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Abstract

Exquisite binding specificity is essential for many protein functions but is difficult to engi-

neer. Many biotechnological or biomedical applications require the discrimination of very

similar ligands, which poses the challenge of designing protein sequences with highly spe-

cific binding profiles. Experimental methods for generating specific binders rely on in vitro

selection, which is limited in terms of library size and control over specificity profiles. Addi-

tional control was recently demonstrated through high-throughput sequencing and down-

stream computational analysis. Here we follow such an approach to demonstrate the

design of specific antibodies beyond those probed experimentally. We do so in a context

where very similar epitopes need to be discriminated, and where these epitopes cannot be

experimentally dissociated from other epitopes present in the selection. Our approach

involves the identification of different binding modes, each associated with a particular

ligand against which the antibodies are either selected or not. Using data from phage dis-

play experiments, we show that the model successfully disentangles these modes, even

when they are associated with chemically very similar ligands. Additionally, we demon-

strate and validate experimentally the computational design of antibodies with customized

specificity profiles, either with specific high affinity for a particular target ligand, or with

cross-specificity for multiple target ligands. Overall, our results showcase the potential of

leveraging a biophysical model learned from selections against multiple ligands to design

proteins with tailored specificity, with applications to protein engineering extending beyond

the design of antibodies.
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Author summary

A great challenge in protein science is to relate sequences to physical properties, both to

predict physical properties from sequences, and to design sequences with desired pheno-

types. A promising solution lies in integrating large-scale selection experiments, high-

throughput sequencing, and machine learning techniques. However, existing models

often focus solely on the property under selection (“fitness”), lacking interpretability. This

limits our fundamental understanding of proteins and our ability to engineer them for

desired properties, especially those not directly selectable in experiments. Previous studies

have shown that incorporating biophysical constraints into models can offer quantitative

insights, particularly in transcription factors. Here, we demonstrate that when coupled

with extensive experiments, such modeling can not only predict physical features but also

design new proteins with specific properties. Our demonstration involves a problem of

primary biotechnological and biomedical interest: the design of antibodies with defined

specificity profiles. We focus on one of the most challenging tasks in the field, designing

antibodies capable of discriminating between structurally and chemically similar ligands.

This approach has applications for creating antibodies with both specific and cross-spe-

cific binding properties and for mitigating experimental artifacts and biases in selection

experiments. The combination of biophysics-informed modeling and extensive selection

experiments holds broad applicability beyond antibodies, offering a powerful toolset for

designing proteins with desired physical properties.

Introduction

Proteins often exhibit a delicate balance of multiple physical properties. A prominent example

is binding specificity, where some ligand interactions are advantageous while others are detri-

mental. Examples include transcription factors, which recognize specific DNA motifs among a

myriad of alternatives [1], enzymes with a strong preference for their substrate over many sim-

ilar molecules [2, 3], and immune receptors capable of distinguishing a pathogenic molecule

from many others, in particular self molecules [4]. Due to the close chemical similarity

between favorable and unfavorable ligands, and/or the dissimilarities between favorable

ligands, the engineering of such proteins poses formidable challenges. For instance, in the par-

ticular case of therapeutic antibodies, the desired specificity profile typically consists of strong

binding affinity to the target antigen while retaining low binding affinity to human self anti-

gens to avoid auto-immune reactions. Additionally, when the target antigen is a human pro-

tein, e.g. a tumor marker, antibody cross-specific binding to the human and the cyno and/or

murine homologous antigens is often desired to ease drug development [5].

Presently, methods for obtaining specific binders essentially rely on in vitro selection exper-

iments [6]. Phage or ribosome display [7, 8] with one immobilized targeted ligand in the pres-

ence of soluble non-targeted ligands allows screening for specific binding to the targeted

ligand [9]. Yeast display combined with fluorescent-activated cell sorting [10] additionally

offers the unique possibility to control precisely specificity selection criteria (including cross-

specificity) upfront during the screening process by monitoring fluorescence associated with

the targeted and non-targeted ligands in different channels [11], albeit with a maximum library

size that is several orders of magnitude smaller.

High-throughput selection can be combined with high-throughput sequencing read-out to

identify binders beyond the top hits [12–14], but all experimental approaches are limited by
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the maximal library size, ranging from typically 108 (yeast), 1010 (phage) to 1015 (ribosome).

