
HAL Id: hal-04777732
https://hal.science/hal-04777732v1

Submitted on 12 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed-test method for performance evaluation of
intelligent collaborative robotic systems

Miguel Da Silva, Maria Makarov, Remi Regnier, Didier Dumur

To cite this version:
Miguel Da Silva, Maria Makarov, Remi Regnier, Didier Dumur. Mixed-test method for perfor-
mance evaluation of intelligent collaborative robotic systems. 2024 IEEE 20th International Con-
ference on Automation Science and Engineering (CASE), Aug 2024, Bari, France. pp.1922-1927,
�10.1109/CASE59546.2024.10711408�. �hal-04777732�

https://hal.science/hal-04777732v1
https://hal.archives-ouvertes.fr


Mixed-test method for performance evaluation of
intelligent collaborative robotic systems

Miguel Da Silva1,2, Maria Makarov2, Remi Regnier1, Didier Dumur2

Abstract— Human-centered robotic systems open a large field
of new applications, both in industry and service contexts. For
their interaction with human beings, up to physical collabora-
tion, they rely heavily on computer vision, and more recently
on human motion tracking algorithms, which are examples
of intelligent components. The complexity resulting from the
variety of human behaviors and the combination of intelligent
components with robotic collaborative tasks raises the problem
of the performance evaluation of the overall system. To support
experiment design for performance evaluation of intelligent
collaborative robotic systems, we propose an approach com-
bining real-world human motion recordings with numerical
simulations of the dynamics of the robotic system with its
controller. In this article, we illustrate this approach on the
example of the handover task.

I. INTRODUCTION

The integration of intelligent technologies into manu-
facturing processes has become essential for improving
efficiency, flexibility, and overall productivity. Intelligent
components, such as computer-vision-based human motion
recognition, are central for the integration of intelligent
collaborative robotic systems, where humans are part of the
loop. Collaborative robots, or cobots, have emerged as a
key element in this paradigm shift, redefining human-robot
collaboration in industrial environments.

Evaluating the performance of cobots is essential to ensure
that they operate safely, efficiently, and effectively alongside
human workers, maximizing productivity while minimizing
the risk of accidents and downtime. In [1], we presented the
four types of testing methods: analytical methods, virtual
tests, physical tests, and mixed tests. Analytical methods are
useful to evaluate the elementary functionalities of cobots
using simplified models or to prove the stability of the
cobot in a given test configuration. Virtual tests allow the
prediction of cobot behavior in complex scenarios. They
allow us to numerically solve problems that are analytically
difficult or even impossible to solve including those that use
artificial intelligence. However, these tests rely on numerical
models that have been built based on assumptions, and which
may therefore neglect certain aspects of the task and lack
realism in certain situations. Physical tests can overcome this
issue but the number of use scenarios that can be assessed
is limited because of the costs and the test time. Mixed
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tests are a trade-off between physical tests and virtual tests.
For example, [2] create a real-time interaction between the
human operator and a virtual cobotic task, using a body
tracking system and a virtual reality headset. The mixed tests
method we propose for evaluating the system’s performance
is based on a camera- and human-in-the-loop approach.

Despite these different testing possibilities, as stated by
[3], no standardized evaluation methods guaranteeing the per-
formance of intelligent human-robot collaborative systems
exist. The ISO:15066 standard, analyzed in [4], focuses on
safety but not performance evaluation. One of the main chal-
lenges results from non-deterministic intelligent components
(e.g. cameras with human tracking algorithms) which can
lead to unpredictable behaviors of the collaborative task.

To address this issue, we have developed a mixed-test
methodology for evaluating the performance of a collabo-
rative robotic system including intelligent components (e.g.
cameras with human tracking algorithms). The objective is
to foresee corner cases and to narrow down the experimental
tests to be conducted on the whole system with humans. The
handover task is selected for illustrative purposes since it is
integrated into a large number of applications ranging from
pick and place to collaborative assembly [5]. In that sense,
the developed approach can be adapted for other applications.

In this paper, the considered AI system is a body-tracking
algorithm. The reason of this choice is that 3D (three-
dimensional) cameras with human motion tracking algo-
rithms are increasingly being used for collaborative robotics
tasks [6]. For example, [7] uses a depth camera together
with an advanced hand-tracking algorithm to solve grasping
problems to perform a handover (e.g. object transfer) task.

