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13 Abstract – Self-sustained musical instruments, such as wind or bowed string instruments, are complex
14 nonlinear systems. They admit a wide variety of regimes, which sometimes coexist for certain values of the
15 control parameters. This phenomenon is known as multistability. With fixed parameters, the selection of a
16 regime and the shape of the transient depend not only on the values of the control parameters, but also on
17 the initial conditions. In this article, we focus on the statistical influence of initial conditions on regime selection
18 and transient duration. An existing sample-based method called basin stability is presented to calculate the
19 probability of occurrence of each regime. A second sample-based method is proposed for the calculation of
20 the probability density function of transient durations. Additionally, a study taking into account specific
21 control scenarios is presented to highlight the influence of the distribution of initial conditions considered for
22 the statistical methods. These methods are presented on a Van der Pol oscillator seen as a prototypical musical
23 instrument model. They are then applied to a physical model of trumpet, to demonstrate their potential for a
24 high dimensional self-oscillating musical instrument. Finally, their interest regarding questions of playability is
25 discussed.
26
27 Keywords: Self-sustained musical instruments, Multistability, Basin stability, Transient duration, Playability28

29 1 Introduction

30 Musical instruments are complex dynamical systems.
31 Some of them are self-sustained oscillators, meaning that
32 a continuous energy supply can make them oscillate. Wind
33 instruments and bowed string instruments belong to this
34 category. These instruments admit a wide variety of
35 regimes, which sometimes coexist for certain values of
36 control parameters. This is known as multistability.
37 Multistability is a common phenomenon in self-sustained
38 oscillators. It has been observed experimentally, theoreti-
39 cally and numerically on a wide variety of instruments,
40 e.g., single and double reed instruments [1–3], flutes [4],
41 brass instruments [5], vocal folds [6] and bowed string
42 instruments [7]. There are multiple works focusing on map-
43 ping the operating regimes of these instruments [8]. We find
44 in [9, 10] among the first curves representing the evolution
45 of the amplitude of a solution as a function of a control
46 parameter. The stability of these solutions is also studied
47 few years later [11]. A seminal work of Dalmont et al. [12]
48 represents bifurcation diagrams of self-sustained musical

49instruments. These diagrams show the evolution of known
50solution properties as a function of one or more control
51parameters. The stability of these solutions is given, as well
52as some key features, such as amplitude and fundamental
53frequency for periodic solutions. Thanks to these diagrams,
54one can predict the behavior of an instrument whose control
55parameters vary in a quasi-static manner – i.e., slowly in
56relation to the system’s rate of evolution. In the case of
57multistability, bifurcation diagrams predict hysteretic
58behaviors, such as those of reed and brass instruments
59[13] or flute-like instruments [14]. Some unexpected regimes
60are also predicted with this method, such as the ghost note
61in brass instruments [15] or the wolf tone of the cello [16].
62Nevertheless, it is much more difficult to predict the regime
63of a multistable instrument when the control parameters
64vary rapidly. In particular, the blowing pressure dynamics
65are shown to have an influence over the regime selection
66in flute-like instruments [17]. Similar results are shown in
67[18] for the saxophone.
68Similarly, once the control parameters are fixed, the
69time required to reach the steady state depends on the
70previous evolution of the control parameters. This phe-
71nomenon was observed by [19, 20] on the clarinet. Generally*Corresponding author: vergez@lma.cnrs-mrs.fr
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1 speaking, the duration of attack transients [7, 21] or transi-
2 tions between notes [22] are important topics, since the
3 quality of a transient perceived by a musician or a listener
4 depends greatly on its characteristics and duration [23]. The
5 duration of the transients that gives rise to a sound is thus
6 studied on multiple self-sustained instruments, from the
7 trombone [24] to the cristal Baschet [25], using linear stabil-
8 ity analysis. Like the prediction of the playing regime, the
9 duration of the transient is estimated for control parameters
10 varying in a quasi-static manner. Linear stability analysis
11 cannot predict dynamic phenomena such as those observed
12 by [19, 20]. Finally, despite their high efficiency in the quasi-
13 static regime, current methods for analyzing self-oscillating
14 instruments are limited when considering rapidly varying
15 control parameters. By taking these rapid variations into
16 account, the dimensionality of the problem becomes infinite
17 since the parameters can follow any time series. Conse-
18 quently, it motivates researchers to limit their studies to
19 specific transient scenarios. For example, several authors
20 consider pressure ramps of variable slope and study the
21 influence of the pressure rise rate on the selected regime
22 [26, 27] or the transient duration [20]. In this article, we
23 study rapid variations in control parameters through
24 stochastic initial conditions, in cases of multistability
25 between an equilibrium and a periodic regime. We are
26 interested in situations where the musician moves quickly
27 from one quasi-static configuration to another, as is the case
28 during an attack [21, 28], a break or a change of note
29 [22, 29, 30]. Quasi-statistical analysis is not valid during this
30 transition and the new quasi-static configuration is studied
31 under unknown initial conditions. With this in mind, we
32 study the statistical influence of initial conditions on the
33 selected regime and on the duration of the transient. The
34 probability of obtaining each regime is estimated with an
35 already existing method called basin stability [31], and an
36 original approach is proposed to determine the probability
37 of obtaining each transient duration. Finally, the distribu-
38 tions of initial conditions considered for these statistical
39 methods are discussed. In particular, initial conditions
40 generated by specific transient control scenarios are studied.
41 The remainder of the document is organized as follows.
42 The system chosen to introduce the methods is given in
43 Section 2. Section 3.1 focuses on the basin stability metric
44 and its use for musical instruments. The transient duration
45 is investigated in Section 3.2 and the influence of the
46 distribution of initial conditions is explored in Section 4.
47 To highlight the interest of the methods on more sophisti-
48 cated and high dimensional systems, an application to a
49 physical model of trumpet is presented in Section 5. Differ-
50 ent methods and results are discussed in Section 6. Perspec-
51 tives and conclusions are drawn in Section 7.

52 2 Minimal multistable system

53 Most physical models of self-sustained musical instru-
54 ments have no exact analytical solutions for transient or
55 steady-state regimes. Therefore, numerical methods are
56 often used to study them, such as finite differences [32] or

57harmonic balance method [33]. A number of authors have
58proposed less detailed models with exact analytical solu-
59tions and only few state variables. These simplified models
60help to investigate the mechanisms behind self-oscillations
61[34]. In order to compare our statistical approach with exact
62analytical results, we have chosen to illustrate our methods
63on such a system. In this article, we focus on a Van der Pol
64oscillator with fifth-order nonlinearity, as described in [35].
65This oscillator is characterized by a region of multistability,
66where both an equilibrium and a periodic solution are
67stable. This feature can also be observed on several musical
68instruments, such as saxophones [27] or brass instruments
69[5]. Its phase space is of dimension two and can therefore
70be displayed simply, enabling more detailed dynamic
71analysis. A technical publication [36] presents the musical
72interest of this system and provides a demonstrator solving
73it in real time (https://zenodo.org/records/8413627). Note
74that even though the global behavior of musical instru-
75ments is varied and rich, the system studied here can be
76obtained by change of variables and polynomial expansions
77from any system presenting this type of multistable behav-
78ior. It is only used to illustrate the interest of a statistical
79approach to predict the behavior of a multistable system
80under transient excitations.
81The motion of the considered oscillator is given by the
82following equation: 83

