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Optimal regularity for quasiminimal sets of codimension
one in R2 and R3

C. Labourie, Y. Teplitskaya

Abstract

Quasiminimal sets are sets for which a pertubation can decrease the area but only in
a controlled manner. We prove that in dimensions 2 and 3, such sets separate a locally
finite family of local John domains. Reciprocally, we show that this property is sufficient for
quasiminimality. In addition, we show that quasiminimal sets locally separate the space in
two components, except at isolated points in R2 or out a of subset of dimension strictly less
than N − 1 in RN .

Mathematics Subject Classifications: 49K99, 49Q20.
Keywords: Quasiminimal sets, Plateau problem, local finiteness, John domains.
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1 Introduction
Minimal sets are a central focus in classical geometric measure theory and in variational
problems involving a surface term. Inspired by soap films, their area is minimal compared to
admissible pertubations. In contrast, the area of quasiminimal sets can decrease but only to
a limited extent. This notion allows to represent sets minimizing inhomogeneous and possibly
highly irregular energies. Building on Almgren’s foundational work [1], subsequent research by
David and Semmes established uniform bounds for their geometric structure, such as uniform
rectifiability [13]. This paper is motivated in particular by [12], where David and Semmes
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characterize domains with a quasiminal boundary as bi-John domains with an Ahlfors-regular
boundary. We prove an analogue optimal regularity theorem for quasiminimal sets in R2 and
R3.

The primary difference between the setting of [12] and ours is that the boundary of a
connected domain W separates the space in two regions: W and RN \W , whereas a quasi-
minimal set of codimension one may separate the space into multiple, potentially infinitely
many, components. In [9], David and Pourmohammad extended the techniques of [12] to the
case of a finite Caccioppoli partition minimizing a general energy. They proved that such a
partition is composed of local John domains but with constants depending on the number of
partition elements. Therefore, a central novelty and challenge in our work is to show that
quasiminimal sets locally separates a finite number of components in R3, with a controlled
upper bound on the number of these components.

The local finiteness of minimal partitions was previously studied by Tamanini, Massari,
Congedo and Leonardi in a serie of works [25, 26, 29, 23]. Their techniques rely however
on arguments specific to minimal sets, such as the fact that their blow-up limits are cones.
Unlike minimal sets, quasiminimal sets lack Euler-Lagrange equations, monotonicity formulas,
ε-regularity theorems and their blow-up limits are not cones in general. This necessitates new
techniques which are robust enough to apply to a broader setting.

In Section 3, we provide simple proofs for standard regularity properties of quasiminimal
sets such as Ahlfors-regularity and uniform rectifiability. In Section 4, we show that almost-
every point of a quasiminimal set is an “interface point” where two components meet. We
establish our main results in Section 5 and Section 6.1, where we show that in dimension 2
and 3, quasiminimal sets partition a domain into a locally finite family of local John domains.
Reciprocally, we justify in Section 6.2 that this is a sufficient condition for quasiminimality in
every dimension. We finally investigate “junction points” where multiple components meet in
Section 7 and show that they are isolated in the plane and have a dimension < N − 1 in RN .
These results not only extend the theoretical understanding of quasiminimal sets but also offer
new perspectives for applying these sets in complex geometric and variational contexts, such
as image segmentation and fracture mechanics.

Our local finiteness theorem applies to the dimensions N = 2 and 3 and it remains an
open question whether quasiminimal sets locally separate a finite number of components in
higher dimension.

2 Definitions
For the whole paper, we fix an open subset Ω of RN , where N ≥ 2. Given a set A, the
notation A ⊂⊂ Ω stands for A ⊂ Ω. A coral set K ⊂ Ω is a relatively closed subset of Ω such
that for all x ∈ K and for all r > 0, we have

HN−1(K ∩B(x, r)) > 0.

We now turn our attention to the definition of admissible competitors. There exists different
notions of competitors in the literature but in general a competitor F of a set K in a ball
B should satisfy F \ B = K \ B and F should «span K ∩ ∂B» in the same way as K does.
A typical class of competitors, introduced by Almgren [1], are the images f(K) of K under
a Lipschitz deformation f : K → RN such that f = id in K \ B and f(K ∩ B) ⊂ B. In
this paper, we work with a class of competitor which is more convenient to deal with, called
topological competitors. This notion was introduced by Bonnet [5] in the context of image
segmentation.

A topological competitor of K in a ball B(x0, r) ⊂⊂ Ω is a relatively closed subset F ⊂ Ω
such that F \B(x0, r) = K \B(x0, r) and

for all points x, y ∈ Ω \ (B(x0, r) ∪K),
if x,y are separated by K, then they are separated by F .

(1)
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This means that if x, y lie in distinct connected components of Ω \K, they also lie in distinct
connected components of Ω \ F .

Figure 1: A topological competitor of K in a ball B.

Definition 2.1. Let M ≥ 1. A M -quasiminimal set is a coral set K ⊂ Ω which is HN−1-
locally finite in Ω and such that for all x0 ∈ K, r > 0 such that B(x0, r) ⊂⊂ Ω and for all
topological competitor F of K in B(x0, r), we have

HN−1(K \ F ) ≤ MHN−1(F \K). (2)

In the case M = 1, such a set is called a minimal set (there are also different notions of
minimal sets in the literature, for instance [1, 28, 13, 20]).

Remark 2.2. Notice that (2) implies a weaker quasiminimality property, namely

HN−1(K ∩B) ≤ MHN−1(F ∩B). (3)

Property (3) will be sufficient for some of our first results such as Ahlfors-regularity but not
for the rest of the paper.

Remark 2.3 (Motivation). Quasiminimal sets represent sets minimizing Borel regular measures
µ in Ω such that

λHN−1 ≤ µ ≤ ΛHN−1 (4)

for some constants 0 < λ ≤ Λ. Let us justify this claim. Let K ⊂ Ω be a local minimizer of µ,
that is, a coral HN−1-locally finite set in Ω such that for all x0 ∈ K, r > 0 with B(x0, r) ⊂⊂ Ω
and for all topological competitor F of K in B(x0, r), we have

µ(K ∩B(x0, r)) ≤ µ(F ∩B(x0, r)).

It follows that
µ(K \ F ) ≤ µ(F \K)

and then by (4) that

HN−1(K \ F ) ≤ MHN−1(F \K), where M = Λ/λ ≥ 1. (5)

Reciprocally (5) directly translates as

µ(K ∩B(x0, r)) ≤ µ(F ∩B(x0, r)),

where µ = HN−1 K +MHN−1 (RN \K).

Remark 2.4 (Quasiminimal sets in fracture mechanics). Another motivation for the study of
quasiminimal sets is their application to the theory of brittle fractures in linear elasticity. Let
Ω be a bounded open set of RN representing a homogeneous isotropic brittle solid. If a loading
is applied on ∂Ω, the solid will deform and absorb energy. But if this exceeds the material’s
limit, the solid will releave (totally or partially) this energy by making a crack. Based on the
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pioneering work of Griffith in the 1920’s, Francfort and Marigo [18] formulated the equilibrium
state of the fracture as the minimization of the Griffith functionalˆ

Ω\K
Ce(u) : e(u) dx+ βHN−1(K),

over pairs (u,K), where K is a relatively closed subset of Ω of dimension N − 1 and u :
Ω \ K → RN is a smooth vector field satisfying a Dirichlet condition along ∂Ω. Here, K is
the fracture, u is the displacement field, e(u) := (∇u + ∇uT )/2 is the linear strain tensor,
C is an elasticity tensor and β > 0 is the fracture toughness (it quantifies the ability of the
material to resist a crack propagation). The Griffith functional is a vectorial analogue of the
Mumford-Shah functional [3, 8, 15] which is more physically relevant in dimension N = 3.

A particular case of interest is when
´
Ω\K Ce(u) : e(u) dx = 0; this corresponds to an

asymptotic behavior of materials with no fracture toughness. In this case, it is standard that
K is a minimal set in Ω. In the general case, fractures look like minimal sets at points x ∈ K
where the elastic energy

´
B(x,r) |e(u)|

2 dx becomes negligible compared to the surface term
HN−1(K ∩ B(x, r)) when r goes to 0. This is actually the behavior of fractures at generic
points since this holds almost-everywhere along the crack. This connection plays an important
role in the regularity theory of Mumford-Shah minimizers, for instance [8, 15, 2, 14, 16, 17],
and in their recent adaptations to the Griffith functional [19, 21].

For general brittle solid with inhomogeneous and possibly irregular fracture toughness, one
would minimize ˆ

Ω\K
Ce(u) : e(u) dx+ µ(K),

where µ is a Borel regular measure in Ω satisfying (4). In that case, when there is no elas-
tic energy or when it is neglible compared to the surface term, the fracture behaves like a
quasiminimal set.

Remark 2.5 (Example). If K is a quasiminimal set in RN and f : RN → RN is a bi-Lipschitz
map, then f(K) is a also quasiminimal set in RN (with a bigger constant). We deduce that
Lipschitz graphs are quasiminimal sets because they can be written as bi-Lipschitz images of
hyperplanes.

This shows also that a blow-up limit of a quasiminimal set may not be a cone, neither
unique in general. Indeed, let K be the graph of x ∈ R 7→ dist(|x|, C), where C = { 2i | i ∈ Z }.
As a Lipschitz graph, K is a quasiminimal set but one can see that 2K = K so for all λ > 0,
the set λK concides with limi→+∞ r−1

i K, where ri = λ−12−i. Hence, K has an infinite number
of blow-up limits at 0 which are not cones (see Fig. 2).
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Figure 2: An example of quasiminimal set with different blow-up limits at the origin.