The proposed mixed-tests approach uses data from phys-
ical sensors and human interaction as input to a numerical
simulation of the task, to predict its performance. It has the
advantage of eliminating the need to model the unpredictable
elements of the task (e.g. output of the 3D camera’s wrist-
tracking AI algorithm). In this way, the task can be simulated,
as the data for the most uncertain elements of the task
are measured. However, this approach requires the creation
of a database of prepared signals for upstream numerical
simulation. Creating this database requires defining the test
conditions in advance. In other words, we need to know what
types of task parameters can be controlled and select those
relevant to the actual use scenarios.

In this study, we present a non-real-time mixed tests evalu-
ation approach applied to a handover task. Our contributions
are threefold. First, we introduce a model of the collaborative
handover task (Fig. 1) that can be adapted for other collabora-



tive tasks by applying the following steps: scenario selection,
database creation, data pre-treatment, task simulation, and
performance assessment. Second, we illustrate this evaluation
method by applying it to a handover task and following
the previously enumerated steps. Finally, we analyze the
evaluation results and conclude on the validity of this method
and the perspectives for its improvement.

II. EVALUATION METHOD

This section details the main components of the proposed
camera- and human-in-the loop evaluation method (Fig.
1), which are the human movement database creation (II-
A), data pre-treatment (II-B), robot simulator (II-C) and
performance metrics definition (II-D).
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Fig. 1. Mixed-test workflow: acquisition of wrist trajectories for handover
movements and data pre-treatment to build mirror trajectories used as a
reference for the robot controller to simulate the approach phase of a
handover task (Fig. 2,b).

A. Creation of a database of human movement

In this section, the creation of a database of human wrist
movement is exemplified in a mock-up of a handover task.

The handover task [5] consists of three phases (Fig. 2): a/
the user’s intention detection phase which triggers the start
of the task when the user’s wrist enters the object exchange
zone; b/ the approach phase during which the human directs
her/his hand towards the robot to receive or give an object; c/
the physical object exchange phase during which the human
takes the object from the robot gripper or gives an object to
the robot. This paper exclusively focuses on the approach
phase, as it contains artificial intelligence bricks as well
as indirect collaboration (i.e. without physical contact) with
the human. This subtask is a minimal task that contains
elements of a stochastic nature sufficient to highlight the
difficulties of evaluating an intelligent collaborative system.
Various strategies are possible for this approach phase. The
one we have chosen is the "mirror" approach similar to [8],
which consists of using as robot reference trajectory the
symmetrical trajectory of the human wrist with respect to
the object’s exchange plane.

To achieve this task, we use a 3D camera with a body
tracking algorithm to acquire the position of the human’s
wrist. The experiments were conducted within a motion cap-
ture arena (Fig. 3), in a mock-up of the handover task where
the human participant executed reaching movements from
initial positions to several targets, in multiple experimental
conditions detailed below. Four main scenario parameters
were selected in accordance with possible applications of
the handover task (e.g. industrial assembly): human body

Fig. 2. Description of the different phases of a handover task
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Fig. 3. Experimental setup for recording a handover trajectory. One
participant performed a total of 420 handover gestures with 3 different target
heights and in different scenarios described in Table II. These trajectories
were recorded using a 3D camera and a motion capture system used as
ground truth. The trajectories recorded by the motion capture system and
the 3D camera were recorded in the frames associated with these respective
elements, Rmocap and RZED . The position of the fictitious robot was
measured by the motion capture system and used to determine the position
of the Rrobot frame. The axis orientation of each frame follows the standard
RGB convention (red: x, green: y, blue: z).

orientation with respect to the camera, walking speed, human
posture, and robot position (see Table I). According to [9],
the orientation of the human with respect to the camera is
responsible for approximately 20% of wrist tracking errors.
Therefore, in addition to being consistent with the variability
of handover task applications, the choice of this parameter
is important because it has a significant impact on the
performance of human body tracking. Other important pa-
rameters may influence real-world operating conditions and
induce variability in human tracking by depth cameras and
associated algorithms (e.g. lighting, individual movement
strategies, individual morphology etc.).