€xþ �lþ rðx2 þ _x2Þ þ mðx2 þ _x2Þ2� �
_xþ x ¼ 0: ð1Þ 8585

86
87We impose r = �1.5 and m = 0.1 in order to obtain a
88multistable saxophone-like or brass-like behavior. The
89parameter l is the control parameter of this simple “musical
90instrument” and its effect is analogous to the blowing pres-
91sure for wind instruments [36]. A harmonic balance method
92with only one harmonic gives the amplitude X of solutions
93of the form: 94

x ¼ X cosðt þ uÞ: ð2Þ 9696
97
98There are up to three solutions, depending on the value of l: 99

XEq ¼ 0;

X 2pþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�rþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 4lm
p
2m

s
if l � lSN;

X 2p� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4lm

q
2m

s
if lSN � l � lH;

8>>>>>>><
>>>>>>>:

ð3Þ

101101

102with lH = 0 and lSN ¼ � r2

4m. These solutions consist of
103an equilibrium (XEq) and two 2p-periodic solutions
104(X2p+ and X2p�), which are represented on a bifurcation
105diagram in Figure 1. This oscillator shows an inverse Hopf
106bifurcation at l = lH and a saddle-node bifurcation at
107l = lSN. Between these two bifurcations, the system is
108multistable: both the equilibrium XEq and the largest peri-
109odic solution X2p+ are stable. Saxophones [27] and brass
110instruments [5] are likely to present this bifurcation
111sequence and therefore this multistability behavior.
112A traditional bifurcation diagram only depicts the
113steady state solutions. The influence of initial conditions
114on the transient and the steady-state behavior is concealed.
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1 This influence can be seen on a phase plane for a given value
2 of the control parameters. In Figure 2, we show the phase
3 plane of the fifth order Van der Pol oscillator for l = �3,
4 which is a situation of multistability. For the remainder
5 of the paper, we use this value each time we need to choose
6 a specific l for illustration. The equation of motion equation
7 (1) is numerically integrated with the function ode45 of
8 Matlab [37], for three initial states very close to one
9 another. In that case, the slight change in initial conditions
10 leads the system either to the equilibrium (in blue) or to the
11 stable limit cycle (in red). The two oscillating trajectories
12 have different transient durations: one is almost instanta-
13 neous while the other lasts approximately one period.

14In short, Figures 1 and 2 illustrate that the steady state
15and the transient duration of this minimal self-sustained
16musical instrument are sensitive to the initial conditions
17and to the control parameter value around a bifurcation.
18This sensitivity is merely a mark of non linearity and is
19shared by most non linear dynamical systems. In the
20Sections 3.1 and 3.2, we present two statistical approaches
21to predict the selected regime and the transient duration for
22such a system.

233 Methods
243.1 Basin stability

25Some self-sustained musical instruments are multi-
26stable. In such a case, once their control parameters are
27settled, their steady state depends exclusively on their
28initial state. The subset of initial conditions leading to a
29specific attractor is called its basin of attraction [38, 39].
30In Figure 3, we depict the basins of attraction of the fifth
31order Van der Pol oscillator, for l = �3. The basin of the
32equilibrium is shaded in blue and the basin of the periodic
33solution is shaded in red. In that case, the two basins are
34separated by the unstable limit cycle of amplitude X2p�,
35plotted in broken line and given in equations (1) and (3).
36In the general case, however, the geometry of a basin of
37attraction can be more complex and its boundaries difficult
38to find. We discuss this problem in Section 6. Moreover, in
39the scope of this article, we consider that the initial condi-
40tions resulting from a quick change in the control parame-
41ters are unknown. They are randomly taken within a
42subset of the initial state space. Since the initial state is
43unknown, the precise geometry of the basins of attraction
44does not suffice to predict its playing regime.

Figure 1. Bifurcation diagram of a fifth order Van der Pol
oscillator equation (1) with respect to the control parameter l,
with r = �1.5 and m = 0.1. Stable solutions are represented with
continuous lines, unstable solutions in broken lines and bifurca-
tions are indicated with star markers. The region of multista-
bility is shaded in grey.

Figure 2. Illustration of the sensitivity to the initial conditions,
for the Van der Pol oscillator, regarding the steady state regime
and the transient duration. On the left side, the phase plane of
the system for l = �3, with trajectories coming from three close
initial states (indicated with star markers). On the right side, the
evolution of the position x with respect to time (dimensionless).

Figure 3. Basins of attraction of the fifth order Van der Pol
oscillator (l = �3). Initial conditions taken in the red shaded
area give rise to the periodic solution whereas initial conditions
taken in the blue shaded area give rise to the equilibrium
solution.
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1 To take into account the uncertainty of the initial state,
2 we propose to use the notion of basin stability, a probabilis-
3 tic metric introduced by [31]. The principle is to evaluate
4 the size of the basins of attraction with respect to the total
5 size of the considered space of initial states. The result gives
6 the probability to reach each attractor, considering a ran-
7 dom initial state. Formally, considering a subset of interest
8 of the space of initial conditions Q, an attractor A, its basin
9 of attraction B and a probability density function q, the
10 basin stability SBðAÞ is defined as follows:
11

SBðAÞ ¼
Z
Q

IBðXÞqðXÞdX; ð4Þ
1313

14 where15

IBðXÞ ¼ 1; ifX 2 B;

0; otherwise:

�
ð5Þ

1717
18
19 The probability density function q can follow a specific dis-
20 tribution if the random choice of initial conditions is not
21 uniform. This aspect is discussed in Sections 4 and 6. Due
22 to the nature of q as a probability density function over
23 Q, the basin stability metric is always comprised between
24 0 and 1. SBðAÞ ¼ 0 indicates that the basin of attraction
25 of the solution is statistically never reached. SBðAÞ ¼ 1
26 means that the basin of attraction of A occupies all of the
27 region of interest Q, and that A is reached by every trajec-
28 tory. All the illustrations of Section 3 are realized with a
29 uniform distribution. The volumic integral in the expression
30 equation (4) of SB is rarely calculable exactly and we rather
31 compute the corresponding discrete sum. In other words, we
32 take N random samples in Q and we evaluate the propor-
33 tion of samples belonging to the studied basin of attraction.
34 The basin stability estimation, which is noted ŜB, then
35 writes:
36