3 Standard results
Ahlfors-regularity and uniform rectifiability are well-known for Almgren quasiminimizers [1,
13] of any codimension. These properties actually have a simpler proof when one consider
quasiminimal of codimension 1 sets with respect to topological competitors. We present
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these proofs below for the sake of completeness and as some intermediate results will have an
independent interest in the rest of the paper. Let us make a few preliminary remarks.

Remark 3.1. Let K be a quasiminimal set in Ω. For all connected component V of Ω \ K,
we have Ω ∩ ∂V ⊂ K, and as K is HN−1-locally finite, we deduce that V has locally finite
perimeter with Ω ∩ ∂∗V ⊂ K (see [3, Proposition 3.62]).

Remark 3.2. If a relatively closed subset F ⊂ Ω satisfies the definition of topological competi-
tors with B(x0, r) replaced by B(x0, r), we say that F is a topological competitor in B(x0, r).
This implies that F is a topological competitor in all balls B(x0, t) such that t > r and
B(x0, t) ⊂ Ω. Applying property (2) in such a ball B(x0, t), we still get

HN−1(K \ F ) ≤ MHN−1(F \K).

We can similarly apply (3) in B(x0, t) such that t > r and let t → r (using the fact that K
has locally finite measure in Ω) to get

HN−1(K ∩B(x0, r)) ≤ MHN−1(F ∩B(x0, r)).

3.1 Ahlfors-regularity
We start by observing that any ball centred on K must separate at least two components of
Ω \K.

Lemma 3.3. Let K be a M -quasiminimal set in Ω. For all x0 ∈ K and r > 0 such that
B(x0, r) ⊂ Ω,

B(x0, r) meets at least two components of Ω \K.

Proof. We proceed by contradiction and assume that there exists a connected component V
of Ω \K such that

B(x0, r) ⊂ K ∪ V.

Then, let us check that F := K \ B(x0, r/2) is a topological competitor of K in B(x0, r/2).
We consider two points x and y in Ω\(B(x0, r/2)∪K) which are connected by a path in Ω\F
and we want to show that x and y are connected in Ω \K. There are two possibilities. If the
path does not pass through ∂B(x0, r/2), it stays in Ω \ B(x0, r/2) where F and K coincide
so x and y are connected in Ω \K. If the path passes through ∂B(x0, r/2) this can only be
at a point of ∂B(x0, r/2) \ K ⊂ V . Considering the portion of the part that starts from x
and meets ∂B(x0, t) for the first time, we see that x is connected to V in Ω \ K and thus
x ∈ V . Considering similarly the portion of the path that leaves ∂B(x0, t) for the last time
and arrive at y, we see that y is connected to V in Ω \K so y ∈ V . We conclude that x and
y are connected in Ω \K and that F is a topological competitor of K in B(x0, r/2).

We finally apply the quasiminimality property (3) in B(x0, r/2), which gives

HN−1(K ∩B(x0, r/2)) ≤ MHN−1(F ∩B(x0, r/2)),

and thus
HN−1(K ∩B(x0, r/2)) = 0.

This contradicts the fact that x0 ∈ K and that K is coral.

In the following Lemma, we show that in every ball B centred on K, a connected component
of B \K cannot be too big.

Lemma 3.4. Let K be a M -quasiminimal set in Ω. Then for all x0 ∈ K, for all r > 0 such
that B(x0, r) ⊂ Ω and for all connected component V of Ω \K, we have

|B(x0, r) \ V | ≥ C−1rN , (6)

where C ≥ 1 is a constant which depends only on N and M .
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Remark 3.5. As an application of (6) which will be very helpfup in the rest of the paper,
notice that the relative isoperimetry inequality

min (|B(x0, r) ∩ V |, |B(x0, r) \ V |) ≤ CHN−1(B(x0, r) ∩ ∂∗V )N/(N−1)

simplifies to
|B(x0, r) ∩ V | ≤ CHN−1(B(x0, r) ∩ ∂∗V )N/(N−1).

Proof. Let x0 ∈ K and r > 0 such that B(x0, r) ⊂ Ω. Let V be a component of Ω \K. We
assume that

|B(x0, r) \ V | ≤ εrN , (7)

for a small ε > 0 which will be fixed later. According to the co-area formula,

|B(x0, r) \ V | =
ˆ r

0
HN−1(∂B(x0, t) \ V ) dt

so we can find a radius t ∈ (r/2, r) such that

HN−1(∂B(x0, t) \ V ) ≤ Cr−1|B(x0, r) \ V | ≤ CεrN−1. (8)

We then justify that
F := (K \B(x0, t)) ∪

(
∂B(x0, t) \ V

)
.

is a topological competitor of K in B(x0, t). We consider two points x and y in Ω\(B(x0, t)∪K)
which are connected by a path in Ω \ F and we want to show that x and y are connected in
Ω \K. If the path does not intersect ∂B(x0, t), then it stays in the complement of B(x0, t),
where F coincides with K. In this case, the path does not meet K and the points x and y
are also connected in Ω \K. If the path path meets ∂B(x0, t), it can only be at a point of V .
Considering the portion of the path starting from x until the first time it meets ∂B(x0, t), we
see that x is connected to V in the complement of K. Similarly, y is connected to V in the
complement of K. As V is connect and disjoint from K, the points x and y are also connected
in Ω \K. We conclude that F is a topological competitor of K in B(x0, t).

We apply the quasiminimality property (3) in B(x0, t), which gives

HN−1(K ∩B(x0, t)) ≤ MHN−1(F ∩B(x0, t)),

whence by (8),

HN−1(B(x0, r/2) ∩ ∂∗V ) ≤ MHN−1(∂B(x0, t) \ V ) ≤ CεrN−1

By assumption (7), we can choose ε small enough so that

|B(x0, r/2) \ V | ≤ 1
2 |B(x0, r/2)|,

and thus we can apply the relative isoperimetric inequality to B(x0, r/2) \ V in the ball
B(x0, r/2). This gives

|B(x0, r/2) \ V | ≤ CHN−1(B(x0, r/2) ∩ ∂∗V )N/(N−1). (9)

As ∂∗V ⊂ ∂V ⊂ K, we can combine (3.1) and (9) to estimate

|B(x0, r/2) \ V | ≤ CεN/(N−1)rN .

We finally choose ε small enough so that |B(x0, r/2) \ V | ≤ εrN . We can thus iterate this
estimate and deduce that for all integer k ≥ 0,∣∣∣B(x0, 2

−kr) \ V
∣∣∣ ≤ ε(2−kr)N .

A simple interpolation arguments allow to conclude that

|B(x0, r) \ V | ≤ εrN =⇒ lim
t→0

t−N |B(x0, t) \ V | ≤ 2Nε. (10)
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Let us assume now that we have |B(x0, r) \ V | ≤ ε(r/2)N . For all x ∈ K ∩B(x0, r/2), we
have

|B(x, r/2) \ V | ≤ ε(r/2)N ,

which implies by (10),
lim
t→0

t−N |B(x, t) \ V | ≤ 2Nε. (11)

We take ε a bit smaller so that the small volume of B(x0, r) \ V implies that

|V ∩B(x0, r/2)| > 0.

According to Lemma 3.3, B(x0, r/2) \K must meet another component of Ω \K so we also
have |B(x0, r/2) \ V | > 0. It follows that HN−1(B(x0, r/2)∩ ∂∗V ) > 0 and, by the properties
of the reduced boundary, we can find a point x ∈ B(x0, r/2) ∩ ∂∗V ⊂ B(x0, r/2) ∩ K such
that

lim
t→0

|B(x, t) \ V |
|B(x, t)| =

1

2
,

which contradicts (11) if ε is chosen small enough once again.

We finally arrive at the Ahlfors-regularity property for quasiminimal sets.

Proposition 3.6 (Ahlfors-regularity). Let K be a M -quasiminimal set in Ω. Then for all
x0 ∈ K and for all r > 0 such that B(x0, r) ⊂ Ω, we have

C−1rN−1 ≤ HN−1(K ∩B(x0, r)) ≤ CrN−1,

where C ≥ 1 is a constant that depends only on N and M .

Proof. Let x0 ∈ K and r > 0 be such that B(x0, r) ⊂ Ω. We start by proving the upper
density bound. For t < r, we consider the relatively closed subset F ⊂ Ω defined by

F := (K \B(x0, t)) ∪ ∂B(x0, t).

Then, F is a topological competitor of K in B(x0, t) and we deduce by quasiminimality (3),

HN−1(K ∩B(x0, t)) ≤ MHN−1(∂B(x0, t)) ≤ CtN−1,

where C ≥ 1 depends on N and M . Letting t → r, we deduce the upper bound

HN−1(K ∩B(x0, r)) ≤ CrN−1.

We now pass to the lower bound. We let (Vi)i≥0 denote the connected components of
Ω \K, ordered in such a way that

|Vi ∩B(x0, r)| ≥ |Vi+1 ∩B(x0, r)|.
We show that

|B(x0, r) \ V0| ≤ CHN−1(K ∩B(x0, r))
N/(N−1). (12)

As (Vi)i≥0 is a Caccioppoli partition of Ω, it follows from [3, Theorem 4.17] that∑
i≥0

HN−1
(
∂∗Vi ∩B(x0, r)

)
≤ 2HN−1

(
K ∩B(x0, r)

)
. (13)

By the ordering property of the sequence, we see that for all i ≥ 1, we have

|B(x0, r) ∩ Vi| ≤ |B(x0, r) ∩ V0| ≤ |B(x0, r) \ Vi|,
and thus by the relative isoperimetric inequality

|B(x0, r) ∩ Vi| ≤ CHN−1
(
B(x0, r) ∩ ∂∗Vi

)N/(N−1)
.

