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The ability of eukaryotic cells to squeeze through constrictions is limited by the stiffness of their large and
rigid nucleus. However, migrating cells are often able to overcome this limitation and pass through constrictions
much smaller than their nucleus, a mechanism that is not yet understood. Here, we propose a methodological
framework to observe, quantify, and model this nuclear translocation phenomenon through a data-driven
approach using microfluidic devices where cells migrate through controlled narrow spaces of sizes comparable
to the ones encountered in physiological situations. Stochastic force inference is applied to experimental nuclear
trajectories and nuclear shape descriptors, resulting in equations that effectively describe the kinematics of
this nuclear translocation phenomenon. By employing a model where the channel geometry is an explicit
parameter and by training it over experimental data with different sizes of constrictions, we ensure that the
resulting equations are predictive. Altogether, the approach developed here paves the way for a mechanistic and
quantitative description of dynamical cell complexity during its motility.

DOI: 10.1103/PhysRevResearch.6.043030

I. INTRODUCTION

The cell nucleus, three-to-four times stiffer than the
cytoskeleton and twice as viscous, has traditionally been
regarded as a mechanically passive compartment hous-
ing genetic information [1]. It is now established that in
physiological conditions, the nucleus can experience large
mechanical stresses that impact its shape and internal orga-
nization, affecting, for example, gene transcription [2]. In
particular, when cells migrate through complex environments,
the nucleus happens to experience large deformations, for
instance, when passing through tight constrictions [3–6]. How
these large deformations affect nucleus functioning and feed
back into the behavior of the cell remain open questions.
In fact, the overwhelming majority of cell migration stud-
ies focus on experiments on flat surfaces that were crucial
to decipher the detailed mechanisms of cell motility [7–9].
However, the nucleus is only weakly altered in such experi-
ments, which thus cannot be informative on the role of nuclear
mechanics on cell motility, its passive mechanical resistance
to deformation, and the mechanosensory pathways through
which these deformations feed back into and actuate the cell
behavior [2,10–13].
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Addressing this problem through in vivo experimental
observations of cell migration in tightly constraining environ-
ments such as the extracellular matrix and epithelial tissues
represents a tremendous challenge. Indeed, one would have
to disentangle the complexity of the environment from that
of the migrating cell. For this reason, here we study an in
vitro system of cells migrating in a microfabricated device that
imposes three-dimensional mechanical constraints on spon-
taneously migrating eukaryotic cells [14,15]. We therefore
focus on the influence of the geometry on squeezed cell
migration. Specifically, cells migrate in an array of pillars
designed to impose constrictions of controlled size, which
incur large deformations of the nucleus. Remarkably, we find
that cells with a nucleus of diameter of ∼12 µm in their
rest state are able to spontaneously migrate through constric-
tions as tight as 2 µm. We refer to this process as nuclear
translocation, in analogy with polymer translocation where
a large macromolecule can pass through tight pores. Using
bright-field and multichannel fluorescent imaging, we are able
to track the trajectories of individual nuclei going through
these constrictions. However, the analysis of the resulting
trajectories poses multiple challenges due to their complexity,
inherent stochasticity, and the limited amount of data: how
does one extract quantitative models and mechanistic insights
from such trajectories?

To tackle this challenge, here we develop and apply a
data-driven approach to learn dynamical models directly
from experimental nucleus trajectories. This contrasts with
more traditional model-based approaches that postulate a
model form and fit its parameters through the use of ag-
gregate observables such as correlation functions: here we
let the model emerge from the data, and the parameters are
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optimized directly on the entire data set. Such approaches
have recently received much attention, in particular due to the
development of methods adapted to data-driven inference of
deterministic dynamical models such as ordinary and partial
differential equations [16,17]. These methods are well adapted
for large-scale datasets such as tissue dynamics [18,19]. Im-
portantly, however, single-cell dynamics are not deterministic:
the inner complexity of these objects, coupled to the reliance
to feedback pathways involving small numbers of signaling
molecules, results in apparently erratic dynamics which is bet-
ter captured by stochastic differential equations (SDEs) [20].
Data-driven approaches have been used to capture the dynam-
ics of freely migrating cells [21–23], revealing a persistent
random walk behavior. They have been used to quantify the
dynamics of nonconstraining confined cell migration [24,25]
and, recently, for constraining cell migration in an elastic
environment [26]. Newly introduced inference methods for
SDEs [27,28] have made it possible to efficiently learn such
dynamics and have resulted in insights in cell-cell interactions
during confined migration that would not have been possible
with preexisting methods [24]. However, to our knowledge,
such methods have not been applied to cell migration with
mechanical constraints that lead to large deformations of the
nucleus. To this aim, we define and measure quantitative
descriptors of the cell shape and state, then use stochastic
force inference (SFI) [27] to construct a model that captures
the dynamics of these shape descriptors. By including the
constriction shape as an explicit input of the model, we are
able to extrapolate the model to other constriction sizes. Our
inference analysis explicitly takes into account the spatial
constraints of nucleus translocation and is applicable to other
experimental designs.

II. RESULTS

A. Confined cell migration experiments

We use a CRISPR-modified mouse embryonic fibroblasts
(MEFs) cell line that expresses nesprin-2 giant with a green
fluorescent protein (GFP) sequence and lamin A/C with a
red fluorescent protein (mCherry) sequence [29]. The lamin
biopolymer shell that lies right underneath the nuclear enve-
lope is linked to the cytoskeleton through the LINC complex,
which includes nesprins [30–34]. Cells migrate through mi-
crofluidic devices that consist of a series of 5 µm high pillar
structures providing three sizes of constrictions (5, 3, and
2 µm) and larger channels (15 µm) [Figs. 1(a) and 1(b)].
Such migration devices are obtained by covalent assembly
of a three-dimensional (3D)-imprinted block of polydimethyl-
siloxane (PDMS) with a glass coverslip [15]. Cells are placed
on one side of the device with culture medium, before the
pillars (see Appendices A 1–A 4). They exhibit global motion
(on the x axis) towards the other side, empty of cells but filled
with culture medium [Fig. 1(a)], a phenomenon we interpret
as chemotaxis along a self-generated nutrient gradient [35].
The apparent width of MEF cell nuclei (on the y axis) is
12 ± 2 µm outside of constrictions (see Appendix B 1). It is,
therefore, larger than constriction sizes and smaller than the
large channel of 15 µm. Note that in all conditions, nuclei
shapes are mostly cylindrical (on the z axis), touching the

