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Abstract1

Self-sustained musical instruments, such as wind or2

bowed string instruments, are complex nonlinear3

systems. They admit a wide variety of regimes,4

which sometimes coexist for certain values of the5

control parameters. This phenomenon is known as6

multistability. With �xed parameters, the selection7

of a regime and the shape of the transient depend8

not only on the values of the control parameters,9

but also on the initial conditions. In this article, we10

focus on the statistical in�uence of initial conditions11

on regime selection and transient duration. An12

existing sample-based method called basin stability13

is presented to calculate the probability of occurrence14

of each regime. A second sample-based method15

is proposed for the calculation of the probability16

density function of transient durations. Addition-17

ally, a study taking into account speci�c control18

scenarios is presented to highlight the in�uence19

of the distribution of initial conditions considered20

for the statistical methods. These methods are21

presented on a Van der Pol oscillator seen as a22

prototypical musical instrument model. They are23

then applied to a physical model of trumpet, to24

demonstrate their potential for a high dimensional25

self-oscillating musical instrument. Finally, their26

interest regarding questions of playability is discussed.27

28

Keywords: Self-sustained musical instruments,29

Multistability, Basin stability, Transient duration,30

Playability31

1 Introduction32

Musical instruments are complex dynamical systems.33

Some of them are self-sustained oscillators, meaning34

that a continuous energy supply can make them35

oscillate. Wind instruments and bowed string instru-36

ments belong to this category. These instruments37

admit a wide variety of regimes, which sometimes 38

coexist for certain values of control parameters. 39

This is known as multistability. Multistability is a 40

common phenomenon in self-sustained oscillators. It 41

has been observed experimentally, theoretically and 42

numerically on a wide variety of instruments, e.g., 43

single and double reed instruments [1�3], �utes [4], 44

brass instruments [5], vocal folds [6] and bowed 45

string instruments [7]. There are multiple works 46

focusing on mapping the operating regimes of these 47

instruments [8]. We �nd in [9, 10] among the �rst 48

curves representing the evolution of the amplitude of 49

a solution as a function of a control parameter. The 50

stability of these solutions is also studied few years 51

later [11]. A seminal work of Dalmont et al. [12] 52

represents bifurcation diagrams of self-sustained 53

musical instruments. These diagrams show the 54

evolution of known solution properties as a function 55

of one or more control parameters. The stability of 56

these solutions is given, as well as some key features, 57

such as amplitude and fundamental frequency for 58

periodic solutions. Thanks to these diagrams, one 59

can predict the behavior of an instrument whose 60

control parameters vary in a quasi-static manner 61

� i.e., slowly in relation to the system's rate of 62

evolution. In the case of multistability, bifurcation 63

diagrams predict hysteretic behaviors, such as those 64

of reed and brass instruments [13] or �ute-like 65

instruments [14]. Some unexpected regimes are also 66

predicted with this method, such as the ghost note 67

in brass instruments [15] or the wolf tone of the 68

cello [16]. Nevertheless, it is much more di�cult to 69

predict the regime of a multistable instrument when 70

the control parameters vary rapidly. In particular, 71

the blowing pressure dynamics are shown to have 72

an in�uence over the regime selection in �ute-like 73

instruments [17]. Similar results are shown in [18] for 74

the saxophone. 75

76

Similarly, once the control parameters are �xed, 77
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the time required to reach the steady state depends78

on the previous evolution of the control parameters.79

This phenomenon was observed by [19,20] on the clar-80

inet. Generally speaking, the duration of attack tran-81

sients [7, 21] or transitions between notes [22] are im-82

portant topics, since the quality of a transient per-83

ceived by a musician or a listener depends greatly on84

its characteristics and duration [23]. The duration of85

the transients that gives rise to a sound is thus stud-86

ied on multiple self-sustained instruments, from the87

trombone [24] to the cristal Baschet [25], using linear88

stability analysis. Like the prediction of the playing89

regime, the duration of the transient is estimated for90

control parameters varying in a quasi-static manner.91

Linear stability analysis cannot predict dynamic phe-92

nomena such as those observed by [19, 20]. Finally,93

despite their high e�ciency in the quasi-static regime,94

current methods for analyzing self-oscillating instru-95

ments are limited when considering rapidly varying96

control parameters. By taking these rapid variations97

into account, the dimensionality of the problem be-98

comes in�nite since the parameters can follow any99

time series. Consequently, it motivates researchers100

to limit their studies to speci�c transient scenarios.101

For example, several authors consider pressure ramps102

of variable slope and study the in�uence of the pres-103

sure rise rate on the selected regime [26, 27] or the104

transient duration [20]. In this article, we study rapid105

variations in control parameters through stochastic106

initial conditions, in cases of multistability between107

an equilibrium and a periodic regime. We are inter-108

ested in situations where the musician moves quickly109

from one quasi-static con�guration to another, as is110

the case during an attack [21,28], a break or a change111

of note [22, 29, 30]. Quasi-statistical analysis is not112

valid during this transition and the new quasi-static113

con�guration is studied under unknown initial condi-114

tions. With this in mind, we study the statistical in-115

�uence of initial conditions on the selected regime and116

on the duration of the transient. The probability of117

obtaining each regime is estimated with an already ex-118

isting method called basin stability [31], and an orig-119

inal approach is proposed to determine the probabil-120

ity of obtaining each transient duration. Finally, the121

distributions of initial conditions considered for these122

statistical methods are discussed. In particular, ini-123

tial conditions generated by speci�c transient control124

scenarios are studied.125

The remainder of the document is organized as fol-126

lows. The system chosen to introduce the methods127

is given in Sec.2. Sec.3.1 focuses on the basin stabil-128

ity metric and its use for musical instruments. The129

transient duration is investigated in Sec.3.2 and the130

in�uence of the distribution of initial conditions is ex-131

plored in Sec.4. To highlight the interest of the meth-132

ods on more sophisticated and high dimensional sys-133

tems, an application to a physical model of trumpet is134

presented in Sec.5. The di�erent methods and results135

are discussed in Sec.6. Perspectives and conclusions 136

are drawn in Sec.7. 137

2 Minimal multistable system 138

Most physical models of self-sustained musical instru- 139

ments have no exact analytical solutions for transient 140

or steady-state regimes. Therefore, numerical meth- 141

ods are often used to study them, such as �nite 142

di�erences [32] or harmonic balance method [33]. A 143

number of authors have proposed less detailed models 144

with exact analytical solutions and only few state 145

variables. These simpli�ed models help to investigate 146

the mechanisms behind self-oscillations [34]. In 147

order to compare our statistical approach with 148

exact analytical results, we have chosen to illustrate 149

our methods on such a system. In this article, we 150

focus on a Van der Pol oscillator with �fth-order 151

nonlinearity, as described in [35]. This oscillator is 152

characterized by a region of multistability, where 153

both an equilibrium and a periodic solution are 154

stable. This feature can also be observed on several 155

musical instruments, such as saxophones [27] or brass 156

instruments [5]. Its phase space is of dimension 157

two and can therefore be displayed simply, enabling 158

more detailed dynamic analysis. A technical pub- 159

lication [36] presents the musical interest of this 160

system and provides a demonstrator solving it in 161

real time (https://zenodo.org/records/8413627). 162

Note that even though the global behavior of musical 163

instruments is varied and rich, the system studied 164

here can be obtained by change of variables and 165

polynomial expansions from any system presenting 166

this type of multistable behavior. It is only used 167

to illustrate the interest of a statistical approach to 168

predict the behavior of a multistable system under 169

transient excitations. 170

171

The motion of the considered oscillator is given by 172

the following equation: 173

ẍ+
[
−µ+ σ(x2 + ẋ2) + ν(x2 + ẋ2)2

]
ẋ+ x = 0. (1)

