy has been found. The
algorithm has the following steps:

1. determine a close linear bound for WOWA noted B (see subsection 5.1),
2. enumerate policies by decreasing order of B values (see subsection 5.2),
3. stop enumeration when we can prove that a (nearly) WOWA-optimal policy

has been enumerated (see subsection 5.3).

The steps are detailed in the remaining of the section.

5.1 Bounding WOWA

The next proposition allows to define a bounding linear (on ER(π)) function
B : Π → R+, where Π is the set of all possible policies.

Proposition 1 Let π ∈ Π be a feasible policy, Tπ be the set of induced trajec-
tories, and 〈rπ1 : pπ1 , . . . , r

π
|Tπ| : p

π
|Tπ|〉 be the associated lottery. For any linear

function g : [0, 1] → R+ of the form g(p) = ap+ b where a, b ∈ R+ chosen such
that ϕ(p) ≤ g(p),∀p ∈ [0, 1], we have:

Wϕ(π) ≤ B(π) = aER(π) + b max
i∈{1,...,|Tπ|}

rπi (4)
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Proof. As ϕ(p) ≤ g(p) = ap+ b,∀p ∈ [0, 1], and using equation (3) we have:

Wϕ(π) ≤
|Tπ|∑
i=1

[
rπ(i) − r

π
(i−1)

]a
|Tπ|∑
k=i

pπ(k)

+ b


≤ a

|Tπ|∑
i=1

rπ(i)

|Tπ|∑
k=i

pπ(k) −
|Tπ|∑
k=i+1

pπ(k)

+ b rπ(|Tπ|) ≤ a
|Tπ|∑
i=1

rπ(i)p
π
(i) + b rπ(|Tπ|)

≤ a
|Tπ|∑
i=1

rπi p
π
i + b rπ(|Tπ|) ≤ aER(π) + b max

i∈{1,...,|Tπ|}
rπt

Thus, to define B we only need to find values for a and b such that ϕ(p) ≤
ap + b in [0, 1]. Note that there is an infinite number of values verifying this
inequality. In order to obtain the most efficient algorithm possible, we will take
values that makes g as close as possible to ϕ in [0, 1]. Thus, for convex functions,
we define g by g(p) = p, for concave and (inverse) S-shaped functions we will
take a tangent line having the minimum distance to ϕ2.

5.2 Enumerating policies

The idea of the enumeration method is simple, it consists in exploring and parti-
tioning Π in a specific way to enumerate policies by decreasing order of B values,
and this without missing any policy. For this, we will need to: 1. determine a
procedure to efficiently partition Π and to explore its subsets. 2. find an optimal
policy in a specific subset of Π.

Partitioning Π The procedure described below is very similar to the one pro-
posed in [10]. The idea is simple: we first optimize B for the initial MDP (see
the MILP formulation paragraph below), and we obtain a policy π∗1 . Using π∗1
we partition Π as follows. Let us note E the support of π∗13 and {e1, ..., e|E|} the
different elements of E. We define the set X i,∀i ∈ {0, . . . , |E|}, as

{π ∈ Π|π(ei) 6=π∗1(ei) ∧ π(ek)=π∗1(ek),∀k<i}

It is easy to see that {π∗1} ∪ X 0 ∪ · · · ∪ X |E| is a partition of Π. Thus, the
second best policy of Π (according to B), noted π∗2 , will be the B-optimal policy
of one of the sets X i, i ∈ {0, . . . , |E|}. Thus, to find it we optimize B in every
subset and take the best one. Let us note j the index of the set X j containing
π∗2 . The next step is to partition X j using π∗2 as we did for Π using π∗1 . The total
partition of Π is then obtained by replacing X j (in the initial partition) by the
union of {π∗2} and the obtained partition of X j . These operations are repeated
as many times as necessary to find a satisfying policy (see subsection 5.3).
2 The distance of a function f to a function g on [0, 1] is defined by

∫ 1

0
|f(x)−g(x)|dx.