We sum the inequality above over i ≥ 1, we use the superadditivity of t 7→ tN/(N−1), and we
apply (13) to get the wanted estimate (12). To conclude, we know by Lemma 3.4 that

|B(x0, r) \ V0| ≥ C−1rN

and thus (12) implies
HN−1(K ∩B(x0, r))

N/(N−1) ≥ C−1rN−1.
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3.2 Uniform rectifiability
A uniformly rectifiable set in RN of dimension N − 1 is a closed Ahlfors-regular set E ⊂ RN

which is contained in an image of a fairly nice parametrization z : RN−1 → RN . The following
definition is extracted from [10, Theorem 1.57].

Definition 3.7. Let C ≥ 1 be a constant. We say that a closed set E ⊂ RN is a uniformly
rectifiable set of constant C ≥ 1 if

C−1rN−1 ≤ HN−1(E ∩B(x0, r)) ≤ CrN−1 for all x0 ∈ E, r > 0

and E ⊂ z(RN ), where z : RN−1 → RN is such that there exists a positive function w ∈
L1
loc(R

N ) satisfying
ffl
B ω dx ≤ Cess.infBω for all ball B ⊂ RN and such that

|∇z| ≤ ω1/(N−1) almost-everywhere,

and ˆ
{ y∈Rd|z(y)∈B(x,r) }

ω(y) dy ≤ CrN−1 for all ball B(x, r) ⊂ RN .

The parametrization z is called a ω-regular parametrization and ω is called a A1-weight.

The definition allows bi-Lipschitz images of RN−1 into RN but also surfaces with cusps
and self-intersections to some extent. Whereas rectifiable sets are contained in a countable
union of surfaces, a uniformly rectifiable set is contained in a single surface and the properties
of the parametrization are meant to give quantitative information at all scales and locations
(instead of in the blow-up regime almost-everywhere).

As in [12], we shall prove uniform rectifiable of quasiminimal sets using the following
critera. It is proved in [11].

Theorem 3.8 (Condition B implies UR). Let E ⊂ RN be a closed set and assume that there
exists a constant C ≥ 1 such that

(i) for all x0 ∈ E, for all r > 0,

C−1rN−1 ≤ HN−1(E ∩B(x0, r));

(ii) E satisfies condition B: for all x0 ∈ E, for all r > 0, there exists two balls B1, B2 ⊂
B(x0, r)\E with radius ≥ C−1r and which lie in distinct connected components of RN\E.

Then E is a uniformly rectifiable set with a constant that depends only on N and C.

We now come back to the properties of quasiminimal sets.

Proposition 3.9 (Condition B). Let K be a M -quasiminimal set in Ω. For all x0 ∈ K and
r > 0 such that B(x0, 2r) ⊂ Ω, there exists exists two balls B1, B2 ⊂ B(x0, r) with radius
≥ C−1r which lie in distinct connected components of Ω \K.

Proof. We let C ≥ 1 denote a generic constant which depends only on N and M . Let ε ∈ (0, 1)
and let (yi)i∈I denote a maximal family of points yi ∈ K ∩ B(x0, 3r/2) that lie at distance
≥ εr from each other. Since the balls B(yi, εr/2) are disjoint, contained B(x0, 2r) and since
K is Ahlfors-regular, we have on the one hand

HN−1(K ∩
⋃
i

B(yi, εr/2)) ≥
∑
i

HN−1(K ∩B(yi, εr/2)) ≥ C−1mεN−1rN−1,

where m is the number of element of I, and on the other hand

HN−1(K ∩
⋃
i

B(yi, εr/2)) ≤ HN−1(K ∩B(x0, 2r)) ≤ CrN−1.

8



It follows that m ≤ Cε1−N . For t ∈ (r/2, r), we let m(t) denote the number of i ∈ I such that
B(yi, 2εr) meets ∂B(x0, t). Then,ˆ r

r/2
m(t) dt ≤ C

ˆ r

r/2

∑
i

1t−εr≤|yi−x0|≤t+εr dt ≤ Cmεr.

which allows to find a radius t ∈ (r/2, r) such that m(t) ≤ Cε2−N . Setting

Z = ∂B(x0, t) ∩
(⋃

i

B(yi, 2εr)

)
,

we can thus estimate HN−1(Z) ≤ CεrN−1. Let us show that if ε is small enough (depending
on N and M) then ∂B(x, t)\Z cannot be contained in a single connected component of Ω\K.
We proceed by contradiction and observe that if this is the case, then

F = K ∪ Z \B(x0, t)

is a topological competitor of K in B(x0, r) (this is the same argument as in the Proof of
Lemma 3.3). This yields by quasiminimality (2)

HN−1(K ∩B(x0, t)) ≤ MHN−1(Z) ≤ CεrN−1,

and contredicts to Ahlfors-regularity (Proposition 3.6) for ε chosen sufficiently small (depend-
ing on N and M). We conclude that ∂B(x0, t) \ Z meets at least two components of Ω \K.
It is left to observe that for all x ∈ ∂B(x0, t), one has

dist(x,K) ≥ εr.

Indeed, if there exists y ∈ K such that |x− y| < εr, then y ∈ K ∩ B(x0, 3r/2) and by
maximality of the family (yi)i, there exists i such that |y − yi| < εr, whence |x− yi| < 2εr.
This contredicts the fact that x /∈ Z.

Proposition 3.10 (Uniform rectifiability). There exists a constant C ≥ 1 depending only on
M and N such that the following holds. Let K be a M -quasiminimal set in Ω. For all x0 ∈ K
and r > 0 such that B(x0, 2r) ⊂ Ω, there exists exists a uniformly rectifiable set E ⊂ RN with
constant C such that K ∩B(x0, r) ⊂ E.

Proof. Let x0 ∈ K and r > 0 be such that B(x0, 2r) ⊂ Ω. Let P by an hyperplane pass-
ing through x0. Then the union (K ∩ B(x0, r)) ∪ ∂B(x0, r) ∪ P satisfies the conditions of
Theorem 3.8. We omit the details.

Uniform rectifiability is not yet an optimal description of quasiminimal sets but is has
many useful consequences, in particular it implies that the set is relatively flat in many balls.
We are going to state this more precisely in Corollary 3.12 but let us first recall the definiton
of the flatness. For all x0 ∈ K and r > 0, the flatness of K in B(x0, r) is defined as

βK(x0, r) := r−1 inf
P

sup
y∈K∩B(x0,r)

dist(y, P ),

where the infimum is taken among all hyperplanes P passing through x0. The infimum is
always attained for some hyperplan P by compacity of the Grassmanian space G(N − 1, N).
Thus, βK(x0, r) is the smallest ε > 0 for which there exists an hyperplan P passing through
x0 such that

K ∩B(x0, r) ⊂ {dist(·, P ) ≤ εr } .
When there is no ambiguity, we write β(x0, r) instead of βK(x0, r). A standard consequence
of rectifiability and Ahlfors-regularity is that for HN−1-a.e. x0 ∈ K, we have

lim
r→0

βK(x0, r) = 0. (14)

Quasiminimal sets satisfy a more quantitative variant of (14), called the Weak Geometric
Lemma.
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Lemma 3.11 (Weak Geometric Lemma). Let K be a M -quasiminimal set in Ω. For all
ε > 0, there exists a constant C = C(τ) ≥ 1 (which depends only on ε, N , M) such that for
all x0 ∈ K and for all r > 0 with B(x0, 2r) ⊂ Ω, we have

ˆ
K∩B(x0,r)

ˆ r

0
1{ (y,t)|βK(y,t)≥ε }(y, t)

dt

t
dHN−1(y) ≤ CrN−1.

This means that there are many balls where βK(y, t) < ε. The Weak Geometric Lemma
has the following consequence: in any ball, one can find a smaller ball (but not too much
smaller) with a shifted center where the flatness is small.

Corollary 3.12. Let K be a M -quasiminimal set in Ω. For all ε > 0, there exists a constant
C = C(ε) ≥ 1 (which depends only on N , M and ε) such that for all x0 ∈ K and for all r > 0
with B(x0, r) ⊂ Ω, there exists y ∈ K ∩B(x0, r/2) and t ∈ (C−1r, r/2) satisfying

βK(y, t) ≤ ε.

Proof. This is proved by contradiction using the fact that
ˆ
K∩B(x0,r/2)

ˆ r/2

0
1β(y,t)≥ε(y, t)

dt

t
dHN−1(y) ≤ C0r

N−1.

and that HN−1(K ∩B(x0, r/2)) ≥ C−1rN−1.

We conclude this section by stating a consequence of Proposition 3.9 which will be useful
in later sections.

Corollary 3.13. There exists a constant ε0 ∈ (0, 1/2) which depends on N , M such that the
following property holds true. Let K be a M -quasiminimal set in Ω. Let x0 ∈ K, r > 0 be
such that B(x0, r) ⊂ Ω and for which there exists some hyperplane P passing through x0 such
that

K ∩B(x0, r) ⊂ {x ∈ B(x0, r) | dist(x, P ) ≤ ε0r } . (15)

Then the two components of {x ∈ B(x0, r) | dist(x, P ) > ε0r } lie in in distinct connected com-
ponents of Ω \K.