We impose σ = −1.5 and ν = 0.1 in order to obtain 174

a multistable saxophone-like or brass-like behavior. 175

The parameter µ is the control parameter of this sim- 176

ple "musical instrument" and its e�ect is analogous to 177

the blowing pressure for wind instruments [36]. A har- 178

monic balance method with only one harmonic gives 179

the amplitude X of solutions of the form: 180

x = X cos(t+ φ). (2)

There are up to three solutions, depending on the 181

value of µ: 182
XEq = 0,

X2π+ =

√
−σ+

√
σ2+4µν

2ν if µ ≥ µSN ,

X2π− =

√
−σ−

√
σ2+4µν

2ν if µSN ≥ µ ≥ µH ,

(3)
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Figure 1: Bifurcation diagram of a �fth order Van
der Pol oscillator Eq.(1) with respect to the control
parameter µ, with σ = −1.5 and ν = 0.1. Stable
solutions are represented with continuous lines, un-
stable solutions in broken lines and bifurcations are
indicated with star markers. The region of multista-
bility is shaded in grey.

with µH = 0 and µSN = −σ2

4ν . These solutions con-183

sist of an equilibrium (XEq) and two 2π-periodic so-184

lutions (X2π+ and X2π−), which are represented on a185

bifurcation diagram in Fig.1. This oscillator shows an186

inverse Hopf bifurcation at µ = µH and a saddle-node187

bifurcation at µ = µSN . Between these two bifurca-188

tions, the system is multistable: both the equilibrium189

XEq and the largest periodic solutionX2π+ are stable.190

Saxophones [27] and brass instruments [5] are likely191

to present this bifurcation sequence and therefore this192

multistability behavior.193

A traditional bifurcation diagram only depicts the194

steady state solutions. The in�uence of initial condi-195

tions on the transient and the steady-state behavior is196

concealed. This in�uence can be seen on a phase plane197

for a given value of the control parameters. In Fig.2,198

we show the phase plane of the �fth order Van der Pol199

oscillator for µ = −3, which is a situation of multi-200

stability. For the remainder of the paper, we use this201

value each time we need to choose a speci�c µ for illus-202

tration. The equation of motion Eq.(1) is numerically203

integrated with the function ode45 of Matlab [37], for204

three initial states very close to one another. In that205

case, the slight change in initial conditions leads the206

system either to the equilibrium (in blue) or to the207

stable limit cycle (in red). The two oscillating trajec-208

tories have di�erent transient durations: one is almost209

instantaneous while the other lasts approximately one210

period.211

In short, Fig.1 and 2 illustrate that the steady212

state and the transient duration of this minimal self-213

sustained musical instrument are sensitive to the ini-214

tial conditions and to the control parameter value215

around a bifurcation. This sensitivity is merely a216

mark of non linearity and is shared by most non lin-217

Figure 2: Illustration of the sensitivity to the initial
conditions, for the Van der Pol oscillator, regarding
the steady state regime and the transient duration.
On the left side, the phase plane of the system for
µ = −3, with trajectories coming from three close
initial states (indicated with star markers). On the
right side, the evolution of the position x with respect
to time (dimensionless).

ear dynamical systems. In the Sec.3.1 and 3.2, we 218

present two statistical approaches to predict the se- 219

lected regime and the transient duration for such a 220

system. 221

3 Methods 222

3.1 Basin stability 223

Some self-sustained musical instruments are multi- 224

stable. In such a case, once their control parameters 225

are settled, their steady state depends exclusively on 226

their initial state. The subset of initial conditions 227

leading to a speci�c attractor is called its basin of 228

attraction [38, 39]. In Fig.3, we depict the basins of 229

attraction of the �fth order Van der Pol oscillator, 230

for µ = −3. The basin of the equilibrium is shaded in 231

blue and the basin of the periodic solution is shaded 232

in red. In that case, the two basins are separated by 233

the unstable limit cycle of amplitude X2π−, plotted 234

in broken line and given in Eq.(1) and Eq.(3). In 235

the general case, however, the geometry of a basin of 236

attraction can be more complex and its boundaries 237

di�cult to �nd. We discuss this problem in Sec.6. 238

Moreover, in the scope of this article, we consider 239

that the initial conditions resulting from a quick 240

change in the control parameters are unknown. They 241

are randomly taken within a subset of the initial 242

state space. Since the initial state is unknown, the 243

precise geometry of the basins of attraction does not 244

su�ce to predict its playing regime. 245

246
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Figure 3: Basins of attraction of the �fth order Van
der Pol oscillator (µ = −3). Initial conditions taken in
the red shaded area give rise to the periodic solution
whereas initial conditions taken in the blue shaded
area give rise to the equilibrium solution.

To take into account the uncertainty of the initial247

state, we propose to use the notion of basin stability,248

a probabilistic metric introduced by [31]. The prin-249

ciple is to evaluate the size of the basins of attrac-250

tion with respect to the total size of the considered251

space of initial states. The result gives the probability252

to reach each attractor, considering a random initial253

state. Formally, considering a subset of interest of the254

space of initial conditions Q, an attractor A, its basin255

of attraction B and a probability density function ρ,256

the basin stability SB(A) is de�ned as follows:257

SB(A) =

∫
Q
IB(X)ρ(X)dX, (4)

where258

IB(X) =

{
1, if X ∈ B,

0, otherwise.
(5)

The probability density function ρ can follow a spe-259

ci�c distribution if the random choice of initial con-260

ditions is not uniform. This aspect is discussed in261

Sec.4 and 6. Due to the nature of ρ as a probability262

density function over Q, the basin stability metric is263

always comprised between zero and one. SB(A) = 0264

indicates that the basin of attraction of the solution265

is statistically never reached. SB(A) = 1 means that266

the basin of attraction of A occupies all of the region267

of interest Q, and that A is reached by every trajec-268

tory. All the illustrations of Sec.3 are realized with a269

uniform distribution. The volumic integral in the ex-270

pression Eq.(4) of SB is rarely calculable exactly and271

we rather compute the corresponding discrete sum.272

In other words, we take N random samples in Q and273

we evaluate the proportion of samples belonging to274

Figure 4: Illustration of the classi�cation method in
the general case. The plotted trajectories are obtained
with time integrations starting from the stars as initial
conditions. Red trajectories are inside the basin of at-
traction of the stable periodic solution X2π+ whereas
the blue ones belong to the basin of the equilibrium
XEq.