FIG. 1. CRISPR engineered MEFs are migrating in a microflu-
idic device made of constrictions. (a) Top view of the pattern used
in the microfluidic device. It is composed of PDMS pillars of sev-
eral widths in order to make three types of constrictions: 5, 3, and
2 µm wide and a control channel of 15 µm. (b) Side view of the
microfluidic device. Height of the pillars is 5 µm. (c) Side view (x, z)
of lamin A/C signal in mCherry of an engineered MEF in the middle
of a constriction. (d) Representation of the origin points used for a
nucleus (in brown) trajectory. (X,Y ) is position of the nucleus (red
star). (e) Epifluorescence images of an engineered MEF crossing a
3 µm constriction (top) and a 15 µm large channel (bottom). Left is
the transmission signal and right is the mCherry signal (for Lamin
A/C). (f) Examples of trajectories of one cell through a 3 µm con-
striction (top) and one cell through a 15 µm large channel (bottom).
Annotated points correspond to specific positions illustrated in (d).
Scale bars: 10 µm.

bottom and the ceiling of the migration device [Fig. 1(c)].
We confirm previous observations [29] that during nucleus
translocation through a constriction, the nesprin signal inten-
sity increases at the front of the nucleus, while the lamin signal
does not (see Appendix B 2).

B. Extracting cell nucleus trajectories

We observe the movement of cell nuclei in the horizontal
(x, y) plane when cells migrate between vertical z-oriented
pillars [Figs. 1(a) and 1(b)]. Nuclei are deformed when they
translocate through narrow constrictions [14]. A constriction
is defined by two facing big pillars of radius r [Fig. 1(d)]. For
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each constriction, we define the spatial origin (x = 0, y = 0)
at the center of the constriction. The position of a nucleus is
defined by its surface barycenter (X,Y ) detected through the
lamin signal [Fig. 1(d), right, and Appendices A 5 and A 6].
An image is taken every 10 min. This time interval was opti-
mized to limit fluorescence bleaching and cell phototoxicity.

For each nucleus trajectory, we define Xstart as the mid-
dle of the small pillar that precedes the specific constriction
[Fig. 1(d)]. The same definition is adapted to the 15 µm chan-
nels with a truncated-disk pillar defining the “constriction.”
The start of a trajectory (at time t = 0 min) is defined either by
X = Xstart or by its interpolated value using a constant nuclear
speed between the two available positions closest to Xstart. The
end of a trajectory is determined by the earliest of (i) the end
of the overall acquisition, (ii) the start of a new trajectory in a
new constriction, and (iii) half an hour before the cell starts to
divide or die. Here, we exclude any trajectory corresponding
to cells undergoing adherent cell-cell contact for more than
an hour to exclusively address the migration of individual
cells. Examples of recorded images of a nucleus translocating
through a 3 µm constriction and a nucleus migrating through a
large 15 µm channel are given in Fig. 1(e). The corresponding
trajectories and origin points are displayed in Fig. 1(f). We do
not observe nuclear rupture during this deformation, contrary
to other mechanical studies of cell nuclei [13,36,37].

A typical nucleus trajectory X (t ) through a 3 µm constric-
tion has a sigmoidlike shape, with a plateau soon after Xstart

when the nucleus reaches the entrance of the constriction, and
a sharp speedup when it manages to pass through the center
of the constriction at X = 0, followed by an unconstrained
motion [Fig. 1(f), top]. A nucleus trajectory in a large 15 µm
channel displays a smooth movement [Fig. 1(f), bottom] at
almost constant velocity. However, a fraction of cells does
not translocate before the end of the trajectory recording.
They are, nevertheless, included in our data set to avoid any
statistical bias in the analysis. Overall, nucleus trajectories
show some variability, both in the duration of the plateau and
in the velocity of free migration, as can be seen in Fig. 2(a).

C. Modeling the stochastic nature of nucleus translocation

The observed variability between different trajectories in
the same constriction condition (either the 3 µm or the 15 µm
wide constriction) and the fluctuations of velocity during a
single trajectory reflect the internal complexity of the cells.
This effective stochasticity is often modeled through a noise
term by using stochastic differential equations (SDEs). A
SDE describing the cell nucleus motility is typically of the
form [38]

Ẋ (t ) = � + fext (X )︸ ︷︷ ︸
deterministic

+
√

2DX · ηX (t )︸ ︷︷ ︸
stochastic

, (1)

which consists of two deterministic terms (� and fext) re-
flecting the slow, predictable aspects of the dynamics and
a stochastic noise that models the coupling of the observed
position with fast, unobserved degrees of freedom. More
specifically, in the deterministic contribution of nucleus dy-
namics, � is a driving term, also called polarity of the cell,
and captures the asymmetry in the internal organization of the
cell that generates the motility [39]. The other deterministic

FIG. 2. Experimental trajectories of cell nucleus transloca-
tion. (a) Time series of nucleus position X during translocation.
(b) Schematic of characteristic nuclei shapes and their corresponding
position during the translocation. (c) Protrusion vector P and aspect
ratio R change along the translocation process. In (a) and (c), results
from 3 µm and 15 µm constraints are shown for comparison.

term, fext, represents the direct effect of the environment on
the cell nucleus dynamics. The noise term

√
2DX · ηX has an

amplitude characterized by its diffusion coefficient DX , which
we assume here to be state independent, and ηX the noise,
which, for simplicity, we assume to be white and Gaussian,
and therefore 〈ηX (t )〉 = 0 and 〈ηX (t )ηX (t ′)〉 = δ(t − t ′).

The polarity � itself is dynamical and its dynamics de-
scribes the way cells sense their environment and actuate their
self-propulsion accordingly. The dynamics of � follows an
SDE of the form

�̇(X, t ) = f�(X,�) +
√

2D� · η�(t ). (2)

The drift term f�(X,�) encodes the internal dynamics of
� as well as the feedback of the nucleus polarity to the
external environment. Note that there are thus two ways in
which the environment affects the dynamics: through direct
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forces on X [term fext (X ) in Eq. (1)] and through indirect
feedback [ f�(X,�) in Eq. (2)], i.e., mechanosensing. Here
again, fast internal processes of the cell are modeled as a
Gaussian white noise

√
2D� · η�(t ) with diffusion coefficient

D�, which determines, for instance, the persistence length of
the free motion of the cell [23].