ŜBðAÞ ¼ M=N ; ð6Þ3838

39 where M is the number of samples belonging to B, the
40 basin of attraction of A. As pointed out in [31, 40, 41], this
41 computation corresponds to N independent trials with
42 probability of success SB. The resulting standard error
43 due to sub sampling writes:
44

errðŜBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SBð1� SBÞ

N

r
: ð7Þ4646

47
48 In practice, SB is unknown so it is replaced by its estimation
49 ŜB in equation (7). This error only accounts for sub-sam-
50 pling. It is interesting to notice that the error does not
51 depend on the dimension of the state space. As a result,
52 the basin stability is a metric suitable for low dimension
53 problems as well as for high dimension ones. In general,
54 for more complex systems, the basin boundaries are
55 unknown and the classification method would consist in
56 time integrating the system and observing toward which
57 attractor it would converge. Such strategy is illustrated in
58 Figure 4. However, for this minimal multistable system,
59 the basin boundary is analytically known: the boundary is
60 the unstable periodic solution whose L2-norm X2p� is given

61in equation (3). As a result, it is much faster to classify the
62samples with this analytical expression rather than with
63time integrations.
64Figure 5 gives the basin stability of the Van der Pol
65oscillator. To compute it, we arbitrarily choose a subset of
66the phase space Q which includes all the attractors and
67which is independent of l. For l 2 [�7, 1] as in Figure 1,
68the subset Q ¼ ð½�4; 4� � ½�4; 4�Þ meets these condi-
69tions. To uniformly sample Q, we use a Latin Hypercube
70Sampling of 100 samples. The basin stability of the equilib-
71rium is plotted in blue and the one corresponding to the
72periodic solution in red. The error bars correspond to the

Figure 4. Illustration of the classification method in the general
case. The plotted trajectories are obtained with time integra-
tions starting from the stars as initial conditions. Red trajecto-
ries are inside the basin of attraction of the stable periodic
solution X2p+ whereas the blue ones belong to the basin of the
equilibrium XEq.

Figure 5. Basin stability of the two stable solutions computed
from 100 samples. In red: basin stability of the periodic solution.
In blue: basin stability of the equilibrium. Error bars correspond
to the standard error of the size estimation of the Monte-Carlo
method due to sub-sampling equation (7). In black: basin
stability computed with the analytic expression of the basin
boundary (circle of known diameter X2p� given in (3)). The
region of multistability is shaded in grey.
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1 standard error given in equation (7). In addition, within the
2 multistability region, i.e., for lSN � l � lH, the exact basin
3 stabilities write:
4

SBðX EqÞ ¼ pX 2
2p�

areaðQÞ ;
SBðX 2pþÞ ¼ 1� SBðX EqÞ:

8<
: ð8Þ

66
7
8 These exact solutions are represented with black lines. They
9 mainly remain inside the error bars estimated with ŜB (i.e.,
10 SB replaced by ŜB in Eq. (7)). This validates the error esti-
11 mation of the sample-based method given in equation (7).
12 Outside the multistability area, the only stable solution
13 has a basin stability equal to 1 whereas the other one has
14 a basin stability equal to 0. Regarding this metric, non
15 existing solutions and unstable solutions are identical and
16 have a zero basin stability. Inside the multistability area,
17 both solutions have a non zero basin stability. The stability
18 of the periodic solution increases with l whereas the stabil-
19 ity of the equilibrium decreases. One can observe that SB is
20 continuous at the Hopf bifurcation but discontinuous at the
21 saddle-node bifurcation. Indeed, in the first case, the basin
22 of attraction of the equilibrium shrinks progressively until it
23 becomes a dot in the phase space for l = lH. In the second
24 case, the periodic solution suddenly disappears at lSN, even
25 though its basin of attraction had previously occupied a
26 large part of Q. The value of SB corresponds to the proba-
27 bility to obtain the related solution, given a random initial
28 state inside Q. If a musician were to impose uniformly ran-
29 dom initial conditions in Q ¼ ð½�4; 4� � ½�4; 4�Þ, Figure 5
30 indicates that he/she would have at least a 60% chance of
31 reaching the periodic regime in the steady state. However,
32 the assumption of a musician peeking a random initial
33 condition uniformly seems oversimplified. This topic is
34 discussed in Sections 4 and 6.
35 Overall, the basin stability indicates which values of the
36 parameters (here, the only parameter is l) fosters one solu-
37 tion or another. It gives the probability to produce a specific
38 regime, considering a subset Q of the phase space and a
39 probability density function q of Q. The result depends
40 greatly on the choice of Q and q. The standard error of this
41 metric depends on the number of samples and on the rela-
42 tive size of the studied basin of attraction. It does not
43 depend on the phase space dimension however and thus is
44 very well adapted to high but finite dimensional systems.

45 3.2 Transient duration

46 In music, transient phenomena play a crucial role in
47 sound and instrument discrimination [42–44]. Musicians
48 may also have expectations concerning the characteristics
49 of these transients, and in particular concerning their
50 duration. For example, Guettler and Askenfelt [23] high-
51 light the importance of the type and duration of violin
52 attacks on their quality as perceived by professional string
53 players. Several authors [21, 22, 25, 45] assume that musi-
54 cians and instrument makers look for short transitions,
55 whether for the onset or for sequences of linked notes.
56 In this paper, we thus consider the reaction time of an

57instrument – i.e., its tendency to produce short transients –
58as a playability criterion. In self-sustained instruments, the
59transient depends on the parameters of the system but also
60on the initial conditions, as can be seen on Figure 6. In this
61figure, the evolution of the fifth order Van der Pol oscillator
62has been computed for a large number of random initial
63states, all other things being equal. In Figure 6a, the trajec-
64tories are represented in the phase plane whereas in
65Figure 6b, the same trajectories are represented with respect
66to time. The transient part of a trajectory is defined between
67its initial state and the moment it reaches the neighborhood
68of an attractor. The transient duration is denoted s here-
69after. The neighborhoods of the two attractors are shaded
70in grey and are defined at a distance e in L2-norm from
71the attractor. Although the size of these neighborhoods
72has an impact on the transient duration results, for now
73it is arbitrarily set to e = 0.1. Figure 6b highlights the
74diversity of transient durations that can be obtained only

Figure 6. (a) Phase trajectories and (b) time evolution of the
associated norm of the system’s state for 300 random initial
conditions. Blue trajectories lead to the equilibrium and red
trajectories lead to the periodic solution. The neighborhoods of
the two stable solutions are shaded in grey. They are defined at a
distance e = 0.1 in L2-norm from the stable solutions.
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1 by picking different initial conditions. Some tendencies seem
2 to appear. For instance, for this distribution of initial condi-
3 tions, trajectories leading to the equilibrium are usually
4 longer than those leading to the periodic solution.
5 These tendencies stand out when the distributions of
6 the transient durations are represented graphically. Infor-
7 mation on a distribution can be displayed as in Figure 7.
8 The upper panel gives the cumulative distribution function,
9 i.e., the proportion of trajectories with a transient duration
10 shorter than the value si represented in abscissa. The two
11 lower panels depict the corresponding violin plots [46, 47],
12 where the box plots give the extreme values (tips of the
13 whiskers), the median and the two quartiles, and the
14 shaded curves represent the probability density function
15 of the distributions. To compute the latter, we used the
16 kernel density estimator of Matlab (ksdensity). This statis-
17 tic information is calculated for each attractor separately.
18 As in Section 3.1, we use a Latin Hypercube Sampling to
19 uniformly explore the space of initial states. With this
20 sampling, we do not control the exact number of samples
21 in each basin of attraction, but it can be estimated with
22 the basin stability SB previously computed. As a result,
23 for lowest values of SB, the statistical transient analysis
24 relies on only few samples and may not be very representa-
25 tive. It should be remembered that such misrepresentations
26 occur only on highly improbable regimes. If a specific