the studied basin of attraction. The basin stability 275

estimation, which is noted ŜB, then writes: 276

ŜB(A) = M/N, (6)

whereM is the number of samples belonging to B, the 277

basin of attraction of A. As pointed out in [31,40,41], 278

this computation corresponds to N independent trials 279

with probability of success SB. The resulting standard 280

error due to sub sampling writes: 281

err(ŜB) =

√
SB(1− SB)

N
. (7)

In practice, SB is unknown so it is replaced by its 282

estimation ŜB in Eq.(7). This error only accounts 283

for sub-sampling. It is interesting to notice that 284

the error does not depend on the dimension of the 285

state space. As a result, the basin stability is a 286

metric suitable for low dimension problems as well 287

as for high dimension ones. In general, for more 288

complex systems, the basin boundaries are unknown 289

and the classi�cation method would consist in time 290

integrating the system and observing toward which 291

attractor it would converge. Such strategy is illus- 292

trated in Fig.4. However, for this minimal multistable 293

system, the basin boundary is analytically known: 294

the boundary is the unstable periodic solution whose 295

L2-norm X2π− is given in Eq.(3). As a result, it 296

is much faster to classify the samples with this an- 297

alytical expression rather than with time integrations. 298

299

Fig.5 gives the basin stability of the Van der Pol os- 300

cillator. To compute it, we arbitrarily choose a subset 301
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of the phase space Q which includes all the attractors302

and which is independent of µ. For µ ∈ [−7, 1] as in303

Fig.1, the subset Q = ([−4, 4] × [−4, 4]) meets these304

conditions. To uniformly sample Q, we use a Latin305

Hypercube Sampling of 100 samples. The basin sta-306

bility of the equilibrium is plotted in blue and the one307

corresponding to the periodic solution in red. The308

error bars correspond to the standard error given in309

Eq.(7). In addition, within the multistability region,310

i.e., for µSN ≥ µ ≥ µH , the exact basin stabilities311

write:312 {
SB(XEq) =

πX2
2π−

area(Q) ,

SB(X2π+) = 1− SB(XEq).
(8)

These exact solutions are represented with black lines.313

They mainly remain inside the error bars estimated314

with ŜB (i.e., SB replaced by ŜB in Eq.(7)). This315

validates the error estimation of the sample-based316

method given in Eq.(7). Outside the multistability317

area, the only stable solution has a basin stability318

equal to 1 whereas the other one has a basin stability319

equal to 0. Regarding this metric, non existing320

solutions and unstable solutions are identical and321

have a zero basin stability. Inside the multistability322

area, both solutions have a non zero basin stability.323

The stability of the periodic solution increases with324

µ whereas the stability of the equilibrium decreases.325

One can observe that SB is continuous at the Hopf326

bifurcation but discontinuous at the saddle-node327

bifurcation. Indeed, in the �rst case, the basin of328

attraction of the equilibrium shrinks progressively329

until it becomes a dot in the phase space for µ = µH .330

In the second case, the periodic solution suddenly331

disappears at µSN , even though its basin of attrac-332

tion had previously occupied a large part of Q. The333

value of SB corresponds to the probability to obtain334

the related solution, given a random initial state335

inside Q. If a musician were to impose uniformly336

random initial conditions in Q = ([−4, 4] × [−4, 4]),337

Fig.5 indicates that he/she would have at least a338

60% chance of reaching the periodic regime in the339

steady state. However, the assumption of a musician340

peeking a random initial condition uniformly seems341

oversimpli�ed. This topic is discussed in Sec.4 and 6.342

343

Overall, the basin stability indicates which values of344

the parameters (here, the only parameter is µ) fosters345

one solution or another. It gives the probability to346

produce a speci�c regime, considering a subset Q of347

the phase space and a probability density function ρ348

of Q. The result depends greatly on the choice of Q349

and ρ. The standard error of this metric depends on350

the number of samples and on the relative size of the351

studied basin of attraction. It does not depend on the352

phase space dimension however and thus is very well353

adapted to high but �nite dimensional systems.354

Figure 5: Basin stability of the two stable solutions
computed from 100 samples. In red: basin stability
of the periodic solution. In blue: basin stability of
the equilibrium. Error bars correspond to the stan-
dard error of the size estimation of the Monte-Carlo
method due to sub-sampling Eq.(7). In black: basin
stability computed with the analytic expression of the
basin boundary (circle of known diameter X2π− given
in (3)). The region of multistability is shaded in grey.

3.2 Transient duration 355

In music, transient phenomena play a crucial role in 356

sound and instrument discrimination [42�44]. Musi- 357

cians may also have expectations concerning the char- 358

acteristics of these transients, and in particular con- 359

cerning their duration. For example, Guettler and 360

Askenfelt [23] highlight the importance of the type 361

and duration of violin attacks on their quality as 362

perceived by professional string players. Several au- 363

thors [21, 22, 25, 45] assume that musicians and in- 364

strument makers look for short transitions, whether 365

for the onset or for sequences of linked notes. In this 366

paper, we thus consider the reaction time of an instru- 367

ment � i.e., its tendency to produce short transients 368

� as a playability criterion. In self-sustained instru- 369

ments, the transient depends on the parameters of 370

the system but also on the initial conditions, as can 371

be seen on Fig.6. In this �gure, the evolution of the 372

�fth order Van der Pol oscillator has been computed 373

for a large number of random initial states, all other 374

things being equal. In Fig.6(a), the trajectories are 375

represented in the phase plane whereas in Fig.6(b), 376

the same trajectories are represented with respect to 377

time. The transient part of a trajectory is de�ned be- 378

tween its initial state and the moment it reaches the 379

neighborhood of an attractor. The transient dura- 380

tion is denoted τ hereafter. The neighborhoods of the 381

two attractors are shaded in grey and are de�ned at a 382

distance ε in L2-norm from the attractor. Although 383

the size of these neighborhoods has an impact on the 384

transient duration results, for now it is arbitrarily set 385

to ε = 0.1. Fig.6(b) highlights the diversity of tran- 386
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(a)

(b)

Figure 6: (a) Phase trajectories and (b) time evolu-
tion of the associated norm of the system's state for
300 random initial conditions. Blue trajectories lead
to the equilibrium and red trajectories lead to the pe-
riodic solution. The neighborhoods of the two stable
solutions are shaded in grey. They are de�ned at a
distance ε = 0.1 in L2-norm from the stable solutions.