The class of cell motility models described by Eqs. (1) and
(2) is very general and widely used. However, a key challenge
to its applicability to experimental data is that the polarity
� is not directly measurable, as its molecular definition re-
mains unknown. To bypass this difficulty, previous studies
have relied on the use of underdamped dynamics: briefly, such
approaches consist of differentiating Eq. (1) with respect to
time, and plugging into Eq. (2) to eliminate �, thus resulting
in an effectively second-order dynamics for X [38]. This type
of embedding approach exploits Taken’s theorem and is pop-
ularly used for deterministic dynamical systems [40]. While
this approach has been successful in quantifying, for instance,
cell-cell interactions from data [24], it has several drawbacks.
First, second-order inference is considerably more difficult
and demanding in terms of data quality and precision than
first-order inference [28]. Second, one has to neglect the noise
on nucleus position in order for this approach to work, which
is not always possible. Third, information about the nature of
the polarity and its feedback mechanisms is lost in the process.
An alternative approach was proposed recently, consisting of a
model-driven treatment of data where the polarity is explicitly
included as a hidden variable [25], but this requires strong
assumptions on the motility mechanisms.

D. Data-driven modeling from geometric quantities

Here we propose an alternative approach to maintain the
overdamped dynamics, which is more physical, and approxi-
mate � with available information. Indeed, we have access to
more than just the nuclear center X : using the lamin signal,
we can track the precise contour of the nucleus and extract
a richer set of geometrical quantities. In particular, when the
cell engages into the constriction, the nucleus starts elongating
and protruding toward the narrow part of the constriction, as
schematized in Fig. 2(b). When exiting the constriction, the
protrusion points backwards and the nucleus progressively
recovers its oval shape.

From these observations, we define two variables to
characterize nucleus deformations. First, to account for the
geometrical shape change of the nucleus, we define its protru-
sion vector P = Xc − X , with Xc the barycenter of the contour
of the nucleus (see the detailed expression in Appendix A 7).
We choose to employ this variable P as it is directly measur-
able from the nuclear contour and gives a measure of how
much and in which direction the nucleus boundary protrudes
relative to the center of mass. A positive (negative) value of P
corresponds to a forward (backward) extension of the nucleus
relative to the center of mass [see Fig. 2(b)]. Second, we
characterize the relative (x, y) stretch by defining the aspect
ratio of the cell nucleus R (see the detailed expression in
Appendix A 7). A perfectly circular disk would correspond
to R = 1, whereas an ellipsoid oriented towards the x axis
(y axis) would correspond to R > 1 (R < 1). Note that the
microfluidic device slightly compresses the nucleus even in

the wider parts of the channel, as evident in Fig. 1(e): as a
consequence, the nucleus elongates in the x direction and R
is larger than 1 even out of the constricting region. When the
nucleus starts to squeeze into the constriction, R increases to a
maximum value reached right in the middle of the constriction
[see Fig. 2(b)].

The quantities P and R describe two different and com-
plementary aspects of nucleus deformation. As illustrated in
Fig. 2(b), P does not distinguish a dumbbell from an oval
shape, whereas R does; R cannot distinguish a front pro-
trusion from a back protrusion, whereas P does. Note that
our model, being overdamped, does not explicitly include the
direction of movement. The breakdown of symmetry along
the x axis could have been included in two ways: by including
a shape descriptor internal to the cell that directly captures
this orientation (e.g., by tracking the lamellipodium too) or
by including terms in the dynamical model that break this
symmetry externally (e.g., modeling a nutrient gradient in a
chemotaxis model). We choose the latter here, motivated both
by our aim to present a self-consistent dynamical model of the
nucleus—the shape of which does not reflect its direction of
motion—without referring to the extended cytoplasmic struc-
tures, and by the fact that chemotaxis is indeed suggested by
cells consistently directing themselves from the cell-rich to
the medium-rich side of the microfluidic device. Examples of
the time series P and R against X when cells go through a 3 µm
constriction (left) or a 15 µm channel (right) are displayed
Fig. 2(c). Whereas P and R are constant in a 15 µm large chan-
nel, they are significantly affected by the 3 µm constriction.
These complementary geometrical data will allow us to infer
a kinematic model for nuclear translocation dynamics.

E. Inferring coupled dynamics of position and geometry

Our aim is to obtain a data-driven, quantitative, au-
tonomous description of nuclear translocation using the
position X and geometric descriptors P and R. More precisely,
for each recorded nucleus trajectory in constraints 2, 3, 5, and
15 µm, we extract three time series {Xt , Pt , Rt } at acquisition
times t = 0,�t, 2�t . . . . These data serve as the input in
our inference analysis, from which we aim to extract coupled
SDEs capturing the continuous-time dynamics of (Xt , Pt , Rt ).
We postulate that including the geometric quantities Pt and Rt ,
on top of the nucleus position Xt , makes it possible to identify
a set of such equations that is both autonomous (i.e., that does
not couple to the dynamics of other, unobserved quantities,
in contrast to the approach of Ref. [25]) and physically first
order (i.e., that does not introduce emergent inertia as a po-
larity model, in contrast to most of the preexisting literature
[23,24,38,41]).

To achieve this, we analyze the time series using a recently
introduced framework, i.e., stochastic force inference (SFI)
[27]. SFI allows us to reconstruct first-order SDEs from such
time series by employing a data-efficient quasi-maximum-
likelihood linear regression algorithm. In practice, it consists
of approximating the drift term with estimators formed by a
linear combination of basis functions. Here, we start from a
relatively large basis that we construct based on symmetries
and our physical understanding of the quantities we model,
and that includes a systematic expansion of the geometrical
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features of the system, i.e., the x-dependent constriction
width. We then iteratively reduce this basis to select an ap-
propriately minimal model for the dynamical equations that
we aim to learn. More specifically, our starting model is

Ẋt =
internal driving︷ ︸︸ ︷

CX + αX Pt + βX
(
Rt − R−1

t

) + fX (Xt , r) +
√

2DX · ηX (t ),

(3)

Ṗt =
internal dynamics︷ ︸︸ ︷

CP + αPPt + βP
(
Rt − R−1

t

) + fP(Xt , r) +
√

2DP · ηP(t ),

(4)

Ṙt =
internal dynamics︷ ︸︸ ︷

CR + αRPt + βR
(
Rt − R−1

t

)+ fR(Xt , r) +
√

2DR · ηR(t ).

(5)

Equation (3) connects to the general form presented in Eq. (1)
by approximating the polarity � with a linear combination of
three terms: CX , a constant drift representing the propensity
of cells to migrate in the x direction, physically motivated by
the imbalance in cell populations between the two sides of the
device; αX P, which is a vectorlike term coupling the direc-
tion of motion and protrusion direction; and βX (R − R−1) by
which the nucleus shape modulates the self-propulsion veloc-
ity around its rest shape R = 1. The remainder, fX , captures
the effect of the environment and thus depends on the position
Xt —we omit, for simplicity, the possibility that it depends
on the geometry. Similarly, the dynamics of P is described
by Eq. (4) [R by Eq. (5)] with the same decomposition into
internal dynamics and external influence, and we use the same
basis functions. Note that we use the combination (R − R−1)
to reflect the fact that the aspect ratio R is a ratio of lengths
which should remain positive at all times, and has average
value of 1 in the absence of external constraints.