27case calls for in-depth study of these regimes, the region
28of interest Q can be adapted, leaving the method otherwise
29unchanged. The cumulative distribution function lends
30itself well to interpretation in musical context, where one
31could define a longest acceptable transient duration. The
32probability of the transient being shorter than this upper
33limit can be read directly on the cumulative distribution
34function, under the hypothesis of random initial conditions
35following a uniform law.
36We use the violin plot representation in Figure 8 to
37depict the evolution of the transient duration distribution
38with respect to the control parameter l. Plotting the
39probability density function over the boxplot is particularly
40interesting when there are multiple maxima in the distribu-
41tion since multiple maxima are not visible on a box plot.
42For instance, some examples of bi-modal distributions can
43be observed around the saddle-node bifurcation (for
44l � lSN).
45Figure 8 shows that most transients leading to the
46periodic solution are very short compared with its period
47(T = 2p). Indeed, the violin plots are centered around
48low values of s (a magnified view for l = �3 is visible in
49Fig. 9). However, the maximum transient durations are
50markedly larger than the median duration, up to 800 times
51longer for l = �0.26. This indicates that, for most values of
52l, a few initial conditions have extremely long transients.

Figure 7. (Top) Cumulative probability function of the tran-
sient duration distribution. In ordinate, the proportion of
trajectories with a transient duration below the value given in
abscissa. (Bottom) Corresponding violin plots. The box plots
indicate the extreme values, the median, the upper and lower
quartiles whereas the curves around represent the probability
density function of the transient duration distribution. A latin
hypercube of 1000 samples is used and the transient durations
are defined with e = 0.1.

Figure 8. Violin plots of the transient duration with respect to
the control parameter l. In blue: equilibrium. In red: periodic
solution. Number of samples: N = 1000. Panel (b) is a magnified
version of the transients leading to the periodic solution. The
region of multistability is shaded in grey.
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1 In fact, these particular initial states are very close to the
2 unstable limit cycle. In that case, the trajectory follows
3 the unstable limit cycle for some time while slowly diverging
4 from it, which lengthens the transient duration. These rare
5 and very long durations have particularly large values in
6 the vicinity of the Hopf bifurcation. For the equilibrium,
7 transient durations are longer and distributed more uni-
8 formly for all the values of l. Outside the vicinity of the
9 two bifurcations, the transient durations leading to both
10 solutions statistically decrease as l increases. This is coher-
11 ent with the fact that �l is the linear part of the damping.
12 As l increases, the system becomes less and less damped
13 until l eventually becomes positive and energy is added
14 to the system. Near the saddle-node bifurcation, this trend
15 does not apply. The equilibrium becomes the only stable
16 solution but its transient duration globally increases around
17 lSN. This is a usual phenomenon around a saddle-node
18 bifurcation. It is interpreted by Strogatz in [38] as the
19 remaining ghost of a nearby attractor that does not exist
20 anymore. Around the Hopf bifurcation, the periodic solu-
21 tion becomes the only stable solution but its maximum
22 transient duration significantly increases. However, apart
23 from these very few long transients, Figure 8b shows that
24 the overall trend does not change significantly for the peri-
25 odic solution around the Hopf bifurcation. Considering ini-
26 tial conditions chosen from a uniform distribution, these
27 long transients are highly improbable.

28 4 Influence of the distribution of initial
29 conditions

30 In order to provide a more meaningful analysis in a con-
31 text of musical performance, we consider another distribu-
32 tion for the initial conditions, informed by temporal
33 evolutions of the control parameter. More precisely, we
34 now consider initial conditions resulting from a transient

35variation of the control parameter l, just before it reaches
36a constant target value. Our goal is therefore to consider
37what we call hereafter a “transient-informed” distribution
38and to analyze how it affects the basin stability results.
39To obtain a transient-informed distribution, we compute
40the time evolution of the system under several transient
41variations of l. These transient-informed distributions
42could also be used to compute the transient duration statis-
43tics, but we only focus on the basin stability here, since the
44results are more remarkable.

454.1 Control scenarios

46Systems such as the fifth order Van der Pol oscillator
47presenting an inverse Hopf bifurcation followed by a
48saddle-node bifurcation produce a sound of non-zero ampli-
49tude when the control parameter exceeds the Hopf bifurca-
50tion (this is the case for the trumpet and the saxophone for
51certain sets of parameters). Nevertheless, it is possible to
52reduce the sound amplitude afterward by decreasing the
53control parameter under the Hopf bifurcation value, into
54the multistability region. To produce a low-volume sound
55at the onset, one can attempt to realize this gesture quickly
56by reducing the control parameter, and move the system
57into the multistable region before the limit cycle is attained.
58However, this strategy may fail if the system remains too
59close to the equilibrium during the transient. It would
60become trapped in the equilibrium’s basin of attraction
61when the parameter stops varying, which would result in
62no stable sound being produced. We consider piecewise
63linear control scenarios, as depicted in Figure 9. These
64scenarios are defined by four parameters: their initial
65value l0, their maximal value lmax that corresponds to
66what can be called the overshoot value, their final value lend
67at which the basin stability is computed and their duration
68satt that corresponds to the “attack duration”. For simplic-
69ity, we choose the same slope (in absolute value) for
70the increasing and the decreasing phases (before and after
71the overshoot).
72The order of magnitude of l0 is based on the bifurcation
73diagrams of the trumpet models presented in [5]. The objec-
74tive is to give as much importance to the multistability as in
75these trumpet models. Therefore l0 is set to have a similar
76ratio between the size of the multistability region [lSN, lH]
77and the size of the stability region of the equilibrium [l0, lH]
78as in the models of [5]. l0 is then set to l0 =�25. At the end
79of the attack, l = lend and the basin stability is computed
80for this value of l. The overshoot lmax and the duration of
81the attack satt are the two remaining parameters of the con-
82trol scenarios. In the following, we study the influence of a
83given overshoot lmax on the regime selection, while the
84attack duration satt remains free to take different values.
85We arbitrarily choose lmax 2 [1, 10] and satt 2 [1, 20]
86(dimensionless values). In [21], Ernoult and Fabre measured
87pressure rise times going approximately from 5 to 150 ms,
88for all fingerings between C5 (1046.5 Hz) and C6
89(2093 Hz). Therefore, by choosing satt 2 [1, 20], we keep a
90ratio between the longest and the shortest attacks with
91the same order of magnitude as in [21].