sient durations that can be obtained only by picking387

di�erent initial conditions. Some tendencies seem to388

appear. For instance, for this distribution of initial389

conditions, trajectories leading to the equilibrium are390

usually longer than those leading to the periodic so-391

lution.392

These tendencies stand out when the distributions393

of the transient durations are represented graphically.394

Information on a distribution can be displayed as in395

Fig.7. The upper panel gives the cumulative distri-396

bution function, i.e., the proportion of trajectories397

with a transient duration shorter than the value τi398

represented in abscissa. The two lower panels depict399

the corresponding violin plots [46, 47], where the box400

plots give the extreme values (tips of the whiskers),401

the median and the two quartiles, and the shaded402

curves represent the probability density function of403

the distributions. To compute the latter, we used the 404

kernel density estimator of Matlab (ksdensity). This 405

statistic information is calculated for each attractor 406

separately. As in Sec.3.1, we use a Latin Hypercube 407

Sampling to uniformly explore the space of initial 408

states. With this sampling, we do not control the 409

exact number of samples in each basin of attraction, 410

but it can be estimated with the basin stability SB 411

previously computed. As a result, for lowest values 412

of SB, the statistical transient analysis relies on only 413

few samples and may not be very representative. It 414

should be remembered that such misrepresentations 415

occur only on highly improbable regimes. If a speci�c 416

case calls for in-depth study of these regimes, the 417

region of interest Q can be adapted, leaving the 418

method otherwise unchanged. The cumulative dis- 419

tribution function lends itself well to interpretation 420

in musical context, where one could de�ne a longest 421

acceptable transient duration. The probability of the 422

transient being shorter than this upper limit can be 423

read directly on the cumulative distribution function, 424

under the hypothesis of random initial conditions 425

following a uniform law. 426

427

We use the violin plot representation in Fig.8 428

to depict the evolution of the transient duration 429

distribution with respect to the control parameter 430

µ. Plotting the probability density function over the 431

boxplot is particularly interesting when there are 432

multiple maxima in the distribution since multiple 433

maxima are not visible on a box plot. For instance, 434

some examples of bi-modal distributions can be 435

observed around the saddle-node bifurcation (for 436

µ ≈ µSN ). 437

438

Fig.8 shows that most transients leading to the pe- 439

riodic solution are very short compared with its period 440

(T = 2π). Indeed, the violin plots are centered around 441

low values of τ (a magni�ed view for µ = −3 is visible 442

in Fig.7). However, the maximum transient durations 443

are markedly larger than the median duration, up to 444

800 times longer for µ = −0.26. This indicates that, 445

for most values of µ, a few initial conditions have ex- 446

tremely long transients. In fact, these particular ini- 447

tial states are very close to the unstable limit cycle. In 448

that case, the trajectory follows the unstable limit cy- 449

cle for some time while slowly diverging from it, which 450

lengthens the transient duration. These rare and very 451

long durations have particularly large values in the 452

vicinity of the Hopf bifurcation. For the equilibrium, 453

transient durations are longer and distributed more 454

uniformly for all the values of µ. Outside the vicinity 455

of the two bifurcations, the transient durations lead- 456

ing to both solutions statistically decrease as µ in- 457

creases. This is coherent with the fact that −µ is the 458

linear part of the damping. As µ increases, the sys- 459

tem becomes less and less damped until µ eventually 460

becomes positive and energy is added to the system. 461
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Figure 7: (Top) Cumulative probability function of
the transient duration distribution. In ordinate, the
proportion of trajectories with a transient duration
below the value given in abscissa. (Bottom) Corre-
sponding violin plots. The box plots indicate the ex-
treme values, the median, the upper and lower quar-
tiles whereas the curves around represent the proba-
bility density function of the transient duration dis-
tribution. A latin hypercube of 1000 samples is used
and the transient durations are de�ned with ε = 0.1.

Near the saddle-node bifurcation, this trend does not462

apply. The equilibrium becomes the only stable so-463

lution but its transient duration globally increases464

around µSN . This is a usual phenomenon around a465

saddle-node bifurcation. It is interpreted by Strogatz466

in [38] as the remaining ghost of a nearby attractor467

that does not exist anymore. Around the Hopf bifur-468

cation, the periodic solution becomes the only stable469

solution but its maximum transient duration signi�-470

cantly increases. However, apart from these very few471

long transients, Fig.8(b) shows that the overall trend472

does not change signi�cantly for the periodic solution473

around the Hopf bifurcation. Considering initial con-474

ditions chosen from a uniform distribution, these long475

transients are highly improbable.476

4 In�uence of the distribution of477

initial conditions478

In order to provide a more meaningful analysis in a479

context of musical performance, we consider another480

distribution for the initial conditions, informed by481

temporal evolutions of the control parameter. More482

precisely, we now consider initial conditions result-483

(a)

(b)

Figure 8: Violin plots of the transient duration with
respect to the control parameter µ. In blue: equilib-
rium. In red: periodic solution. Number of samples:
N = 1000. Panel (b) is a magni�ed version of the
transients leading to the periodic solution. The re-
gion of multistability is shaded in grey.

ing from a transient variation of the control parame- 484

ter µ, just before it reaches a constant target value. 485

Our goal is therefore to consider what we call here- 486

after a "transient-informed" distribution and to an- 487

alyze how it a�ects the basin stability results. To 488

obtain a transient-informed distribution, we compute 489

the time evolution of the system under several tran- 490

sient variations of µ. These transient-informed distri- 491

butions could also be used to compute the transient 492

duration statistics, but we only focus on the basin 493

stability here, since the results are more remarkable. 494

4.1 Control scenarios 495

Systems such as the �fth order Van der Pol oscillator 496

presenting an inverse Hopf bifurcation followed 497

by a saddle-node bifurcation produce a sound of 498

non-zero amplitude when the control parameter 499

exceeds the Hopf bifurcation (this is the case for 500

the trumpet and the saxophone for certain sets of 501

parameters). Nevertheless, it is possible to reduce the 502

sound amplitude afterward by decreasing the control 503

parameter under the Hopf bifurcation value, into the 504

multistability region. To produce a low-volume sound 505

at the onset, one can attempt to realize this gesture 506
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quickly by reducing the control parameter, and move507