As large as these numbers may appear, they represent a negligible fraction of the combinatori-

ally large space of possible sequences. Moreover, experimental screening for specificity

requires the targeted and non-targeted ligands to be physically separable, which may be com-

plicated if not impossible in some cases, for instance when considering distinct epitopes on the

same molecule. Finally, in experiments, non-targeted ligands are inevitably present, since tar-

geted ligands are typically attached to a cell, a tube/plate, or a magnetic bead.

Recently, works combining high-throughput sequencing and machine learning have dem-

onstrated the possibility of making predictions beyond the scope of experimentally observed

sequences [15, 16]. While past works predominantly focused on a single protein property

(binding, stability, or catalysis) directly linked to the selection criterion [17], a few studies have

shown the feasibility of inferring multiple physical properties, including quantities that are not

directly measured [18]. Notable successful examples include predicting thermal stability from

binding affinity measurements [19], and inferring specificity profiles of transcription factors

from the selective enrichment of DNA sequences [20, 21]. Several recent works have started to

apply this type of approach to predict and design antibody specificity [22–25]. Closest to our

approach is a recent work showing how a counter-selection to eliminate off-target antibodies,

a major difficulty in therapeutic antibody development, can be achieved more efficiently com-

putationally than experimentally [26]. This approach effectively classifies antibody sequences

observed in multiple selection experiments to extract those of nonspecific antibodies that bind

several (potentially unrelated) targets. The present work addresses a different problem and fol-

lows a distinct approach. Our approach is based on a biophysically interpretable model [27]

which, besides identifying off-target antibodies from multiple selection experiments, can be

applied to disentangle the different contributions to binding to several epitopes from a single

experiment. This allows us to address the challenging problem of designing new, experimen-

tally untried antibody sequences that discriminate closely related ligands.

Our biophysics-informed model is trained on a set of experimentally selected antibodies

and associates to each potential ligand a distinct binding mode, which enables the prediction

and generation of specific variants beyond those observed in the experiments. To showcase

this approach, we conducted a series of phage display experiments involving antibody selection

against diverse combinations of closely related ligands. First, we demonstrate the model’s pre-

dictive power by using data from one ligand combination to predict outcomes for another.

Second, we show its generative capabilities by using it to generate antibody variants not pres-

ent in the initial library that are specific to a given combination of ligands. Our results high-

light the potential of biophysics-informed models to identify and disentangle multiple binding

modes associated with specific ligands. This approach has applications in designing antibodies

with both specific and cross-specific properties and in mitigating experimental artifacts and

biases in selection experiments.

Results

We designed phage display experiments for the selection of antibody libraries and performed

two distinct experimental campaigns: in the first, we selected antibodies against various combi-

nations of ligands. This provided us with multiple training and test sets, which we used to

build and assess our computational model. In the second, we tested variants predicted by our

model but not present in the training set to assess the model’s capacity to propose novel anti-

body sequences with customized specificity profiles.

The presentation of our results is based on the distinction between the following related

terms. We select antibodies for binding to different “complexes”, i.e., different combinations,
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of “ligands”. The ligands we consider are either small DNA hairpins, or magnetic beads to

which these hairpins are attached. A ligand can itself be made up of different epitopes, the

parts of the ligand in physical interaction with the antibodies. In the model, the different ways

in which an antibody can be selected are inferred through distinct “modes”. These modes may

correspond to binding to a complex, a ligand or an epitope, or may more generally describe

another thermodynamic state impacting selection. We refrain from using the term “target”,

which is used with different meanings in different contexts, either as the complex against

which selection is performed, or as the ligand targeted by the experimentalist.

Experimental selection

Following our previously established protocols [13, 14], we carried out phage-display experi-

ments with a minimal antibody library based on a single naïve human VH domain in which

four consecutive positions of the third complementary determining region (CDR3) are sys-

tematically varied to a large fraction of the 204 = 1.6 105 combinations of amino acids (“Germ-

line library” [14]). This library is small enough to allow a high-coverage of its composition by

high-throughput sequencing. Out of the 204 potential variants, 48% are observed by sequenc-

ing, while we consider the remaining ones to be absent or unobserved. We previously showed

that this library of limited size contains antibodies that bind specifically to a diversity of

ligands, including proteins, DNA hairpins, and synthetic polymers [13, 14].