Figure 3: An illustration for Corollary 3.13.

Proof. We let C ≥ 1 denote a generic constant which depends only on N and M . According
to Proposition 3.9, there exists two balls B1, B2 ⊂ B(x0, r/2) which are of radius ≥ C−1r and
which lie in distinct connected component of Ω \K, say V and W . Taking ε0 small enough
in (15), none of these two balls can be contained in the strip

{x ∈ B(x0, r) | dist(x, P ) ≤ ε0r } .

Since the two components {x ∈ B(x0, r) | dist(x, P ) > ε0r } are connected subset of Ω \ K,
one must be in V and the other in W .
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3.3 No isolated components
Proposition 3.14. Let K be a M -quasiminimal set in Ω. For all x0 ∈ K and for all r > 0
such that B(x0, r) ⊂⊂ Ω, there is not connected component V of Ω\K such that V ⊂ B(x0, r).

Proof. Let us assume that there exists such a connected component V . We know that V is a
set of finite perimeter with ∂∗V ⊂ K and that there exists a universal constant C0 ≥ 1 such
that for HN−1-a.e. x ∈ ∂∗V , we have

lim inf
t→0

|V ∩B(x, r)| ≥ C−1
0 tN .

We also know by rectifiability and Ahlfors-regularity of K that for HN−1-a.e. x ∈ K, we have

lim
t→0

β(x, t) = 0.

We let ε > 0 which will be chosen small enough later (depending on N and M). As V is
a non-empty open set such that V ⊂⊂ B(x0, r), we have HN−1(∂∗V ∩ B(x0, t)) > 0. This
allows to select a point x1 ∈ ∂V and a small radius t > 0 such that B(x1, t) ⊂ B(x0, r),

|V ∩B(x1, t)| ≥ C−1
0 tN

and such that there exists an hyperplane P passing through x1 satisfying

K ∩B(x1, t) ⊂ B(x1, t) ∩ { dist(·, P ) ≤ εt } .

We choose ε small enough (depending on N) so that∣∣B(x1, t) ∩ { dist(·, P ) ≤ εr }
∣∣ < C−1

0 tn.

Thus, it is not possible that

V ∩B(x1, t) ⊂ {dist(·, P ) ≤ εt }

and this guarantees that one of the components of B(x1, t) ∩ {dist(·, P ) > εt } must be con-
tained in V . Now, we set

F = (K \B(x1, t)) ∪ Z,

where
Z := {x ∈ ∂B(x1, t) | dist(y, P ) ≤ εt } .

and we check that F is a topological competitor of K in B(x0, r) (not B(x1, t)). We consider

Figure 4: The competitor in Proposition 3.14.

two points x and y in Ω \ (B(x0, r)∪K) which are connected by a path in Ω \F and we want
to show that x and y are connected in Ω \ K. If the path does not meet ∂B(x1, t), then it
stays outside of B(x1, t), where F and K coincide so x and y are connected in Ω \K. If the
path meets ∂B(x1, t), it can only be at a point of ∂B(x1, t) \Z We observe that ∂B(x1, t) \Z
is composed of two spherical caps, denoted by Z1, Z2, which are disjoint from K. We consider
the portion of the path which starts from x and meets ∂B(x1, t) for the first time. This portion
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is disjoint from K so Z1 must be contained in the same connected component of Ω \ K as
x. As x /∈ V , then Z1 is contained in a connected component of Ω \K which differs from V
and this forces Z2 ⊂ V . Similarly, we consider the portion of the path which leaves ∂B(x1, t)
for the last time and arrives at y. This portion is disjoint from K and as y /∈ V , it connects
necessarily y to Z1. We conclude that x and y are connected in Ω \ K à Z1 and as Z1 is a
connect dpart of Ω \K, the points x and y area also connected in Ω \K. We conclude that F
is a topological competitor of K in B(x0, r). We finally apply the quasiminimality property
(2) in B(x0, r),

HN−1(K \ F ) ≤ MHN−1(F \K),

so
HN−1(K ∩B(x1, t)) ≤ MHN−1(Z) ≤ CMεtN−1.

This contradicts the Ahlfors-regularity of K if ε0 is chosen small enough.

4 Interface points
Definition 4.1. Let K be a M -quasiminimal set in Ω. We define the set of interface points
K∗ as the set of points x0 ∈ K for which there exists a radius r > 0 such that B(x0, r) ⊂ Ω
and B(x0, r) \K meets exactly two components of Ω \K.

When B(x0, r) \K meets exactly two components of Ω \K, Lemma 3.3 shows that this is
also the case of B(x0, t) \K for all 0 < t < r. We deduce that for all x ∈ K∗, there exists a
unique pair of components V , W of Ω \K such that x ∈ ∂V ∩ ∂W . One can justify similarly
that K∗ is a relative open subset of K. The main goal of this section is to prove the following
Proposition.

Proposition 4.2. Let K be a M -quasiminimal set in Ω, then HN−1(K \K∗) = 0 and for all
component V of Ω \K,

HN−1(Ω ∩ ∂V \ ∂∗V ) = 0.

In order to prove Proposition 4.2, we start with a Lemma in the same spirit as Lemma 3.4.
It says that if two components V , W of Ω \K fill most of the volume of a ball B(x0, r) \K,
there cannot be an inflitration of another component of Ω\K which meets B(x0, r/2). Results
of this type are standard in the literature [25, 29, 30, 22, 24] and the proof consists in building
a competitor by merging the infiltration in V or in W . Our setting differs though because our
objects are not Caccioppoli partitions but closed sets: we should build the competitor through
set operations on the topological boundaries of V , W and (V ∪W )c instead of their reduced
boundaries. This poses a difficulty in the case where they share a common and non-negligible
piece of boundary, similarly to the lakes of Wada.

Lemma 4.3. There exists a constant ε0 ∈ (0, 1) which depends on N , M such that the
following property holds true. Let K be a M -quasiminimal set in Ω. Then for all x0 ∈ K and
for all r > 0 such that B(x0, r) ⊂ Ω and for all distinct connected components V , W of Ω\K,
if

|B(x0, r) \ (V ∪W )| ≤ ε0r
N ,

then B(x0, r/2) \K only meets V and W .

Proof. We let x0 ∈ K and r > 0 be such that B(x0, r) ⊂ Ω and V , W be distinct connected
components of Ω \K such that

|B(x0, r) \ (V ∪W )| ≤ ε0r
N , (16)

for some small ε0 > 0 which will be fixed later (depending on N and M). According to the
co-area formula,

|B(x0, r) \ (V ∪W )| =
ˆ r

0
HN−1(∂B(x0, t) \ (V ∪W )) dt
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so we can find a radius t ∈ (r/2, r) such that

HN−1(∂B(x0, t) \ (V ∪W )) ≤ Cr−1|B(x0, r) \ (V ∪W )| ≤ Cε0r
N−1. (17)

The next step of the proof consists in showing that

HN−1(B(x0, t) ∩ ∂(V ∪W )) ≤ CHN−1(∂B(x0, t) \ (V ∪W )). (18)

The principle is to build a competitor by removing the piece B(x0, t) ∩ ∂V ∩ ∂(V ∪ W ) or
B(x0, t) ∩ ∂W ∩ ∂(V ∪ W ) (depending on which choice removes the most area) but adding
∂B(x0, t) \ (V ∪W ) (for the topological condition (1) to be satisfied). Then (18) follows by
quasiminimality and the fact that

HN−1(B(x0, t) ∩ ∂(V ∪W )) ≤ HN−1(B(x0, t) ∩ ∂V ∩ ∂(V ∪W ))

+HN−1(B(x0, t) ∩ ∂W ∩ ∂(V ∪W )).

The issue here is that admissible competitors must be closed sets so we can only remove a
relative open subset of K. A first try is to take B(x0, t) ∩ ∂V \ ∂W as an open replacement
of B(x0, t) ∩ ∂V ∩ ∂(V ∪W ). However, the former might have a strictly smaller area in case
the set of “triple points” ∂V ∩ ∂W ∩ ∂(V ∪W ) is not HN−1-neglible. We will instead build
the competitor via a more technical covering argument.

