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ABSTRACT
*
 

A particle on a substrate can be moved by the dry friction 
force excited via a surface acoustic wave. The effect is 
referred to as vibrational transportation or Rayleigh linear 
motor and is used in a number of industrial applications. A 
traditional theory of vibrational transportation considers a 
particle as a material point that cannot be strained and also 
cannot induce any strain in the substrate. A known result 
consists in the fact that such a particle, with a certain choice 
of system parameters, can move against the surface wave. 
Here we use another approach based on the Hertz-Mindlin 
mechanics in which a deformable axisymmetric body 
moves on a deformable substrate. The contact zone in this 
case is not a point but rather a circle that generally contains 
a smaller circle of stick and surrounding annulus of slip. 
Using a previously developed numerical tool we show that 
such a body can also move in the direction of the wave 
which allows one more elaborate particle positioning. The 
steady drift in one of these directions can be observed (or 
not) depending on a combination of two system 
characteristics only that incorporate excitation parameters, 
elastic properties and particle inertia. 
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1. INTRODUCTION 

It is well known that nonlinear contact frictional interaction 
can be used for transporting small solid objects on a 
substrate under the action of a surface acoustic wave. This 
principle is now applied to a number of practical cases: 
separation of granular mixtures, transport of grains in silos 
and conveyors, powder dosage in pipes and, in general, is of 
interest for food, chemical, pharmaceutical and coating 
industries [1-3]. Future applications are possible such as 
delivery of solid agents for defect healing, noninvasive 
excretion of undesirable particles, activation of 
micromachine components, and others. 
A particle can move when there exists some asymmetry 
between left and right (Fig. 1). The mechanism is based on 
the fact that a surface wave simultaneously excites 
oscillatory normal and tangential particle motions with 
some phase shift. Depending on this shift, the average 
normal compression during right and left excursions of the 
tangential motion is different. Then the presence of dry 
friction can result in a preferred movement direction 
characterized by a lower compression. 
The effect has been experimentally observed many times 
(e.g. in [1-4]). At the same time, theoretical description of 
the process is of interest since it can help optimize real 
systems once predicts the resulting behavior in a particular 
situation determined by a number of parameters such as 
wave characteristics, material properties, and geometric 
sizes and shapes. 
A traditional model of the effect [5,6] is based on 
representation of the particle as a material point which is 
rigid by definition and an assumption that particle-substrate 
contact does not induce any deformation in the substrate. It 
was shown previously [6] that in such a system the particle 
can detach and experience multiple bouncing, be stuck, or 
move with some constant average velocity against the 
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surface wave. The latter regime is suitable for the purpose 
of vibrational transportation. 
There is another opportunity to describe the system in a 
more precise way offered by the recently developed contact 
models [7-10] based on the Hertz-Mindlin mechanics [11]. 
The key feature of the approach is a finite size of the body 
as well as the presence of finite contact displacements in the 
system, i.e. deformability of both body and substrate. In this 
communication, we show that the deformability effect 
impacts dramatically the observed motion regimes. In 
particular, we demonstrate that a material point can 
controllably move only against the wave while a 
deformable body is able to slide in the both directions. 
It is also important to mention that the both models are 
based on the Coulomb friction law written either for 
concentrated forces (material point), either for stress 
distributions in the contact zone (deformable body of finite 
size). 

2. EQUATIONS FOR A PARTICLE ON THE 

SUBSTRATE EXCITED BY RAYLEIGH WAVE 

Here we consider a motion of an axisymmetric particle 
positioned on a substrate in which a Rayleigh wave 
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is excited. Here Ay is the vertical amplitude, f is the wave 
frequency, kr is wavenumber, r(ν) is the known ratio of the 
horizontal and vertical amplitudes that depend on ν, 
Poisson’s ratio. The equations of motion for bulk 
coordinates (x, y) of the small body of a mass m read 
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where T(b, a) and N(a) are friction and normal reaction 
forces, respectively, that depend on normal a and tangential 
b contact displacements (see Fig. 1). Here by introducing 
M>m we take into account that the particle can be 
precompressed by an external force Fext, in addition to the 
gravity force mg, i.e. M=m+Fext /g. 
Eqn. (2) should be supplemented by an obvious geometric 
relationship in the form 
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Figure 1. Axisymmetric particle on a substrate under 
the action of Rayleigh wave. 

Suppose now that the displacement a0 produced by the total 
compression force N0=mg+Fext is known. Then it is 
convenient to express the friction force through its 
normalized value T*

MMD=T/(µN0) where µ is the coefficient 
of friction. The subscript MMD is related to the Method of 
Memory Diagrams (MMD) explained in more detail in the 
next section. The use of the MMD also implies that the 
normalized tangential displacement equals b*=b/(θµa0) with 
θ=(2-ν)/(2(1-ν)). Finally, introducing other normalized 
variables marked with asterisks as 
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we rewrite the equations of motion Eqn. (2) in the form 
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A remarkable feature of these normalized equations is that 
they contain only two essential parameters, m

* and Ay
*. 

Other two parameters, µ and ν, are considered here as 
material constants. It is worth noting that terms containing 
kr in Eqn. (1) are omitted since the Rayleigh wavelength is 
much longer than all dimensions related to contact. 
The key point of our approach is the numerical solution to 
Eqn. (5) using the MMD sketched below. 

