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Abstract
In this paper, we introduce an ongoing work regarding a hybrid approach usable for obtaining high
quality solutions to large-scale combinatorial optimization problems. This approach divides the
process of solving a global problem into a master process that performs constraint-based search
and a slave process that uses specific incomplete search techniques. In this hybrid architecture,
the master level takes advantage of the conflicts discovered during incomplete search at the slave
level, and reciprocally enhances the efficiency of the incomplete search since conflicts collected by
the master level are used to avoid visiting the same parts of the search space over and over again.
One of the novelties of this work is that the conflicts are memorized over the long-term in compact
data structures, namely OBDDs or MDDs. The experimental results obtained on OPTW and FJSP
instances show that even in our preliminary implementation, this kind of approach can reach some
best-known results.
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1 Introduction

During the last decades, various incomplete search techniques were developed in the Opera-
tions Research (OR) community to quickly find good quality solutions to combinatorial op-
timization problems, especially for large instances. For example, local search (LS) approaches
based on efficient neighborhoods such as k-opt were introduced for routing problems [18],
many neighborhoods and metaheuristics were defined for Job Shop Problems (JSPs [19]),
and techniques like ejection chains were applied to assignment problems [10], to name just a
few. These developments were however made for specific OR problems, and the addition of
side constraints often requires some refactoring.

On the opposite, a framework like Constraint Programming (CP) is less sensitive to
the addition of side constraints. The main reason for this is that CP is based on modular
declarative modeling languages and on generic search procedures like tree search with
backtracking and constraint propagation.

In this paper, we develop a hybrid search strategy that uses specific OR incomplete search
techniques within a generic constraint-based search framework to quickly obtain good quality
solutions for a given problem. This strategy is based on the following principles:

Problem decomposition: we use, on the one hand, a generic constraint-based master solver
dealing with decisions and constraints that are out of the scope of standard OR problems,
and on the other hand slave solvers that can fully exploit the specificity of some standard
OR subproblems.
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7:2 Boosting incomplete search with conflict learning

Incomplete search techniques and explanations for the subproblems: to quickly get good-
quality solutions, there is a need to avoid spending too much time in the resolution of
one subproblem obtained for one combination of master decisions. This is why we use
incomplete OR techniques (local search and its variants) at the level of each subproblem,
with the assumption that inconsistency explanations can be delivered by the slave solver
when no solution can be found. These explanations are potentially invalid, though, they
can be added to the master problem for the sake of search diversification.
GRASP (Greedy Randomized Adaptive Search Procedure [9]): several strategies can be
used to interleave the master and slave solvers. We explore a GRASP-like metaheuristic
that makes greedy choices at the master level: at each step, the master solver tries to
assign a variable x with a value v and asks the subproblem whether it can still find a
consistent solution. If yes, decision [x = v] is committed. Otherwise, the master solver
collects the explanation returned by the slave solver and tries to propose another decision.
When the master solver encounters an inconsistency (no solution that is compatible with
the set of accumulated conflicts), a restart from an empty assignment is performed.
Use of off-the-shell succinct data structures: during the search, the master solver gathers
conflict explanations returned by the slave solver. To get a compact representation of
these conflicts and to quickly extract non-forbidden variable assignments, we use efficient
data structures, namely Ordered Binary Decision Diagrams (OBDDs [6]) and Multivalued
Decision Diagrams (MDDs [15, 1]).

Related work

Using problem decomposition and inconsistency explanations is not new in combinatorial
optimization. See the use of Logic-Based Benders decomposition [13] in mathematical
programming or SAT Modulo Theory (SMT [4]) for satisfiability problems. Basically, SMT
exploits both a master problem involving Boolean choices tackled using highly efficient SAT
techniques, and so-called theory solvers that are able to reason about the predicates activated
by the Boolean choices. One difference with standard SMT is that our approach tackles
the subproblems by incomplete search techniques that do not necessarily return an optimal
solution. Also, with regard to existing works, the idea of using conflict-driven search is
similar to Conflict-Driven Clause Learning (CDCL [3, 20]) used for SAT and Lazy Clause
Generation (LCG [25]) used for constraint satisfaction. One difference though is that thanks
to knowledge compilation languages like OBDD or MDD, the search process that we consider
has no specific constraint on the order in which the variables of the model are assigned.
Last, using specific reasoning procedures for some parts of the model is already done in
CP through the specific constraint propagation mechanisms. Two differences here are that
first we use incomplete reasoning techniques instead of "valid" constraint propagation, and
second we specifically identify a master problem that can, for instance, deal with decisions
corresponding to disjunctive choices.