In Table II, bullets materialize the tested conditions. Some
conditions were intentionally not tested because of resulting
movements deemed non-natural or not realistic for the han-
dover task. For example, condition RR-U2-a4 would result



TABLE I
HANDOVER TASK SCENARIO PARAMETERS

Parameter description Notations and values

Orientation of human’s sagittal
plane

a1 = 135◦, a2 = 90◦,
a3 = 0◦, a4 = −45◦,
a5 = −90◦

Walking speed U1: static (0 m/s)
U2: walking ( ̸= 0 m/s)

Human’s posture S: sitting
U: upright (U1 or U2 depending
on walking speed)

Robot position from the human’s
perspective when he faces the 3D
camera

RR: right
RL: left

TABLE II
SELECTED SCENARIOS FOR THE HUMAN MOTION RECORDINGS

a1 a2 a3 a4 a5

RL S • •
U1 • •
U2 • •

RR S • • •
U1 • • •
U2 • •

in a lateral walk pattern that is not natural for humans.
The duration of the trajectories is in the range of [0.93; 3.2]

seconds with a mean of 1.85 seconds. The mean maximum
cartesian speed of the trajectories is 0.73 m/s. They were
not accelerated or slowed down on purpose, our goal was
to create these trajectories as close to natural handover
movements as possible. The amplitude (e.g. 3D distance
between the first and the last point of the trajectory) of the
trajectories is between 0.25m and 1.37m, it varies according
to the type of scenario described in Table I.

For each repetition, we recorded pmocap the wrist mocap
3D position at 120Hz (ground truth of human movement),
and pcam the wrist 3D position estimated by the depth
camera and human body tracking algorithm at 15Hz, with
a ROS1 interface [10]. The motion capture equipment used
was an Optitrack system with 16 PrimeX cameras that
capture the position of the reflective markers attached to a
bracelet placed around the human’s wrist, to fake robot and
to the 3D camera. The chosen 3D camera is the Stereolabs
ZED2 with its dedicated body tracking algorithm.

B. Transforming the raw trajectories into valid robot inputs

Fig. 4 shows examples of the recorded mocap trajec-
tories in the scenario RL-U1-a2. These raw trajectories,
together with their equivalents acquired by the camera, are
transformed into position reference inputs compatible with
the robot (Fig. 1). As previously stated, we exemplify our
evaluation approach using the mirrored strategy for the
handover approach phase [8]. Main transformations imply
frame transformations, mirroring (the robot is supposed to
replicate the wrist trajectory symmetrically to the object’s
exchange plane), and robot workspace compatibility. The
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Fig. 4. Handover trajectories recorded with the motion capture system for
the scenario RL-U1-a2. There are 30 trajectories, 10 for each target height.

handover task only begins when the human wrist position
is inside the exchange zone, and x and y components
of the trajectories are bounded to respect the constraints
of the robot workspace. Note that by construction of the
experimental setup, this situation never happens with the
mocap trajectories, and only concerns camera trajectories in
case of large depth errors.

C. Impedance-controlled Panda robot simulation

The preprocessed trajectories are used as reference posi-
tion inputs within a robot simulator to assess the resulting
performance. We do not intend to assess the performance of
the robot or its control itself, but only the degradation of the
performance induced by the use of black-box human motion
tracking algorithms based on depth camera measurements.
We select a general control framework based on impedance
control, well suited for human-robot interaction and largely
studied. This type of control law has many variations, such
as those using variable gains to improve the compromise
between robot end-effector trajectory accuracy and robot
flexibility in the event of a collision. In our experiment, the
gains are chosen to be constant. We use in this study a simu-
lator of the 7 DOF Franka Emika Panda robot implemented
using [11] with the dynamic model identified by [12].

The simulated robot dynamics are:

M(q)q̈ + c(q, q̇) + g(q) + v(q̇) = τ + τext (1)

with q ∈ R7 the vector of joint angles and τ ∈ R7 the joint
torques, M(q) ∈ R7×7 the robot’s inertia matrix, c(q, q̇) ∈
R7 the vector of Coriolis and centrifugal effects, g ∈ R7

the gravity vector, and v ∈ R7 the viscous friction torque.
During the approach phase, we consider that no additional
external efforts Fext are applied to the robot so that τext =
J(q)TFext = 0 with J(q) the Jacobian matrix.