the system into the multistable region before the508

limit cycle is attained. However, this strategy may509

fail if the system remains too close to the equilibrium510

during the transient. It would become trapped in the511

equilibrium's basin of attraction when the parameter512

stops varying, which would result in no stable sound513

being produced. We consider piecewise linear control514

scenarios, as depicted in Fig.9. These scenarios are515

de�ned by four parameters: their initial value µ0,516

their maximal value µmax that corresponds to what517

can be called the overshoot value, their �nal value518

µend at which the basin stability is computed and519

their duration τatt that corresponds to the "attack520

duration". For simplicity, we choose the same521

slope (in absolute value) for the increasing and the522

decreasing phases (before and after the overshoot).523

524

The order of magnitude of µ0 is based on the bi-525

furcation diagrams of the trumpet models presented526

in [5]. The objective is to give as much importance to527

the multistability as in these trumpet models. There-528

fore µ0 is set to have a similar ratio between the size529

of the multistability region [µSN , µH ] and the size of530

the stability region of the equilibrium [µ0, µH ] as in531

the models of [5]. µ0 is then set to µ0 = −25. At the532

end of the attack, µ = µend and the basin stability is533

computed for this value of µ. The overshoot µmax and534

the duration of the attack τatt are the two remaining535

parameters of the control scenarios. In the following,536

we study the in�uence of a given overshoot µmax on537

the regime selection, while the attack duration τatt538

remains free to take di�erent values. We arbitrarily539

choose µmax ∈ [1, 10] and τatt ∈ [1, 20] (dimensionless540

values). In [21], Ernoult and Fabre measured pressure541

rise times going approximately from 5 to 150 ms, for542

all �ngerings between C5 (1046.5 Hz) and C6 (2093543

Hz). Therefore, by choosing τatt ∈ [1, 20], we keep544

a ratio between the longest and the shortest attacks545

with the same order of magnitude as in [21].546

4.2 Distribution generation547

To generate a transient-informed distribution of ini-548

tial conditions for a speci�c µend, we apply 10 control549

scenarios with di�erent durations (τatt ∈ [1, 20]) and550

with a unique value of µmax, to N0 = 10 pre-initial551

conditions chosen close to the equilibrium (Latin Hy-552

percube Sampling taken inside x ∈ [−0.1, 0.1] and553

ẋ ∈ [−0.1, 0.1]). As a result, we obtain a transient-554

informed distribution of N = 100 initial conditions555

depicted in Fig.10. Firstly, it can be observed that556

this distribution is far from being uniform; most557

transient-informed initial conditions are very close to558

either the equilibrium or the periodic solution. It is559

expected for such a system to leave an unstable equi-560

librium through its fast eigendirection (i.e., associated561

with the eigenvalue of highest modulus) and to con-562

Figure 9: Control scenarios used to compute the
transient-informed initial conditions. The multista-
bility region is shaded in gray. µ0 is the initial value
of µ, µmax is the overshoot, µend is the �nal value of
µ, at which the basin stability is computed, µH and
µSN are the value of µ at the Hopf and at the saddle-
node bifurcations and τatt is the attack duration.

verge towards a stable equilibrium through its slow 563

eigendirection (i.e., associated with the eigenvalue of 564

smallest modulus). Such behavior is explained by 565

Strogatz in example 5.2.3, p.133 of [38]. Precisely, 566

around the equilibrium in Fig.10, the states of the 567

system at µ = µend are gathered along a speci�c di- 568

rection whereas the states of the system at µ = µmax 569

are regrouping along another direction. In addition, 570

we plot on the same �gure the fast eigendirection of 571

the equilibrium at µ = µmax and its slow eigendirec- 572

tion at µ = µend. At the overshoot, the system clearly 573

leaves the equilibrium through its fast eigendirection. 574

At the end of the attack, some of the trajectories con- 575

verge toward the equilibrium. If the simulation was 576

performed over a longer duration, they would eventu- 577

ally gather along the slow eigendirection of the equi- 578

librium. 579

4.3 Basin stability with transient- 580

informed distribution 581

The basin stability is then computed using these 582

transient-informed distributions. The results are 583

shown in Fig.11 for three di�erent overshootvalues. 584

For the sake of readability, only the basin stability 585

of the periodic solution is represented (we recall 586

that the basin stability of the equilibrium is the 587

complementary to one). 588

589

The result computed with the uniform distribution 590

is represented in black. Firstly, this �gure highlights 591

that the basin stability depends greatly on the 592

considered distribution, even though some features 593

are preserved: SB(µ) is discontinuous at µ = µSN , 594

continuous at µ = µH and monotonously increasing 595

for the cases where µmax = 3 and 4. In the case where 596
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Figure 10: Example of a transient-informed distribu-
tion generated with 10 control scenarios of di�erent
durations. (•) Pre-initial Latin Hypercube of size
N0 = 10; (•) states of the system when µ = µmax;
(•) transient-informed distribution at the end of the
attack. The black dotted line is the fast eigendirec-
tion of the equilibrium at µ = µmax and the red one
is its slow eigendirection at µ = µend.

µmax = 2, the overshoot scenario does not su�ce to597

leave the basin of the equilibrium and no oscillations598

are observed in the multistable region. Secondly, for599

the situation considered, this �gure shows that the600

large-overshoot attacks are more likely to make the601

system end up on the periodic solution. Moreover,602

the basin stability increases faster when µend gets603

closer to µH . In terms of playability, a slowly varying604

SB can be interpreted as a region where the di�culty605

to produce a sound does not depend much on the606

�nal value of the control parameter. For the situation607

under study, this means that for a given value of608

µmax, all the attacks with µend in this region of609

slow varying SB have almost the same probability610

to converge towards the periodic solution. As a611

result, if we ignore the di�culty for a musician to612

maintain µ > µSN , there is no additional di�culty613

to reducing the sound amplitude to its minimal value.614

615

5 Application to a trumpet616

model617

In order to evaluate the interest of the methods in-618

troduced in previous sections to a more advanced and619

high dimensional model of musical instrument, the620

analysis of basin stability and transient durations is621

applied in this section to a physical model of B♭ trum-622

Figure 11: Basin stability of the periodic solution
computed with di�erent distributions. The red curves
are computed with transient-informed distributions of
initial conditions, each curve corresponding to a spe-
ci�c overshoot µmax. The black curve is computed
with a uniform distribution (it is the same as in Fig.5
without the error bars).

pet. 623

5.1 Presentation of the model 624

The model used is identical to the one considered 625

in [5]. It is detailed in appendix A. The lips are rep- 626

resented by a one-degree-of-freedom oscillator. The 627

air column inside the body of the instrument, also 628

known as the resonator, is modeled by a modal trun- 629

cation of its input impedance. These two elements are 630

coupled by a nonlinear function that models the air 631

jet through the lip channel. In this article, we con- 632

sider an 11-mode truncation of the resonator and �x 633

the resonance frequency of the lips around the sec- 634

ond impedance peak (fL = 200 Hz and f2 = 232.7 635

Hz). This peak corresponds to the lowest note of the 636

instrument, in "normal" playing conditions (the �rst 637

peak being associated with the "pedal note"). The 638

variables of this model are the position and velocity 639

of the lip as well as the real and imaginary parts of 640

the 11 modal pressures. This results in a system of 641

dimensionality 24. The parameter values used in this 642

article are given in appendix A. 643

5.2 Bifurcation diagram 644

Unlike the 5th-order Van der Pol oscillator, this trum- 645

pet model has no analytical solutions. To determine 646

its solutions, numerical continuation can be used. 647

Here, we use the Manlab software [33]. The bifurca- 648

tion diagram of the model is shown in �gure 12. The 649

amplitude of the mouthpiece pressure p and the fre- 650

quency of the sound produced fplay are plotted with 651

respect to the blowing pressure p0. In this zone, the 652

system exhibits an inverse Hopf bifurcation followed 653

by a saddle-node bifurcation, like the Van der Pol os- 654
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Figure 12: Bifurcation diagram of the 11-mode trum-
pet model, calculated with Manlab. Top pane: am-
plitude of the oscillations ||p||L2 versus blowing pres-
sure p0. Bottom pane: fundamental frequency of the
oscillations fplay versus blowing pressure p0. Stable
solutions are shown as solid lines, unstable solutions
as dotted lines. Bifurcations are represented by stars.