Figure 9. Control scenarios used to compute the transient-
informed initial conditions. The multistability region is shaded
in gray. l0 is the initial value of l, lmax is the overshoot, lend is
the final value of l, at which the basin stability is computed, lH
and lSN are the value of l at the Hopf and at the saddle-node
bifurcations and satt is the attack duration.
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1 4.2 Distribution generation

2 To generate a transient-informed distribution of initial
3 conditions for a specific lend, we apply 10 control scenarios
4 with different durations (satt 2 [1, 20]) and with a unique
5 value of lmax, to N0 = 10 pre-initial conditions chosen close
6 to the equilibrium (Latin Hypercube Sampling taken inside
7 x 2 [�0.1, 0.1] and _x 2 ½�0:1; 0:1�). As a result, we obtain a
8 transient-informed distribution ofN= 100 initial conditions
9 depicted in Figure 10. Firstly, it can be observed that this
10 distribution is far from being uniform; most transient-
11 informed initial conditions are very close to either the
12 equilibrium or the periodic solution. It is expected for such
13 a system to leave an unstable equilibrium through its fast
14 eigendirection (i.e., associated with the eigenvalue of high-
15 est modulus) and to converge towards a stable equilibrium
16 through its slow eigendirection (i.e., associated with the
17 eigenvalue of smallest modulus). Such behavior is explained
18 by Strogatz in example 5.2.3, p.133 of [38]. Precisely,
19 around the equilibrium in Figure 10, the states of the
20 system at l = lend are gathered along a specific direction
21 whereas the states of the system at l = lmax are regrouping
22 along another direction. In addition, we plot on the same
23 figure the fast eigendirection of the equilibrium at l = lmax
24 and its slow eigendirection at l = lend. At the overshoot,
25 the system clearly leaves the equilibrium through its
26 fast eigendirection. At the end of the attack, some of the
27 trajectories converge toward the equilibrium. If the simula-
28 tion was performed over a longer duration, they would
29 eventually gather along the slow eigendirection of the
30 equilibrium.

314.3 Basin stability with transient-informed
32distribution

33The basin stability is then computed using these tran-
34sient-informed distributions. The results are shown in
35Figure 11 for three different overshootvalues. For the sake
36of readability, only the basin stability of the periodic solu-
37tion is represented (we recall that the basin stability of
38the equilibrium is the complementary to one).
39The result computed with the uniform distribution is
40represented in black. Firstly, this Figure 11 highlights that
41the basin stability depends greatly on the considered distri-
42bution, even though some features are preserved: SBðlÞ is
43discontinuous at l = lSN, continuous at l = lH and mono-
44tonously increasing for the cases where lmax = 3 and 4. In
45the case where lmax = 2, the overshoot scenario does not
46suffice to leave the basin of the equilibrium and no oscilla-
47tions are observed in the multistable region. Secondly, for
48the situation considered, this Figure 11 shows that the
49large-overshoot attacks are more likely to make the system
50end up on the periodic solution. Moreover, the basin stabil-
51ity increases faster when lend gets closer to lH. In terms of
52playability, a slowly varying SB can be interpreted as a
53region where the difficulty to produce a sound does not
54depend much on the final value of the control parameter.
55For the situation under study, this means that for a given
56value of lmax, all the attacks with lend in this region of slow
57varying SB have almost the same probability to converge
58towards the periodic solution. As a result, if we ignore the
59difficulty for a musician to maintain l > lSN, there is no
60additional difficulty to reducing the sound amplitude to
61its minimal value.

625 Application to a trumpet model

63In order to evaluate the interest of the methods intro-
64duced in previous sections to a more advanced and high

Figure 10. Example of a transient-informed distribution gen-
erated with 10 control scenarios of different durations. (�) Pre-
initial Latin Hypercube of size N0 = 10; (�) states of the system
when l = lmax; (�) transient-informed distribution at the end of
the attack. The black dotted line is the fast eigendirection of the
equilibrium at l = lmax and the red one is its slow eigendirection
at l = lend.

Figure 11. Basin stability of the periodic solution computed
with different distributions. The red curves are computed with
transient-informed distributions of initial conditions, each curve
corresponding to a specific overshoot l = lmax. The black curve
is computed with a uniform distribution (it is the same as in
Fig. 5 without the error bars).
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1 dimensional model of musical instrument, the analysis of
2 basin stability and transient durations is applied in this
3 section to a physical model of B[ trumpet.

4 5.1 Presentation of the model

5 The model used is identical to the one considered in [5].
6 It is detailed in Appendix A. The lips are represented by a
7 one-degree-of-freedom oscillator. The air column inside the
8 body of the instrument, also known as the resonator, is
9 modeled by a modal truncation of its input impedance.
10 These two elements are coupled by a nonlinear function
11 that models the air jet through the lip channel. In this arti-
12 cle, we consider an 11-mode truncation of the resonator and
13 fix the resonance frequency of the lips around the second
14 impedance peak (fL = 200 Hz and f2 = 232.7 Hz). This peak
15 corresponds to the lowest note of the instrument, in
16 “normal” playing conditions (the first peak being associated
17 with the “pedal note”). The variables of this model are the
18 position and velocity of the lip as well as the real and
19 imaginary parts of the 11 modal pressures. This results in
20 a system of dimensionality 24. The parameter values used
21 in this article are given in Appendix A.

22 5.2 Bifurcation diagram

23 Unlike the fifth-order Van der Pol oscillator, this
24 trumpet model has no analytical solutions. To determine
25 its solutions, numerical continuation can be used. Here,
26 we use the Manlab software [33]. The bifurcation diagram
27 of the model is shown in Figure B1. The amplitude of the
28 mouthpiece pressure p and the frequency of the sound pro-
29 duced fplay are plotted with respect to the blowing pressure
30 p0. In this zone, the system exhibits an inverse Hopf bifur-
31 cation followed by a saddle-node bifurcation, like the Van
32 der Pol oscillator presented in previous sections. The
33 periodic regime is associated with the second mode of the
34 resonator, represented on the bottom panel of Figure B1
35 by a horizontal dotted line.

36 5.3 Basin stability and transient durations computed
37 with bSTAB

38 To calculate the system’s basin stability and transient
39 durations, we use the bSTAB toolbox [48]. For our applica-
40 tion, we have made a number of modifications to this tool-
41 box, which are detailed in Appendix B. These modifications
42 rely on convergence criteria in order to identify when the
43 system has reached steady state. The numerical integration
44 lasts until these criteria are met, rather than for an arbi-
45 trary time which would be identical for all trajectories.
46 These modifications allow us both to reduce the duration
47 of the time integrations required to compute basin stability,
48 and to calculate the duration of transients (which is not
49 provided in the original toolbox). These criteria must be
50 defined carefully, in order to avoid samples missclassifica-
51 tion, leading to errors in the estimation of basin stability
52 and transient durations.