In this study, the impedance control [13] is selected for its
easily interpretable trade-off between safety and performance
[14] and its suitability for collaborative tasks. The control
objective is generally formulated as the following task space
dynamics (case without inertia shaping [15]):

Λ(q)¨̃x+Dd
˙̃x+Kdx̃ = 0 (2)



with x̃ = x− xd where x is the robot’s end-effector pose
in task coordinates, xd the trajectory to follow, Λ(q) =
J(q)−TM(q)J(q)−1 is the task-space inertia matrix, and
Kd ∈ R6×6, Dd ∈ R6×6 positive definite desired matrices
of task-space stiffness and damping if x has a minimal repre-
sentation (3 rotations and 3 translations). When expressed in
the joint coordinates, and considering no anticipation terms,
i.e. ẍd = ẋd = 0, the required joint torque becomes:

τ = J(q)T (−Dd
˙̃x−Kdx̃) + g(q) + c(q) (3)

Among the numerous variants for implementing impedance
control, the one in the joint space was selected for this
simulator, similar to [16]:

τ = K(qd − q) +D(q̇d − q̇) + g(q) + c(q, q̇) (4)

with K ∈ R7×7 the matrix of the desired stiffness for each
robot joint, D ∈ R7×7 the matrix of the desired damping for
each robot joint, qd ∈ R7 the vector of desired joint positions
and q̇d ∈ R7 the vector of desired joint velocities. In our
case, we used K = diag(100, 100, 100, 100, 100, 100, 8) and
D = 2ξK1/2 with ξ = 0.71 which are the values used
by [17] that are suited to applications involving human-
robot interactions. Note that the choice of constant joint
gains implies position-dependent task-space stiffness and
damping, which in turn materializes as position-dependent
task-space tracking performance. This serves as an example
of non-linear effects in the robot controller and should be
kept in mind in the forthcoming analysis. Peter Corke’s
Python robotics toolbox [11] was used to solve the inverse
kinematic (IK) model allowing the transformation of the
input trajectories pmocap_in

Rrobot
and pcam_in

Rrobot
from Cartesian

space to joint space.
To solve the robot dynamic equation (1) controlled with

the control law (4) we used an LSODA Python solver from
the SciPy library with a time-step of 1ms. An example of
the simulation output is shown in the Fig. 5.

D. Metrics

Fig. 6 lists the most commonly used metrics for intelligent
collaborative robotic tasks involving object transfer. This
figure aims at analyzing the influence of the individual
performance of different subsystems on the complete task. It
also shows the different possibilities for error propagation.
As we are mainly interested in identifying the effect of
errors related to the use of computer vision algorithms in
our use case, only those metrics circled in dotted line were
considered. To evaluate the performance of the approach
phase of a handover task, three different metrics were used:
the temporal error, the spatial error, and the robot final
pose error. The temporal error is the norm of the difference
between the input trajectory and the output trajectory (end-
effector trajectory): ϵtemporal(t) = ∥xd(t)− x(t)∥, with
t ∈ [0; tend]. It is a common metric to compare two
trajectories, for example, [18], [19] used it to compare several
human keypoint trajectories from depth camera with ground-
truth trajectories from motion capture systems. However, this
metric takes into account the potential delay between the
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compared trajectories, which means that if the trajectories are
similar but not synchronized, the temporal error will be non-
zero. The spatial error (Fig.7) is a metric that does not depend
on this delay. It is calculated for each point on the robot
end-effector trajectory (output trajectory) as the distance
between the k-th point of this trajectory and the closest point
on the target trajectory: ϵspatial(k) = min(

∥∥xi
d − xk

∥∥)
for i ∈ [[k − 100; k + 100]], with k ∈ [[1;n]] being the
number of the output trajectory point and n being the last
one. These two metrics provide information on the robot’s
behavior during the approach phase of the handover task. If
the reference trajectory is too distorted, the human may have
difficulty predicting it, and this may have repercussions on
the success of the overall task. The last metric we select is the
robot final pose error: ϵfinal_pose = ∥xd(tend)− x(tend)∥.
This metric is important for determining whether the robot’s
position when exchanging the object is far from that expected
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Fig. 7. The spatial error is computed as the shortest distance between the
robot end-effector position at time tk , and the human wrist position from
tk−100 to tk+100.

by the human.

III. RESULTS

In this section, the proposed approach is analyzed using
the acquired dataset of human movement. Fig. 1 shows that
the trajectories recorded by the mocap and 3D camera are
transformed several times before they can be used as robot
input. To investigate how the robot’s input error is propagated
and reflected in its output, we compare the mocap and ZED
trajectories truncated before saturation (Section III-A), as
well as the robot end-effector trajectories with the truncated
mocap trajectories (Section III-B).