Paper organization

The rest of the paper is organized as follows. Section 2 gives two examples that will be
used throughout the paper. Section 3 details the two-level model considered. Section 4
describes the conflict-based search strategy using inconsistency explanations and knowledge
compilation. Section 5 provides preliminary experimental results. Last, Section 6 gives the
summary as well as some perspectives for this work.
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2 Two examples

In the following, we consider two examples of problems for illustrating the approach.

Orienteering Problem with Time Windows (OPTW) [26]

OPTW is an extension of the Traveling Salesman Problem with Time Windows (TSPTW). In
OPTW, we consider a set of N clients c1, . . . , cN , with for each client ci a time window usable
for serving ci, an associated service time, and a reward Ri obtained if ci is served. Given a
matrix of transition times between all pairs of clients, the objective is to visit (a subset of)
clients within their allowed time windows while maximizing the total reward collected. A
lower bound LB on the total reward can also be specified. This problem can be decomposed
into two subproblems: (1) a master problem selecting the subset of clients to visit (one
decision variable xi ∈ {0, 1} per client ci, subject to constraint

∑
i∈[1..N ] Rixi ≥ LB), and

(2) a slave problem used for determining a sequence σ = [ci1 , . . . , cik
] allowing to visit all

clients selected by the master level within their time windows (a standard TSPTW); several
efficient incomplete OR techniques are available for this second problem [23].

Flexible Job Shop Problem (FJSP) [16]

A standard JSP involves m machines and n jobs composed of a sequence of m operations,
where each operation must be performed using a fixed machine. FJSP is an extension of
JSP where each operation has a list of alternative machines, i.e. can be processed on any
machine in this list. The objective is to find a schedule that processes all operations and
minimizes the maximum completion time of an operation (makespan). Thus, FJSP can be
decomposed into (1) a master problem that consists of assigning operations to machines (one
machine-choice variable xi ∈ [1..Mi] per operation i), and (2) a slave problem corresponding
to the sequencing of operations on machines, given an upper bound UB on the makespan;
for this subproblem, efficient incomplete OR techniques available for JSP can be used [21].

3 Problem formulation

As usual, a Constraint Satisfaction Problem (CSP) is defined as a triple (X, D, C) where X

is a finite set of variables, D(x) is the finite domain of possible values of a variable x ∈ X,
and C is a set of constraints over X. An assignment A of a set of variables X ′ ⊆ X is a set
of pairs (x, v) where x ∈ X ′ and v ∈ D(x), and where there is exactly one pair per variable
x ∈ X ′; set X ′ is also denoted by Vars(A). The value associated with a variable x in A

is referred to as A[x]. An admissible solution is an assignment of X that satisfies all the
constraints in C. In the following, we describe the models used for the master and slave
decision layers as CSPs. We focus on constraint satisfaction, given that optimization tasks
can be fulfilled by solving a sequence of problems (CSPs can be augmented with a constraint
on the objective value that is gradually tightened each time a new best solution is found).

3.1 Master problem
At the master level, we initially consider a CSP (X, D, Cm) — in our examples, Cm contains
the selection (resp. allocation) constraints. Each assignment satisfying Cm that is found by
the master search algorithm is given to the slave solver, that tries to tackle the corresponding
subproblem — as in SMT [4], with the difference that in our work (i) the slave solver is a local
search algorithm and (ii) the slave solver provides the master solver with estimated conflicts

CP-DP 2021



7:4 Boosting incomplete search with conflict learning

whenever it cannot reach an admissible solution. Formally, a conflict (or explanation) Ac is an
assignment of a subset of variables Vars(Ac) ⊆ X that explains the inconsistency. Intuitively,
each conflict corresponds to a set of decisions that potentially leads to an inconsistency.