We consider some ε > 0 and a family of balls (B(yk, tk))k, where yk ∈ B(x0, t)∩∂∗(V ∪W )
and tk > 0, such that the closed balls (B(yk, tk))k are disjoint,

HN−1
(
B(x0, t) ∩ ∂∗(V ∪W ) \

⋃
i

B(yk, tk)
)
= 0 (19)

and for all k,

(i) B(yk, tk) ⊂ B(x0, t);

(ii) there exists an hyperplane Pk passing through yk such that

K ∩B(yk, tk) ⊂ {dist(·, Pk) ≤ εtk } ;

(iii) (
1

2
− 1

100

)
|B(yk, tk)| ≤ |B(yk, tk) ∩ (V ∪W )| ≤

(
1

2
+

1

100

)
|B(yk, tk)|. (20)

Here, note that Ω ∩ ∂∗(V ∪ W ) ⊂ K so the balls are centered in K. The existence of such
a family of balls can be justified using the Vitali covering Theorem [27, Theorem 2.8] with
respect to the Radon measure µ = HN−1 K and using also the standard properties of reduced
boundaries [3, Theorem 3.61]. As HN−1 (B(x0, t) ∩ ∂∗(V ∪W )) < +∞, we can also assume
that the family of balls is finite, provided that we replace (19) by

HN−1
(
B(x0, t) ∩ ∂∗(V ∪W ) \

⋃
k

B(yk, tk)
)
≤ ε. (21)

If ε is small enough as in Lemma 3.13, the connected components of

{x ∈ B(yk, tk) | dist(x, Pk) > εtk } (22)

lie in distinct connected components of Ω\K. In view of (20), it is not possible for B(yk, tk)∩
(V ∪W ) neither B(yk, tk)\ (V ∪W ) to be contained in { dist(·, Pk) ≤ εtk } if ε is small enough
because otherwise B(yk, tk)∩(V ∪W ) would have a too small or a too big measure. Therefore,
one of the components of (22) must be contained in V or W , and the other component of
(22) must be contained in a component of Ω \K which is neither V , neither W and which we
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denote by Uk. We let S(V ) denote the set of indices k such that one of the component of (22)
is contained in V (resp. S(W ) for W ). By (21) and Ahlfors-regularity of K, we have

HN−1(B(x0, t) ∩ ∂∗(V ∪W )) ≤ HN−1(K ∩
⋃
k

B(yk, tk)) + ε

≤ C
∑

k∈S(V )

tN−1
k +

∑
k∈S(W )

tN−1
k + ε. (23)

Without loss of generality, we assume that

HN−1(B(x0, t) ∩ ∂∗(V ∪W )) ≤ C
∑

k∈S(V )

tN−1
k + ε, (24)

where the constant C has only be multiplied by 2 compared to (23). In the construction
below, we build a competitor by making holes in the balls indexed by k ∈ S(V ) and this this
meant to remove most of B(x0, t) ∩ ∂V ∩ ∂∗(V ∪W ). For all k ∈ S(V ), we let

Zk := {x ∈ ∂B(yk, tk) | dist(x, Pk) ≤ εtk }

and we define

F :=
(
K \

⋃
l∈S(V )

B(yk, tk)
)
∪

⋃
k∈S(V )

Zk ∪
(
∂B(x0, t) \ (V ∪W )

)
.

We then justify that F is a topological competitor of K in B(x0, t). It is clear that F is
relatively closed in Ω because it is a finite union of relatively closet set. Let x and y be two
points in Ω \ (B(x0, t) ∪K) which are connected by a path in Ω \ F . We want to show that
x and y lie in the same component of Ω \K. If the path does not intersect ∂B(x0, t), then it
stays in the complement of B(x0, t), where F coincide with K. In this case, the path does not
meet K and the points x and y are also connected in Ω\K. If the path meets ∂B(x0, t), it can
only be at a point of V ∪W because F contains ∂B(x0, t) \ (V ∪W ). Considering the portion
of the path leaving x until the first time it meets ∂B(x0, t), we see that x is connected to V
or W in the complement of K, and similarly for y. Assuming by contradiction that the two
points x, y are not in the same connected components of Ω \K, then at least one of them is
in W , let’s say x. We consider the portion of the path which starts for x and meets K for the
first time. As the path is disjoint from K \⋃ {B(yk, tk) | k ∈ S(V ) } ⊂ F , the meeting point
with K can only be at a point of B(yk, tk)∩K. In particular, the path must cross ∂B(yk, tk)
before meeting K and since it is disjoint from Zk ⊂ F , it can only be at a point of V or Uk.
This contradicts the fact that before meeting K for the first time, the path must be contained
in W . We conclude that F is a topological competitor in B(x0, t).

We finally apply the quasiminimality property (2) in B(x0, t),

HN−1(K \ F ) ≤ MHN−1(F \K),

whence

HN−1(K ∩
⋃

k∈S(V )

B(yk, tk)) ≤ MHN−1(∂B(x0, t) \ (V ∪W )) +M
∑

k∈S(V )

HN−1(Zk)

≤ MHN−1(∂B(x0, t) \ (V ∪W )) + Cε
∑

k∈S(V )

tN−1
k .

By (24) and since the balls (B(yk, tk))k are disjoint, centered on K and K is Ahlfors-regular,
we have

HN−1(B(x0, t) ∩ ∂∗(V ∪W )) ≤ C
∑

k∈S(V )

tN−1
k + ε

≤ HN−1(K ∩
⋃

k∈S(V )

B(yk, tk)) + ε.
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We can bound from above similarly

Cε
∑

k∈S(V )

tN−1
k ≤ CεHN−1(B(x0, t) ∩K).

but the important point is that this term goes to 0 when ε → 0. We conclude that

HN−1(B(x0, t) ∩ ∂∗(V ∪W )) ≤ CHN−1(∂B(x0, t) \ (V ∪W )), (25)

where C ≥ 1 depends on N and M .
Next, by (25) and (17), we find

HN−1(B(x0, t) ∩ ∂∗(V ∪W )) ≤ Cε0r
N−1.

Using (16), we can choose ε0 small enough (depending only on N) so that the small volume
of B(x0, r) \ (V ∪W ) implies

|B(x0, r/2) \ (V ∪W )| ≤ 1
2 |B(x0, r/2)|,

and thus we can apply the relative isoperimetric inequality to B(x0, r/2)\ (V ∪W ) in the ball
B(x0, r/2). This yields

|B(x0, r/2) \ (V ∪W )| ≤ CHN−1(B(x0, r/2) ∩ ∂∗(V ∪W ))N/(N−1)

≤ Cε
N/(N−1)
0 rN .

We can thus choose ε0 small enough again (depending only on N and M) so that

|B(x0, r) \ (V ∪W )| ≤ ε0r
N =⇒ |B(x0, r/2) \ (V ∪W )| ≤ ε0(r/2)

N .

Iterating this estimate, we deduce

|B(x0, r) \ (V ∪W )| ≤ ε0r
N =⇒ lim

t→0
t−N |B(x0, t) \ (V ∪W )| ≤ 2Nε0. (26)

Let us assume now that we have |B(x0, r) \ (V ∪W )| ≤ ε0(r/2)
N , where ε0 is small enough

for (26) to hold. We see that for all x ∈ K ∩B(x0, r/2), we have

|B(x, r/2) \ (V ∪W )| ≤ ε0(r/2)
N ,

and then by (26) that for all x ∈ K ∩B(x0, r/2),

lim
t→0

t−N |B(x, t) \ (V ∪W )| ≤ 2Nε0.

This holds true in particular for all points x ∈ B(x0, r/2) ∩ ∂∗(V ∪ W ) but, if ε0 is chosen
small enough (depending only on N), this contredicts the properties of the reduced bound-
ary ([3, Theorem 3.61]) so HN−1(B(x0, r/2) ∩ ∂∗(V ∪ W )) = 0. Then the relative isoperi-
metric inequality in B(x0, r/2) shows that we must have |B(x0, r/2) ∩ ∂∗(V ∪W )| = 0 or
|B(x0, r/2) \ (V ∪W )| = 0 but the former is impossible due to our initial assumption (16)
with a small enough ε0. We conclude that B(x0, r/2) cannot meet a component of Ω\K other
than V or W .

We deduce a sufficient condition for a point x0 ∈ K to be in K∗.

Proposition 4.4. There exists a constant ε0 ∈ (0, 1) which depends on N , M such that the
following property holds true. Let K be a M -quasiminimal set in Ω. For all x0 ∈ K and r > 0
such that B(x0, r) ⊂ Ω and β(x0, r) ≤ ε0,

B(x0, r/2) meets exactly two components of Ω \K.
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Proof. Let P be an hyperplane passing through x0 and which atteins the minimum in the
definition of β(x0, r). We know by Lemma 3.13 that if ε0 is small enough (depending on N
and M), then the two components of

{x ∈ B(x0, r) | dist(x, P ) > εr }

are contained in distinct components of Ω\K. If ε0 is chosen small enough once again, Lemma
4.3 shows that that there cannot be any other component of Ω \K which meets B(x0, r/2),
and thus, x ∈ K∗.

We are now ready to justify Proposition 4.2.

Proof of Proposition 4.2. It is standard by Ahlfors-regularity and rectifiability that for HN−1-
a.e. x ∈ K, we have limr→0 β(x, r) = 0, and according to Proposition 4.4, such a point belongs
to K∗. If V is a component of Ω\K, then for HN−1-a.e. x ∈ Ω∩∂V , we have limr→0 β(x, r) = 0
and, from the proof of Proposition 4.4, one can see that this implies

lim
r→0

|V ∩B(x, r)|
|B(x, r)| =

1

2
.

This property characterizes the reduced boundary ∂∗V (up to a HN−1-negligible set), see [3,
Theorem 3.61].

It will now be easier to build competitor by merging components into an other; the covering
argument of Lemma 4.3 won’t be needed anymore.

Remark 4.5 (Merging components into others). Let B(x0, r) ⊂ Ω be an open ball with center
x0 ∈ K and radius r > 0. Let (Vi)i∈I denote the connected components of Ω \K. We select
one of them, say Vk, and a selection of other components (Vj)j∈J with J ⊂ I \ { k }. The
competitor obtained by merging (Vj)j∈J into Vk within B is defined as

F :=
(
∂B ∩

⋃
j∈J

Vj

)
∪K \

(
B ∩K∗ ∩

⋃
i,j∈J∪{ k }

(∂Vi ∩ ∂Vj)
)
.

This is a relatively closed subset of Ω as K∗∩∂V ∩∂Vi and Ω∩∂(
⋃

j∈J Vj) ⊂ K. We will check
soon F is a topological competitor of K in B but let us already state what quasiminimality
property says in this case. The inequality

HN−1(K \ F ) ≤ CHN−1(F \K)

entails
HN−1

(
B ∩

⋃
i,j∈J∪{ k }

∂Vi ∩ ∂Vj

)
≤ C

∑
j∈J

HN−1
(
∂B ∩ Vj

)
. (27)

Property (27) will be instrumental in the next sections and we shall refer to it as the inequality
obtained by merging (Vj)j∈J into Vk within B.