Here, we perform selections against complexes comprising two types of ligands, DNA hair-

pin loops and the surface of streptavidin-coated magnetic beads on which the DNA hairpins

are immobilized. We performed independent selections against two such complexes, referred

to as “Black” for one DNA hairpin on beads, and “Blue” for another DNA hairpin on beads, as

well as selections against mixtures of Black and Blue complexes (“Mix”). Following standard

protocols, we performed two rounds of selection with an amplification step in between, where

each selection is preceded by an incubation of the phages with naked beads to (partly) deplete

the antibody library of bead binders (see Fig A in S1 Text) These pre-selections provided us

with data with a fourth selective pressure where naked beads are the only ligand (“Bead”).

Importantly, we systematically collected phages at each step of the protocol to closely monitor

the antibody library composition. Input phages, phages bound to naked beads during the pre-

selection step, and output phages bound to DNA hairpin-coupled beads during the selection

step were thus collected followed by infection of E. coli bacteria to extract plasmids used as a

template for high-throughput sequencing (see Fig A in S1 Text). The relationships between the

8 selection experiments are represented in Fig 1, together with the sequencing data that we

collected.

For each experimental selection round t, empirical enrichments were computed for each

sequence s as �st = Rst0/Rst, where Rst and Rst0, denote respectively the sequencing counts before

and after selection. Enrichments against the Black and Blue complexes are observed to be very

correlated, consistent with their close chemical similarities (Fig D in S1 Text). Enrichments

against one complex and the beads alone are less correlated, indicating both that the beads are

not dominant epitopes when coupled to DNA hairpins, and that they are chemically more dis-

similar from these hairpins (Fig L in S1 Text).

A model for multiple-specific selection

We built a computational model where the probability pst for an antibody sequence s to be

selected in a particular experiment t is expressed in terms of selected and unselected modes.
Each mode w is mathematically described by two quantities: μwt that depends only on the
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experiment t, and Ews that depends on the sequence, such that

pst ¼
P

w2St
emwt � Ews

P
w2St

emwt � Ews þ
P

w2N t
emwt � Ews

; ð1Þ

where St and N t represent, respectively, sets of selected and not-selected modes available in

experiment t. Eq (1) is rooted in the thermodynamics of binding at thermal equilibrium [28]:

if a molecule can be in one of the selected (St) and unselected (N t) thermodynamical states, its

probability to be selected is given by (1), which corresponds to a Boltzmann law with Ews =

ΔFws/RT, where ΔFws represents the free energy of s in state w, R the universal gas constant and

T the temperature. A selected state can represent binding to a targeted ligand w, in which case

μwt = ln[w], where [w] is the relative concentration of free ligand w in the experiment t (up to a

scaling factor). The formula further includes an unselected unbound mode, to account for the

possibility that the molecule remains in solution instead of binding any ligand.

Given that our experiments include three types of ligand—two DNA hairpins and magnetic

beads—our model comprises four binding modes in total. A bead-bound mode is always

selected, the DNA hairpin-bound modes are either selected or absent depending on the ligand

present in the experiment, and the unbound mode is always unselected (Fig C in S1 Text). In

addition to these physical modes associated with the thermodynamics of binding, our model

can incorporate extra pseudo modes not related to binding, to account for biases that may

occur during phage production and antibody expression stages (Materials and methods for

details). For each mode w, Ews is parametrized by a shallow dense neural network (Materials

and methods). During training, the model parameters are optimized globally to capture the

evolution of antibody populations across several experiments. Through this optimization pro-

cess, the initial library abundances are also inferred (Materials and methods). Once the model

is trained, it can be used to simulate experiments with a custom set of selected/unselected

modes, enabling the prediction of the expected probability of selection of variant reads, which

can be compared to empirically observed enrichments of sequence counts in actual

experiments.

Furthermore, we verified that introducing more complexity into the model along two dif-

ferent directions had a negligible impact. First, sequences recovered after one round of

Fig 1. A. In a phage display experiment, an initial library containing * 105 variants, each in * 106 copies (here illustrated

with 3 variants in 2 copies) is incubated in the presence of DNA hairpins (in black) coupled to magnetic beads (in orange).