Let C be the set of conflicts returned by the slave module after a new iteration, and CKB

be the set of conflicts learned during previous iterations ("KB" as "Knowledge Basis"). Then,

Cnew
KB ← Cold

KB ∪
{
¬

(
∧

(x,v)∈Ac

(x = v)
)
|Ac ∈ C

}
(1)

and the set of constraints of the master problem becomes:

Cnew
m ← Cinit

m ∪ Cnew
KB (2)

A succinct data structure for memorizing conflicts

To circumvent the risk of memory explosion, we propose to use compact data structures
such as OBDD [6] or MDD [2] for memorizing all the conflicts learned in CKB. Basically,
OBDDs and MDDs are decision diagrams whose nodes are labeled by variables and whose
arcs represent value choices for the variables. The set of paths from a root node to a specific
"True" leaf node in these diagrams then compactly represents a set of variable assignments
(in our case, the set of assignments that are still acceptable). Such representations can be
exponentially more compact than explicit lists of variable assignments. Additionally, OBDDs
and MDDs allow to execute some basic queries in polytime, such as checking whether a
complete assignment satisfies CKB (consistency checking), extracting an assignment satisfying
all constraints in CKB (model extraction), or adding a new forbidden assignment.

3.2 Subproblems at the slave level
At the slave level, we must solve subproblems derived from the assignment chosen at the
master level. Each subproblem contains a set of constraints Cs that must be satisfied. In
the full generality of our scheme, these subproblems can be generic CSPs or more specific
problems from the OR literature — e.g., TSPs, TSPTWs, JSPs, etc. Finding an admissible
solution for each subproblem can itself be an NP-hard task. Besides, the subproblem varies
from one call to another. For instance, in an OPTW, each new client selection at the master
level (assignment xi = 1 for a client i) adds a new sequencing variables to the subproblem
handled at the TSPTW level; as for FJSPs, each machine assignment at the master level
(assignment xi = m for an operation i) updates the (non-flexible) JSP handled at the slave
level. Formally, we assume the existence of four generic functions ϕset, ϕassign, ϕunassign,
ϕsrch for making the master and slave levels interact.

ϕset(A) =⇒ (P, α): this function allows instantiating the slave problem given an
assignment at the master level. More precisely, A is an assignment of X ′ ⊆ X, P is
the resulting subproblem at the slave level, defined over a set of variables Y , and α is
an initial solution for P (i.e., an assignment of Y ) that can for instance be constructed
randomly or by a greedy algorithm.
ϕassign(P, α, x, v) =⇒ (P new, αnew): this function incrementally updates the slave
problem when assigning [x = v] for a variable x ∈ X and a value v ∈ D(x), instead of
generating the subproblem and the corresponding solution from scratch. For instance,
when x = v corresponds to the selection of a new client to be visited in an OPTW, the
slave solver can update its current solution by inserting this new client at some position
in the current sequence of visits.
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ϕunassign(P, α, x) =⇒ (P new, αnew): this function incrementally updates the slave
problem when unassigning a variable x ∈ X. For instance, when x corresponds to the
selection of a client in an OPTW, the subproblem can simply remove this client from the
current sequence of visits.
ϕsrch(P, α, mt) =⇒ (αbest, sat, Ac): this function performs a local search for the slave
problem starting from initial solution α, with a limited computation time mt. This
function returns the best solution αbest found and a boolean value sat equal to True if
αbest satisfies all the constraints of the slave problem, False otherwise. In this latter case,
an explanation Ac of the inconsistency is also built (see below).

4 Incomplete conflict-based search with a knowledge basis

4.1 Generic scheme
The global search process proposed is described in Figure 1. The main idea is to use incomplete
search techniques to progressively find an assignment A of X such that (1) A satisfies all
the constraints in Cm and (2) there exists an admissible solution α of the subproblem P

generated from A, i.e., A ∧ α satisfies all constraints in Cs. Similarly to what is done for
(weighted) partial Max-SAT [7], it is possible to consider Cm as a set of hard constraints that
have to be respected at all times, and Cs as a set of soft constraints that can be violated
during search. Our goal is then to minimize the violation degree of the constraints in Cs

by first incrementally updating the decisions made at the master level (decisions over A),
and then performing local search at the slave level (decisions over α), while maintaining the
satisfaction of all constraints in Cm at any time.