Figure 5: Merging V2, V3, V5 into V1 within B.

We finally justify the validity of (27) by showing that F is a topological competitor of K
in B. We consider two points x and y in Ω \ (B ∪K) which are connected in Ω \ F and we
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want to show that x and y are connected in Ω \K. We proceed by contradiction and assume
that x and y are not connected in Ω \K. If the path connecting x and y does not intersect
∂B, then it stays in the complement of B and does not meet K, which is a contradiction.
Otherwise, the path meets ∂B and it can only be at a point of ∂B \

(
K ∪⋃j∈J Vj

)
because

F contains ∂B ∩ K and ∂B ∩ ⋃j∈J Vj . Considering the portion of the path leaving x until
the first time it meets ∂B, we see that x belongs to some connected component W1 of Ω \K
which is distinct from the Vj for al j ∈ J . Similarly, y belongs to a connected component W2

of Ω \K which is distinct from the Vj for all j ∈ J . If W1 differs from W2, then at least one
of them, say W1, is distinct from Vk. We consider the portion of the path which starts from
x and meets K for the first time. As the path is disjoint from

K \ (B ∩K∗ ∩
⋃

i,j∈J∪{ k }
∂Vi ∩ ∂Vj)

it can only meets K at a point of B ∩ K∗ ∩ ⋃i,j∈J∪{ k } ∂Vi ∩ ∂Vj . Therefore, there exists a
small r > 0 such that B(x, r) \K is covered by exactly two components Vi and Vj , where i
and j belong to J ∪ { k }. In particular, this point cannot be in ∂W but this contradicts the
fact that before meeting K, the path was contained in W . We conclude that W1 = W2 so x
and y are connected in Ω \ K. This is again a contradiction to the assumption, and proves
that F is a topological competitor of K in B.

5 Local finiteness

5.1 In the plane
In the plane, the local finiteness is standard and not difficult to prove. This is based on the
observation that the components of Ω \K have an Ahlfors-regular boundary.

Lemma 5.1. We work in R2. Let K be a M -quasiminimal set in Ω, let x0 ∈ K and r > 0
such that B(x0, r) ⊂ Ω. For all connected component V of Ω\K such that V ∩B(x0, r/2) ̸= ∅,
we have

H1(∂V ∩B(x0, r)) ≥ r/2.

Proof. Let ρ ∈ (r/2, r). According to Proposition 3.14, we cannot have V ⊂ B(x0, ρ). Thus
there exists a continuous path γ contained in V which leaves B(x0, r/2) and arrives in Ω \
B(x0, ρ). For all t ∈ (r/2, ρ), the sphere ∂B(x0, t) must meet γ so it must also meet V .
Lemma 3.3 shows that we can also find in B(x0, r/2) \ V another connected component, say
W , of Ω \K. Reasoning like before, we see that for all t ∈ (r/2, ρ), the sphere ∂B(x0, t) must
meet W and thus Ω \ V . It follows that for all t ∈ (r/2, ρ), the sphere ∂B(x0, t) meets ∂V .
We then apply the co-area formula

H1(V ∩B(x0, r)) ≥
ˆ ρ

r/2
H0(V ∩ ∂B(0, t)) dt ≥ ρ− r/2.

and let ρ → r

Corollary 5.2 (Local finiteness). Let K be a M -quasiminimal set in Ω and assume that
N = 2. For all x0 ∈ K and r > 0 such that B(x0, r) ⊂ Ω,

B(x0, r/2) meets at most C components of Ω \K,

where C ≥ 1 depends only on N and M .

Proof. Let x0 ∈ K and r > 0 be such that B(x0, r) ⊂ Ω. Let (Vi)i be the connected
components of B(x0, r) \ Ω. For all i such that Vi meets B(x0, r/2), we have

H1(∂Vi ∩B(x0, r)) ≥ C−1r
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and as Ω ∩ ∂Vi ⊂ K and HN−1(K \K∗) = 0, we also have

H1(K∗ ∩ ∂Vi ∩B(x0, r)) ≥ C−1r. (28)

For all point x ∈ K∗, there exists exactly two indices i ̸= j such that x ∈ ∂Vi ∩ ∂Vj and
therefore

∑
i 1∂Vi

= 2 on K∗. It follows that∑
i

HN−1(K∗ ∩ ∂Vi ∩B(x0, r)) ≤ HN−1(K ∩B(x0, r)) ≤ CrN−1. (29)

Combining (28) and (29), we conclude that the number of indices i such that Vi meets
B(x0, r/2) is bounded depending on M .

The argument of Lemma 5.1 is very specific to the dimension 2. In the next section, we
present a proof of local finiteness which is suitable in R3.

5.2 In the three-dimensional space
Theorem 5.3 (Local finiteness). Let K be a M -quasiminimal set in Ω and assume that N = 2
or 3. For all x0 ∈ K, for all r > 0 such that B(x0, r) ⊂ Ω,

B(x0, r/2) meets at most C components of Ω \K,

where C ≥ 1 depends only on M .

Proof. For the moment, we let N be any integer greater than or equal 2. We shall only
consider the cases N = 2 or 3 at the end of the proof. So let us fix x0 ∈ K. For r > 0, we
let Br denotes the open ball of center x0 and radius r. We fix some radius R > 0 such that
BR ⊂ Ω. We denote (Vi)i≥1 the connected components of Ω \K. If the sequence is finite, we
complete it by setting Vi = ∅ so that it is defined for all indices i ≥ 1. For all indices i, j, we
then set

Vij =

{
∂Vi ∩ ∂Vj if i ̸= j

∅ if i = j.

We assume that the components (Vi)i≥1 are ordered in such a way that

|BR ∩ Vi| ≥ |BR ∩ Vi+1|

and we assume that for some exponent α > 1 and some constant C0 ≥ 1, we have

|BR ∩ Vk| ≤
C0R

N

kα
for all k ≥ 1. (30)

Let us justify that such an assumption always hold true, at least for α = N/(N −1). We start
by recalling the following standard Lemma.

Lemma 5.4. Let (ck)k≥1 be a non-increasing sequence of non-negative real numbers such that∑
i ci < +∞. Then for all k ≥ 1,

ck ≤ C

k

∑
i≥1

ci,

where C ≥ 1 is a universal constant.

According to the relative isoperimetric inequality (Remark 3.5) and the Ahlfors-regularity
of K (Proposition 3.6), we have∑

k≥1

|BR ∩ Vk|(N−1)/N ≤ C
∑
k≥1

HN−1(BR ∩ ∂Vk) ≤ CRN−1.

Then, we apply Lemma 5.4 and conclude that (30) holds true for α = N/(N − 1) and a
constant C0 which depends on N and M .
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We are going to see that an assumption such as (30) implies a better decay at a smaller
scale, namely (up to reordering the sequence)

∣∣BR/2 ∩ Vk

∣∣ ≤ CRN

kf(α)
for all k ≥ 1,

where C ≥ 1 is a constant which depends on C0, N , M , α and f is the function

f : t 7→ N

N − 1

(
t+ t−1 − 1

)
.

When N = 2 or 3, we have f(t) > t for all t > 1, allowing the procedure to be iterated

1

3
2

N = 3

1 2

4
3

2

N = 4

1 t− t+

N
N−1

N ≥ 5

f(t)

t

Figure 6: The function f and its fixed points in Lemma 5.4.

indefinitely. Besides, the successive iterates f(α), f (2)(α), ... of α := N/(N − 1) go to ∞
and we will see that if the volumes (|Br ∩ Vk|)k decay too fast in a ball Br, then almost-all
components have zero volume in Br/2. When N = 4, the function f has a fixed point at
t− = t+ := 2 and we have f(t) > t for t ∈ (1, 2) ∪ (2,+∞). If N ≥ 5 then f has two fixed
points

t± := (N ±
√
N(N − 4))/2

and we have f(t) > t for t ∈ (1, t−) ∪ (t+,∞) and f(t) < t for t ∈ (t−, t+). In these two
last cases, the successive iterates of α := N/(N − 1) converge to the fixed point t− but this
does not provide a contradiction. Reasonning as in the N = 2, 3 case, our argument would
nevertheless imply that for all s < t−, we have |Vk ∩Br| ≲ k−s in a ball Br of sufficiently
small radius (depending on s) and that if |Vk ∩BR| ≲ k−s for some s > t+, then almost-all
components have zero volume in a smaller ball Br (with r depending on s).

In what follows, the letter C stands for a generic constant ≥ 1 which depends on N , M ,
C0 and α. Let r ∈ (R/2, R). By the relative isoperimetric inequality (Remark 3.5), and the
properties off (Vi)i (Proposition 4.2), we have for all j ≥ 1,

|Br ∩ Vj |(N−1)/N ≤ HN−1(Br ∩ ∂Vj) ≤
∑
i

HN−1(Br ∩ Vij)
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and then for all k ≥ 1,∑
j≥k

|Br ∩ Vj |(N−1)/N ≤ C
∑
j≥k

∑
i

HN−1(Br ∩ Vij).