In a complex or unknown environment, the drifts fX ,
fP, and fR representing the influence of the environment
on X, P, and R would have to be expanded on a generic
basis. Here, however, we take advantage of the fact that
the geometry of the channel is known to simplify inference
and allow for extrapolation of the model to other constric-
tion sizes. Specifically, we symbolically include the shape
of the constriction in the inference: our basis functions use
the channel width w(X ) as well as the vector coordinates
n̂(X ) = [nx(X ), ny(X )] of the normal to the constriction wall
that contain information about its texture (see Appendix A 8
for a schematic of these quantities and their expressions). As
we focus here on cylindrical pillars, we parametrize these
functions by the radius r of the pillars that form the constric-
tion [see Fig. 1(d)]; however, this approach could be directly
generalized to other shapes described by the function w(X ).
Using w(X, r), nx(X, r), and ny(X, r) as ingredients, we ap-
proximate the environmental drift the nucleus experiences and
reacts to, i.e., fX (X, r), fP(X, r), and fR(X, r) in the constraint
formed by pillars of radius r. Integrating the pillar radius as
a control parameter into these functions allows us to infer a
single model for the whole experimental data set of differ-
ent constriction sizes, including the reference case where the
channel does not have a constriction. It makes the model more

straightforward and easier to interpret and allows us to use the
data more efficiently. As the influence of the pillars on the
cell nucleus is expected to increase with decreasing channel
width, we expand this geometrical influence in an inverse
power series of the channel width in the basis, up to third
order, i.e., 1/w, 1/w2, and 1/w3, which we multiply by the ge-
ometrical quantities 1, nx, and ny that capture distinct features
of the constriction. The full expression of our initial model is
summarized in Appendix A 9. To summarize, the rationale for
our proposed model consists in combining simple, first-order
coupling between our geometric descriptors X, P, and R with
a systematic symbolic expansion of the pillar geometry.

The SFI algorithm provides estimators for the coefficients
of the drift field as a linear combination of these basis func-
tions. The initial model, which consists of the complete set
of basis functions (in total, 36), is shown in Appendix A 9.
A challenge to the use of stochastic inference techniques on
cell migration data is that the time interval between frames
�t is typically of the same order as the typical translocation
time and cannot be easily decreased as more frequent imaging
would incur phototoxicity. To overcome this problem, we
introduce an improvement on the SFI algorithm to accom-
modate large time steps, which uses a trapezoidal integration
scheme that results in lower discretization biases than previ-
ous methods (see Appendix A 10 for details).

F. Model selection algorithm

The learned model consisting of the full set of basis
functions is constructed through physically motivated sys-
tematic expansion, and as such it is not minimal, which
potentially leads to overfitting the data and precludes phys-
ical interpretation. To overcome this difficulty and obtain a
more interpretable model, we improve this model through a
sparsity-enforcing algorithm that consists in iteratively delet-
ing the least statistically significant terms until a threshold
significance is reached (throughout, “statistically significant”
is taken to mean “with coefficient that is statistically distin-
guishable from zero”: our null hypothesis is that the term
can be omitted from the model). This inference workflow, as
schematized in Fig. 3, differs from popular sparse learning
algorithms that include a penalization based on the values of
the coefficients [16,42,43], which would not be appropriate
here due to the fact that coefficients have distinct physical
dimensions.

More specifically, this workflow consists of three iterative
steps: infer, bootstrap, and update. The first step, infer, uses
the SFI algorithm to learn coefficients using the current set
of basis functions. In the second step, bootstrap, we assess
the statistical significance of each inferred coefficient using
the bootstrap method, running the inference again on sets of
trajectories sampled with replacement and using the standard
deviation of the coefficients as a confidence interval (see Ap-
pendix A 11 for details [44]). The significance of each basis
function for our model is quantified by their signal-to-noise
ratio, i.e., the ratio between the absolute value of the mean of
the coefficient and its standard deviation. If one of these ratios
is below a chosen significance threshold of 3 (corresponding
to a 3σ rule), we move to the third step, update, where we
simplify the model by removing the least significant function
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FIG. 3. Schematic of the inference workflow. To start, write an
initial model—an overdamped Langevin equation of the problem
at hand. Propose the basis functions that form the drift part of the
equation and fix any known coefficients. Step 1. Infer: Input the
experimental data and the candidate model into the SFI algorithm
to obtain the most probable value of the unknown coefficients. Step
2. Evaluate: Use bootstrap to obtain the mean and the standard
deviation for each coefficient. We evaluate the significance of each
coefficient against the 3σ rule. If one or more coefficients fails this
test, then go to Step 3. Update: Update the model by removing the
noisiest term. Repeat this process until a final model is reached,
where any further elimination would deteriorate the model.

from the basis, and iterate the process. The outcome of this
process is a final, minimal model where all terms are statisti-
cally significant.

G. Resulting model for nuclear translocation dynamics

Applying this inference workflow to the whole nuclear
translocation data set, we obtain the following model:

Ẋt = CX + αX Pt + βX
(
Rt − R−1

t

) + aX

w2(Xt , r)

+ bX
ny(Xt , r)

w2(Xt , r)
+

√
2DX · ηX (t ), (6)

Ṗt = αPPt + βP
(
Rt − R−1

t

) + aP
1

w(Xt , r)
+ bP

1

w2(Xt , r)

+ cP
nX (Xt , r)

w2(Xt , r)
+

√
2DP · ηP(t ), (7)

Ṙt = CR + αRPt + βR
(
Rt − R−1

t

) + aR
1

w(Xt , r)

+
√

2DR · ηR(t ), (8)

with a total of 14 drift terms. The values and standard devia-
tions of the corresponding coefficients, as well as the inferred
diffusion constants, are shown in Table I.

A representative selection of trajectories X (t ) from the
experiment and simulation is given in Fig. 4(a). Averaged
trajectories (P, X ) and (R, X ) are given for experiments and
simulations in Fig. 4(b) (average and standard deviation over
N = 1000 trajectories simulated with the learned coefficients
from Table I). Position-binned curves P(X ) and R(X ) at dif-
ferent constraints can be differentiated in both simulated and
experimental data: the deformation and protrusion increase
significantly as the constraint becomes smaller. The starting
and ending points of the experimental and simulated curves

TABLE I. Inferred coefficients for the minimal model, with
corresponding terms in Eqs. (6)–(8). The confidence intervals corre-
spond to the standard deviation obtained through bootstrapping. The
last column indicates whether or not (Yes/No) this term breaks the
left-right symmetry of the system.