cillator presented in previous sections. The periodic655

regime is associated with the second mode of the res-656

onator, represented on the bottom panel of the �gure657

by a horizontal dotted line.658

5.3 Basin stability and transient dura-659

tions computed with bSTAB660

To calculate the system's basin stability and transient661

durations, we use the bSTAB toolbox [48]. For our ap-662

plication, we have made a number of modi�cations to663

this toolbox, which are detailed in appendix B. These664

modi�cations rely on convergence criteria in order to665

identify when the system has reached steady state.666

The numerical integration lasts until these criteria are667

met, rather than for an arbitrary time which would668

be identical for all trajectories. These modi�cations669

allow us both to reduce the duration of the time in-670

tegrations required to compute basin stability, and to671

calculate the duration of transients (which is not pro-672

vided in the original toolbox). These criteria must be673

de�ned carefully, in order to avoid samples missclas-674

si�cation, leading to errors in the estimation of basin675

stability and transient durations.676

5.3.1 Initial conditions from a uniform distri-677

bution678

As for the Van der Pol oscillator, we �rst consider679

a uniform random distribution of initial conditions680

Qu selected inside a hyper-rectangle. This hyper- 681

rectangle is chosen large enough to contain all the 682

solutions, whatever the value of p0. Its bounds are 683

set as the extrema of the stable periodic solution at 684

p0 = 0.8 kPa, rounded up to the nearest integer value. 685

686

The basin stability calculated with Qu for N = 300 687

samples is given in �gure 13(a), the transient du- 688

ration distributions are given in �gure 13(b) and a 689

zoomed-in view is given in �gure 13(c). The basin 690

stability shares some features with the Van der Pol 691

oscillator. Indeed, it is discontinuous at the saddle- 692

node bifurcation and remains continuous at the Hopf 693

bifurcation. The observations and comments made 694

about this feature on the simple Van der Pol oscillator 695

translate directly to this more complicated system. 696

In addition, SB is monotonous. However, unlike 697

the Van der Pol oscillator, for dynamical systems of 698

dimensionality three or more, the basins' boundaries 699

are di�erent than the unstable periodic solutions. 700

These objects even have di�erent dimensionalities 701

(the basins' boundaries are hypersurfaces and the 702

limit cycles are hyperlines). Consequently, the basin 703

stability of the equilibrium cannot be inferred from 704

a size estimate of the unstable periodic solution and 705

the sampling approach is then required. 706

707

Concerning transient durations, the Hopf bifur- 708

cation induces a few long transients in its vicinity, 709

leading both to the equilibrium and to the periodic 710

solution. This is probably related to the increasing 711

timescale of the slowest eigendirection whose stability 712

is reversed at the Hopf bifurcation. Eventually, the 713

timescale of this eigendirection goes to the in�nity 714

at the Hopf bifurcation. The ghost e�ect around the 715

saddle-node bifurcation, where the periodic solutions 716

do not exist yet, is also visible but less than for the 717

Van der Pol oscillator. This may be due to the fact 718

that in a phase space of dimensionality two, for a 719

value of the control parameter slightly below the 720

value of the saddle-node, the trajectories initiated far 721

away from the equilibrium necessarily have to enter 722

the region of in�uence of this ghost limit cycle. On 723

the contrary, in a phase space of higher dimensional- 724

ity, these trajectories can pass away from this region. 725

Moreover, the median and the interquartile range of 726

both solutions increase around the Hopf bifurcation 727

(even though it is hardly noticeable for the periodic 728

solution with that scale). 729

730

Finally, this trumpet model sometimes exhibits 731

transients of more than several seconds, which is 732

extremely long compared to usual musical timescales. 733

Beyond a certain duration, these asymptotic regimes 734

can be considered unplayable or at least di�cult to 735

play. However, the regime that is heard during one 736

of these extremely long transients can be treated 737

as a playable regime by the musician, even if it is 738
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unstable. In this respect, one could see a percussion739

instrument as a dynamic system with only one740

asymptotic solution, the equilibrium, but whose741

transients are long enough to be used to make music.742

We could then consider a "transient" category for743

samples with a transient duration exceeding a certain744

"musical duration", rather than classifying them745

according to their asymptotic solution.746

747

5.3.2 Initial conditions from a distribution748

based on archetypal time variations of749

p0750

In the following, we study the in�uence of attack751

transients on basin stability. We apply the same752

method as in Sec.4 to generate distributions Qtb753

based on transient evolutions of p0. Again, we754

consider pressure rises with overshoot (see Fig.9),755

in the manner of a strong tonguing attack or a756

sforzando, as can be found in [49]. The con�guration757

and the parameters chosen here di�er from [49].758

Consequently, we consider slightly di�erent control759

transients than those measured in that article, so760

that p0,max ∈ [1, 10] kPa and τatt ∈ [10, 500] ms.761

Ten attack transients are applied to each sample762

of a uniform distribution of N0 = 100 pre-initial763

conditions. This leads to a �nal distribution of764

N = 1000 initial conditions. Each variable of the765

pre-initial distribution is selected in ranges 0.3 times766

smaller than in Sec.5.3.1. These ranges are chosen767

arbitrarily and have a signi�cant in�uence on the768

results.769

770

In Figure 14(a), we present the in�uence of the at-771

tack duration τatt on the behavior of the system. Each772

curve has a �xed value of τatt and 10 di�erent values of773

p0,max ∈ [1, 10] kPa. It is striking to see that the basin774

stability does not evolve monotonously with τatt. In-775

deed, one would expect that the longer the system776

stays in the region of monostability of the periodic777

solution, the higher the chances it has to end up in778

its basin of attraction. However, when τatt increases779

from 10 to 50 ms, SB decreases. SB does not evolve780

much for τatt ∈ [50, 100] ms, and it then increases, as781

expected, for τatt > 100 ms. These observations can782

be analyzed by considering recent results concerning783

dynamical bifurcations [50]: how close the system has784

come to the equilibrium when the Hopf bifurcation785

is crossed is crucial to predict the dynamics above786

the bifurcation. This closeness is the result of the787

time spent by the system below the bifurcation but788

also of the number of signi�cant digits used in the789

simulation (numerical noise is therefore inevitable).790

This makes direct interpretation not straightforward.791

In �gure 14(b) we study instead the in�uence of the792

overshoot amplitude p0,max for various attack dura-793

tions τatt ∈ [10, 500] ms. In that case, SB increases794

(a)

(b)

(c)

Figure 13: Basin stability (a) and transient duration
distributions (b) of the trumpet model calculated with
a uniform Qu distribution of N = 300 initial condi-
tions. The dotted lines in (b) indicate the limit of the
scale used for the zoomed view in (c). Error bars are
given by the Eq.7.
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(a)

(b)

Figure 14: Basin stability of the trumpet model calcu-
lated with distributions Qtb of N = 1000 initial condi-
tions based on attack transients (10 scenarios applied
to each of the N0 = 100 pre-initial conditions). (a)
Each curve corresponds to a speci�c attack duration
τatt. (b) Each curve corresponds to a speci�c over-
shoot value p0,max. Only the basin stability of the
periodic regime is shown.