Antibodies are selected in proportion to their binding probability. The input and output populations are sampled and

sequenced to provide data-sets of * 105 sequences each. B. We selected the same initial library against four different

combinations of ligands: two different DNA hairpins coupled to magnetic beads, presented either alone or in combination,

and naked magnetic beads. We refer to these four combinations as “Black”, “Blue”, “Mix” and “Beads” complexes. For the

Black, Blue, and Mix complexes, we made two successive rounds of selection. The 10 boxes at the tip of the arrows indicate

the 10 sequencing datasets thus produced to feed our model, in addition to the sequencing dataset from the initial library.

https://doi.org/10.1371/journal.pcbi.1012522.g001

PLOS COMPUTATIONAL BIOLOGY Inference and design of antibody specificity: from experiments to models and back

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012522 October 14, 2024 5 / 13

https://doi.org/10.1371/journal.pcbi.1012522.g001
https://doi.org/10.1371/journal.pcbi.1012522


selection must be amplified before undergoing another round of selection, which occurs

through phage infection and may be subject to biases. We collected sequencing data right

before and after amplification and verified that no significant amplification bias was present

(Fig F in S1 Text). Second, our model considers antibody sequences at the amino-acid level

but selection can potentially occur at a nucleotidic level as well. We analyzed the data at this

level and confirmed that no significant codon bias was observed in our experiments, consistent

with an interpretation of the selection modes as arising primarily from ligand binding (Fig H

in S1 Text). We also considered explored other parameterizations of the modes Ews; see Fig M

in S1 Text for a comparison justifying our final choice.

The model disentangles the effect of mixed ligands

To assess the model’s ability to disentangle the contribution to the selection of the different

ligands, we conducted two types of validation.

Predicting selection against unseen mixtures of ligands. In the first validation, we

trained the model using selection experiments against the Black and Blue complexes consisting

of DNA hairpins attached to magnetic beads, and used the inferred model to predict the out-

comes of experiments where these two complexes are mixed in equal proportions, which

defines the Mix complex (Fig 1). To assess the model’s performance, we compared the read

counts of variants in the validation set with the abundances predicted by the model (Fig 2A),

and estimated the correlation between predicted probabilities of selection pst and experimen-

tally determined enrichments �st against Mix (Table B in S1 Text). The results validate the

model’s capacity to integrate different selection experiments to predict the results of selection

experiments with unseen combinations and proportions of ligands. As a control, enrichments

predicted using only one mode result in significantly lower correlations, confirming that both

Black and Blue modes are necessary to model selection in the Mix experiment (Table B in S1

Text).

Predicting selection against hidden ligands. In the second validation phase, we trained

the model to predict selections against unseen subsets of ligand combinations. We considered

Fig 2. The model predicts accurately the evolution of sequence variants abundances in response to multiple selective pressures.

We considered different tasks of increasing difficulty, depending on the training set used: A. Model trained on the experiments with

Black, Blue complexes, and empty Beads, and prediction evaluated with a mixture of the Black and Blue complexes; B. Model trained

on experiments with a mixture of Black and Blue complexes, Blue complexes only, and naked Beads, with predictions evaluated on the

experiment with Black complexes only; C. Model trained on experiments with Blue complexes only, and predictions evaluated on

experiments with naked Beads; D. Model trained on experiments with a mixture of Black and Blue complexes and naked Beads, and

predictions evaluated on experiments with Black complexes only. The panels show scatter plots of the observed (x-axis) vs. predicted

sequence frequencies (y-axis), with the initial library abundances shown in gray for comparison. The Pearson correlation between

empirical enrichments and the model-predicted enrichments for each task are given in the legend and in Table B in S1 Text. In all

cases p-values (from Student’s test) are< 10−90. See SI Mathematical supplement for details about model training.

https://doi.org/10.1371/journal.pcbi.1012522.g002
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three scenarios of increasing complexity: (i) using the data from the Mix, Beads, and Blue

selections to disentangle the Black mode and predict the experiment with the Black complex

(Fig 2B), (ii) disentangle the effect of Beads using Blue data exclusively and predict the Beads

selection (Fig 2C), and (iii) disentangle the Black ligand effect from Mix and Beads selections

and predict the Black selection experiment (Fig 2D). The second task is more challenging than

the first because the beads in the Blue complex are subdominant epitopes (Fig L in S1 Text),

and the third task is more challenging than the other two because the two hairpins are very

similar (Fig D in S1 Text) and not seen independently.

As previously, we compared in each case predicted enrichments to empirical enrichments

from experiments and obtained very good correlations (Fig 2 and Table B in S1 Text). Alto-

gether, these results validate the model’s capacity to disentangle the contributions of different

ligands, and effectively “subtract” the contribution of some ligands to predict the contribution

of others.

Generation and validation of antibodies with custom specificity profiles

In addition to predicting the outcome of experiments involving new combinations of ligands,

our model can be employed to design novel antibody sequences with predefined binding pro-

files. These profiles can be either cross-specific, allowing interaction with several distinct

ligands, or specific, enabling interaction with a single ligand while excluding others. The gen-

eration of new sequences relies on optimizing over s the energy functions Esw associated with

each mode w in (1). To obtain cross-specific sequences, we jointly minimize the functions Esw
associated with the desired ligand. On the contrary, to obtain specific sequences, we minimize

Esw associated with the desired ligand w and maximize the ones associated with undesired

ligands.

Panel A of Fig 3 illustrates the distribution of sequences in the energy plane defined by the

modes associated with the two DNA hairpins, as inferred when using all available data.

Among all possible sequences, we select those not present in the initial library (thus not

included in the training set) and predicted to possess specific binding profiles: sequences in

blue are predicted to bind strongly to the Blue DNA hairpin while exhibiting weak binding to

the Black DNA hairpin, and reciprocally for those in black, while those in purple are predicted

to bind both hairpins.

We validated experimentally these predictions by phage display selection of a library com-

posed of * 2000 computationally designed sequences. Panel B of Fig 3 provides a summary of

the results. The enrichments of variants in the two experiments are displayed, with variants

above two predefined thresholds considered as binders. These thresholds are taken as the

mean values of the two experimental enrichments, a choice that is consistent with the observed

enrichment of * 10 control sequences chosen based on their enrichments to be either specific

or cross-specific to the Black and Blue complexes (Fig I in S1 Text). We verified that our results

are robust to the choice of the thresholds (Fig J in S1 Text).

The four regions represent specific binders for Black and Blue DNA hairpins, cross-specific

binders, and non-binding variants. Percentages of the designed antibodies that fall within the

respective regions (true positives) are reported, along with the fraction of the total number of

points for comparison (with statistical significance reported in Table C in S1 Text). Addition-

ally, the composition of variants within the region segmented by designed specificity is pre-

sented. Taken together, these results demonstrate the capacity of the model to propose

multiple sequences with desired specificities. Not all designed antibodies have the desired

properties, but it must be stressed that the results of Fig 3 address the case of two very similar

ligands with the further constraint that the initial library already covers half of the potential
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diversity, which leaves a relatively small novel design space. In contrast, designing binders to a

single ligand regardless of their affinity to the others is comparatively easier (Fig J in S1 Text).

Discussion

In this study, we propose a multi-stage method that combines high-throughput sequencing of

coordinated phage-display experiments, with a machine-learning approach that trains a bio-

physical model. This model is designed to capture statistical patterns associated with different

aspects of the selective pressures to which antibodies are experimentally subjected. By disen-

tangling the different factors influencing selection, we can design sequences with novel combi-

nations of physical properties, making the most of the wealth of information contained in

high-throughput sequencing data from selection experiments.

Over the past few years, many machine learning approaches have been applied to the design

of antibodies with high affinity and specificity. Many of these approaches require a well-char-

acterized target whose atomic structure is available [29–31]. In contrast, our approach uses

sequence data from experimental selection as the only input. This makes it applicable to cases

where the ligand is poorly characterized, and in fact provides a means of deducing information

about the ligand, through the identification of different binding modes that can be interpreted

as different epitopes. Other machine learning approaches have been developed with the aim of

Fig 3. Design and validation of antibodies with prescribed specificity. A. Model-based energy plot where each sequence s is

represented as a circle with coordinates (Esw1
; Esw2
Þ, with w1 representing the binding mode associated with the Black hairpin

and w2 with the Blue hairpin. Sequences predicted to be specific to the Blue hairpin, specific to the Black hairpin, or cross-

specific to the two hairpins are respectively highlighted in blue, black, and purple. We selected for experimental validation all

the colored sequences that are not present in the training set. B. Experiment-based enrichment plot of the selected sequences

where each sequence s is represented as a circle with coordinates (log �sBlack, log �sBlue), with �sBlack representing the enrichment

against the Black complex and �sBlue against the Blue complex. Sequences with high enrichment in one experiment and low

enrichment in the other are ligand-specific, those with high enrichment in both are cross-specific, and low-enrichment

sequences are non-binders (false positives). We assess our computational approach’s effectiveness by calculating the percentage

of designed sequences falling within the correct region. Cross-specific designed antibodies achieve a 45% true positive rate,

while Black and Blue-specific binders yield lower percentages (19% and 8%, respectively), reflecting the capacity of our

approach to design antibodies with desired properties despite the challenges arising from the close similarity of the two ligands

(% in parenthesis indicate the total fraction of sequences in each quadrant; see also Fig I in S1 Text for the choice of the

thresholds and Table C in S1 Text for p-values).

https://doi.org/10.1371/journal.pcbi.1012522.g003
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analyzing antibody selection experiments to propose new antibody variants with improved

binding affinities for a prescribed target, given particular constraints. These constraints

include parameters such as viscosity, clearance, solubility, and immunogenicity [23], which

are important for drug development, or non-specific binding [24], to eliminate antibodies that

tend to bind indiscriminately to a large number of antigens. Some of these works are based on

experimental data similar to ours, combining selections against multiple targets with a similar

aim of extracting target-specific features, but do not result in biophysically interpretable

computational models [22, 26].

In addition, our work differs from these studies in the difficulty of the task we are tackling.

We focus indeed on inferring and designing high levels of binding specificity, which involves

discriminating between molecular targets with significant structural and chemical similarities.

To provide a clear proof of concept, we considered two targets that are not of direct biomedical

interest but whose similarity is well characterized. Our two 24-nucleotide hairpins thus differ

only by 7 nucleotides in their loop. This difference is comparable to the difference between

DNA sequences recognized by transcription factors or restriction enzymes, some of the most

specific proteins found naturally. Generating data and developing a model from which to

design sequences that discriminate between these two targets is a very stringent test.

A practical application of our approach is the design of new protein candidates with pre-

scribed specificity profiles. The minimal breadth of our initial library reduces the possibility of

testing entirely new variants since� 50% of available sequence space is included in the training

data, but our approach is also applicable to libraries of greater breadth. As these libraries are

necessarily much more undersampled, the potential for discovering better variants is greater,

although undersampling can also lead to less accurate models. Characterizing how the poten-

tial for discovery and model accuracy scale with library size is a major open question that

requires new experiments to be conducted where more sites are randomized, beyond the four

sites in the CDR3 that are varied in our libraries. Finally, although not all the variants proposed

by our model proved experimentally to have the desired properties, a significant fraction did,

which is enough to provide several alternative sequences at the typical scale of *100 variants

that can be tested experimentally.

There are several avenues for extending the scope of our work. One is to increase the diver-

sity of the initial library, which also allows the incorporation of additional physical modes asso-

ciated, for example, with thermal stability. Another is to generate and integrate data from

experiments in which ligand libraries are selected to bind to one, or several, binders. Beyond

practical applications, these extensions have the potential to provide a general approach to

deducing the multiple physical properties encoded in protein sequences.

Materials and methods

Phage display selection

Phage display selections were performed essentially as in our previous study [14]. Our ‘Germ-

line’ VH library [14] and the library of designed sequences are both cloned in the pIT2 phage-

mid vector. M13KO7 (Invitrogen) was used as a helper phage, and TG1 E. coli as a host. M280

streptavidin-coated magnetic beads (Dynal) were used for DNA hairpin immobilization. DNA

hairpins are single-stranded DNA oligonucleotides biotinylated at their 5’ end (IDT). For the

selection against Mix, beads coupled to the Black DNA hairpin were mixed 50–50 with beads

coupled to the Blue DNA hairpin.

Phage display experiments included a pre-selection step with naked beads followed by a

selection step with DNA hairpin-coupled beads. Specific to the present study, we collected

phages at three steps of the selection process (see Fig A in S1 Text), namely (i) input phages,

PLOS COMPUTATIONAL BIOLOGY Inference and design of antibody specificity: from experiments to models and back

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012522 October 14, 2024 9 / 13

https://doi.org/10.1371/journal.pcbi.1012522


(ii) output phages bound to naked beads during pre-selection, (iii) output phages bound to

DNA hairpin-coupled beads during selection. The exact same washing and elution procedures

were applied to naked beads and DNA hairpin-coupled beads prior to infection of TG1 cells.

Consistent with efficient selection for DNA hairpin-binding, we typically observed a 10 to

100-fold higher phage titer in elutions from beads coupled to DNA hairpins (106 to 107 phages)

than from naked beads (105 phages).

Sequencing read-out

For each phage sample to be sequenced, an amplicon encompassing the 4 randomized CDR3

sites flanked with Illumina adapters bearing sample-specific indices was produced by PCR on

DNA purified from TG1 cells following phage infection. The number of PCR cycles was kept

as low as possible to avoid distortion due to amplification biases, which we checked

specifically.

The ‘Germline’ library selection was sequenced on the Illumina NextSeq 500 platform, pro-

ducing 76 bp reads. The in-silico designed library selection was sequenced on the Illumina

NextSeq 1000 producing 60+60 bp (paired ends) reads.

Model training

The model is trained by maximizing the likelihood of the observed sequencing read counts of

each sequence s in an experiment t, that we denote by Rst, and which are modeled as a multino-

mial distribution:

PðfRstgjfNstgÞ /
Y

s

NRst
st ð2Þ

where Nst is the estimated abundance of this variant in the experiment. The abundances evolve

from one experiment t to the next t0, according to Nst0 / pstNst, where pst are the selectivities in

(1). Iterating this relation, we can express Nst as a function of the abundances in the initial

library, Ns0. Since the Ns0 are not directly observed, they are also inferred by maximum

likelihood.

An L2 squared norm regularization is added to penalize large parameter values. Training is

substantially accelerated by splitting the sequences into mini-batches. In practice, we form ran-

dom batches of 128 sequences, which are re-shuffled at each epoch. Further details are given in

Supplementary Materials.

Processing of the data

Sequences containing stop codons are discarded. They are either sequencing errors or can be

enriched during amplification since the expression of the antibody is costly for the bacteria. To

further reduce sequencing errors, sequences where the flanking constant regions of the CDR3

do not coincide with the designed framework sequence are also filtered out.

Supporting information

S1 Text. Detailed experimental methods. Details of the experimental setup of phage display,

the initial library, and the sequencing procedure. Mathematical supplement. Detailed

description of the biophysical model, the model training, the sequence-to-energy map, the

architecture of the feed-forward neural network, and the model selection. Table A. Pearson

correlations between predicted and empirical enrichments for independent-site model.

Table B. Pearson correlations between predicted and empirical enrichments for deep model.

PLOS COMPUTATIONAL BIOLOGY Inference and design of antibody specificity: from experiments to models and back

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012522 October 14, 2024 10 / 13

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012522.s001
https://doi.org/10.1371/journal.pcbi.1012522


Same as Table A in S1 Text, for deep model. Fig A. Phage display experiment scheme. Fig B.

The figure illustrates the modes integrated into the model, each associated with distinct states

Fig C. Training the model: selected set of modes. The selected modes incorporated in the

model vary with each specific round. Fig D. Comparison of empirical enrichments of each

sequence in different experiments. Fig E. Pearson correlations between log-enrichmentsx. Fig

F. Sequencing reads are collected before and after amplification, after the first round of selec-

tion is finished and before starting the second round of selections. Scatter of the normalized

counts before (x-axis) and after (y-axis) amplification and histograms of the corresponding

enrichment ratios. Fig G. Same figure as Fig 2 in the main text, employing using model with

independent site as described in SI Fig H. Each amino-acid sequence can correspond to sev-

eral nucleotide variants due to codon degeneracy. The plots show a comparison of empirical

enrichments for codon-sequences vs. the equivalent amino-acid sequences. Fig I. Experimen-

tal enrichment of model-designed sequences and controls. Fig J. Validation of high-affinity

antibodies generated via single-mode optimization. Fig K. Distribution of the number of reads

of the initial library. Fig L. Histograms of binding energies to Black target, Blue target and

beads. Fig M. Comparison of models for the sequence-to-energy mapping. Table C. Reporting

p-values of data in Fig 3 using the Fisher exact test. Fig N. Test of model predicted frequencies

using 95% set of sequences with the lowest counts for training and predicting the 5% sequences

with the highest overall abundances.

(PDF)
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