Corr. term Coeffs. Value Unit Sym.

· CX (2.6 ± 0.5) × 10−1 µm min−1 Y
P αX (−1.7 ± 0.2) × 10−1 min−1 N
R − 1/R βX (6.7 ± 0.7) × 10−2 µm min−1 Y
1/w2 aX (−4.7 ± 1.1) × 101 µm3 min−1 Y
ny/w

2 bX (4.8 ± 1.1) × 101 µm3 min−1 Y
ηX DX (5.8 ± 0.8) × 10−2 µm2 min−1 N

P αP (−3.2 ± 0.6) × 10−2 min−1 N
R − 1/R βP (3.0 ± 0.7) × 10−3 µm min−1 Y
1/w aP (7.8 ± 1.3) × 10−2 µm2 min−1 Y
1/w2 bP −1.0 ± 0.2 µm3 min−1 Y
nx/w

2 cP −3.1 ± 0.5 µm3 min−1 N
ηP DP (8.0 ± 1.4) × 10−4 µm2 min−1 N

· CR (−5.7 ± 1.2) × 10−3 min−1 N
P αR (2.2 ± 0.3) × 10−2 µm−1 min−1 Y
R − 1/R βR (−8.7 ± 1.4) × 10−3 min−1 N
1/w aR (1.1 ± 0.2) × 10−1 µm min−1 N
ηR DR (8.6 ± 1.8) × 10−4 min−1 N

P(X ) and R(X ) coincide. Additionally, a qualitative agree-
ment can be seen in their dynamics: for instance, the simulated
P(X ) curves recapitulate the asymmetry of the response be-
fore and after the constriction.

We now physically interpret the nature of the terms and
value of the coefficients in the final model. The fact that CX >

0 indicates an average propensity of cells to migrate towards
the nutrient-rich region. Interestingly, we find that αX < 0 and
βX > 0: when entering the constricted region, the cell slows
down as the nucleus first protrudes, then moves faster as it
elongates. The fact that αP < 0 confirms that in the absence of
external forces, these quantities relax back to the equilibrium
shape P = 0. Similarly, βR < 0, inducing the relaxation of the
aspect ratio outside the constriction; however, since the model
also contains a constant term CR < 0, the equilibrium value
is Rmin > 1: the nucleus remains slightly elongated outside
the constriction [see Figs. 1(e) and 2(b)]. Regarding the x-
dependent external forces, fX exhibits a repulsive term aX /w2

that slows the cell near the entrance of the constriction, and
an attractive term bX ny/w

2 that speeds it up near x = 0, i.e.,
once it is engaged in the constriction. The protrusion force fP

exhibits a term cPnx/w
2 that is odd under reflection symmetry

and drives the rapid change of sign of the protrusion P as the
nucleus crosses the tightest point of the constriction. Finally,
the dynamics of R is captured by a single, elongation-driving
term aR/w with aR > 0, consistent with the intuition that
the nucleus elongates in tight constrictions. Combined with
the fact that βX > 0, this implies that cells tend to migrate
faster when they are squeezed, reminiscent of previous works
showing this effect for eukaryotic cells in constrictions, either
mechanically constraining [13] or not [41]. We note that the
breakdown of the left-right symmetry, self-generated by cells
that migrate from the cell-rich to medium-rich side, results in
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FIG. 4. Simulation results of the reduced model. (a) Comparison
of four representative time series of cell nuclei position X (t ) from
the experimental data and simulation. (b) Experiment and simulation
comparison of the averaged trajectories of nuclear protrusion against
nucleus position P(X ) and nucleus aspect ratio against position R(X ).

nonzero values for several coefficients whose corresponding
terms explicitly break this symmetry, as indicated in Table I.
Finally, the relaxation back to the equilibrium value at the
constriction exit is sped up by the coupling αRP with negative
P values. All in all, this model thus recapitulates, with a few
terms, the directed migration of the cells through the channel
and the way the nuclei stall when reaching the constriction
entrance, then protrude, elongate, and, finally, pop through
rapidly. In the final stage, the protrusion reverts and points
backward, leading to a rapid relaxation of the aspect ratio and
the exit from the constriction.

Our inference method also provides us with a physically in-
terpretable estimate of the diffusion coefficients of the nucleus
position DX ∼ 5.8 × 10−2 µm2 min−1. This value is several
orders of magnitude above the equilibrium expectations from
the Stokes-Einstein equation for a purely passive particle
in the highly viscous cellular environment, DStokes−Einstein ∼
8 × 10−7 µm2 min−1, reflecting the fact that cellular motion
is activity driven. Note that for simplicity of the analy-
sis, we have assumed constant diffusion coefficients and

Gaussian white noise. To further investigate these assump-
tions, larger amounts of data with a higher time resolution
would be needed.

Finally, while the learned model provides good agreement
in terms of capturing the dynamical geometric change of the
nucleus during translocation, with a single parametric model
encompassing the available multiple constriction widths, we
note that it also presents some limitations. Indeed, this model
is trained on a population of cells and neglects any cell-to-
cell variability due, e.g., to different sizes, genetic expression
levels, and age of the cells. This inherent variability manifests
itself in a different way from the dynamical stochasticity cap-
tured here by the diffusion terms. Taking into account such
cell-to-cell variability is a major challenge, as the amount of
data available for each cell is small: data-efficient methods
such as SFI [27] or underdamped Langevin inference [28]
provide a promising avenue towards this, but single-event
processes such as nuclear translocation, studied here, remain
intractable with these approaches. A further difficulty comes
from the limited frame rate, which leads to trajectories that
appear to “tunnel through” right at the end of the passage
through the constriction [as evidenced by long straight lines
connecting data points in Fig. 2(c)] and lower the resolution
of the translocation event. We speculate that this effect leads
to an underestimate of R and P near their peaks in the sim-
ulated model, compared to the experiment. Indeed, as these
correspond to times when the cell goes fast through the con-
striction, the peak data points are sometimes missed, which
tends to smooth out the inferred model. These challenges pre-
clude the quantitative prediction of, e.g., mean translocation
times, using the learned model. Despite these limitations, our
model captures well the qualitative trends of the experimental
data and is in semiquantitative agreement with each data set.