Figure 1 Proposed architecture

4.2 Pseudo-code of the method
The pseudo-code of the method proposed is given in Algorithm 1. At each step, the algorithm
maintains a current assignment A for the master level and a corresponding set of unassigned
variables Xu ⊆ X. Iterations are performed as long as there exists at least one unassigned
variable, i.e. Xu ≠ ∅ (lines 5-21). At each step, the solver searches for a completion A′ of
A that satisfies all constraints in Cm (line 5). This query can be addressed in polynomial

CP-DP 2021
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time with the use of an adequate language for representing the conflicts (polynomial time in
the size of the data structure). If there is no model, the algorithm restarts from an empty
assignment (line 6-9). Otherwise, one new assignment (x, v) belonging to A′ is chosen using
a specified heuristic. The latter can be problem-dependent (e.g., based on insertion heuristics
used for OPTW or FJSP) or not (e.g., based on the ordering of variables in the decision
diagrams). Subproblem P is updated according to the new assignment [x = v] (line 11-14).
Incomplete search is then used at the slave level to try and get an admissible solution for
P (line 15). If a consistent solution is found, then the search continues by considering the
remaining variables in Xu. Otherwise, the failure is analyzed and the conflict explanation is
added to Cm (line 17). If no solution has been found after a given maximum CPU time, the
algorithm returns nil, i.e. UNKNOWN (not UNSAT since we use incomplete search).

Algorithm 1 Incomplete Search With KB
Input: MaxTime: maximum global CPU time, mt: maximum CPU time for each search phase at

the level of the subproblem
Output: An admissible solution for the global problem or nil if no solution has been found

1 (Xu, A)← (X, ∅)
2 (P, α)← ϕset(∅)
3 while (cpuTime() < MaxTime) do
4 if Xu = ∅ then return (A, α)
5 select A′ ∈ D(Xu) s.t. A.A′ solution of (X, Cm)
6 if A′ = nil then
7 if A = nil then return nil
8 (Xu, A)← (X, ∅)
9 (P, α)← ϕset(∅)

10 else
11 (P old , αold)← (P, α)
12 select (x, v) ∈ A′

13 (Xu, A)← (Xu \ {x}, A ∪ {(x, v)})
14 (P, α)← ϕassign(P, α, x, v)
15 (α, sat, Ac)← ϕsrch(P, α, mt)
16 if ¬sat then
17 Cm ← Cm ∪ {¬(∧x∈Vars(Ac)(x = Ac[x]))}
18 (Xu, A)← (Xu ∪ {x}, A \ {(x, v)})
19 (P, α)← (P old , αold)
20 end
21 end
22 end
23 return nil

4.3 Conflict extraction based on a QuickXplain algorithm

The algorithm used to produce conflicts is inspired by [14] (see Algorithm 2). When the local
search module does not find an admissible solution within the allocated time, the objective is
to extract a minimal set of decisions that explains the failure. Intuitively, the idea is to focus
on decisions that can lead to a change in the subproblem consistency. If the unsatisfiable
subproblem P becomes satisfiable again when unassigning a variable zk ∈ X, then zk is
potentially involved in the explanation of the failure. This is why in our quick explanation
approach, zk is added to the estimated inconsistent explanation in this case. This procedure
is repeated until all the variables in Vars(A) are considered.
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Algorithm 2 quickXplain
Input: A: an assignment of a subset of variables X ′ ⊆ X whose inconsistency must be evaluated,

mt: maximum computation time allowed to evaluate the feasibility of the assignment at
the level of the subproblem

Output: Z: a subset of variables Vars(Z) ⊆ Vars(A) ⊆ X such that assignment A[Z] explains
the failure

1 [z1, . . . , zp]← permutation(X ′)
2 Z ← ∅
3 for k = 1 to p do
4 (P old , αold)← (P, α)
5 (P, α)← ϕunassign(P, α, zk)
6 (α, sat, A′)← ϕsrch(P, α, mt)
7 if sat then
8 Z ← Z ∪ {zk}
9 (P, α)← (P old , αold)

10 end
11 end
12 return Z

5 Experiments and discussion

5.1 Case study 1 : solving OPTW by using LS and OBDD
For OPTW, a boolean variable xi ∈ {0, 1} is used to represent the selection of client ci. A
conflict in this type of problem is a clause (¬xc1 ∨ . . . ∨ ¬xck

). Because the conflicts involve
boolean variables only, they can be efficiently stored in an OBDD. When the conflicts are
stored in an OBDD, it is easy to extract or complete a model by following a path from the
root node of the decision diagram to the True leaf node. Optimization of the global reward
can also be handled, through the association of weights to the edges — these weights are the
rewards corresponding to the visit of the clients (or 0 if the client is not selected).