with the overshoot value, until it reaches its maximal795

value for p0,max ∈ [5, 7] kPa. Hence, it seems that796

there are optimal values of transient control parame-797

ters to maximize SB. Further study would be needed798

to understand the dynamical reasons leading to this799

non trivial behavior.800

6 Discussion 801

6.1 Computational cost 802

The methods presented in this paper allow to com- 803

pute the basin stability and the transient duration 804

distributions of a system. These metrics describe 805

the global, statistical behavior of a system and 806

could be very useful to study musical instruments, 807

notably their playability. However, in order to take 808

into account all the potential behaviors of a system, 809

their computation can be costly. As a result, the 810

computation cost limits the possible applications of 811

these methods, for parametric studies for example. 812

813

Initially, [31] proposed to use Monte-Carlo tech- 814

niques to numerically estimate the basin stability. 815

Some limitations of these techniques have been 816

drawn [40] when applied on strange basins of at- 817

traction (e.g., fractal and riddled/intermingled). 818

However, such basins remain to be exhibited on 819

self-sustained musical instruments. Some authors 820

also proposed enrichment to the metric, to take into 821

account uncertainties and variations of the parame- 822

ters [51, 52]. Additionally, improvements on classical 823

Monte Carlo approaches, notably using machine 824

learning tools, show promise to accelerate basin 825

stability computation. This could be interesting 826

for more complex musical instrument models. For 827

example, [41] proposed a method based on support 828

vector machines. The idea is to �nd the basins' 829

boundaries with a limited number of samples. Work 830

still needs to be done to determine which method 831

should be used depending on the situation and on the 832

classi�cation cost of a single sample. Indeed, if the 833

classi�cation of each sample is fast, it may be slower 834

to �nd basins' boundaries rather than to apply a 835

simple Monte-Carlo size estimation. For instance, it 836

is the case for the Van der Pol oscillator presented in 837

this article. 838

839

If the transient duration statistics and the basin 840

stability are both studied, the two metrics can be 841

computed simultaneously, using the same time inte- 842

grations (as in Sec.5). The cost needed to compute 843

the basin stability with Monte-Carlo methods only 844

depends on the size of the basin as indicated by the 845

absolute standard error given by Eq.(7). For systems 846

with higher dimensions, that cost could increase if 847

the classi�cation cost does. Moreover, the relative 848

standard error, which writes errrel(ŜB) =
√

1/SB−1
N , 849

increases as SB decreases. Higher dimension systems 850

may have more stable solutions which lead to smaller 851

basin stability values. More samples would thus 852

be needed to keep the relative standard error low. 853

This standard error formula stands for independent 854

trials with only two outcomes � the sample is either 855

inside or outside the studied basin of attraction. The 856
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calculation of the transient duration distributions857