Note that in our experiments, we used a sum to approximate this integral.
3 The set of couples (h, s) ∈ {1, . . . , H} × S such that s is reachable at time h when
we apply π∗1 .
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Optimizing B To optimize the B value in each subset of the partition, we
propose in the following a MILP formulation that is composed of the main
MILP (given below), which solves the initial problem (considering Π as the set
of possible policies), and additional constraints to determine the optimal policy
for a subset X i of Π. The main MILP is:

max

H−1∑
h=0

∑
(s,a,s′)∈T

R(s, a, s′)
(
xhsaP(s, a, s′) + yhsas′

)
∑
a

xhsa −
∑
s′

∑
a

P(s′, a, s)xh−1s′a ≤ 1[s=s0,h=0] ∀s ∈ S, h < H (5)

yhsas′ ≤ xhsa + 1− ε ∀s ∈ S, a ∈ A, h < H (6)∑
s′a

yhs′as =
∑
s′a

yh+1
sas′ ∀s ∈ S, h < H (7)∑

sas′

yhsas′ = 1 ∀h < H (8)

xhsa ≥ 0 ∀s ∈ S \ Sf , a ∈ A, h < H − 1
(9)

yhsas′ ∈ {0, 1} ∀s, s′ ∈ S \ Sf , a ∈ A, h < H − 1
(10)

Two type of variables are used:
Continuous variables xhsa that are the standard decision variables of the LP
formulation of an MDP [11]. Their values can be interpreted as follows:

xhsa =

{
p(s, h | s0) if a is performed in state s at time h
0 otherwise

where p(s, h | s0) is the probability of reaching s at time h when s0 is the initial
state. Note that these variables will be implicitly constrained to be less than 1
(by definition of the MILP).
Binary variables yhsas′ that indicates whether the transition (s, a, s′) is in the
maximum reward trajectory induced by the policy (the max term in proposition
1) or not.

The objective function of the MILP expresses the linear function B defined in
(4). In this expression, T is the set of all probable transitions, i.e., all (s, a, s′) ∈
S×A×S such that P(s, a, s′) > 0. The first constraint is the standard constraint
of the MDP’s LP formulation [11]. The second constraint expresses the fact that
a transition (s, a, s′) (at time h) can be in the maximum reward trajectory only
if a is performed in s at time h in the policy. Here we consider that a probability
is significant only if it is greater than a given ε. The third constraint expresses
the fact that a the trajectory gets out of a state s ∈ S at time h+ 1 if and only
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if it enters in at time h. The forth constraint expresses the fact that only one
transition is crossed at time h.

An optimal solution to the defined MILP gives a B-optimal solution for the
initial MDP. In order to determine the optimal policy for a subset X i of Π, we
need to define some additional constraints:

– for any tuple (h, s, a) for which there is a constraint π(h, s) 6= a:

xhsa = 0

– for any tuple (h, s, a) for which there is a constraint π(h, s) = a, we add the
constraint π(h, s) 6= a′,∀a′ 6= a to prevent the choice of another action4.

5.3 Stopping condition

Proposition 2 gives a condition that, when fulfilled at a given step of the ranking
algorithm, guaranties that a WOWA-optimal policy has been found.

Proposition 2 Let Π be the set of all possible policies, and let Πk = (π1, . . . , πk)
be the list of the k best elements of Π according to the linear bound B. We have:

max
π∈Πk

Wϕ(π) > B(πk)⇒ max
π∈Πk

Wϕ(π) = max
π∈Π

Wϕ(π)

Proof. We will prove that, at enumeration k, if there exists a policy π′ ∈
argmaxπ∈Πk Wϕ(π) satisfying Wϕ(π

′) > B(πk), then any policy in Π \Πk can-
not be WOWA-optimal: a policy π′′ ∈ Π \Πk is such that B(π′′) ≤ B(πk) (oth-
erwise it would have been enumerated before πk). From proposition 1 we have
Wϕ(π

′′) ≤ B(π′′), we then deduce that Wϕ(π
′′) ≤ Wϕ(π

′) = maxπ∈Πk Wϕ(π),
which concludes the proof.

The enumeration can then be stopped as soon as this condition is fulfilled.
Note that this algorithm is anytime, we can, at any step k, stop the enumeration
and return the best found policy (a policy in argmaxπ∈Πk Wϕ(π)) with B(πk)−
maxπ∈Πk Wϕ(π) as a bound on the distance to the optimal value.