Experiments were performed on classical OPTW instances.1 In our implementation,
we used the PyCUDD library to manage operations on OBDDs. Many of the best known
bounds have been recovered by our approach. Computation times are also competitive with
state-of-the-art methods. As we can see in Table 1, the number of OBDD nodes used for
memorizing conflicts is far less than the number of conflicts encountered during the search.

Instance ILS+GRASP [26] ILS [27] OBDD + LS #conflicts #OBDD (nodes) CPU time (s)
c107 370 360 370 7350 1789 5.59
r101 198 182 198 5720 1708 3.38
r104 303 297 299 15936 2129 9.72
r107 299 288 294 11661 2347 7.94
r109 277 276 277 15118 4645 9.55

Table 1 Results obtained on classical instances of OPTW; CPU Time (s) was measured on
an Intel Core i5-10210U processor, 1.6 GHz, 16 GB of RAM. Each test was performed with
maxIterations = 100.

5.2 Case study 2 : solving FJSP by using LS and MDD
In FJSP, an integer variable xi ∈ [1..Mi] is used to represent the machine selection for
operation i, where Mi is the number of alternative machines available for i. An inconsistency

1 https://www.mech.kuleuven.be/en/cib/op
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explanation is, in this case, a minimal set of decisions Ac = {(xi1 , vi1), . . . , (xik
, vik

)} such
that no consistent plan is found with regards to a makespan upper bound UB given as an
input. Such conflicts over integer variables can be efficiently stored in an MDD [2]. For the
management of MDDs, we used the SALADD library [24].

We carried out experiments on the Brandimate instances [5]. An analysis of the best
makespan found for some instances is shown in Table 2. Our solver (MDD + LS), however,
falls short of reaching several best-known results. One of the reasons could be the lack of
efficiency of the local search procedure at the slave level. Intuitively, even if the master
level makes an optimal machine selection (i.e. a selection that can lead to an optimal global
solution), an optimal sequencing might not be found at the slave level since incomplete search
is performed. Another weakness is that the number of conflicts learned remains limited.
More precisely, our implementation of the QuickXplain procedure seems not to be effective
yet in several cases since the conflict extraction time is too long compared to the global
search time, especially for large-scale instances.

Instance n×m LB LEGA [12] KBACO [28] KBVNS [16] HA [17] MDD+LS
mk01 10× 6 36 40 39 40 40 40
mk02 10× 6 24 29 29 26 26 27
mk03 15× 8 204 - 204 204 204 204
mk04 15× 8 48 67 65 60 60 61
mk05 15× 4 168 176 173 173 172 177
mk06 10× 15 33 67 67 58 57 65
mk07 20× 5 133 147 144 139 139 146
mk08 20× 10 523 523 523 523 523 523
mk09 20× 10 299 320 311 311 307 307
mk10 20× 15 165 229 229 209 197 219

Table 2 Makespan values obtained on Brandimate instances [5] for state-of-the-art methods and
for our approach (MDD+LS). Each test was performed with maxT ime = 60s.

6 Conclusion and future works

In this paper, we introduced an ongoing work related to a hybrid method for solving optimiz-
ation problems, where a generic master solver (reasoning typically about selection/allocation
constraints) and a specific slave solver (reasoning typically about routing/scheduling decisions
through fast incomplete search procedures) collaborate. To improve search, the conflicts en-
countered during incomplete search at the slave level are recorded in compact data structures,
namely OBDDs or MDDs, and reused to guide the solving process.

Preliminary experiments showed that for several benchmarks, there is probably a need
to intensify search at the slave level (for instance by using Large Neighborhood Search
instead of Local Search), and a need to speed up the extraction of an explanation when a
failure occurs. The experiments also showed that the conflicts learned during search can
be efficiently stored thanks to OBDDs or MDDs, but the size of the decision diagrams and
the compilation time increase while conflicts are added. To overcome this limitation, other
knowledge compilation languages could be considered [8], as well as approximate compilation
techniques [11]. Another important factor affecting the performance of decision diagrams is
the variable ordering [22], and this point should also be further investigated.

A last perspective is to handle uncertainty in combinatorial problems where some inform-
ation can be changed at the last minute. In such cases, the knowledge basis could be reused
to avoid performing search from scratch.
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