535.3.1 Initial conditions from a uniform distribution

54As for the Van der Pol oscillator, we first consider a
55uniform random distribution of initial conditions Qu

56selected inside a hyper-rectangle. This hyper-rectangle is
57chosen large enough to contain all the solutions, whatever
58the value of p0. Its bounds are set as the extrema of the
59stable periodic solution at p0 = 0.8 kPa, rounded up to
60the nearest integer value.
61The basin stability calculated with Qu for N = 300
62samples is given in Figure 13a, the transient duration distri-
63butions are given in Figure 13b and a zoomed-in view is
64given in Figure 13c. The basin stability shares some features
65with the Van der Pol oscillator. Indeed, it is discontinuous
66at the saddle-node bifurcation and remains continuous at
67the Hopf bifurcation. The observations and comments
68made about this feature on the simple Van der Pol oscilla-
69tor translate directly to this more complicated system. In
70addition, SB is monotonous. However, unlike the Van der
71Pol oscillator, for dynamical systems of dimensionality
72three or more, the basins’ boundaries are different than
73the unstable periodic solutions. These objects even have
74different dimensionalities (the basins’ boundaries are hyper-
75surfaces and the limit cycles are hyperlines). Consequently,
76the basin stability of the equilibrium cannot be inferred
77from a size estimate of the unstable periodic solution and
78the sampling approach is then required.
79Concerning transient durations, the Hopf bifurcation
80induces a few long transients in its vicinity, leading both
81to the equilibrium and to the periodic solution. This is prob-
82ably related to the increasing timescale of the slowest
83eigendirection whose stability is reversed at the Hopf

Figure 12. Bifurcation diagram of the 11-mode trumpet model,
calculated with Manlab. Top pane: amplitude of the oscillations
jjpjjL2

versus blowing pressure p0. Bottom pane: fundamental
frequency of the oscillations fplay versus blowing pressure p0.
Stable solutions are shown as solid lines, unstable solutions as
dotted lines. Bifurcations are represented by stars.
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1bifurcation. Eventually, the timescale of this eigendirection
2goes to the infinity at the Hopf bifurcation. The ghost effect
3around the saddle-node bifurcation, where the periodic
4solutions do not exist yet, is also visible but less than for
5the Van der Pol oscillator. This may be due to the fact that
6in a phase space of dimensionality two, for a value of the
7control parameter slightly below the value of the saddle-
8node, the trajectories initiated far away from the equilib-
9rium necessarily have to enter the region of influence of this
10ghost limit cycle. On the contrary, in a phase space of
11higher dimensionality, these trajectories can pass away
12from this region. Moreover, the median and the interquar-
13tile range of both solutions increase around the Hopf bifur-
14cation (even though it is hardly noticeable for the periodic
15solution with that scale).
16Finally, this trumpet model sometimes exhibits
17transients of more than several seconds, which is extremely
18long compared to usual musical timescales. Beyond a
19certain duration, these asymptotic regimes can be consid-
20ered unplayable or at least difficult to play. However, the
21regime that is heard during one of these extremely long
22transients can be treated as a playable regime by the
23musician, even if it is unstable. In this respect, one could
24see a percussion instrument as a dynamic system with only
25one asymptotic solution, the equilibrium, but whose tran-
26sients are long enough to be used to make music. We could
27then consider a “transient” category for samples with a tran-
28sient duration exceeding a certain “musical duration”,
29rather than classifying them according to their asymptotic
30solution.

315.3.2 Initial conditions from a distribution based on
32archetypal time variations of p0

33In the following, we study the influence of attack tran-
34sients on basin stability. We apply the same method as in
35Section 4 to generate distributions Qtb based on transient
36evolutions of p0. Again, we consider pressure rises with
37overshoot (see Fig. 9), in the manner of a strong tonguing
38attack or a sforzando, as can be found in [49]. The configu-
39ration and the parameters chosen here differ from [49].
40Consequently, we consider slightly different control
41transients than those measured in that article, so that
42p0,max 2 [1, 10] kPa and satt 2 [10, 500] ms. Ten attack
43transients are applied to each sample of a uniform dis-
44tribution of N0 = 100 pre-initial conditions. This leads to
45a final distribution of N = 1000 initial conditions. Each
46variable of the pre-initial distribution is selected in ranges
470.3 times smaller than in Section 5.3.1. These ranges are
48chosen arbitrarily and have a significant influence on the
49results.
50In Figure 14a, we present the influence of the attack
51duration satt on the behavior of the system. Each curve
52has a fixed value of satt and 10 different values of
53p0,max 2 [1, 10] kPa. It is striking to see that the basin
54stability does not evolve monotonously with satt. Indeed,
55one would expect that the longer the system stays in the
56region of monostability of the periodic solution, the higher
57the chances it has to end up in its basin of attraction.

Figure 13. Basin stability (a) and transient duration distribu-
tions (b) of the trumpet model calculated with a uniform Qu

distribution of N = 300 initial conditions. The dotted lines in
(b) indicate the limit of the scale used for the zoomed view in (c).
Error bars are given by the equation (7).
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1 However, when satt increases from 10 to 50 ms, SB

2 decreases. SB does not evolve much for satt 2 [50, 100]
3 ms, and it then increases, as expected, for satt > 100 ms.
4 These observations can be analyzed by considering recent
5 results concerning dynamical bifurcations [50]: how close
6 the system has come to the equilibrium when the Hopf
7 bifurcation is crossed is crucial to predict the dynamics
8 above the bifurcation. This closeness is the result of the time
9 spent by the system below the bifurcation but also of the
10 number of significant digits used in the simulation (numer-
11 ical noise is therefore inevitable). This makes direct inter-
12 pretation not straightforward. In Figure 14b, we study
13 instead the influence of the overshoot amplitude p0,max for
14 various attack durations satt 2 [10, 500] ms. In that case,
15 SB increases with the overshoot value, until it reaches its
16 maximal value for p0,max 2 [5, 7] kPa. Hence, it seems that
17 there are optimal values of transient control parameters to
18 maximize SB. Further study would be needed to under-
19 stand the dynamical reasons leading to this non trivial
20 behavior.

216 Discussion
226.1 Computational cost

23The methods presented in this paper allow to compute
24the basin stability and the transient duration distributions
25of a system. These metrics describe the global, statistical
26behavior of a system and could be very useful to study
27musical instruments, notably their playability. However,
28in order to take into account all the potential behaviors of
29a system, their computation can be costly. As a result,
30the computation cost limits the possible applications of
31these methods, for parametric studies for example.
32Initially, [31] proposed to use Monte-Carlo techniques to
33numerically estimate the basin stability. Some limitations of
34these techniques have been drawn [40] when applied on
35strange basins of attraction (e.g., fractal and riddled/
36intermingled). However, such basins remain to be exhibited
37on self-sustained musical instruments. Some authors also
38proposed enrichment to the metric, to take into account
39uncertainties and variations of the parameters [51, 52].
40Additionally, improvements on classical Monte Carlo
41approaches, notably using machine learning tools, show
42promise to accelerate basin stability computation. This
43could be interesting for more complex musical instrument
44models. For example, [41] proposed a method based on
45support vector machines. The idea is to find the basins’
46boundaries with a limited number of samples. Work still
47needs to be done to determine which method should be used
48depending on the situation and on the classification cost of
49a single sample. Indeed, if the classification of each sample is
50fast, it may be slower to find basins’ boundaries rather than
51to apply a simple Monte-Carlo size estimation. For
52instance, it is the case for the Van der Pol oscillator
53presented in this article.
54If the transient duration statistics and the basin stabil-
55ity are both studied, the two metrics can be computed
56simultaneously, using the same time integrations (as in
57Sect. 5). The cost needed to compute the basin stability
58with Monte-Carlo methods only depends on the size of
59the basin as indicated by the absolute standard error given
60by equation (7). For systems with higher dimensions, that
61cost could increase if the classification cost does. Moreover,
62the relative standard error, which writes errrelðŜBÞ ¼
63