In order to estimate the right-hand side, we are going to use the quasiminimality property by
merging components into others (see Remark 4.5 and in particular (27)). For i ̸= j, we merge
Vj into Vi to obtain

HN−1(Br ∩ Vij) ≤ HN−1(Vj ∩ ∂Br) (31)

and for all k ≥ 1, we merge all the components (Vi)i>k into Vk to obtain∑
i,j≥k

HN−1(Br ∩ Vij) ≤ C
∑
j>k

HN−1(Vj ∩ ∂Br). (32)

We decompose

∑
j≥k

∑
i

HN−1(Br ∩ Vij) ≤
∑
j≥k

j∑
i=1

HN−1(Br ∩ Vij) +
∑
j≥k

∑
i≥j

HN−1(Br ∩ Vij)

and (32) already allows to estimate the second term at the right-hand side∑
j≥k

∑
i≥j

HN−1(Br ∩ Vij) ≤ C
∑
j>k

HN−1(Vj ∩ ∂Br).

To estimate the first term, we consider some sequence non-decreasing (Nk)k≥1 of positive
integers such that Nk ≤ k but which is left unknown for the moment. We use Fubini, (31),
(32) to estimate

∑
j≥k

j∑
i=1

HN−1(Br ∩ Vij) ≤
∑
j≥k

Nj∑
i=1

HN−1(Br ∩ Vij) +
∑
j≥k

j∑
i=Nj

HN−1(Br ∩ Vij)

≤
∑
j≥k

Nj∑
i=1

HN−1(Br ∩ Vij) +
∑
i≥Nk

∑
j≥i

HN−1(Br ∩ Vij)

≤ C
∑
j≥k

NjHN−1(Vj ∩ ∂Br) + C
∑
i≥Nk

HN−1(Vi ∩ ∂Br).

In conclusion, we obtained∑
j≥k

|Br ∩ Vj |(N−1)/N ≤ C
∑
j≥k

NjHN−1(Vj ∩ ∂Br)

+ C
∑
i≥Nk

HN−1(Vi ∩ ∂Br) +
∑
j>k

HN−1(Vj ∩ ∂Br).

Integrating over r ∈ [R/2, R] and in view of the co-area formula
ˆ R

R/2
HN−1(Vi ∩ ∂Br) dr ≤ C|BR ∩ Vi| for all i,

we deduce that∑
j≥k

∣∣BR/2 ∩ Vj

∣∣(N−1)/N ≤ C

R

∑
j≥k

Nj |BR ∩ Vj |+
C

R

∑
i≥Nk

|BR ∩ Vi|+
C

R

∑
j>k

|BR ∩ Vj |.

We recall that by assumption (30), we have |BR ∩ Vk| ≤ C0R
N/kα for all k ≥ 1, so∑

j≥k

∣∣BR/2 ∩ Vj

∣∣(N−1)/N ≤ CRN−1
∑
j≥k

Nj

jα
+ CRN−1N1−α

k +
CRN−1

kα−1
. (33)
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The optimal choice for (Nk)k≥1 is to take Nk as the integer part of k(α−1)/α. In particular,
notice that we always have

C−1k(α−1)/α ≤ Nk ≤ k(α−1)/α

so (33) yields ∑
j≥k

∣∣BR/2 ∩ Vj

∣∣(N−1)/N ≤ CRN−1

k(1−α)2/α
. (34)

The sequence (
∣∣BR/2 ∩ Vk

∣∣)k≥1 may not be non-increasing but if we re-order the sequence in a
non-increasing way, the conclusion (34) remains true because we have only made the left-hand
side of (34) smaller. We can then apply Lemma 5.5 below (the proof is the same as in Lemma
5.5 and is omitted) to deduce that for all k ≥ 1,

∣∣BR/2 ∩ Vk

∣∣ ≤ CRN

kf(α)
, where f(t) =

N

N − 1

(
t+ t−1 − 1

)
.

Lemma 5.5. Let (ck)k be a non-increasing sequence such that for all k, ck ≥ 0 and∑
i≥k

ci ≤
C0

kγ
,

for some constants C0 ≥ 1 and γ ≥ 0. Then for all k ≥ 1,

ck ≤ C

kγ+1
,

where C ≥ 1 depends only on C0 and γ.

In the case N = 2 or 3, we can repeat the procedure indefinitely and obtain that the
volumes |B2−pR ∩ Vk| decay faster than 1/k5 after a finite number p of iterations (which
depends on M). In view of Lemma 5.6 below, this shows that only a controlled number of
(Vi)i can meet B2−p−1R. The statement of Theorem 5.3 follows by a covering argument.

Lemma 5.6. Let K be a M -quasiminimal set in Ω. Let (Vi)i≥1 denote the components of
Ω \K, the sequence being finite or infinite. For all x0 ∈ K and r > 0 such that B(x0, r) ⊂ Ω,
and for all k ≥ 1,

∑
i>k

|B(x0, r/2) ∩ Vi| > 0 =⇒
∑
i>k

|B(x0, r) ∩ Vi| ≥
C−1rN

kN
,

where C ≥ 1 depends on N and M .

Proof. If the sequence (Vi)i≥1 is finite, we complete it by setting Vi = ∅ so that it is defined
for all indices i ≥ 1. Let x0 ∈ K and let r > 0 be such that B(x0, r) ⊂ Ω and assume that for
some k ≥ 1, ∑

i>k

|B(x0, r/2) ∩ Vi| > 0.

For s ∈ (0, r], we let Bs denote B(x0, s) and for i ̸= j, we set

Vij =

{
∂Vi ∩ ∂Vj if i ̸= j

∅ if i = j.

For s ∈ (0, r) and i = 1, . . . , k, we merge (Vj)j>k into Vi within Bs to obtain∑
j>k

HN−1(Bs ∩ Vij) ≤ C
∑
j>k

HN−1(∂Bs ∩ Vj).
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By the relative isoperimetric inequality applied to
(⋃

j>k Bs ∩ Vj

)
in Bs, we have

∑
j>k

|Bs ∩ Vj |

(N−1)/N

≤
k∑

i=1

∑
j>k

HN−1(Bs ∩ Vij)

≤ Ck
∑
j>k

HN−1(∂Bs ∩ Vj).

We set f(s) :=
∑

j>k |Bs ∩ Vj |. The function f is absolutely continuous on (0, r), with

f ′(s) =
∑
j>k

HN−1(∂Bs ∩ Vj) for a.e. s ∈ (0, r).

The previous inequality tells us that for a.e. s ∈ (r/2, r), we have

f(s)(N−1)/N ≤ Ckf ′(s).

As f(r/2) > 0 and f(s) ∈ [f(r/2), f(r)] for all s ∈ [r/2, r], we deduce that

f(r)1/N − f(r/2)1/N ≥ C−1r

k
,

whence

f(r) ≥ C−1rN

kN

for some bigger constant C.

5.3 Applications
As an application of the local finiteness, we are going to see that for all component V of
Ω \K, the boundary ∂V locally satisfies Ahlfors-regularity and condition B. The statements
are limited to R2 and R3 only because they rely on Theorem 5.3.

Proposition 5.7 (Ahlfors-regularity for the boundaries). Let K be a M -quasiminimal set in
Ω and assume that N = 2 or 3. For all x0 ∈ K, for all r > 0 such that B(x0, r) ⊂ Ω, for all
connected components V of Ω \K such that V ∩B(x0, r/2) ̸= ∅, we have

|∂V ∩B(x0, r)| ≥ C−1rN ,

where C ≥ 1 depends on M .

Proposition 5.8 (Condition B for the boundaries). Let K be a M -quasiminimal set in Ω and
assume that N = 2 or 3. Let x0 ∈ K, r > 0 be such that B(x0, r) ⊂ Ω. If V is a connected
component of Ω \K such that V ∩B(x0, r/2) ̸= ∅, then

both B(x, r) ∩ V and B(x, r) \ V contain a ball of radius ≥ C−1r,

where C ≥ 1 depends on M .

In order to show Proposition 5.7 and Proposition 5.8, we start by proving a lower bound
on the volume of the components of Ω \K.

Lemma 5.9. Let K be a M -quasiminimal set in Ω and assume that N = 2 or 3. Let
x0 ∈ K, r > 0 be such that B(x0, r) ⊂ Ω. If V is a connected component of Ω \K such that
V ∩B(x0, r/2) ̸= ∅, then

|V ∩B(x0, r)| ≥ C−1rN−1,

where C ≥ 1 depends on M .
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Proof. The proof is in the same spirit as Proposition 3.6. Let x0 ∈ K and r > 0 be such that
B(x0, r) ⊂ Ω and let V be a connected component of Ω\K. Let (Vi)i≥1 denote the connected
components of Ω \K with V1 = V .

Step 1. We are going to prove that there exists some small ε > 0 (which depends only on
M) such that

|V ∩B(x0, r)| ≤ εrN =⇒ lim
r→0

r−N |V ∩B(x0, r)| = 0. (35)

Let us assume that |V ∩B(x0, r)| ≤ εrN for some ε > 0 to be chosen later. According to the
co-area formula

|V ∩B(x0, r)| =
ˆ r

0
HN−1(V ∩ ∂B(x0, t)) dt

we can find a radius t ∈ (r/2, r) such that

HN−1(V ∩ ∂B(x0, t)) ≤ CεrN−1. (36)

By Theorem 5.3, there exists at most m components of the family (Vi)i≥1 such that

Vi ∩B(x0, r/2) ̸= ∅,

where m ≥ 2 depends on M . We re-order the indices so that Vi ∩ B(x0, r/2) = ∅ for i > m.
By properties of (Vi)i≥1 stated in Proposition 4.2, we have

HN−1(B(x0, r/2) ∩ ∂V ) =
m∑
i=2

HN−1(B(x0, r/2) ∩ ∂V ∩ ∂Vi)

so there exists an index i = 2, . . . ,m such that

HN−1(B(x0, r/2) ∩ ∂V ∩ ∂Vi) ≥ C−1HN−1(B(x0, r/2) ∩ ∂V ). (37)

By merging V into Vi within B(x0, t), see Remark 4.5, we know that

HN−1(B(x0, t) ∩ ∂V ∩ ∂Vi) ≤ HN−1(V ∩ ∂B(x0, t))

and thus by (36), (37)
HN−1(B(x0, r/2) ∩ ∂V ) ≤ CεrN−1.