3. ON THE METHOD OF MEMORY DIAGRAMS 

The MMD belongs to a family of semi-analytical methods 
[7-10] of contact mechanics based on the Hertz-Mindlin (or 
Cattaneo-Mindlin) solution [11]. The Hertz-Mindlin 
mechanics describes contact stresses and displacements in a 
system consisting of two elastic spheres with friction. The 
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spheres are subject to an oblique bulk force (N, T) which 
results in appearance of contact displacements (a, b). It is 
shown that for |T| <µN the contact zone represents a circle 
of stick [0, s] surrounded by an annulus of slip [s, c]. In the 
considered situation of partial slip, contact forces and 
displacements are linked with relationships: 
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Here R is the radius of the sphere (the second sphere has an 
infinite radius), and E is the Young modulus of the 
materials considered identical for simplicity. The normal 
reaction curve N=N(a) is given by the Hertz solution: 
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The MMD represents a generalized and automated version 
of the Hertz-Mindlin mechanics valid for arbitrary history 
of displacements a(t) and b(t), for bodies of any 
axisymmetric shapes, and for contact modes comprising not 
only partial slip but also full sliding and contact loss. The 

solution is given as a superposition of expressions is

cT
 and 

is

cb of the kind of Eqn. (6) with various parameters si that 

depend on history. Following the evolution of a(t) and b(t), 
the “memory points” si are continuously created and erased. 
Hence, the solution remains analytical i.e. extremely rapid 
but its numerous parameters si are obtained via an 
algorithm. 
The details can be found in [10,12]. The essential 
conclusion for this study is that the notation TMMD (b, a) is 
defined for an arbitrary displacement history and can be 
calculated provided the dependence N=N(a) is known. 

4. TRADITIONAL SOLUTION FOR A MATERIAL 

POINT 

In [6] the corresponding solution for a material point 
positioned on a substrate is obtained analytically. Here it is 
meaningful to reproduce it by modifying the numerical 
solution of Eqn. (5) that would provide an additional 
verification. 
First of all, the assumption of undeformability immediately 

suggests that a
*=0. Then * * *cos 2

y
y A tπ=  provided no 

detachment occurs. The solution for b
* is also easy to 

obtain. In the case of stick, the tangential displacement does 

not change, and ( )* * * /
x

T m u t µ= − ɺɺ  as it follows from 

Eqn. (5). If now the value |T*| exceeds µN, slip occurs. Then 

the friction force is given by Coulomb friction law, and a 
small increment in b* at a current step represents a result of 
the uniformly accelerated motion. 

5. DEFORMABLE PARTICLE UNDER RAYLEIGH 

WAVE ACTION: RESULTS 

It is convenient to solve the set of ordinary differential 
equations Eqn. (5) for a deformable particle using the 
Adams-Bashforth method with the initial conditions b

*=0 
and a*=1. To comply with infinite in time Rayleigh wave 
solution, the latter was multiplied by a ramp function 
staring from 0 and gradually reaching 1. 
The result is depicted in Fig. 2 for a spherical particle of a 
certain radius that fully defines the normal loading curve. 
Depending on m* and Ay

*, the two governing parameters of 
the system, four different motion regimes can be 
encountered. In the case of weak oscillations around x*=0 
(blue curve), the difference in compression during positive 
and negative tangential excursion is not enough to launch a 
steady drift. The green line corresponds to detachment of 
the particle and a series of bouncing. In that case, a slight 
change in parameters modifies the behavior considerably. 
In addition, the motion can depend, for instance, on local 
surface features. Therefore, this regime is hardly usable for 
practical vibrational transportation. The most remarkable 
feature; however, is the existence of two drift regimes, in 
the direction of the wave and against it. This indeed offers 
an opportunity to manipulate a particle and move it in the 
desired direction. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Four principal motion regimes for a 
deformable spherical particle. The insets zoom the 
behavior at the scale of the Rayleigh wave period. 

Fig. 3 represents phase diagrams i.e. sets of points (Ay
*, 

m
*) at which various motion regimes take place. It can be 

seen that the account for particle’s deformability 
drastically impacts the result. In particular, a “heavy” 

deformable particle ( * 1m ≫ ) does not necessarily 

t
* 

x
* 
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detach as the material point does, and the drift against 
the wave is more common. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Phase diagram for different motion 
regimes of a spherical deformable particle (top) 
and of a material point (bottom) for µ=0.1, ν= 0.3. 
The material point never moves with the wave. 

6. DISCUSSION 

In this communication, we apply a previously developed 
method of contact mechanics to modeling motion of a 
particle on the substrate under a combined action of friction 
and the Rayleigh wave. It is shown that the account for 
particle’s deformability and its finite size drastically 
changes the diagram of encountered regimes. The 
deformable particle can move with the wave and against the 
wave while a material point is capable of moving against 
the wave only. 
At the same time, an important limitation arises from the 
fact that a particle of finite size can roll which is not 
considered here, whereas a material point cannot do so. 
Revisiting vibrational transportation problems can be of use 
for modern applications in micromachines as well as state-
of-the-art particle manipulation. 
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