H. Predictivity of the model

As our learned model takes the constriction geometry as
an explicit parameter, we can extrapolate it to predict nuclear
translocation dynamics in other constriction sizes defined by
the radius of the pillars (r). To assess the validity of this
approach, we first test it on geometries for which experimental
results are available: to this aim, we again perform the infer-
ence while masking one of our four constriction sizes (2, 3,
5, and 15 µm). We then use the model inferred from the other
three constriction widths to make predictions on the fourth
geometry, which includes interpolations (when masking the 3
and 5 µm sets) and extrapolations (when masking the 2 and
15 µm data). We then compare, in Fig. 5(a), the prediction
on the fourth, masked geometry with the actual experimental
results. The good general agreement confirms the validity of
this approach and shows the usefulness of the learned model
to predict behavior in geometries not used to train it. Note,
however, that the simulation results exhibit smoother geo-
metrical deformation than the experiments, in particular past
the constriction. This discrepancy could be due to the small
number of data points during the short time interval when the
nuclei pass through the constraint.

Next, we extrapolate the model to other constriction sizes
that were not studied experimentally: using the inferred model
trained on the full data set, we simulate trajectories and
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FIG. 5. Predictivity of the inferred model to other values of pillar radius r. (a) Extrapolation from partial data compared with the
experimental data. (b) Comparison of the nuclear protrusion P against nuclei position X (first row) and aspect ratio against X (second row).
(c) Extrapolation over a range of constraints with constriction size listed in the legend in µm.

compute the average geometric quantities P(X ) and R(X ) in
constraints ranging from 1.0 µm to 15 µm [Fig. 5(b)]. Each
curve is obtained by averaging over 1000 simulated trajec-
tories. We observe a continuous increase in the maximum
aspect ratio and protrusion as the constraint gets smaller.
These predictions could be used for future experiment design,
as a way to explore parameter space and focus experiments on
the regions of interest. In principle, we could also extrapolate
the model to other geometries, for instance, noncylindrical
constrictions or channels of different widths, without fur-
ther training, by directly modifying the position-dependent
width function w(x) as well as the normal vector coordi-
nates nx(x) = ∂xw/

√
1 + ∂xw

2 and ny(x) = 1/
√

1 + ∂xw
2 in

the learned model. Furthermore, if data were available in such
noncylindrical geometries, they could be included in the data
set to learn this same model with better accuracy. In practice,
however, here we focus on cylindrical constrictions of variable
pillar radius.

III. DISCUSSION

In this article, we have studied the spontaneous migration
of individual cells in a microfluidic device that exerts tight
three-dimensional constraints mimicking physiological sce-
narios where cells are able to migrate in strongly confined
environments. Strikingly, cells can pass through constric-
tions much smaller than the rest diameter of their nucleus,
leading to large deformations of the nucleus during translo-
cation [3,14]. This controlled experimental setup differs from
previous studies of 2D confined cell migration without three-
dimensional constraints [41], in which the nucleus is not
significantly deformed. We segment and track cell nuclei to
obtain trajectories that we use to quantify the dynamics of

this nuclear translocation process. To this aim, we employ a
data-driven approach that captures the stochastic nature of the
motion and shape changes of the nucleus during cell motility
in strongly constraining environments. In contrast with pre-
vious works where only the nucleus position was used [24],
leading to effectively inertial dynamics, we include shape de-
scriptors in our model that provide a proxy for the unobserved
polarity of the cell. The outcome is an optimized set of over-
damped equations that qualitatively and semiquantitatively
captures the joint dynamics of nuclear position, protrusion,
and elongation as coupled stochastic differential equations.

Our data-driven pipeline to infer these SDEs includes three
main methodological developments compared to preexisting
methods. First and most importantly, we symbolically in-
clude the geometry of the constriction in the inferred model,
which allows us to train a single model on data for several
constriction sizes. The resulting model can be successfully
extrapolated to other constriction sizes and, potentially, other
geometries. This contrasts with previous methods where the
geometry is hard-coded into the inferred model, which both
prevents extrapolation and precludes interpretability [24,41].
Second, we have introduced a sparsity-enforcing algorithm
which simply consists in removing statistically insignificant
terms from the set of basis functions, leveraging bootstrap
estimates of significance to simplify the learned model. The
desired level of significance (chosen here to be a standard
3σ ) is the only parameter of this technique, contrary to
popularly used sparse inference methods which include pe-
nalization terms with hyperparameters that require fine tuning
[16,42,43]. Third, we propose a modification of the stochastic
force inference algorithm that consists in using trapezoidal
integration for normalization matrices. While minor, this
modification significantly improves the performance of the
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method when the time step �t is large. The combination of
these improvements allows us to robustly infer a minimal
model for the geometrical kinematics of nuclear translocation.

Nuclear translocation involves a complex set of molecu-
lar mechanisms that enables cells to sense their mechanical
environment and adapt their internal forces. Our study paves
the way towards a data-driven understanding of this process,
where the nucleus is considered as an actor of the dynamical
process, rather than a passive tracer lagging behind. In the
future, this description could be enriched with other cell state
descriptors, in particular with the spatial distribution of cy-
toskeletal and nuclear components, such as protein complexes
involved in the mechanotransduction process. A challenge
towards this, however, consists in selecting appropriate quan-
titative descriptors to include in the dynamical model: for
instance, while nesprin—the mechanical linking protein be-
tween cytoskeleton and nucleus—is observed to accumulate at
the front of the nucleus, this is not recapitulated by a polarity
defined in terms of the first moment of the protein distribution
(see Appendix B 3).
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APPENDIX A: MATERIAL AND METHODS

1. Cell culture

Mouse embryonic fibroblasts (MEFs) were CRISPR-
modified to create a new cell line: MEFs SYNE2-GFP
LMNA-mCh, as described and validated in [29]. Cells are
cultured at 37 ◦C in a humidified incubator with 5% CO2, in
DMEM (Dulbecco’s modified eagle medium: Gibco) supple-
mented with 10% (v/v) fetal bovine serum (FBS: Gibco).

2. Migration devices

The epoxy mold (R123/R614: Soloplast) we used was
replicated from a polydimethylsiloxane (PDMS) imprinted

piece coming from the laboratory of Jan Lammerding (Cor-
nell University, USA). A mix of PDMS (using a 10:1 ratio
polymer:crosslinker) is vacuumed for 20 minutes to avoid
bubbles, then poured into the epoxy mold and let to cure
for 4 hours in a 60 ◦C oven. Imprinted PDMS pieces are cut
using a scalpel and biopsy punches (2 and 5 mm in diameter).
Glass coverslips are soaked overnight in a 0.2 M solution of
HCl and rinsed with H2O and ethanol, then dried with Kim
wipes. To form a migration device, an imprinted PDMS piece
and a treated glass coverslip are placed in a plasma cleaner
for 1 minute and gently stuck together. This process creates
covalent bonds between the PDMS and the glass [45]. Devices
are then directly put on a 100 ◦C hot plate for 5 minutes to help
the sticking process.

3. Cell migration experiment

Microfluidic devices are sterilized and rinsed under a mi-
crobiological safety post: first once with ethanol (∼250 µL)
then twice with phosphate-buffered saline (PBS: Gibco) and
twice with DMEM (Gibco) supplemented with 10% (v/v)
FBS. Cells are suspended at a concentration of 10 millions per
mL in DMEM (Gibco) supplemented with 10% (v/v) FBS.
They are seeded in the device by adding 5 µL of the suspended
solution in one of the two small ports of the device. After 6
hours, enough cells are in the constricted region of the device
and acquisition can start. For that, the cell medium is changed
to DMEM without phenol red and with HEPES (15 mM)
(Gibco), supplemented with 10% FBS (Gibco), 100 units/mL
penicillin, and 100 µg/mL streptomycin (Life Technologies).

4. Image acquisition

Time-lapse acquisitions are performed on an epifluores-
cence microscope (Nikon Ti-E) equipped with a sCMOS
camera (2048 ORCA Flash 4.0 V2, Hamamatsu or Prime BSI,
Teledyne), a perfect focus system, a 60x oil objective (Nikon),
and a temperature and gas control chamber (set on 37 ◦C, air
at 5% CO2). Images are taken every 10 minutes.

5. Image analysis

Movies are analyzed using IMAGE J/FIJI and PYTHON. The
projected nucleus surface is detected by using the “analyze
particles” function on a threshold (median filter to 5.0 radius,
normalized by 0.4% and autolocal threshold “Bernsen” 5)
applied on the mCherry image (corresponding to a lamin A/C
signal). The nucleus contour is defined by a band of 1 µm
width created from the detected nucleus projected surface
(“reduce” and “make band” functions).

6. Definition of the spatial origin

The origin of the x axis is set at the center of the constric-
tion pillar (2, 3, 5 µm) or half pillar (15 µm). The origin of the
y axis is set at the top center of the bottom constriction pillar
(2, 3, 5 µm) or the top center of the fitted circle to the bottom
half pillar (15 µm).
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FIG. 6. Schematics of the geometric quantities describing the
pillar shape used to construct force estimators. Note that for one
series, the centers of the pillars are aligned on x.

7. Definition of X, Xc, P, R

The position of a nucleus is defined by its surface barycen-
ter (X,Y ), specifically, X = ∑n

i=0 xi/n and Y = ∑
i yi/n, with

(xi, yi ) the coordinates of each pixel i of the nucleus sur-
face and n the number of pixels in the nucleus surface.
The x coordinate of the center of the nucleus contour Xc

is defined as Xc = ∑nc
i=0 xc,i/nc, with xc,i the x coordinates

of each pixel of the nucleus contour and nc the number of
pixels in the nucleus contour. The nucleus protrusion vector
is defined as P = Xc − X . The aspect ratio of the nucleus is
defined by R = Rx/Ry, where Rx = √∑n

i=0(xi − X )2/n and
Ry = √∑n

i=0(yi − Y )2/n.

8. Complementary expressions for basis functions

The direct and indirect effects of the environment,
fext (X, r), fP(X, r), and fR(X, r), are approximated by com-
bining the width function of the channel, w(X, r), with
the normal vector calculated from the shape of the pillar,
which is a circle of radius r. The normal vector n̂(X, r) =
[nx(X, r), ny(X, r)] of a circle of radius r is given by

nx(x, r) = x

r
, −x∗ < x < x∗, (A1)

nx(x, r) = 0 otherwise, (A2)

ny(x, r) =
√

r2 − x2

r
, −x∗ < x < x∗, (A3)

ny(x, r) =
√

r2 − x∗2

r
otherwise, (A4)

where x∗ = √
r2 − r2

s , with rs the small pillar radius. These
quantities are schematized in Fig. 6. The channel width w(x)
is given by

w(x, r) = H + 2rs − 2
√

r2 − x2, −x∗ < x < x∗, (A5)

w(x, r) = H otherwise, (A6)

where H = 15 is the channel height (note that we neglect the
texture of the small pillars here, as they do not constrict the
nucleus).

9. Full expression of the initial model

The full model consisting of all basis functions, con-
structed by systematic expansion of the model over physically
relevant variables, consists in linear combinations of the
following basis functions:

{1, P, (R − R−1),

1/w(X, r), nx (X, r)/w(X, r), ny(X, r)/w(X, r),

1/w2(X, r), nx(X, r)/w2(X, r), ny(X, r)/w2(X, r),

1/w3(X, r), nx(X, r)/w3(X, r), ny(X, r)/w3(X, r)}, (A7)

and has 39 parameters (3 × 12 for the drift, 3 for the
diffusion). The model inference and reduction framework de-
scribed in Fig. 3 retains only 14 significant terms.

10. Improvement of the SFI algorithm for large
time intervals �t

To learn the dynamics of our system, characterized in this
paragraph by the vector xt ≡ (Xt , Pt , Rt ), it is essential to
estimate its discrete time derivative using �xt = xt+�t − xt .
A challenge on applying SFI on cellular dynamics data is that
the time interval �t between frames is large (10 minutes) and
of the same order of magnitude as the typical translocation
time. It cannot be easily reduced due to phototoxicity: with the
previously introduced algorithm [27], this incurs O(�t ) biases
on the estimators. To adapt the method to this challenge, we
propose a modification, which results in much smaller O(�t2)
biases.

Specifically, we focus in the derivation on approximate
time differences �xt rather than the infinitesimal time dif-
ference dxt . Writing the dynamics in a generic form dx

dt =
f (xt ) + √

2Dηt , we have, for discrete time increments,

�xt

�t
= 1

�t

∫ t+�t

t

dxt ′

dt
dt ′ (A8)

= 1

�t

∫ t+�t

t
[f (xt ′ ) +

√
2Dηt ′]dt ′. (A9)

SFI consists in approximating the unknown deterministic drift
field f (x) by a linear combination of basis functions f (x) =∑

α Fαbα (x), where Fα are the coefficients to infer and bα (x)
are the basis functions. Thus, we can project the above equa-
tion on one of the basis functions bγ (xt ) and derive its average
in the Itô convention,〈

�xt

�t
bγ (xt )

〉
=

∑
α

Fα

〈
bγ (xt )

1

�t

∫ t+�t

t
bα (xt ′ )dt ′

〉
,

(A10)

where 〈·〉 represents the expectation over many realizations of
the noise ηt , conditioned on the initial value xt . Since we only
measure x at discrete times t, t + �t, . . . , we need to approxi-
mate

∫ t+�t
t bα (xt ′ )dt ′ ≈ �t

2 [bα (xt ) + bα (xt+�t )]. Importantly,
this trapezoidal integration rule is a more accurate approxi-
mation than the Riemann sum approximation bα (xt )�t used
in Ref. [27]. We note that the trapezoidal approximation con-
cerns only the right-hand side of Eq. (A10), which is a regular
integral, and not the left-hand side, which is a stochastic
integral and remains in the Itô convention.
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By now averaging Eq. (A10) over all data points {xti}i=1,N ,
represented by 〈·〉t , we obtain the trapezoidal approximation
for the normalization matrix 〈[ 1

�t

∫ t+�t
t bα (xt ′ )dt ′]bγ (xt )〉:

Bαγ = 〈
1
2 [bα (xt ) + bα (xt+�t )]bγ (xt )

〉
t , (A11)

which we use in the corrected Itô estimator of Fα for large �t ,

F̂α =
∑

γ

B−1
αγ

〈
�xt

�t
bγ (xt )

〉
t

. (A12)

Finally, similarly to Ref. [27], we modify the integration con-
vention of the stochastic integral towards the Stratonovich
convention, in order to remove biases due to measurement
noise, yielding the estimator used throughout this article,

F̂α =
∑

γ

B−1
αγ

〈
�xti

�t

[
bγ (xti ) + bγ (xti+1 )

2

]
− dti∇bγ (xti )

〉
t

,

(A13)

where we use the instantaneous noise-corrected diffusion es-
timator [46],

dt = [(�xt + �xt−�t )
2 + 2�xt�xt−�t ]/4�t . (A14)

The use of the trapezoidal method for discrete differences thus
results in a lower-order discretization bias compared to the
original SFI method, and enables accurate inference with the
data set considered in this article.

11. Bootstrap methods for coefficient error estimation

We estimate the mean and standard deviation of each
coefficient and the diffusion constant using the bootstrap
method. More specifically, we sample with replacements the
set of small five-consecutive-point trajectories to generate an
ensemble of trajectories [44]. For each sample, the drift co-
efficients are estimated with the above-mentioned modified
SFI algorithm, while the diffusion coefficients are estimated
using the method introduced by Vestergaard et al. [27,46]. We
compute the average and standard deviation of coefficients
over 20 bootstrapped data sets obtained from the initial set
of trajectories, and use the resulting standard deviations as
indicators of the confidence interval for our assessment of the
statistical significance of these coefficients.

FIG. 7. MEFs nuclei size is measured through the minor and ma-
jor axes of a fitted ellipse. Width (minor axis of the fitted ellipse) and
length (major axis) of MEFs nuclei measured inside the microfluidic
device when X = −20 ± 5 µm, regardless of the constriction size.
White cross represents the average value of the distribution. N = 75.

FIG. 8. MEF cell going through a 2 µm wide constriction. Top:
Transmission signal. Middle: GFP signal corresponding to the ex-
pression of Syne2-GFP gene for nesprin 2G proteins. Arrows point
at hyperfluorescence of nesprin at the front of the nucleus during
translocation. Bottom: mCherry signal corresponding to the expres-
sion Lmna-mCh gene for lamin A/C proteins. Scale bar: 10 µm.

APPENDIX B: COMPLEMENTARY RESULTS

1. Size of MEFs nuclei

The apparent size of the MEFs nuclei in the microfluidic
device is calculated at X = −20 µm, before they are de-
formed by the constrictions. In fact, we allow a confidence
interval of 5 µm. We fit an ellipse to the detected nucleus and
measure its major and minor axes (Fig. 7).

2. Time lapse of MEFs going through a 2 µm constriction

In agreement with previous results [29], we observe that
when cells migrate through 2 µm constrictions (Fig. 8, Trans),
nesprin accumulates at the front of the nucleus (Fig. 8, Syne
2, green arrows), whereas lamin do not (Fig. 8, Lmna).

3. Nesprin distribution polarity vector

For each constriction size (2, 3, and 5 µm) and for the
15 µm large channel, when the nucleus is in the middle of
the constriction, we measure the intensity along a curvilinear
abscissa (s) around the nucleus (of perimeter L) at X = 0 µm

FIG. 9. Nesprins accumulate at the front of their nuclei, but the
defined polarity vector does not show this tendency. (a) Nesprin 2G
intensity signals measured along the curvilinear abscissa s when the
nucleus (of perimeter L) is in the middle of the constriction (large
channel): X = 0 ± 5 µm. Intensities are normalized by the contrast
and divided by the average on the contour. From left to right, the
number of cells shown is 7, 11, 23, and 32. Error bars correspond
to the standard deviation. (b) Calculated nesprin polarity vector (Np)
according to nucleus position (X ) for different constrictions sizes (2,
3, and 5 µm), as well as large channels (15 µm). Each line represents
a single cell. Dots are experimental data points. From left to right,
the number of cells shown is 14, 36, 15, and 20.
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[Fig. 9(a)]. At s/L = 0.5, which corresponds to the front of
the nucleus, we confirm the increase of the nesprin signal
intensity for the three constriction sizes (2, 3, and 5 µm) that
does not happen in the 15 µm large channel. This accumula-
tion of nesprin at the front of the nucleus appears to be more
dramatic as the constriction gets smaller.

In order to account for the nesprin distribution in a quan-
titative unidimensional way, we construct a nesprin polarity
vector. First, we define Xn as the barycenter of the nucleus
contour weighted by nesprin intensity. Explicitly,

Xn =
∑nc

i=0 xc,iIc,i∑nc
i=0 Ic,i

, (B1)

with (Ic,i) the corresponding intensity values of each of the
pixels (xc,i) of the nucleus contour. Second, we define a

nesprin polarity vector Np as Np = Xn − Xc. It is calculated
for cells migrating through small constrictions (2, 3, and
5 µm) and large channels (15 µm) along nucleus position X
[Fig. 9(b)]. In fact, Np is noisy, almost constant over nucleus
position, and close to zero. In addition, there is no significant
difference between the nesprin polarity of cells migrating
through small constrictions and of cells migrating through
large channels, when experimentally nesprins do not accumu-
late at the front of the nucleus in the 15 µm case. This means
that the barycenter of the contour weighted by the nesprin
intensity Xn and the barycenter of the contour Xc are close in
value. Therefore, the application of our method to dynamical
changes in protein distribution will need further investigation,
in particular to account for nesprin accumulation at the nu-
cleus front.
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