Then, we apply the relative isoperimetric inequality to V in B(x0, r/2), see Remark 3.5,

|V ∩B(x0, r/2)| ≤ CHN−1(B(x0, r/2) ∩ ∂V )N/(N−1) ≤ CεN/(N−1)rN .

Choosing ε small enough, we see that

|V ∩B(x0, r)| ≤ εrN =⇒ |V ∩B(x0, r/2)| ≤ ε(r/2)N

and the argument can be iterated to concludes Step 1.
Step 2. The parameter ε being fixed as in Step 1, we observe that if |V ∩B(x0, r)| ≤

ε(r/2)N , then for all x ∈ K ∩B(x0, r/2), we have |V ∩B(x, r/2)| ≤ ε(r/2)N so

lim
r→0

r−N |V ∩B(x, r)| = 0. (38)

It follows that V ∩B(x0, r/2) = ∅ by Lebesgue’s density theorem. This proves the Proposition
by contraposition.

Proof of Proposition 5.7. This is a direct application of Lemma 5.9, together with the relative
isoperimetric inequality in B(x0, r), see Remark 3.5.
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Proof of Proposition 5.8. Let V be a connected component of Ω \ K. Let x ∈ V and r > 0
be such that B(x, r) ⊂ Ω. If B(x, r/4) ⊂ V , then the proof is over. Otherwise, there exists a
point x0 ∈ K ∩B(x, r/4) and as V ∩B(x0, r/4) ̸= ∅, it follows from Proposition 5.7 that

HN−1(∂V ∩B(x0, r/2)) ≥ C−1rN−1.

We also know by uniform rectifiability of K that for all ε > 0, there exists a constant C0 =
C0(ε) ≥ 1 (which depends on N , M , and ε) such that

ˆ
K∩B(x0,r/2)

ˆ r/2

0
1β(y,t)≥ε(y, t)

dt

t
dHN−1(y) ≤ C0r

N−1.

As HN−1(∂V ∩B(x0, r/2)) ≥ C−1rN−1, we prove by contradiction (as in Corollary 3.12) that
their exists a point y0 ∈ ∂V ∩B(x0, r/2) and a radius t ∈ (C−1

1 r, r/2) such that

β(y0, t) ≤ ε,

where C1 = C1(ε) ≥ 1 depends on N , M and ε). We choose ε small enough (depending on N ,
M and m) so that Proposition 4.4 yields that that B(y0, t/2)\K has exactly two components
and as, y0 ∈ ∂V , one of them is contained in V . The other cannot be contained in V because
of Lemma 3.3. Finally we observe that since K has a a flatness ≤ 2ε in B(y0, t/2), with say
ε ≤ 1/100, one can build a ball of radius t/10 in each component of B(y0, t/2) \K.

6 Quasiminimal sets and John domains

6.1 Components of Ω \K are local John domains
A John domain is a bounded open set V ⊂ RN where any point z ∈ V can be connected to
a center z0 ∈ V via a path that gets away fast enough from the boundary. Examples of John
domains are Lipschitz and snowflake domains. The main counter-example are the domains
with outward cusps.

Definition 6.1 (John Domain). Let V be a bounded open set and z0 ∈ V . We say that V
is a John domain of center z0 if there exists a constant C ≥ 1 such that for all z ∈ V , there
exists a C-Lipschitz path γ : [0, ℓ] → V , where ℓ = |z − z0|, such that γ(0) = z, γ(ℓ) = z0 and

dist(γ(t),RN \ V ) ≥ C−1t for all t ∈ [0, ℓ].

The property also extends to points z ∈ ∂V by an application of Arzela-Ascoli theorem.
Our goal is to prove that the components of Ω \ K are local John domains in the following
sense.

Theorem 6.2 (Existence of escape paths). Let K be a M -quasiminimal set in Ω and assume
that N = 2 or 3. Let V be a component of Ω\K. Then for all x ∈ V , there exists a 1-Lipschitz
path γ : [0, ℓ] → V , where ℓ := dist(x, ∂Ω), such that γ(0) = x and

dist(γ(t),K) ≥ C−1t for all t ∈ [0, ℓ].

This property states that any point z ∈ V has an escape path that gets away fast enough
from K. This provides a good nontangential access region to z. In contrast to Definition 6.1
however, it does not request a single center where all escape paths ends. The existence of
escape paths has the following easy consequence.

Corollary 6.3 (Local truncations are John domains). There exists a constant C0 ≥ 2 which
depends only on M such that the following holds true. Let K be a M -quasiminimal set in Ω
and assume that N = 2 or 3. For all x0 ∈ K and r > 0 with B(x0, C0r) ⊂ Ω and for all
connected component V of Ω \K, the set

[V ∩B(x0, 2r)] ∪ [B(x0, 2r) \B(x0, r)] (39)

is a John domain with constant C0.
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This is a quantitative strengthening of the fact that V cannot stay within B(x0, r), seen
in Proposition 3.14. An alternative way of truncating of V could be to take the intersection
V ∩ B(x0, r) but this does not produce a John domain in general as V ∩ B(x0, r) can be
disconnected or have an outward cusp near ∂B(x0, r) ∩ ∂V .

John domains are closely related to domains of isometry [12, Definition 5.1], whose defini-
tion we recall below.

Definition 6.4. An open set V ⊂ RN is a domain of isoperimetry if there exists a constant
C ≥ 1 such that for all open subset Z ⊂ V , we have

min(|Z|, |V \ Z|)(N−1)/N ≤ CHN−1(∂Z ∩ V ).

Bojarski [4] proved that John domains are domains of isoperimetry but the converse is not
true in general, see for instance the generalized Eiffel tower in [12, Remark 6.2]. There are how-
ever some partial converse results due to Buckley–Koskela [7, Theorem 1.1] and David–Semmes
[12, Theorem 6.1]. We are going to establish first in Proposition 6.5 that the components of
Ω \K satisfy a local relative isoperimetric inequality. We will then deduce Theorem 6.2 using
the method of [12, Theorem 6.1].

Proposition 6.5. Let K be a M -quasiminimal set in Ω and assume that N = 2 or 3. Then,
for all x0 ∈ K and r > 0 such that B(x0, 2r) ⊂ Ω, for all connected component V of Ω \K,
and for all open subset Z ⊂ V ∩B(x0, r), one has

|Z|(N−1)/N ≤ CHN−1(∂Z ∩ V ),

where C ≥ 1 depends only on M .

Proof. Let x0 ∈ K and r > 0 be such that B(x0, 2r) ⊂ Ω. Let V be a connected component
of Ω \K and let Z be an open subset of V ∩B(x0, r). We let (Vi)i≥1 denote the components
of Ω \K with V1 = V . Since B(x0, r) meets a most m components (where m ≥ 2 depends on
M), we can order the family so that for all i > m, Vi ∩B(x0, r) = ∅. According the properties
of (Vi)i≥1 (Proposition 4.2), we have

HN−1(∂∗Z ∩ ∂V ) =
m∑
i=2

HN−1(∂Z ∩ ∂V ∩ ∂Vi)

so we can find an index i = 1, . . . ,m such that

HN−1(∂∗Z ∩ ∂V ) ≤ CHN−1(∂Z ∩ ∂V ∩ ∂Vi), (40)

where C ≥ 1 depends on m. Now we want to prove that

HN−1(∂∗Z ∩ ∂V ∩ ∂Vi) ≤ MHN−1(∂Z ∩ V ), (41)

by merging Z in Vi, that is, building a competitor by removing K ∩ B(x0, r) ∩ ∂Z ∩ ∂V and
adding ∂Z ∩ V . From (40) and (41), we would have

HN−1(∂∗Z ∩ ∂V ) ≤ CHN−1(∂Z ∩ V ).

and finally by applying the isoperimetric inequality in RN , we would conclude

|Z|(N−1)/N ≤ CHN−1(∂∗Z)

≤ CHN−1(∂∗Z ∩ ∂V ) + CHN−1(∂∗Z ∩ V )

≤ CHN−1(∂Z ∩ V ).

As in Lemma 4.3, the proof of (41) by merging poses a technical difficulty because com-
petitors must be closed subset of Ω. We are going to build the competitor by a covering
argument. We first justify that for HN−1-a.e. x ∈ B(x0, r) ∩ ∂∗Z ∩ ∂V ∩ ∂Vi, one can find
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arbitrary small balls centered on x with good properties. By standard theorems on reduced
boundaries [3, Theorem 3.61 and Example 3.68], we know that for HN−1-a.e. x ∈ ∂∗Z, there
exists a unit vector ν0 ∈ RN such that

lim
t→0

t−N
∣∣B(x, t) ∩ Z∆H+

0

∣∣ = 0, (42)

where H+
0 = { y ∈ RN | (y − x) · ν0 ≥ 0 }. Similarly, since HN−1(Ω ∩ ∂V \ ∂∗V ) = 0 (Propo-

sition 4.2), then for HN−1-a.e. x ