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Abstract

This work concerns feedback global stabilization of the sterile insect technique dynamics. The
Sterile Insect Technique (SIT) is presently one of the most ecological methods for controlling
insect pests responsible for crop destruction and disease transmission worldwide.

This technique consists in releasing sterile males among the insect pest population, the aim
being to reduce fertility and, consequently, reduce significantly the wild insect population after a
few generations.

In this work, we study the global stabilization of a pest population at extinction equilibrium
by the SIT method and construct explicit feedback laws that stabilize the model. Numerical
simulations show the efficiency of our feedback laws.

Keywords: Sterile Insect Technique, Pest control, Dynamical control system, Feedback design,
Backstepping feedback, Lyapunov global stabilization, Mosquito population control, Vector borne
disease.

1 Introduction

Mosquitoes are known to transmit a variety of diseases such as malaria, dengue, yellow fever, Zika
virus and many others. These diseases are responsible for a significant number of deaths worldwide.
According to the World Health Organization (WHO), the number of malaria cases worldwide in
2022 was estimated at 249 million in 85 endemic countries and territories, an increase of 5 million
compared to 2021. The estimated number of deaths in 2022 is 608,000 (see [26]). Dengue and Zika
virus, also transmitted by mosquitoes, are estimated to cause hundreds of thousands of cases and
thousands of deaths each year. In 2023, there was an unexpected increase in dengue cases, resulting in
an all-time high of more than five million cases and more than 5,000 dengue-related deaths reported
in more than 80 countries/territories and five WHO regions: Africa, the Americas, South-East Asia,
the Western Pacific, and the Eastern Mediterranean (see [32]).

Although there are many effective vector control measures for malaria and arboviroses, some of
them can have negative impact on the environment and may result in ecological damage. For example,
insecticide spraying can have unintended effects on non-target organisms, including beneficial insects
such as bees and butterflies [25, 28]. In addition, repeated use of insecticides often leads to the
development of resistance in mosquito populations [27].

The sterile insect technique (SIT) has been proposed as an alternative tool for reducing mosquito
populations. The technique involves sterilizing male mosquitoes (frequently this is done using ionizing
radiation) and then releasing them into the wild to mate with wild females. This strategy was initially
applied successfully (since the 1950s) to nearly eradicate the screw-worm fly in North America. Since
then, this technique has also been used for different agricultural pests and disease vectors [14,17,31].
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One advantage of using such a technique is that it only targets the desired species and also
significantly reduces the impact on the ecosystem. This is why this technique is increasingly used
for the control of insect pests and insect disease vectors. Some previous works have considered
applications of feedback controls to SIT: impulsive feedback controls for a 3-D model [15,16], optimal
controls for a 2-D model [6] and even optimal impulsive controls for an epidemic model for a vector
borne disease in the human population [5].

For the sake of simplicity, in this paper we chose to focus our presentation on the particular and
important case of mosquito population control but many of the results presented can be extended to
the use of SIT for the control of other pests.

In order to determine the appropriate releases of sterile males to approach the extinction equilib-
rium of the population, we use mathematical control theory which provides the necessary tools for
constructing such a control. Our work involves building this feedback law starting from the model
proposed in [30] without the Allee effect. Our theoretical results are illustrated with numerical
simulations. Moreover, in section 4 we do a comparative study between the different feedback laws.

Remark 1.1. While we were finishing writing this work, we learned that the reduced system (system
of two ODE studied in [6]) was also recently studied by A. Cristofaro and L. Rossi in [21]. In
particular, they were able to construct a feedback law leading to global stabilization of the extinction
equilibrium in this setting using a backstepping approach.

2 Mathematical modeling of mosquito population dynamics

2.1 Mathematical modeling of wild mosquito population dynamics

The life cycle of mosquitoes has many stages but we will consider a simplified model where we just
separate an aquatic and an adult phase. The aquatic phase includes egg, larva and pupa stages. After
the pupa stage, adult mosquitoes emerge and it is in the adult phase that mosquitoes reproduce and
only female mosquitoes bite.

As a matter of fact, in order to lay their eggs, female mosquitoes need not only to be fertilized
by males but also to have a blood meal. Thus, every 4-5 days, they will take a blood meal (that can
sometimes involve biting several victims) and lay 100 to 150 eggs in different places (10 to 15 per
place). An adult mosquito usually lives for 2 to 4 weeks. The mathematical model we present takes
into account the two phases: the aquatic phase that we denote by E and the adult phase that we
split into two sub-compartments, males, M , and females, F . We consider the dynamics presented
in [30]. Based on this model and neglecting the Allee effect (i.e. taking β = +∞ in system (2) of [30],
which is the less favorable case for stabilizing the zero solution), we obtain the system

Ė = βEF

(
1− E

K

)
−
(
νE + δE

)
E, (2.1)

Ṁ = (1− ν)νEE − δMM, (2.2)

Ḟ = ννEE − δFF, (2.3)

where,

• E(t) ≥ 0 is the mosquito density in aquatic phase at time t;

• M(t) ≥ 0 is the wild adult male density at time t;

• F (t) ≥ 0 is the density of adult females at time t; we have supposed that all females are
immediately fertilized in this setting and this equation is the only one that changes when we
add the sterile males in which case only a fraction of the females will be fertilized;

• βE > 0 is the oviposition rate;

• δE , δM , δF > 0 are the death rates for eggs, wild adult males and fertilized females respectively;
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• νE > 0 is the hatching rate for eggs;

• ν ∈ (0, 1) the probability that a pupa gives rise to a female, and (1 − ν) is, therefore, the
probability that it gives rise to a male. And, to simplify, we suppose females become fertilized
immediately when they emerge from the pupal stage;

• K > 0 is the environmental capacity for eggs. It can be interpreted as the maximum density of
eggs that females can lay in breeding sites. Since here the larval and pupal compartments are
not present, it is as if E represents all the aquatic compartments, in which case in this term K
represents a logistic law’s carrying capacity for the aquatic phase that also includes the effects
of competition between larvae. It has the dimensions of a spatial density.

We set x = (E,M,F )T and D = R3
+ = {x ∈ R3 : x ≥ 0}. The model (2.1)-(2.3) can be written

in the form

ẋ = f(x), (2.4)

where f : R3 → R3 represents the right hand side of (2.1)-(2.3). The map f is continuously
differentiable on R3. Note that if ẋ = f(x) and x(0) ∈ D, then, for every t ≥ 0, x(t) is defined and
belongs to D. Setting the right hand side of (2.1)-(2.3) to zero we obtain the extinction equilibrium
0 = (0, 0, 0)T and the non-trivial equilibrium x∗ = (E∗,M∗, F ∗)T given by

E∗ = K(1− 1

R0
), (2.5)

M∗ =
(1− ν)νE

δM
E∗, (2.6)

F ∗ =
ννE
δF

E∗, (2.7)

where

R0 :=
βEννE

δF (νE + δE)
. (2.8)

Note that x∗ ∈ D if and only if R0 ≥ 1. Let us now recall some definitions connected to the stability
of an equilibrium.

Definition 2.1. Let xe ∈ D be an equilibrium (of (2.4)). The equilibrium xe is stable in D if, for
every ε > 0, there exists a δ > 0 such that

(x0 ∈ D and ‖x(0)− xe‖ < δ) =⇒ (‖x(t)− xe‖ < ε for all t > 0) . (2.9)

The equilibrium xe is unstable in D if it is not stable in D. It is an attractor in D if there exists η > 0
such that, for every initial data x(0) in D satisfying ‖x(0) − xe‖ < η, x(t) → xe as t → ∞. It is a
global attractor in D if, for every initial data in D, x(t)→ xe as t→∞. It is locally asymptotically
stable in D if it is both stable and an attractor in D. Finally, it is globally asymptotically stable in
D if it is both stable and a global attractor in D.

The Jacobian of system (2.1)-(2.3) computed at the extinction equilibrium is

J(0) =

−(νE + δE) 0 βE
(1− ν)νE −δM 0
ννE 0 −δF

 . (2.10)

Its characteristic polynomial is

P (λ) = λ3 + (νE + δE + δM + δF )λ2

+ ((νE + δE)δF − βEννE + δM (νE + δE))λ+ δM ((νE + δE)δF − βEννE). (2.11)
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Its roots are −δM and the roots of equation

λ2 + (νE + δE + δF )λ+ δF (νE + δE)(1−R0) = 0 (2.12)

IfR0 < 1, all eigenvalues of J(0) are either negative or have negative real parts, which implies that 0 is
locally asymptotically stable. If R0 = 1 the eigenvalues of J(0) are −δM , 0, and − (νE + δE + δF ) <
0. If R0 > 1, the eigenvalues of J(0) are all real, one is strictly positive, two are strictly negative.

The global stability properties of the extinction equilibrium 0 = (0, 0, 0)T are described in terms of
the basic offspring number R0 of the population. This is a key parameter in the theory of population
dynamics. Depending on its value, more precisely if and only if R0 > 1, there exists a non-trivial
equilibrium point (see [6, 33]). The essential properties of the model (2.1)-(2.3) are summarized in
the following theorem similar to [10, Theorem 7] and [11, Theorem 1].

Theorem 2.1. The following properties hold.

(P.1) If R0 ≤ 1, then 0 ∈ R3 is a globally asymptotically stable equilibrium in D for (2.4);

(P.2) If R0 > 1, then the system has two equilibria 0 and x∗ in D, where x∗ is stable with basin
of attraction D \ {x = (E,M,F )T ∈ R3

+ : E = F = 0} and 0 is unstable in D with the non
negative M − axis being a stable manifold.

Proof. Let us first prove (P.1). We could proceed as in the proof of [10, Theorem 7 (i)] or [11, 1) in
Theorem 1] which are based on properties of monotone operators. We propose a different approach,
now based on Lyapunov functions. Let t 7→ x(t) = (E(t),M(t), F (t))T be a solution of (2.4) defined
at time 0 and such that (E(0),M(0), F (0))T ∈ D. One has

M(t) = e−δM tM(0) + (1− ν)νE

∫ t

0
e−δM (t−s)E(s) ds, (2.13)

which implies that

M(t) ≤M(0) +
(1− ν)νE

δM
sup{E(s); s ≥ 0}, (2.14)

M(t) ≤M(0)e−δM t +
(1− ν)νE

δM
e−δM t/2 max{E(s); s ∈ [0, t/2]}

+
(1− ν)νE

δM
sup{E(s); s ≥ t/2}. (2.15)

Inequality (2.14) shows that 0 ∈ R3 is a stable equilibrium in D for (2.4) if 0 ∈ R2 is a stable
equilibrium in [0,+∞)2 for the subsystem in (E,F )T ∈ [0,+∞)2:

Ė = βEF

(
1− E

K

)
− (νE + δE)E, (2.16)

Ḟ = ννEE − δFF. (2.17)

Inequality (2.15) shows that 0 ∈ R3 is a global attractor in D for (2.4) if 0 ∈ R2 is a global attractor
in [0,+∞)2 for the subsystem (2.16)-(2.17) in (E,F )T ∈ [0,+∞)2.

Hence, in order to prove (P.1), it suffices to check that 0 ∈ [0,+∞)2 is globally asymptotically
stable in [0,+∞)2 for the system (2.16)-(2.17). To prove this last statement, let us consider the
Lyapunov function V : [0,+∞)2 → R, y = (E,F )T 7→ V (y), defined by

V (y) := δFE + βEF. (2.18)

Then,

V is of class C1, (2.19)

V (y) > V ((0, 0)T ) = 0, ∀y ∈ [0,+∞)2 \ {(0, 0)T }, (2.20)

V (y)→ +∞ when ‖y‖ → +∞ with y ∈ [0,+∞)2. (2.21)
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The time-derivative of V along the trajectories of (2.16)-(2.17) is

V̇ = − (δF (νE + δE)− βEννE)E − δFβE
K

EF. (2.22)

Let us now assume that

R0 ≤ 1. (2.23)

From (2.22) and (2.23) one gets

V̇ ≤ −δFβE
K

EF ≤ 0. (2.24)

We are going to conclude by using the LaSalle invariance principle. Let us assume that we have a
trajectory t ∈ R 7→ y(t) = (E(t), F (t))T ∈ [0,+∞)2 of (2.16)-(2.17) such that

V̇ (y(t)) = 0 ∀t ∈ R. (2.25)

Then, using (2.24),

E(t)F (t) = 0 ∀t ∈ R. (2.26)

Let us assume that there exists t0 ∈ R such that

E(t0) 6= 0. (2.27)

Then there exists ε > 0 such that

E(t) 6= 0 ∀t ∈ (t0 − ε, t0 + ε), (2.28)

which, together with (2.26), implies that

F (t) = 0 ∀t ∈ (t0 − ε, t0 + ε). (2.29)

Differentiating (2.29) with respect to time and using (2.17) we get

E(t) = 0 ∀t ∈ (t0 − ε, t0 + ε), (2.30)

in contradiction with (2.28). Hence

E(t) = 0 ∀t ∈ R. (2.31)

Differentiating (2.31) with respect to time and using (2.16) we get that

F (t) = 0 ∀t ∈ R. (2.32)

With the LaSalle invariance principle, this concludes the proof of (P.1).

Remark 2.1. In the case where R0 < 1 a simple linear strict Lyapunov function for the full system
(2.4) is given in Remark 2.2.

Let us now prove (P.2). We first note that one has the following lemma, whose proof is obvious
and is omitted.

Lemma 2.1. Let t 7→ x(t) = (E(t),M(t), F (t))T be a solution of (2.4) defined at time 0 and such
that (E(0),M(0), F (0))T ∈ D. Then it is defined on [0,+∞). Moreover, if E(0) ≥ K, then there
exists one and only one time t0 ≥ 0 such that E(t0) = K and one has

E(t) < K ∀t > t0. (2.33)
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Thanks to this lemma we are allowed to assume that E < K, which we do from now on. We
then follow the proof of [10, Theorem 7 (ii)]. To prove the stability and basin of attraction of the
non-trivial equilibrium x∗ we use [29, Theorem 2.2 in Chapter 2]. This theorem applies to strongly
monotone systems. The Jacobian (2.10) associated with (2.4) is not irreducible. Let us consider the
subsystem for E and F , that is (2.16)-(2.17), which defines a dynamical system on R2

+. Its Jacobian

j((E,F )T ) =

(
−(νE + δE)− βEF

K βE(1− E
K )

ννE −δF

)
(2.34)

is irreducible. Considering the usual coordinate-wise comparison and applying [29, Theorem 2.2 in
Chapter 2] to the two dimensional interval

{(E,F )T ∈ R2
+ : 0 ≤ E ≤ E∗, 0 ≤ F ≤ F ∗}, (2.35)

it follows that every solution starting in this interval, excluding the end points (0, 0)T and (E∗, F ∗)T ,
converges to one of the end points.

The Jacobian at 0 = (0, 0)T is

j(0) =

(
−(νE + δE) βE

ννE −δF

)
(2.36)

Its characteristic equation is

λ2 + (δF + νE + δE)λ+ δF (νE + δE)− βEννE = 0, (2.37)

whose discriminant is

∆ = (νE + δE − δF )2 + 4βEννE ≥ 0. (2.38)

The eigenvalues are

λ− := −(δF + νE + δE) +
√

∆

2
(2.39)

λ+ :=
−(δF + νE + δE) +

√
∆

2
(2.40)

Therefore, since R0 > 1, λ+ > 0 and so 0 is unstable. Since j(0) is a Metzler matrix, it has a strictly
positive eigenvector corresponding to the positive eigenvalue λ+ > 0, which is

v+ =

(
1

(νE+δE−δF )+
√

∆
2βE

)
(2.41)

Moreover, the eigenvector corresponding to the negative eigenvalue λ− is

v− =

(
1

(νE+δE−δF )−
√

∆
2βE

)
(2.42)

which has two components with opposite signs and is thus biologically meaningless. Hence, no
solution converges to 0 = (0, 0)T except the trivial solution which is identically equal to 0 = (0, 0)T .
Therefore, every nontrivial solution converges to (E∗, F ∗)T . The implication for the three dimensional
system (2.1)-(2.3) is that all solutions starting in the interval [0, x∗], excluding the M -axis, converge
to x∗ = (E∗,M∗, F ∗)T .

Using the same argument as in [11], any solution starting at a point larger than x∗ converges to
x∗. Since any point in D\{x = (E,M,F )T ∈ R3

+ : E = F = 0} can be placed between a point below
x∗, but not on the M -axis, and a point above x∗, every solution starting in D \ {x = (E,M,F )T ∈
R3

+ : E = F = 0} converges to x∗. The monotone convergence of the solutions initiated below and
above x∗ implies the stability of x∗ as well. This concludes the proof of (P.2) and of Theorem 2.1.
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2.2 SIT model in mosquito population dynamics

The SIT model obtained neglecting the Allee effect from the one presented in [30] is

Ė = βEF

(
1− E

K

)
−
(
νE + δE

)
E, (2.43)

Ṁ = (1− ν)νEE − δMM, (2.44)

Ḟ = ννEE
M

M + γsMs
− δFF, (2.45)

Ṁs = u− δsMs, (2.46)

where Ms(t) ≥ 0 is the sterilized adult male density, δs > 0 is the death rate of sterilized adults,
u ≥ 0 is the control which is the density of sterile males released at time t, and 0 < γs ≤ 1 accounts
for the fact that females may have a preference for fertile males. Then, the probability that a female
mates with a fertile male is M/(M + γsMs). From now on we assume that

δs ≥ δM , (2.47)

which is a biologically relevant assumption (and even if this were not so, the sterile males would have
a competitive advantage due to a higher longevity that would make SIT more efficient).

Let D′ := [0,+∞)4. When applying a feedback law u : D′ → [0,+∞), the closed-loop system is
the system

ẋ = H(x, u(x)), (2.48)

where

H(x, u) =


βEF

(
1− E

K

)
−
(
νE + δE

)
E

(1− ν)νEE − δMM
ννEE

M
M+γsMs

− δFF
u− δsMs

 . (2.49)

Concerning the regularity of the feedback law, we always assume that

u ∈ L∞loc(D′). (2.50)

Note that, even if u is of class C∞, the map x ∈ D′ 7→ H(x, u(x)) ∈ R4 is not continuous and
one needs to specify the definition of the solutions for the closed-loop system (2.48). Carathéodory
solutions seem to be natural candidates. Roughly speaking, Carathéodory solutions are absolutely
continuous curves that satisfy the integral version of the differential equation. These solutions are
indeed useful in other contexts. However, if they can lead to robustness for small errors on the
control, as shown in [9], they may not be robust with respect to arbitrary small measurement errors
on the state, which is crucial for the application. To have a robustness with respect to arbitrary
small measurement errors on the state, as shown in [24] (see also [20]), the good definition of the
solutions for the closed-loop system (2.48) are the Filippov solutions, i.e. the solution of

ẋ ∈ Y (x) := ∩
ε>0
∩
N∈N

conv
[
X
((

(x+ εB) ∩ D′
)
\N

)]
, (2.51)

where

• B is the unit ball of R4;

• for a set A, conv[A] is the smaller closed convex set containing A;

• N is the set of subsets of R4 of zero Lebesgue measure.

• X(x) := H(x, u(x)).
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Let us recall that x : I ⊂ R → R4, t ∈ I 7→ x(t) ∈ R4 (where I is an interval of R) is a solution of
(2.51) if x ∈W 1,∞

loc (I) and is such that

ẋ(t) ∈ Y (x(t)) for almost every t ∈ I. (2.52)

For references about Filippov solutions, let us mention, in particular, [22,23] and [13, Chapter 1]. For
the definition of stability, global attractor and asymptotic stability, we use again Definition 2.1 (with
D′ instead of D) and take now into account all the solutions in the Filippov sense in this definition.
The motivation for using Filippov solutions is given in [20, Proposition 1.4]. The global asymptotic
stability in this Filippov sense implies the existence of a Lyapunov function [18]; see also [20, Lemma
2.2]. This automatically gives some robustness properties with respect to (small) perturbations
(including small measurement errors on the state), which is precisely the goal of feedback laws. In
fact, for many feedback laws constructed in this article, an explicit Lyapunov function will be given,
which allows to quantify this robustness.

Let us emphasize that in our case the Filippov solutions of our closed-loop system have the
following properties

((E(0), F (0)) = (0, 0)) =⇒ ((E(t), F (t)) = (0, 0) ∀t ≥ 0) , (2.53)

((E(0), F (0)) 6= (0, 0)) =⇒ (E(t) > 0, M(t) > 0, F (t) > 0 ∀t > 0) . (2.54)

From now on, the solutions of the closed-loop systems considered in this article are always the
Filippov solutions.

Proposition 2.1 (See [6]: Stability properties of the system (2.43)-(2.46)). Let us assume that

R0 > 1. (2.55)

Then the following properties hold.

1. If u = 0, we have two equilibria:

• the extinction equilibrium 0, where E = F = M = Ms = 0 ,which is linearly unstable;

• the persistence equilibrium

E∗ = K(1− 1

R0
), (2.56)

M∗ =
(1− ν)νE

δM
E∗, (2.57)

F ∗ =
ννE
δF

E∗, (2.58)

M∗s = 0, (2.59)

which is locally asymptotically stable.

2. If u ≥ 0, then the corresponding solution (E,M,F,Ms) to System (2.43)-(2.46) enjoys the
following stability property:

E(0) ∈ (0, E∗],

M(0) ∈ (0,M∗],

F (0) ∈ (0, F ∗],

Ms(0) ≥ 0,

=⇒


E(t) ∈ (0, E∗],

M(t) ∈ (0,M∗],

F (t) ∈ (0, F ∗],

Ms(t) ≥ 0,

for all t ≥ 0. (2.60)

Let

U∗ = R0
K(1− ν)νEδs

4γsδM
(1− 1

R0
)2. (2.61)

If u(·) denotes a constant control function equal to some U > U∗ for all t ≥ 0, then the
corresponding solution (E(t),M(t), F (t),Ms(t)) converges to (0, 0, 0, U/δs) as t→∞.
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Concerning the global asymptotic stability of 0 for the system (2.43)-(2.46) in D′ := [0,+∞)4,
using a Lyapunov approach, one can get the following theorem.

Theorem 2.2. Let u = 0. If R0 < 1, then 0 is globally asymptotically stable in D′ for the system
(2.43)-(2.46).

Proof. Let x = (E,M,F,Ms)
T . We are going to conclude by applying Lyapunov’s second theorem.

To do so, a candidate Lyapunov function is V : D′ → R+, x 7→ V (x), defined by

V (x) :=
1 +R0

1−R0
E +

2βE
δF (1−R0)

F +M +Ms. (2.62)

Note that, since R0 < 1,

V (x) > V (0) = 0, ∀x ∈ D′ \ {0}, (2.63)

V (x)→ +∞ as |x| → +∞ with x ∈ D′. (2.64)

Moreover, along the trajectories of (2.43)-(2.46),

V̇ (x) = −(ννE + δE)E − βE
K

1 +R0

1−R0
FE − δMM − βEF − δsMs

− 2βEννE
δF (1−R0)

γsMs

M + γsMs
E, if M +Ms 6= 0. (2.65)

From (2.62) and (2.65), one gets

V̇ (x) ≤ −c0V (x) if M +Ms 6= 0, (2.66)

with

c0 := min

{
(ννE + δE)(1−R0)

1 +R0
,
δF (1−R0)

2
, δM , δs

}
(2.67)

Let us point out that, for every solution t 7→ x(t) = (E(t),M(t), F (t),Ms(t))
T of the closed-loop

system (2.43)-(2.46) defined at time 0 and such that x(0) ∈ D′,

(M(0) +Ms(0) > 0) =⇒ (M(t) +Ms(t) > 0, ∀t > 0) , (2.68)

(x(0) = 0) =⇒ (x(t) = 0, ∀t ≥ 0) . (2.69)

From (2.53), (2.54), (2.63), (2.66), (2.68) and (2.69), one has, for every solution t 7→ x(t) =
(E(t),M(t), F (t),Ms(t))

T of the closed-loop system (2.43)-(2.46) defined at time 0 and such that
x(0) ∈ D′,

V (x(t)) ≤ V (x(0))e−c0t ∀t ≥ 0, (2.70)

which, together with (2.63) and (2.64), concludes the proof of Theorem 2.2 (and even shows the global
exponential stability and provides an estimate on the exponential decay rate c0 given by (2.67)).

Remark 2.2. Note that Theorem 2.2 implies Theorem 2.1 in the case R0 < 1 and our proof of
Theorem 2.2 provides, for this case, a (strict) Lyapunov function which is just

Ṽ ((E,M,F )T ) :=
1 +R0

1−R0
E +

2βE
δF (1−R0)

F +M. (2.71)

It would be interesting to provide Lyapunov functions for the two remaining cases R0 = 1 and R0 > 1.
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3 Global stabilization by feedback of the extinction equilibrium

3.1 Backstepping feedback

For the backstepping method, the control system has the following structure:

ẋ1 = f(x1, x2), (3.1)

ẋ2 = u− g(x1, x2), (3.2)

where the state is x = (x1, x2) ∈ Rp ×Rm and the control is u ∈ Rm. The key and classical theorem
for backstepping is the following one (see, for instance, [12, Theorem 19.2, page 110] or [19, Theorem
12.24, page 334]).

Theorem 3.1. Assume that f and g are of class C1 and that for the control system

ẋ1 = f(x1, v), (3.3)

where the state is x1 ∈ Rp and the control is v ∈ Rm, 0 ∈ Rp can be globally asymptotically stabilized
by means of a feedback law x1 ∈ Rp 7→ v(x1) ∈ Rm of class C1. Then, for the control system (3.1)-
(3.2), 0 ∈ Rp × Rm can be globally asymptotically stabilized by means of a continuous feedback law
x ∈ Rp × Rm 7→ u(x) ∈ Rm .

Let x := (E,M,F )T . One way to rewrite the dynamics (2.43)-(2.46) is{
ẋ = f(x,Ms),

Ṁs = u− δsMs,
(3.4)

where

f(x,Ms) :=

 βEF
(
1− E

K

)
−
(
νE + δE

)
E

(1− ν)νEE − δMM
ννEE

M
M+γsMs

− δFF

 . (3.5)

As f is not of class C1(D× [0,+∞)) and the feedback law has to be non-negative, we cannot directly
apply the backstepping theorem. However, to build the feedback law we use the classical Lyapunov
approach of the proof of Theorem 3.1 (see, for example, [19, pages 334–335]) allowing us to select
an appropriate control. Unfortunately, the control that we get with this approach is not positive all
the time. To get around this, using the same Lyapunov function, we propose a new feedback law
that is non-negative, decreases the Lyapunov function and leads to global asymptotic stability of the
extinction equilibrium.

First, consider the control system ẋ = f(x,Ms) with the state being x ∈ D and the control being
Ms ∈ [0,+∞). We assume that Ms is of the form Ms = θM and study the closed-loop system

ẋ = f(x, θM). (3.6)

We have 
Ė = βEF

(
1− E

K

)
−
(
νE + δE

)
E,

Ṁ = (1− ν)νEE − δMM,

Ḟ =
ννE

1 + γsθ
E − δFF.

(3.7)

It is a smooth dynamical system on D = [0,+∞)3 which is also a positively invariant set for this
dynamical system.
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Setting the right hand side of (3.7) to zero we obtain the equilibrium 0 ∈ [0,+∞)3 and the non-trivial
equilibrium x∗∗ = (E∗∗,M∗∗, F ∗∗) given by

E∗∗ = K(1− 1

R(θ)
), (3.8)

M∗∗ =
(1− ν)νE

δM
E∗∗, (3.9)

F ∗∗ =
ννE

δF (1 + γsθ)
E∗∗, (3.10)

where the offspring number is now

R(θ) :=
βEννE

δF (1 + γsθ)(νE + δE)
=

R0

1 + γsθ
. (3.11)

Note that if R(θ) ≤ 1, 0 ∈ R3 is the only equilibrium point of the system in D.
Our next proposition shows that the feedback law Ms = θM stabilizes our control system ẋ =

f((xT ,Ms)
T ) if R(θ) < 1.

Proposition 3.1. Assume that

R(θ) < 1. (3.12)

Then 0 is globally asymptotically stable in D for system (3.6).

Proof. We apply Lyapunov’s second theorem. To do so, we define

V : x ∈ [0,+∞)3 7→ V (x) ∈ R+,

V (x) :=
1 +R(θ)

1−R(θ)
E +M +

2βE
δF (1−R(θ))

F.
(3.13)

As (3.12) holds,

V is of class C1, (3.14)

V (x) > V ((0, 0, 0)T ) = 0, ∀x ∈ [0,+∞)3 \ {(0, 0, 0)T }, (3.15)

V (x)→ +∞ when ‖x‖ → +∞ with x ∈ D. (3.16)

We have

V̇ (x) = ∇V (x) · f(x, θM) =


1+R(θ)
1−R(θ)

1
2βE

δF (1−R(θ))


T

·

βEF
(
1− E

K

)
− aE

cE − δMM
ννE

1+γsθ
E − δFF

 . (3.17)

So

V̇ (x) = −βEF − δMM −
1 +R(θ)

1−R(θ)

βE
K
FE − (ννE + δE)E. (3.18)

Then, using once more (3.12), we get the existence of c > 0 such that

V̇ (x) ≤ −cV (x), ∀x ∈ [0,+∞)3. (3.19)

This concludes the proof of Proposition 3.1.

Let us define

ψ :=
2βEννE

δF (1−R(θ))(1 + γsθ)
, (3.20)
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and, for αfor α and βs (the latter having dimension of a rate ) chosen in (0,+∞), the map G : D′ :=
[0,+∞)4 → R, (xT ,Ms)

T 7→ G((xT ,Ms)
T ) by

G((xT ,Ms)
T ) :=

γsψE(θM +Ms)
2

α(M + γsMs)(3θM +Ms)

+
((1− ν)νEθE − θδMM)(θM + 3Ms)

3θM +Ms

+ δsMs +
βs
α

(θM −Ms), if M +Ms 6= 0, (3.21)

G((xT ,Ms)
T ) := 0, if M +Ms = 0. (3.22)

Finally, let us define the feedback law u : D′ → [0,+∞), (xT ,Ms)
T 7→ u((xT ,Ms)

T ), by

u((xT ,Ms)
T ) := max

(
0, G((xT ,Ms)

T )
)
. (3.23)

Note that u, which is Lebesgue measurable, is not continuous in D′. However

there exists C > 0 such that |u(y)| ≤ C‖y‖ ∀y ∈ D′. (3.24)

Property (3.24) is important for the applications since it implies that the density u of sterile males
released is going to be small when the state is close to 0. For instance, this is essential to reduce
the number of mosquitoes necessary for a long term intervention and also to allow using the sterile
mosquitoes which are no longer needed in an area where the population is already close to zero, to
intervene in other zones.

This is in contrast with the constant control in Proposition 2.1. Property (3.24) also implies that
u ∈ L∞loc(D′), which allows to consider Filippov solutions for the closed-loop system, i.e. the system
(2.43)-(2.46) with the feedback law (3.23).

The next theorem shows that the feedback law (3.23) stabilizes the control system (2.43)-(2.46).

Theorem 3.2. Assume that (3.12) holds. Then 0 ∈ D′ is globally asymptotically stable in D′ for
system (2.43)-(2.46) with the feedback law (3.23).

Proof. Let us define W : D′ → R by

W ((xT ,Ms)
T ) := V (x) + α

(θM −Ms)
2

θM +Ms
, if M +Ms 6= 0, (3.25)

W ((xT ,Ms)
T ) := V (x), if M +Ms = 0. (3.26)

We have

W is continuous, (3.27)

W is of class C1 on D′ \
{

(E,M,F,Ms)
T ∈ D′; M +Ms = 0

}
, (3.28)

W ((xT ,Ms)
T )→ +∞, as ‖x‖+Ms → +∞,

with x ∈ D and Ms ∈ [0,+∞), (3.29)

W ((xT ,Ms)
T ) > W (0) = 0, ∀(xT ,Ms)

T ∈ D′ \ {0}. (3.30)

From now on, and until the end of this proof, we assume that (xT ,Ms)
T is in D′ and until (3.41)

below we further assume that

(M,Ms) 6= (0, 0). (3.31)

One has
Ẇ ((xT ,Ms)

T ) = ∇V (x) · f(x,Ms) + α(θM −Ms)

2(θṀ − Ṁs)(θM +Ms)− (θṀ + Ṁs)(θM −Ms)

(θM +Ms)2

= ∇V (x) · f(x, θM) +∇V (x) · (f(x,Ms)− f(x, θM))

+α(θM −Ms)
θṀ(θM + 3Ms)− Ṁs(3θM +Ms)

(θM +Ms)2
.
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∇V (x) · (f(x,Ms)− f(x, θM)) =
1 +R(θ)

1−R(θ)
1

2βE
δF (1−R(θ))


T

·


0
0

ννEγsE(θM −Ms)

(M + γsMs)(1 + γsθ)

 =

ψγsE(θM −Ms)

M + γsMs
, (3.32)

Ẇ ((xT ,Ms)
T ) = ∇V (x) · f(x, θM) + α

(θM −Ms)

(θM +Ms)2[(∇V (x) · (f((xT ,Ms)
T )− f(x, θM)))(θM +Ms)

2

α(θM −Ms)

+ θṀ(θM + 3Ms)− Ṁs(3θM +Ms)
]

= V̇ (x) + α
(θM −Ms)

(θM +Ms)2

[ψγsE(θM +Ms)
2

α(M + γsMs)
(3.33)

+((1− ν)νEθE − θδMM)(θM + 3Ms)

−u(3θM +Ms) + δsMs(3θM +Ms)
]
. (3.34)

We take u as given by (3.23).
Therefore, in case

ψγsE(θM +Ms)
2

α(M + γsMs)
+ ((1− ν)νEθE − θδMM)(θM + 3Ms)

+ δsMs(3θM +Ms) +
βs
α

(θM −Ms)(3θM +Ms) > 0, (3.35)

we have

u =
1

3θM +Ms

[ψγsE(θM +Ms)
2

α(M + γsMs)
+ ((1− ν)νEθE − θδMM)(θM + 3Ms)

+ δsMs(3θM +Ms) +
βs
α

(θM −Ms)(3θM +Ms)
]
,

which, together with (3.34), leads to

Ẇ ((xT ,Ms)
T ) = V̇ (x)− βs

(θM −Ms)
2(3θM +Ms)

(θM +Ms)2
. (3.36)

Otherwise, i.e. if (3.35) does not hold,

ψγsE(θM +Ms)
2

α(M + γsMs)
+ ((1− ν)νEθE − θδMM)(θM + 3Ms)

+ δsMs(3θM +Ms) +
βs
α

(θM −Ms)(3θM +Ms) ≤ 0, (3.37)

so, by (3.23),

u = 0. (3.38)

13



We consider two cases:
Case 1: θM > Ms

Using (3.34), (3.37) and (3.38)

Ẇ ((xT ,Ms)
T ) ≤ V̇ (x)− βs

(θM −Ms)
2(3θM +Ms)

(θM +Ms)2
. (3.39)

Case 2: θM ≤Ms

Using once more (3.34) and (3.38)

Ẇ ((xT ,Ms)
T ) = V̇ (x) + α

(θM −Ms)

(θM +Ms)2

[ψγsE(θM +Ms)
2

α(M + γsMs)

+ θ((1− ν)νEE − δMM)(θM + 3Ms) + δsMs(3θM +Ms)
]
. (3.40)

Using (2.47)

−δMM(θM + 3Ms) + δsMs(3θM +Ms) ≥ δM (Ms − θM)(Ms + θM),

which, together with (3.40), implies that

Ẇ ((xT ,Ms)
T ) ≤ V̇ (x)− αδM

(θM −Ms)
2

(θM +Ms)
. (3.41)

To summarize, using (3.19), (3.36), (3.39) and (3.41), one gets the existence of c′ > 0, independent
of (xT ,Ms)

T ∈ D′, such that

Ẇ ((xT ,Ms)
T ) ≤ −c′W ((xT ,Ms)

T ) if M +Ms 6= 0. (3.42)

Since one still has (2.53), (2.54), (2.68) and (2.69) (for x = (xT ,MT
s )T ), this proves Theorem 3.2 as

in the proof of Theorem 2.2 (and, again, even gives the global exponential stability and provides an
estimate on the exponential decay rate).

Remark 3.1. It is important to note that the backstepping feedback control (3.23) does not depend
on the environmental capacity K, which is can also be an interesting feature for the field applications.

3.1.1 Numerical simulations

The numerical simulations of the dynamics when applying the feedback (3.23) are shown in fig-
ure 3.1. The parameters we use are set in table 1. The condition (3.12) gives θ > 75.5625. We
fix K = 22200 ha−1 and we consider the persistence equilibrium as initial condition. That gives
E0 = 21910,M0 = 5587, F 0 = 13419 and M0

s = 0. We take θ = 220, α = 13 and βs = 1 Day−1.

Parameter Name Value interval Chosen value Unity

βE Effective fecundity 7.46-14.85 10 Day−1

γs Mating competitiveness of sterilized males 0-1 1 -

νE Hatching parameter 0.005-0.25 0.05 Day−1

δE Mosquitoes in aquatic phase death rate 0.023-0.046 0.03 Day−1

δF Female death rate 0.033-0.046 0.04 Day−1

δM Males death rate 0.077-0.139 0.1 Day−1

δs Sterilized male death rate 0.12 Day−1

ν Probability of emergence 0.49

Table 1: Value intervals for the parameters of system (2.43)-(2.46) (see [30])
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(a) Plot of E,M and F (b) Plot of Ms

(c) Plot of the control u

Figure 3.1. (a): Plot of E,M and F when applying the feedback (3.23) with the initial condition
z0. (b): Plot of Ms. (c): Plot of the feedback control function u.

In this case, with tf = 360 days, ∫ tf

0
u(t) dt ≈ 18 millions. (3.43)

3.1.2 Robustness test

To analyze the robustness of our feedback law we use the following protocol: the feedback law is given
by (3.23) with fixed values of the parameters corresponding to the ones chosen in table 1, but for
computing the real dynamics of the system (2.48) we consider simultaneous random perturbations
of the system parameters with the following distribution

β̂E ∼ U(7.46, 14.85),

ν̂E ∼ U(0.005, 0.25),

δ̂E ∼ U(0.023, 0.046),

δ̂F ∼ U(0.033, 0.046),

δ̂M ∼ U(0.077, 0.139),

δ̂s ∼ U(0.077, 0.139),

γ̂s ∼ U(0.5, 1.0),

(3.44)

where U(a, b) is the uniform distribution on interval [a, b].
Figure 3.2 shows 200 simulations with random initial conditions in [0, 10K]4.
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Figure 3.2. Evolution of log(E +F +M) for 200 random initial conditions when applying feedback
(3.23) computed with θ = 220, α = 13, β = 1 Day−1 and the parameters given in table 1, which are
not the parameters. used for simulating the mosquito dynamics (the latter being taken randomly for
each simulation according to (3.44))

We observe that the feedback (3.23) is robust: it still stabilizes the dynamics at extinction
equilibrium if the changes in the parameters are not too large.

To apply the feedback (3.23) we must estimate the number of male and female mosquitoes and
the number of eggs. Some techniques used to measure these parameters are CDC light traps and
BG-Sentinel traps. Based on mosquito behavior, such as their attraction to pheromones or light,
these traps use different attractants, such as light, CO2, or human odor, to capture them. To
estimate the population size and the ratio of sterile to fertile mosquitoes a common technique is to
do Mark-release-recapture (MRR) studies. It consists in marking a subset of the released mosquitoes
with a unique identifier and releasing then into the wild. By comparing the number of marked and
unmarked mosquitoes captured in the traps, an estimate of the total population size and the ratio
of sterile to fertile mosquitoes can be obtained. Some oviposition traps may be used to capture and
count the number of eggs laid by female mosquitoes. To take into account the possible difficulty and
cost of measuring all the variables (E,F,M and Ms)in the field, in the next sections (3.2 and 3.3),
we propose feedback laws depending on less variables.

3.2 Feedback laws depending only on the total number of male mosquitoes

Some recent adult traps are able to count automatically the number of male mosquitoes that are
captured and, even in a more classic setting, there exist traps that use synthetic versions of female
insect pheromones to attract and capture male insects. This kind of traps placed at different locations
in the field, allow us to determine M +Ms of the target pest population. Our aim in this section is
to build a feedback linearly depending on M +Ms. Consider the closed-loop system

ż = F (z, u(z)), z = (E,M,F,Ms)
T ∈ D′, (3.45)

where

u(z) = k(M +Ms), (3.46)

F (z, u) =


βEF

(
1− E

K

)
− (νE + δE)E

(1− ν)νEE − δMM
ννEE

M
M+γsMs

− δFF
u− δsMs

 , (3.47)

and k is a fixed real number. Throughout all this section 3.2, we assume that (2.55) holds and that

k ∈ [0, δs). (3.48)
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The offspring number related to this system is

R1(k) :=
(δs − k)βEννE

δF (νE + δE)(δs − (1− γs)k)
. (3.49)

3.2.1 Equilibria of the closed-loop system

Equilibria of the SIT model (3.45) are obtained by solving the system

βEF

(
1− E

K

)
−
(
νE + δE

)
E = 0,

(1− ν)νEE − δMM = 0,

ννEE
M

M + γsMs
− δFF = 0,

kM − (δs − k)Ms = 0.

(3.50)

We get either the extinction equilibrium 0, i.e.

E = 0, M = 0, F = 0, Ms = 0 (3.51)

or

E∗ = K(1− 1

R1(k)
),

M∗ =
(1− ν)νE

δM
E∗,

F ∗ =
(δs − k)ννE

δF ((δs − k) + γsk)
E∗,

M∗s =
(1− ν)νEk

(δs − k)δM
E∗.

(3.52)

Let us assume in the sequel that

R1(k) < 1. (3.53)

Using (3.52) and (3.53), one gets E∗ < 0 and therefore the equilibrium given by (3.52) is not relevant.
In conclusion the closed-loop system (3.45) has one and only one equilibrium which is the extinction
equilibrium 0. It is therefore tempting to raise the following conjecture (compare with Theorem 2.1).

Conjecture 3.1. The extinction equilibrium 0 is globally asymptotically stable in D′ for the closed-
loop system (3.45).

We have not been able to prove this conjecture. However,

1. In section 3.2.2, we give a positively invariant set for the closed-loop system (3.45) in which,
as proved in section 3.2.3, 0 is globally asymptotically stable for (3.45);

2. In section 3.2.4, we provide numerical evidence for this conjecture.

3.2.2 Invariant set of the closed-loop system

From (2.55), (3.48), and (3.53), one gets

βEννE − (νE + δE)δF
βEννE − (1− γs)(νE + δE)δF

δs < k < δs. (3.54)
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Let us define, with z = (E,M,F,Ms)
T ,

T1 := {z ∈ D′ : βEF (1− E

K
) ≤ (νE + δE)E}, (3.55)

T3 := {z ∈ D′ : (1− ν)νEE ≤ δMM}, (3.56)

and, for κ > 0,

T2(κ) = {z ∈ D′ : M ≤ κMs}. (3.57)

One has the following theorem.

Theorem 3.3. Assume that (3.54) holds and that

κ ≤ γsδF (νE + δE)

βEννE − δF (νE + δE)
, (3.58)

κ ≥ δs − k
k

. (3.59)

Then M(κ) := T1 ∩ T2(κ) ∩ T3 is a positively invariant set of the closed-loop system (3.45).

Remark 3.2. Note that (3.54) implies that

0 <
δs − k
k

<
γsδF (νE + δE)

βEννE − δF (νE + δE)
. (3.60)

Hence there are κ > 0 such that both (3.58) and (3.59) hold.

Proof of Theorem 3.3. Let us first study the case where one starts with E = F = 0 : we consider
the Filippov solution(s) to the Cauchy problem

ż = F (z, u(z)), E(0) = 0, M(0) = M0, F (0) = 0, Ms(0) = Ms0, (3.61)

where (M0,Ms0)T ∈ [0,+∞)2 is such that

M0 ≤ κMs0. (3.62)

From (3.46), (3.47), and (3.61), one gets

E(t) = F (t) = 0, ∀t ≥ 0, (3.63)

Ṁ = −δMM and Ṁs = kM − (δs − k)Ms. (3.64)

In particular, for every t ≥ 0, z(t) ∈ T1 ∩ T3. It remains to check that

z(t) ∈ T2(κ) ∀t ≥ 0. (3.65)

From (3.64), one has

d

dt
(M − κMs) = −(δM + κk)(M − κMs)− κ((1 + κ)k − δs + δM )Ms. (3.66)

From (3.59) one has

(1 + κ)k − δs + δM ≥ δM . (3.67)

Property (3.65) readily follows from (3.62), (3.66) and (3.67).
Let us now deal with the case where E + F > 0. Note that, for z ∈M(κ), this implies that

E > 0 and M > 0. (3.68)
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Until the end of the proof of Theorem 3.3 we assume that z ∈ D′ and is such that (3.68) holds.
Let h1 : D′ → R be defined by

h1(z) := βEF (1− E

K
)− (νE + δE)E. (3.69)

Its time derivative along the solution of the closed-loop system (3.45) is

ḣ1(z) = βEννEE
M

M + γsMs
(1− E

K
)

− δFβEF (1− E

K
)−

β2
EF

2

K
(1− E

K
)

+
βE(νE + δE)EF

K
− (νE + δE)βEF (1− E

K
) + (νE + δE)2E. (3.70)

For a set Σ ⊂ D′, let us denote by ∂Σ its boundary in D′. On ∂T1,

βEF (1− E/K) = (νE + δE)E

. Hence

ḣ1(z) = βEννEE
M

M + γsMs
(1− E

K
)− δF (νE + δE)E if z ∈ ∂T1. (3.71)

In particular, using (3.58),

ḣ1(z) ≤ −βEννE
M

M + γsMs

E2

K
< 0 if z ∈ ∂T1 ∩ T2(κ). (3.72)

Let us now turn to the behavior of the closed-loop system on the ∂T2(κ). Let

h2 : D′ → R

be defined by
h2(z) := M − κMs. (3.73)

Its time derivative along the solution of the closed-loop system (3.45) is

ḣ2(z) = (1− ν)νEE − δMM − κ (kM − (δs − k)Ms) , (3.74)

which leads to

ḣ2(z) = (1− ν)νEE − ((1 + κ)k − δs + δM )M if z ∈ ∂T2(κ). (3.75)

From (3.56), (3.67), and (3.75), one gets that

ḣ2(z) ≤ 0 if z ∈ T3 ∩ ∂T2(κ). (3.76)

Finally, let us study the behavior of the closed-loop system on the ∂T3. Let

h3 : D′ → R

be defined by
h3(z) := (1− ν)νEE − δMM. (3.77)

Its time derivative along the solution of the closed-loop system (3.45) is

ḣ3(z) = βEF

(
1− E

K

)
−
(
νE + δE

)
E − δM ((1− ν)νE − δMM) , (3.78)

which leads to

ḣ3(z) = βEF

(
1− E

K

)
−
(
νE + δE

)
E if z ∈ ∂T3. (3.79)

In particular,

ḣ3(z) ≤ −βE
EF

K
≤ 0 if z ∈ T2(κ) ∩ ∂T3. (3.80)

This concludes the proof of Theorem 3.3.
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3.2.3 Global asymptotic stability result

Let

κ :=
γsδF (νE + δE)

βEννE − δF (νE + δE)
, (3.81)

M :=M(κ). (3.82)

Let us recall that, by (3.60), κ, which clearly satisfies (3.58), satisfies also (3.59). In particular, by
Theorem 3.3, M is positively invariant for the closed-loop system (3.45). The main result of this
section is the following theorem.

Theorem 3.4. Assume that (3.54) holds. Then 0 is globally asymptotically stable for the closed-loop
system (3.45) in M.

Proof. The first step of the proof is the following lemma which shows that Theorem 3.4 holds with
M replaced by M(κ) provided that (3.58) is a strict inequality and that (3.59) holds.

Lemma 3.1. Let us assume that (3.59) holds and that

κ <
γsδF (νE + δE)

βEννE − δF (νE + δE)
. (3.83)

Then 0 is globally asymptotically stable for system (3.45) in M(κ).

To prove this lemma we use a Lyapunov approach. Our Lyapunov function is U : D′ → R+,
z 7→ U(z),

U(z) = δFE + εM + βE(1 + ε)F + ε2Ms, (3.84)

where ε ∈ (0, 1] is a constant which will be chosen later on. One has

U is of class C1, (3.85)

U(z) > U(0) = 0, ∀z ∈ D′ \ {0}, (3.86)

U(z)→ +∞ as |z| → +∞ with z ∈ D′. (3.87)

Let us assume for the time being that

M +Ms 6= 0. (3.88)

Then, the time derivative of U along the solution of the closed-loop system (3.45) is

U̇(z) = δF

(
βEF

(
1− E

K

)
− (νE + δE)E

)
+ ε ((1− ν)νEE − δMM)

+ βE(1 + ε)

(
ννEE

M

M + γsMs
− δFF

)
+ ε2 (kM − (δs − k)Ms) . (3.89)

In particular,

U̇(z) ≤ −εδFβEF

−
(

(νE + δE)− ε(1− ν)νE − βE(1 + ε)ννE
κ

κ+ γs

)
E

− ε (δM − εk)M − ε2(δs − k)Ms if z ∈M(κ). (3.90)

Let us now point out that (3.83) implies that

βEννE
κ

κ+ γs
< (νE + δE) . (3.91)
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From (3.90) and (3.91) one gets that for ε > 0 small enough there exists c(ε) > 0 independent of
z ∈M(κ) such that

U̇(z) ≤ −c(ε)U(z) if z ∈M(κ). (3.92)

It remains to remove assumption (3.88). Let

t 7→ z(t) = (E(t),M(t), F (t),Ms(t))
T

be a Filippov solution of the closed loop system for the initial condition z(0) = (E0,M0, F0,Ms0)T ∈
M(κ). We observe that if (E0, F0) = (0, 0), then z(0) ∈M(κ) implies that M0 > 0, from which one
gets that M(t) > 0 for every t ≥ 0. Hence (3.92) holds for every t ≥ 0. While, if (E0, F0) 6= (0, 0),
then M(t) > 0 for every t > 0. In particular, one still has (3.90) and therefore (3.92) for every t > 0.
Hence,

U(z(t)) ≤ e−c(ε)tU(z(0)), ∀t ≥ 0, (3.93)

which, together with (3.86) and (3.87), concludes the proof of Lemma 3.1.
Let us now deduce from Lemma 3.1 that

0 is a global attractor for the closed-loop system (3.45) in M. (3.94)

Let z(t) = (E(t),M(t), F (t),Ms(t))
T be a Filippov solution of the closed-loop system (3.45) for the

initial condition z(0) = (E0,M0, F0,Ms0)T ∈ M(κ). If (E0, F0) = (0, 0) then one has (3.63) and
(3.64) which leads to z(t) → 0 as t → +∞ (note that, by (3.60), δs − k > 0). Let h2 : D′ → R be
defined by

h2(z) := M − κMs. (3.95)

Note that, if for some t0 ≥ 0, h2(z(t)) < 0, then there exists κ > 0 satisfying (3.59) and (3.83) such
that z(t0) ∈M(κ). By Lemma 3.1 one then has z(t)→ 0 as t→ +∞. If there is no such t0, then

h2(z(t)) = 0 for every t ≥ 0. (3.96)

From (3.75) with κ = κ, (3.81), (3.95), and (3.96), one gets that

h3(z(t)) = 0 for every t ≥ 0, (3.97)

which together with (3.80) implies that

E(t)F (t) = 0 for every t ≥ 0. (3.98)

Since z(t) ∈ T1, (3.55) and (3.98) imply that

F (t) = 0 for every t ≥ 0. (3.99)

Then, if for some t0 ≥ 0, E(t0) = 0, one has (E(t0), F (t0)) = (0, 0), which, as already pointed out
above, implies that z(t)→ 0 as t→ +∞. It remains to handle the case where

E(t) > 0 for every t ≥ 0. (3.100)

In particular, since z(t) ∈ T3, one has, using (3.56),

M(t) > 0 for every t ≥ 0. (3.101)

Then, differentiating (3.99) with respect to time and using (3.45) and (3.47), one gets

E(t) = 0 for every t ≥ 0, (3.102)

which leads to a contradiction with (3.100). This concludes the proof of (3.94).
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In order to conclude the proof of Theorem 3.4 it just remains to check that

0 is stable for the closed-loop system (3.45) in M. (3.103)

For that, let U : D′ → R+, z 7→ U(z), be defined by

U(z) = δFE + βEF, (3.104)

which corresponds to the definition of U given in (3.84) with ε = 0. Let

z(t) = (E(t),M(t), F (t),Ms(t))
T

be a Filippov solution of the closed loop system for the initial condition z(0) = (E0,M0, F0,Ms0)T ∈
M. As above, we may restrict our attention to the case where

E(t) > 0 for every t > 0. (3.105)

Let us recall that since z(t) ∈M ⊂ T3, (3.56), and (3.105) imply that

M(t) > 0 for every t ≥ 0. (3.106)

Then, U(z(t)) can be differentiated with respect to time and one has, by (3.90) with ε = 0 and
κ = κ, and (3.81),

U̇(z(t)) ≤ 0, (3.107)

which shows that

E(t) + F (t) ≤ max{δE , δF }
min{δE , δF }

(E(0) + F (0)) , for every t ≥ 0. (3.108)

It remains to estimate M(t) and Ms(t). Using z(t) ∈ T2(κ) and (3.57), one already has

M(t) ≤ κMs(t) for every t ≥ 0. (3.109)

Using (3.45), (3.46), (3.47), (3.60), (3.81), and (3.109), one has

Ṁs(t) ≤ (kκ+ k − δs)Ms(t) ≤ 0 for every t ≥ 0. (3.110)

In particular, using also (3.109),

Ms(t) ≤Ms(0) and M(t) ≤ κMs(0) for every t ≥ 0. (3.111)

This concludes the proof of (3.103) and, therefore, of Theorem 3.4.

3.2.4 Numerical simulations

In this section, we will show numerical simulations of the dynamics when we apply feedback (3.46).
We fix z0 = (21910, 5587, 13419, 0) /∈M. We now compute condition (3.54) according to the param-
eter set in the table 1. This gives 0.11843 < k < 0.12. We take k = 0.119. The following figures
show the evolution of the states when condition (3.54) holds.
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(a) Plot of E,M and F (b) Plot of Ms

(c) Plot of the control u

Figure 3.3. (a): Plot of E,M and F for system (2.43)-(2.46) when applying feedback (3.46). with
the initial condition z0 /∈ M and final time T = 800. (b): Plot of Ms for final time T = 4000 when
we apply the backstepping feedback (3.46). (c): Plot of the feedback control function (3.46).

Remark 3.3. We observe that the convergence time of the states E,M and F is longer than when
we applied the backstepping feedback control (3.23). In this case, with tf = 700 days,∫ tf

0
u(t) dt ≈ 17, 91 millions. (3.112)

We take several initial conditions randomly and plot the resulting dynamics in figure 3.4,

Figure 3.4. Plot of ‖x(x0, t)‖1 when applying the feedback (3.46) with several randomly chosen
initial conditions x0.

3.2.5 Robustness test

To analyze the robustness of our feedback against variations of the parameters, we carry out some
variation of the parameters (new values) in table 2. The results are summarized in table 2. We
observe that very small perturbations of the parameters destabilize the origin.
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Old parameters New Parameters Simulation

• νE= 0.05

• δE= 0.03

• δF= 0.04

• δM = 0.1

• δs = 0.12

• βE =8

• νE= 0.08

• δE= 0.046

• δF= 0.033

• δM = 0.12

• δs = 0.139

• βE =11

• Plot of E,M and F

Table 2: Robustness test

3.3 Feedback laws depending only on wild male mosquitoes

In the application of the technique it might also be possible to estimate only fertile males. For
instance, in MRR experiments, sterile mosquitoes are identified by the presence of a marker, such as
a dye or a fluorescent protein, which has been applied before their release (although, at present, it is
not always easy to do this for all the mosquitoes released in field interventions). Nevertheless, since
the technology is evolving very fast, it is possible that it can become standard practice in the near
future (for instance, we recall that PCR analysis of the captured mosquitoes is already currently
used thanks to genetic bar-coding). Thus, it is interesting to set up the mathematical techniques to
deal with this situation. Therefore, we consider in this section the case where the feedback depends
only on the state M . Consider the closed-loop system

ż = F (z, u(z)), z = (E,M,F,Ms)
T ∈ D′, (3.113)

where

u(z) = λM (3.114)

and

F (z, u(z)) =


βEF

(
1− E

K

)
−
(
νE + δE

)
E

(1− ν)νEE − δMM
ννEE

M
M+γsMs

− δFF
λM − δsMs

 , (3.115)

The offspring number related to this system is

R2(λ) :=
δsβEννE

δF (νE + δE)(δs + γsλ)
. (3.116)

We assume that

R2(λ) < 1. (3.117)

Note that this inequality is equivalent to

λ >
(βEννE − (νE + δE)δF )δs

γs(νE + δE)δF
. (3.118)

Let us point out that the closed-loop system (3.113) is exactly the closed-loop system (3.45) if one
performs the following change of variables (with natural notations):

k(3.45) = λ(3.113) and δ(3.45)
s = δ(3.113)

s + λ(3.113). (3.119)

Hence Theorem 3.3 and Theorem 3.4 lead to the following theorem.

Theorem 3.5. Assume that (2.55) and (3.118) hold. Then M is positively invariant for the closed-
loop system (3.113) and 0 is globally asymptotically stable for the closed-loop system (3.113) in M.
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3.3.1 Numerical simulations

In this section, we present the numerical evolution of the states when we apply feedback (3.46). We
fix as initial condition z0 = (21910, 5587, 13419, 0) /∈ M and K = 22200 ha−1 We now compute
condition (3.54) according to the parameters set in table 1. This gives λ > 9.06. We take for the
simulation λ = 22.

(a) Plot of E,M and F (b) Plot of Ms

(c) Plot of the control u

Figure 3.5. (a): The results of the simulation E,M and F for system (2.43)-(2.46) when applying
the feedback (3.114) with the initial condition z0 /∈ M for final time T = 400 and λ = 22. (b): Plot
of Ms for final time T = 400. (c): Plot of the control function (3.114).

Remark 3.4. Notice that with tf = 400 days,∫ tf

0
u(t) dt ≈ 17.28 millions. (3.120)

In figure 3.6 we take several initial conditions randomly for λ = 22 .

3.3.2 Robustness test

We test the robustness using the same protocol as in section 3.1.2. Figure 3.7 shows the results for
200 randomly chosen initial conditions in [0, 10K]4.
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Figure 3.6. Plot of ‖x(x0, t)‖1 when applying the feedback (3.114) with several randomly chosen
initial conditions x0.

Figure 3.7. Robustness test when applying the feedback law (3.114) with λ = 22.

We observe that feedback (3.114) is robust with respect to changes of parameters: for rather
large perturbations on the parameters it stills globally stabilizes the dynamics at the extinction
equilibrium.

4 Comparison of the feedback laws

In this section, we use numerical simulations to carry out a comparative study of the feedback control
(3.23) and (3.114). We consider that the environmental capacity K = 22200 ha−1 and that the initial
condition is the persistence equilibrium. Our comparison criteria are the intervention time and the
control cost obtained when applying the different feedback laws. The results are presented in Tables
3 and 4 where the intervention is presented until E = K

100 . λ is used to regulate the control feedback
law (3.114) while the regulation parameters for the backstepping control are α, θ and βs = 1 Day−1.

Table 3 shows the intervention time and control cost for different values of λ. In table 4, we
fix α = 80 and present the results obtained for different values of θ. Note that since α and θ are
regulatory values for control (3.23), a study can be carried out to find their optimal values in order
to have a better value of the control (3.23) presented here.

Remark 4.1. For λ =10 and for θ =170 we obtain nearly the same control cost for the two different
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uλ Intervention

λ 9.06 10 11 12 13 14 15 16 17 18 19 20 21 22

Tλ (Day−1) 667 477 424 390 367 350 336 326 318 311 305 300 295 291

(
∫ T
0 uλ) 8.24e6 8.61e6 9.14e6 9.72e6 1.03e7 1.09e7 1.16e7 1.22e7 1.29e7 1.35e7 1.42e7 1.48e7 1.55e7 1.61e7

Table 3: Intervention time and control cost for different values of λ

uθ Intervention

θ 100 110 120 130 140 150 160 170 180 190 200 210 220

Tθ (Day−1) 484 445 417 396 379 366 355 345 338 331 325 319 315

(
∫ T
0 uθ) 6.49e6 6.74e6 7.02e6 7.33e6 7.65e6 7.98e6 8.32e6 8.67e6 9.02e6 9.38e6 9.74e6 1.01e7 1.04e7

Table 4: Intervention time and control cost for different values of θ

interventions, but the convergence time for the uθ intervention is smaller. This means that for the
same control cost, the uθ intervention saves time.

For (λ, θ) = (13, 150) and (17, 210), the two interventions give approximately the same conver-
gence time, but the cost is least for the uθ intervention. We conclude that for the same convergence
times, the uθ intervention offers a better cost.

In conclusion, we note that thanks to the α and θ control parameters, despite the non-linearity of
the backstepping control, it offers a better result in terms of both convergence time and control cost.

5 Conclusion

We have built feedback laws that stabilize the SIT dynamical model and have studied their robustness
with respect to changes of parameters. We study three types of feedback laws:

1) a backstepping one in section 3.1.

2) one depending linearly on the total number of male mosquitoes, M +Ms in section 3.2.

3) one depending linearly on the number of wild male mosquitoes M in section 3.3.

For the first one we were able to prove the global asymptotic stability. Based on the analysis
done in section 4 we see that this feedback law gives a better result in terms of both convergence
time and control cost. However, it depends on three variables (E,M and Ms) which may be difficult
to measure in the field.

For the second one, we proved the global asymptotic stability only in a certain invariant set
M. We conjecture that this feedback gives global stability and we show numerical evidence for this
conjecture (see figure 3.4). The advantage of this feedback law is that it depends only on the total
number of male mosquitoes M +Ms which is a natural quantity to measure in the field.

However, this feedback law has an important drawback due to the narrow interval allowed for
the gain α of the feedback in (3.54). This might pose a problem for the robustness of this method
relative to the variations of the biological parameters.

For the third one, we proved the global asymptotic stability only in a certain invariant set M.
We also conjecture that this feedback gives global stability and we show numerical evidence for this
conjecture (see figure 3.6). The main difference w.r.t. the previous feedback law is that now the
method is robust w.r.t. variations of the biological parameters. However, the drawback in this case
is that M should be harder to measure in the field.

Changes of the environment in time, and in particular seasons (both in tropical and in temperate
climates), are known to have a big impact on the mosquito populations and it will thus be important
to take them into account in our future work.

Also in our work, we did not consider the pest population’s spatial distribution. This has again an
impact in practical terms and has been considered in several mathematical works and, in particular,
those concerning invasion wave blocking [7], the rolling carpet strategy [8] or a space dependent
mosquito carrying capacity [4]. In our future works, we will construct observers that can estimate
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the state from easily measurable variables (after this paper was submitted a first observer construction
was done in [1]) and we will also integrate the spatial aspect in this dynamical model. After the
first version of this paper, other output feedback results using reinforcement learning were obtained
in [2, 3].

As stated in the introduction, although the paper is mostly written for the specific case of
mosquitoes, our results can be extended to the case of other pests for which the Sterile Insect
Technique is pertinent.
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in control theory: A new approach to mathematical problem solving. In The 3rd Workshop on
Mathematical Reasoning and AI at NeurIPS’23, 2023.

[3] Kala Agbo bidi, Jean-Michel Coron, Amaury Hayat, and Nathan Lichtlé. Reinforcement learning
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[6] Lúıs Almeida, Michel Duprez, Yannick Privat, and Nicolas Vauchelet. Optimal control strategies
for the sterile mosquitoes technique. Journal of Differential Equations, 311:229–266, 2022.
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[30] Martin Strugarek, Hervé Bossin, and Yves Dumont. On the use of the sterile insect release
technique to reduce or eliminate mosquito populations. Applied Mathematical Modelling, 68:443–
470, 2019.

[31] Marc JB Vreysen, Jorge Hendrichs, and Walther R Enkerlin. The sterile insect technique as a
component of sustainable area-wide integrated pest management of selected horticultural insect
pests. Journal of Fruit and Ornamental Plant Research, 14:107, 2006.

[32] World Health Organization. Dengue and severe dengue - global update, 2023. Accessed: 2024-
08-17.

[33] HMl Yang, MDLDG Macoris, KC Galvani, MTM Andrighetti, and DMV Wanderley. Assessing
the effects of temperature on the population of aedes aegypti, the vector of dengue. Epidemiology
& Infection, 137(8):1188–1202, 2009.

30


	Introduction
	Mathematical modeling of mosquito population dynamics
	Mathematical modeling of wild mosquito population dynamics 
	SIT model in mosquito population dynamics 

	Global stabilization by feedback of the extinction equilibrium
	Backstepping feedback
	Numerical simulations
	Robustness test

	Feedback laws depending only on the total number of male mosquitoes
	Equilibria of the closed-loop system
	Invariant set of the closed-loop system
	Global asymptotic stability result
	Numerical simulations
	Robustness test

	Feedback laws depending only on wild male mosquitoes
	Numerical simulations
	Robustness test


	Comparison of the feedback laws
	Conclusion