ffiffiffiffiffiffiffiffiffiffiffi
1=SB�1

N

q
, increases as SB decreases. Higher dimension

64systems may have more stable solutions which lead to smal-
65ler basin stability values. More samples would thus be
66needed to keep the relative standard error low. This stan-
67dard error formula stands for independent trials with only
68two outcomes – the sample is either inside or outside the
69studied basin of attraction. The calculation of the transient
70duration distributions does not enter into this category
71since the outcome is a continuous random variable: a tran-
72sient duration. With a sparse sampling, some transient
73behaviors that appear for specific initial conditions might
74be missed. Consequently, it could be interesting to estimate
75the convergence of the probability density functions in
76order to chose an adequate number of samples.
77The statistical methods presented here can be applied
78applied at low computational cost on the fifth order

Figure 14. Basin stability of the trumpet model calculated
with distributions Qtb of N = 1000 initial conditions based on
attack transients (10 scenarios applied to each of the N0 = 100
pre-initial conditions). (a) Each curve corresponds to a specific
attack duration satt. (b) Each curve corresponds to a specific
overshoot value p0,max. Only the basin stability of the periodic
regime is shown.
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1 Van der Pol oscillator, because the two attractors and the
2 boundary of the basins of attraction are analytically known
3 and characterized by their L2-norm. On more complex
4 systems, the attractors and basins’ boundaries usually do
5 not have analytic expressions. The main difficulty encoun-
6 tered in carrying out the statistical analysis of the trumpet
7 model presented in Section 5 was to define adequate classi-
8 fication and stopping criteria. Indeed, non-linear systems
9 sometimes evolve with very varied dynamics, making it dif-
10 ficult to distinguish between a steady state and a transient
11 regime with slow dynamics. This kind of behavior leads to
12 significant differences in transient duration between differ-
13 ent initial conditions, especially at a bifurcation, where
14 one eigendirection becomes infinitely slow. These discrepan-
15 cies in transient durations are particularly visible in
16 Figure 13b, around the Hopf bifurcation. In this regard,
17 the Manlab solutions were very helpful to define efficient
18 classification and convergence criteria (see Appendix B).
19 For systems with a wide range of transient durations, we
20 would strongly recommend to set a convergence criteria
21 rather than to use a fixed integration time, as this is the
22 case in the version of bSTAB currently online. This would
23 improve performances and limit missclassification.

24 6.2 Initial conditions and musical gestures

25 In Section 3, the presented statistical approach is based
26 on a uniform distribution of initial conditions. This is a gen-
27 eral distribution and it allows different instrument configu-
28 rations to be compared. However, the resulting probabilities
29 probably fail to translate the musician’s playing experience.
30 As a first attempt to tackle this issue, we study in Section 4
31 initial conditions resulting from an archetypal control
32 gesture. This approach highlights the importance of the
33 considered distribution of initial conditions and it can be
34 interpreted in musical terms more directly than random
35 initial conditions. We would like to draw the reader’s atten-
36 tion to the fact that the results obtained with this transient-
37 based approach not only depend on the transient control
38 parameters, but also on the choice of the pre-initial condi-
39 tions. Overall, applicative studies on playability would
40 greatly benefit from a preliminary description of the control
41 scenarios and, where relevant, initial conditions distribu-
42 tions. In that perspective, it could be of great interest to
43 measure transient blowing scenarios provided by humans
44 (musicians and non-musicians) in an experimental study.
45 Moreover, as illustrated by Figure 10, dynamical systems
46 are more likely to cross specific regions of their phase space
47 during transients. Choosing distributions of initial condi-
48 tions based on the slow and fast eigendirections (depending
49 on the solutions that exist during the transient) could also
50 be an interesting idea.
51 In this paper, we focus on initial conditions induced by
52 the fast evolution of one control parameter. However, musi-
53 cians may also impact the initial conditions by acting
54 directly on a state variable. One example among many
55 others is the use of the tongue in reed instruments to impose
56 initial reed positions and velocities. Measurements of ton-
57 gue-induced reed positions in a clarinet are presented in

58[53] for example. To improve the statistical approaches,
59these initial conditions should also be taken into account.

606.3 Stability, transient duration and playability

61Other studies were interested in predicting the transient
62duration of a self-sustained musical instrument [24, 25].
63A common approach is to linearize the system around an
64unstable equilibrium and to consider the exponential
65growth of a perturbation. This exponential growth depends
66on the positive real part of the eigenvalues of the matrix of
67derivatives (i.e., the jacobian matrix). This method is better
68adapted for studying initial conditions close to an equilib-
69rium solution. The Floquet theory might be used in the
70same way for initial conditions next to a periodic solution,
71although it has yet to be applied in that manner to a musi-
72cal instrument model (for more details on the Floquet the-
73ory, refer to [54, 55]). In this article, we consider initial
74conditions not necessarily close to any solution. Hence,
75these linear analyses might not be valid for every sample.
76On more complex systems with several competing multi-
77stable solutions, its local nature prevents it from giving a
78complete analysis of the transients. However, the system-
79atic and fast nature of linear analysis makes it a good
80candidate to bolster certain sections of a complete statisti-
81cal study.
82Finally, the statistical study of the trumpet model pre-
83sented in Section 5 highlights several interests of the meth-
84ods. The long transients observed in Figure 13 raise the
85question of the playability of a regime as a function of its
86transient duration. In a standard musical context, we argue
87that a regime that takes several seconds to establish cannot
88really be considered playable. Therefore, certain stable
89regimes could actually be unplayable due to transient
90behaviors, which shows the relevance of nuancing the
91notion of stability using transients when studying playabil-
92ity. The transient-based analysis of Section 5.3.2 also indi-
93cates that the transient control parameters of a musical
94gesture may have nontrivial optimal values. Future works
95could analyze these types of transient control scenarios into
96more details, relying on the statistical approaches as playa-
97bility guidelines.

987 Conclusion and perspectives

99In this article, we present a sample-based approach that
100can be used to enrich a bifurcation diagram. In this study
101we use it to investigate two playability issues: the prediction
102of the steady state in multistable situations and the predic-
103tion of the transient duration. The method used for the first
104issue is called the basin stability [31], whereas the method
105proposed for describing the responsiveness of a dynamical
106system is new, to the authors’ knowledge. These two
107methods rely on distributions of initial conditions that
108represent the transient action of a musician. The results
109strongly depend on this choice of distribution and we
110proposed a method based on time integration to generate
111transient-informed distributions.