does not enter into this category since the outcome is858

a continuous random variable: a transient duration.859

With a sparse sampling, some transient behaviors860

that appear for speci�c initial conditions might be861

missed. Consequently, it could be interesting to862

estimate the convergence of the probability density863

functions in order to chose an adequate number of864

samples.865

866

The statistical methods presented here can be867

applied applied at low computational cost on the868

�fth order Van der Pol oscillator, because the two869

attractors and the boundary of the basins of at-870

traction are analytically known and characterized871

by their L2-norm. On more complex systems,872

the attractors and basins' boundaries usually do873

not have analytic expressions. The main di�culty874

encountered in carrying out the statistical analysis of875

the trumpet model presented in Sec.5 was to de�ne876

adequate classi�cation and stopping criteria. Indeed,877

non-linear systems sometimes evolve with very varied878

dynamics, making it di�cult to distinguish between879

a steady state and a transient regime with slow880

dynamics. This kind of behavior leads to signi�cant881

di�erences in transient duration between di�erent882

initial conditions, especially at a bifurcation, where883

one eigendirection becomes in�nitely slow. These884

discrepancies in transient durations are particularly885

visible in Fig.13(b), around the Hopf bifurcation. In886

this regard, the Manlab solutions were very helpful to887

de�ne e�cient classi�cation and convergence criteria888

(see appendix B). For systems with a wide range of889

transient durations, we would strongly recommend to890

set a convergence criteria rather than to use a �xed891

integration time, as this is the case in the version892

of bSTAB currently online. This would improve893

performances and limit missclassi�cation.894

895

6.2 Initial conditions and musical ges-896

tures897

In Sec.3, the presented statistical approach is based898

on a uniform distribution of initial conditions. This899

is a general distribution and it allows di�erent900

instrument con�gurations to be compared. However,901

the resulting probabilities probably fail to translate902

the musician's playing experience. As a �rst attempt903

to tackle this issue, we study in Sec.4 initial condi-904

tions resulting from an archetypal control gesture.905

This approach highlights the importance of the906

considered distribution of initial conditions and it907

can be interpreted in musical terms more directly908

than random initial conditions. We would like to909

draw the reader's attention to the fact that the910

results obtained with this transient-based approach911

not only depend on the transient control parameters,912

but also on the choice of the pre-initial conditions. 913

Overall, applicative studies on playability would 914

greatly bene�t from a preliminary description of 915

the control scenarios and, where relevant, initial 916

conditions distributions. In that perspective, it could 917

be of great interest to measure transient blowing 918

scenarios provided by humans (musicians and non 919

musicians) in an experimental study. Moreover, 920

as illustrated by Fig.10, dynamical systems are 921

more likely to cross speci�c regions of their phase 922

space during transients. Choosing distributions 923

of initial conditions based on the slow and fast 924

eigendirections (depending on the solutions that exist 925

during the transient) could also be an interesting idea. 926

927

In this paper, we focus on initial conditions in- 928

duced by the fast evolution of one control parameter. 929

However, musicians may also impact the initial 930

conditions by acting directly on a state variable. One 931

example among many others is the use of the tongue 932

in reed instruments to impose initial reed positions 933

and velocities. Measurements of tongue-induced 934

reed positions in a clarinet are presented in [53] for 935

example. To improve the statistical approaches, these 936

initial conditions should also be taken into account. 937

938

6.3 Stability, transient duration and 939

playability 940

Other studies were interested in predicting the 941

transient duration of a self-sustained musical instru- 942

ment [24, 25]. A common approach is to linearize 943

the system around an unstable equilibrium and to 944

consider the exponential growth of a perturbation. 945

This exponential growth depends on the positive real 946

part of the eigenvalues of the matrix of derivatives 947

(i.e., the jacobian matrix). This method is better 948

adapted for studying initial conditions close to an 949

equilibrium solution. The Floquet theory might 950

be used in the same way for initial conditions next 951

to a periodic solution, although it has yet to be 952

applied in that manner to a musical instrument 953

model (for more details on the Floquet theory, 954

refer to [54, 55]). In this article, we consider initial 955

conditions not necessarily close to any solution. 956

Hence, these linear analyses might not be valid 957

for every sample. On more complex systems with 958

several competing multistable solutions, its local 959

nature prevents it from giving a complete analysis 960

of the transients. However, the systematic and fast 961

nature of linear analysis makes it a good candidate to 962

bolster certain sections of a complete statistical study. 963

964

Finally, the statistical study of the trumpet model 965

presented in Sec.5 highlights several interests of the 966

methods. The long transients observed in Fig.13 raise 967

the question of the playability of a regime as a func- 968

13



tion of its transient duration. In a standard musical969

context, we argue that a regime that takes several sec-970

onds to establish cannot really be considered playable.971

Therefore, certain stable regimes could actually be972

unplayable due to transient behaviors, which shows973

the relevance of nuancing the notion of stability using974

transients when studying playability. The transient-975

based analysis of Sec. 5.3.2 also indicates that the976

transient control parameters of a musical gesture may977

have nontrivial optimal values. Future works could978

analyze these types of transient control scenarios into979

more details, relying on the statistical approaches as980

playability guidelines.981

7 Conclusion and perspectives982

In this article, we present a sample-based approach983

that can be used to enrich a bifurcation diagram. In984

this study we use it to investigate two playability985

issues: the prediction of the steady state in multi-986

stable situations and the prediction of the transient987

duration. The method used for the �rst issue is called988

the basin stability [31], whereas the method proposed989

for describing the responsiveness of a dynamical990

system is new, to the authors' knowledge. These two991

methods rely on distributions of initial conditions992

that represent the transient action of a musician. The993

results strongly depend on this choice of distribution994

and we proposed a method based on time integration995

to generate transient-informed distributions.996

997

The methods are then applied to a physical model998

of trumpet with the aim to evaluate their interest999

in a more practical case. The transient-based basin1000

stability of this model present non trivial tenden-1001

cies regarding some transient control parameters.1002

Moreover, very long transients are highlighted,1003

which raises the question of the playability of such1004

asymptotic regime. Overall, these statistical methods1005

show interest for the analysis of musical instruments,1006

but they can also be extended to a large variety of1007

systems.1008

1009

Future works will focus on two aspects. First, these1010

methods will be applied on musical instrument models1011

in con�gurations showing multiple oscillating regimes1012

and rich transients. Then, measurements on musi-1013

cians will be conducted to evaluate the initial con-1014

ditions that they induce, depending on the desired1015

musical e�ect.1016

8 Data Availability Statement1017

No new data were created or analyzed in this study.1018

Appendix 1019

A Trumpet model 1020

We consider the brass instrument model described 1021

in [5]. The convention used to represent the lip posi- 1022

tion is given in �gure 15. The dimensioned and un- 1023

regularized equations are as follows: 1024
ẍ+ ωL

QL
ẋ+ ω2

L(x− x0) =
p0−p
µL

,

ṗn − snpn = ZcCnu ∀n ∈ [1, Nm],

p = 2
∑Nm

n=1 ℜ(pn),
u = W

√
2|p0−p|

ρ · sign(p0 − p) ·max(x, 0),

(9)

with 1025
ωL =

√
k
m ,

QL =
√
km
c ,

µL = m
S .

(10)

S is the surface area of the lip to which the pressures 1026

p0 and p are applied, µL is the surface mass of the 1027

lip, QL its quality factor and ωL its angular eigen- 1028

frequency. The resonator is represented by its input 1029

impedance, which is treated as a sum of Nm modes 1030

with poles sn and residues Cn. The lip allows air to 1031

pass through a rectangular surface of height x and 1032

width W . The system Eq.(9) is scaled as follows: 1033


¨̃x+ ωL

QL

˙̃x+ ω2
L(x̃− 1) = ω2

L(γ − p̃),
˙̃pn − snp̃n = Cnũ ∀n ∈ [1, Nm],

p̃ = 2
∑Nm

n=1 ℜ(p̃n),
ũ = ζ

√
|γ − p̃| · sign(γ − p̃) ·max(x̃, 0).

(11)

Variables a�ected by this scaling are marked with 1034

a˜symbol and are de�ned as follows: 1035

x̃ = x
x0
,

pM = µLω
2
Lx0,

p̃ = p
pM

,

γ = p0

pM
,

p̃n = pn

pM
,

uM = pM

Zc
,

ũ = u
uM

,

ζ = ZcWx0

√
2

ρpM
.

(12)

Irregular functions appearing in the �ow term are reg- 1036

ularized: 1037
| • |r =

√
•2 + ϵ,

sign(•)r = •
|•|r ,

max(•, 0)r = •+|•|r
2 .

(13)

The regularization term ϵ is arbitrarily set to 1038

ϵ = 10−6. 1039

Time is scaled by the �rst modal angular frequency 1040

ω1 = ℑ(s1) and the concerned variables are written 1041

with a � symbol. Finally, we separate the real Rn and 1042
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Figure 15: Schematic diagram of the one-degree-of-
freedom lip model. Assume x = 0 when the lip is in
the closed position and note x0 the position of the lip
at rest (the situation shown here).

imaginary In parts of the modal pressures pn, and the1043

system we solve is as follows:1044 

¨̂x+ ω̂L

QL

˙̂x+ ω̂2
L(x̃− 1) = ω̂L

2(γ − p̃),
˙̂
Rn = ℜ(ŝn)R̃n −ℑ(ŝn)Ĩn + ℜ(Ĉn)ũ

∀n ∈ [1, Nm],
˙̂
In = ℜ(ŝn)Ĩn + ℑ(ŝn)R̃n + ℑ(Ĉn)ũ

∀n ∈ [1, Nm],

p̃ = 2
∑Nm

n=1 ℜ(p̃n),
ũ = ζ

√
|γ − p̃|r · sign(γ − p̃)r ·max(x̃, 0)r.

(14)

1045

The parameter values chosen for this article are as1046

follows:1047 

ωL = 2π × 200 rad.s−1,
µL = 2 kg.m−2,
QL = 3,
x0 = 1e− 4 m,
W = 8.10−3 m,
Zc = 1.83 kg.s−1.m−4,
ϵ = 10−6,

(15)

Table 1: Resonator modal parameters. Complex
residues Cn and poles sn and resonance frequencies
fn.

n Cn (kg.s−1.m−4) sn (rad.s−1) fn (Hz)
1 744.6 −13.98 + i522.5 83.15
2 954.5 −22.42 + i1462 232.7
3 1335 −28.64 + i2187 348.1
4 2582 −37.64 + i2907 462.6
5 3140 −45.82 + i3658 582.1
6 4191 −49.82 + i4339 690.6
7 4013 −58.42 + i5029 800.4
8 2602 −66.77 + i5705 908.1
9 1278 −72.24 + i6459 1028
10 909.7 −94.40 + i7211 1148
11 620.7 −128.6 + i7931 1262

1048

B Modi�cations to bSTAB 1049

The bSTAB toolbox [48] has been designed to 1050

calculate the basin stability of any dynamic system 1051

as automatically as possible. It generates initial con- 1052

ditions, performs a time integration for each of them, 1053

then classi�es the obtained regime by comparing it 1054

to reference signals. In our case, we compare the 1055

peak-to-peak amplitude of R2, the real part of the 1056

second modal pressure, to that of the MANLAB solu- 1057

tions. Since classi�cation must be performed on the 1058

steady part of the regime, the time integration con- 1059

tinues until the following convergence criteria are met. 1060

1061

During the last duration t⋆: 1062

1. The amplitude of R2 is within ε of that of a ref- 1063

erence solution; 1064

2. The di�erence between the amplitude of R2 and 1065

that of the reference decreases. 1066

The transient duration is de�ned as the duration 1067

after which the envelope of R2 stays within ε of the 1068

amplitude of the reference solution. In this article, 1069

we choose ε = 0.1. 1070

1071

The computation of the transient duration is illus- 1072

trated in Fig.16(a). The corresponding trajectory is 1073

also represented in Fig.16(b), with its projection along 1074

x, R2 and R4. 1075
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(a)

(b)

Figure 16: (a) Computation of the transient duration
(represented by the dotted line) and (b) projection
of the corresponding trajectory along x, R2 and R4.
The red dot is the initial state, the blue cross is the
equilibrium, the red line is the stable periodic solution
and the black broken line is the unstable periodic so-
lution.
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