A. Analysis of input trajectories

By analyzing Fig. 8, we can identify 2 distinct scenarios,
RR_U1_a4 and RR_U1_a5 that present a higher temporal
error (> 10 cm in average). To understand the origin of this
error, we visualized these trajectories in 3D (Fig. 9).

We observe that the error is principally caused by a
depth estimation error from the camera. It is high in these
scenarios because they are the ones in which the amplitude
of trajectories in the direction of depth in the 3D camera
frame is the highest. Thus, the trajectory orientation relative
to the camera is a major influence factor that affects the
performance of all the collaborative tasks that rely on AI
tracking algorithms from depth cameras.

B. Analysis of simulator outputs

Fig. 10 shows the errors of the output trajectories of the
Panda robot’s end-effector. When we compare it to Fig.8,
we observe that the contribution of the the ZED2 camera
tracking algorithm to the temporal error is significant. The
contribution of the control algorithm to the temporal error is
about 1 cm or 2 cm during the movement. It is a consequence
of the robot response time that is slow because of the chosen
gains in the robot control which was designed to keep the
human-robot interaction safe. The last metric we computed
is the final pose error, this one needs to be as low as
possible to make the handover task efficient. For example,
some industrial handover applications are designed to protect
against musculoskeletal disorders, but if the final pose error
is too high, the ergonomics of the task may deteriorate. If
we exclude the scenario RR_a4_U1 that has very high error
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because of the depths errors as discussed in the previous
subsection, the median of the final pose error is between 3
cm and 8 cm which can be acceptable or not according to the
chosen handover application and to the human characteristics
(eg. height, strength, etc.).
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TABLE III
SUMMARY OF THE MEAN OUTPUT ERRORS

Temporal error Spatial error Final pose error

a1 U1(⋄) U2(⋄) S(⋄) U1(⋄) U2(⋄) S(⋄) U1 U2(⋄) S(⋄)
a2 U1(⋆) U2(⋆) S(⋆) U1(⋆) U2(⋆) S(⋆) U1(⋆) U2(⋆) S(⋆)
a3 U1(⋄) S(⋄) U1(⋆) S(⋄) U1(⋆) S(⋆)
a4 U1(△) U2(⋄) S(⋄) U1(△) U2(⋄) S(⋄) U1(△) U2(⋆) S(⋄)
a5 U1(⋄) U2(⋄) S(⋄) U1(⋄) U2(⋆) S(⋆) U1(⋄) U2(⋆) S(⋆)

⋆: ϵ̄temporal ∈
[0, 0.059]m

⋆: ϵ̄spatial ∈
[0, 0.058]m

⋆: ϵ̄final_pose ∈
[0, 0.065]m

⋄: ϵ̄temporal ∈
[0.06, 0.118]m

⋄: ϵ̄spatial ∈
[0.059, 0.115]m

⋄: ϵ̄final_pose ∈
[0.066, 0.13]m

△: ϵ̄temporal >
0.118m

△: ϵ̄spatial >
0.115m

△: ϵ̄final_pose >
0.13m

Table. III shows a global view of all the mean errors
between the reference mocap input trajectories and the robot
output trajectories. It highlights that the best-performing
scenarios are those with the "a2" human orientation. This 90°
angle corresponds to a wrist trajectory in a plane of constant
depth relative to the camera, confirming the impact of depth
variation on task performance as discussed in Section III-A.

IV. CONCLUSIONS
In this paper, we introduce a mixed-tests evaluation

methodology for intelligent collaborative robotic systems
performing handover tasks. This approach aims to identify
the most important scenario parameters (human orientation
for the handover task), critical corner-case scenarios and
minimize the number of real-world tests required to validate
the system’s performance. To adapt this approach to a
different task, such as service robotics in healthcare, we
need to define the potential scenarios, create a database of
unpredictable data from AI systems or human interactions,
and use this data and the models of the other to simulate
the entire collaborative task. To the best of our knowledge,
no existing methods or studies have proposed a similar ap-
proach. However, some papers such as [20] test the accuracy
of 3D cameras using a motion capture system with a setup
similar to ours (Fig. 3).

Future work includes real robot experiments using the
Panda 7DOF robot to validate our approach.
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