M. Pégeot et al.: Acta Acustica 2024, xx, xx12



1 The methods are then applied to a physical model of
2 trumpet with the aim to evaluate their interest in a more
3 practical case. The transient-based basin stability of this
4 model present non trivial tendencies regarding some tran-
5 sient control parameters. Moreover, very long transients
6 are highlighted, which raises the question of the playability
7 of such asymptotic regime. Overall, these statistical methods
8 show interest for the analysis of musical instruments, but
9 they can also be extended to a large variety of systems.
10 Future works will focus on two aspects. First, these
11 methods will be applied on musical instrument models in
12 configurations showing multiple oscillating regimes and rich
13 transients. Then, measurements on musicians will be con-
14 ducted to evaluate the initial conditions that they induce,
15 depending on the desired musical effect.

16 DataQ3 availability statement

17 No new data were created or analyzed in this study.
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79Appendix A

80Trumpet model

81We consider the brass instrument model described in [5]. The
82convention used to represent the lip position is given in Figure A1.
83The dimensioned and unregularized equations are as follows:
84

€xþ xL

QL

_xþ x2
Lðx� x0Þ ¼ p0 � p

lL
;

_pn � snpn ¼ ZcCnu8n 2 ½1;Nm�;
p ¼ 2

PNm

n¼1
RðpnÞ;

u ¼ W
ffiffiffiffiffiffiffiffiffiffiffi
2jp0�pj

q

q
� signðp0 � pÞ �maxðx; 0Þ;

8>>>>>>>><
>>>>>>>>:

ðA1Þ

8686

87with 88
xL ¼

ffiffiffi
k
m

q
;

QL ¼
ffiffiffiffi
km

p
c ;

lL ¼ m
S :

8>><
>>: ðA2Þ

9090

91S is the surface area of the lip to which the pressures p0 and p are
92applied, lL is the surface mass of the lip, QL its quality factor
93and xL its angular eigenfrequency. The resonator is represented
94by its input impedance, which is treated as a sum of Nm modes
95with poles sn and residues Cn. The lip allows air to pass through
96a rectangular surface of height x and width W. The system
97equation (A1) is scaled as follows:
98

€~xþ xL

QL

_~xþ x2
Lð~x� 1Þ ¼ x2

Lðc� ~pÞ;
_~pn � sn~pn ¼ Cn~u 8n 2 ½1;Nm�;
~p ¼ 2

PNm

n¼1
Rð~pnÞ;

~u ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffijc� ~pjp � signðc� ~pÞ �maxð~x; 0Þ:

8>>>>>>><
>>>>>>>:

ðA3Þ

100100
101
102Variables affected by this scaling are marked with a symbol and
103are defined as follows:
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1
~x ¼ x

x0
;

pM ¼ lLx
2
Lx0;

~p ¼ p
pM

;

c ¼ p0
pM

;

~pn ¼ pn
pM

;

uM ¼ pM
Zc

;

~u ¼ u
uM

;

f ¼ ZcWx0
ffiffiffiffiffiffi
2

qpM

q
:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ðA4Þ

33
4
5 Irregular functions appearing in the flow term are regularized:
6

j � jr ¼
ffiffiffiffiffiffiffiffiffiffiffiffi�2 þ �

p
;

signð�Þr ¼
�

j � jr
;

maxð�; 0Þr ¼
� þ j � jr

2
:

8>>>><
>>>>:

ðA5Þ

88
9
10 The regularization term � is arbitrarily set to � = 10�6.
11 Time is scaled by the first modal angular frequency x1 ¼ Iðs1Þ
12 and the concerned variables are written with a symbol. Finally, we
13 separate the real Rn and imaginary In parts of the modal pressures
14 pn, and the system we solve is as follows:
15

€̂xþ x̂L

QL

_̂xþ x̂2
Lð~x� 1Þ ¼ x̂L

2ðc� ~pÞ;
_̂Rn ¼ RðŝnÞ~Rn � IðŝnÞ~In þRðĈnÞ~u

8n 2 ½1;Nm�;
_̂In ¼ RðŝnÞ~In þ IðŝnÞ~Rn þ IðĈnÞ~u

8n 2 ½1;Nm�;
~p ¼ 2

PNm

n¼1
Rð~pnÞ;

~u ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijc� ~pjr

p � signðc� ~pÞr �maxð~x; 0Þr:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ðA6Þ

1717

18
19The parameter values chosen for this article are as follows:
20

xL ¼ 2p� 200 rad � s�1;

lL ¼ 2 kg �m�2;

QL ¼ 3;

x0 ¼ 1e� 4m;

W ¼ 8 � 10�3 m;

Zc ¼ 1:83 kg � s�1 �m�4;

� ¼ 10�6:

8>>>>>>>>>>><
>>>>>>>>>>>:

ðA7Þ

2222
23

24Appendix B

25Modifications to bSTAB

26The bSTAB toolbox [48] has been designed to calculate the
27basin stability of any dynamic system as automatically as possible.
28It generates initial conditions, performs a time integration for each
29of them, then classifies the obtained regime by comparing it to ref-
30erence signals. In our case, we compare the peak-to-peak amplitude
31of R2, the real part of the second modal pressure, to that of the
32MANLAB solutions. Since classification must be performed on
33the steady part of the regime, the time integration continues until
34the following convergence criteria are met.
35During the last duration tH:
361. The amplitude of R2 is within � of that of a reference
37solution;
382. The difference between the amplitude of R2 and that of the
39reference decreases.
40

41The transient duration is defined as the duration after which
42the envelope of R2 stays within � of the amplitude of the reference
43solution. In this article, we choose � = 0.1.
44The computation of the transient duration is illustrated in
45Figure B1a. The corresponding trajectory is also represented in
46Figure B1b, with its projection along x, R2 and R4.

Figure A1. Schematic diagram of the one-degree-of-freedom
lip model. Assume x = 0 when the lip is in the closed position and
note x0 the position of the lip at rest (the situation shown here).

Table A1. Resonator modal parameters. Complex residues Cn

and poles sn and resonance frequencies fn.

n Cn (kg � s�1 � m�4) sn (rad � s�1) fn (Hz)

1 744.6 �13.98 + i522.5 83.15
2 954.5 �22.42 + i1462 232.7
3 1335 �28.64 + i2187 348.1
4 2582 �37.64 + i2907 462.6
5 3140 �45.82 + i3658 582.1
6 4191 �49.82 + i4339 690.6
7 4013 �58.42 + i5029 800.4
8 2602 �66.77 + i5705 908.1
9 1278 �72.24 + i6459 1028
10 909.7 �94.40 + i7211 1148
11 620.7 �128.6 + i7931 1262
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Figure B1. (a) Computation of the transient duration (repre-
sented by the dotted line) and (b) projection of the correspond-
ing trajectory along x, R2 and R4. The red dot is the initial state,
the blue cross is the equilibrium, the red line is the stable
periodic solution and the black broken line is the unstable
periodic solution.
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