Finally, we could relax the stopping condition and stop enumerations as soon
as maxπ∈Πk Wϕ(π) > B(πk)− δ where δ is a prefixed threshold in order to save
some computation time and determine a δ-optimal policy.

Proposition 3 The ranking algorithm ends and returns an (δ-)optimal solution.

The optimality results from proposition 2, while the termination results from
the definition of the algorithm: either the stopping condition is verified and the
algorithm stops, or the condition is never fulfilled and all the policies of Π are
enumerated exactly once. Since Π is a finite set, the algorithm necessarily stops.
4 Note that we could instead define a constraint xhsa ≥ ε but our experiments showed
that this option is slower.
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6 Experimental results

We have implemented5 and tested6 the ranking algorithm introduced in the
previous section, and we give in this section a part of the obtained results.

We tested the algorithm on 100 randomly generated7 MDPs with 10 states,
3 actions, and H = 5. In order to simulate the attitude of an agent w.r.t. risk,
we used a WOWA operator with multiple parameter functions ϕ: p5, p0.25 and
exp−

√
−ln(p). The histograms on Figure 2 give the rank (in the enumeration)

of the WOWA-optimal policy. These histograms focus on the first 1000 enu-
merations, but we can see that this was not much constraining as, most of the
time, the optimal policy is found before 1000 enumerations. Finally, the figure
in the bottom right of Figure 2 shows the evolution of ER (or more accurately
aER + b), WOWA, and CVaR values throughout the running of the ranking
algorithm on a specific instance8.

We can see in the histograms that, for any considered ϕ function, the WOWA-
optimal policy is generally different from the ER-optimal policy. Note that there
is a proportion of instances for which the first enumerated policy is optimal.
This is due to the fact that random generation often produces uninteresting
instances w.r.t. decision under risk, as it is the case when, for example, there
exists a policy that (strongly) dominates all the other ones, regardless of the
considered type of preferences. Besides these instances, the rank of the optimal
policy is relatively well distributed between rank 2 and rank 1000. Thus, the
WOWA-optimal policy is often far from the ER-optimal one in term of ranks.
Considering the figure on the bottom right, it clearly shows that WOWA can
discriminate between solutions considered equivalent either by ER or by the
CVaR operator. It also shows that the stopping condition can take time to be
verified (more than 1000 enumerations here), but the approach has the advantage
of allowing the determination of a policy in a more accurate (and may be less
hazardous) way than by simply optimizing ER and/or CVaR with value iteration
or lexicographic algorithms such as the one in [20].

7 Conclusion

We have introduced an algorithm to solve risk-aware MDPs. This work differ-
entiates from previous works in the MDP literature in proposing a more flexible
risk measure that has never been used (as far as we know) in MDPs as a measure
of risk. In comparison with the decision making under risk literature, this work
provides an extension to sequential decision problems and to a more general
case in term of preference modeling. Similar works indeed focus on the case of
risk-averse agents.
5 The implementation was performed in Python, and the linear programs were solved
using the gurobi Python library.

6 Tests were performed on an Intel(R) Core(TM) i7-1165G7 CPU with 15 GB of RAM.
7 using the mdptoolbox library: https://pymdptoolbox.readthedocs.io
8 A betting game instance, a definition can be found in [20]

https://pymdptoolbox.readthedocs.io
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Fig. 2. Rank of the optimal policies for ϕ(p) = p5 (top left), ϕ(p) = p0.25 (top right),
ϕ(p) = e−

√
−ln(p) (bottom left) and an execution trace of the algorithm (bottom right).

In this work, we make the assumption that the attitude of the agent w.r.t. risk
is precisely known, and that the parameter function ϕ can be fixed accordingly.
However, this assumption is restrictive and may be unrealistic in some situations.
Thus, our next step is to extend this approach to the case of imprecisely known
preferences w.r.t. risk. This is a challenging task because if ϕ is not fixed, its
bound cannot be defined with the same precision, and consequently, it is harder
to determine an efficient bound on WOWA.
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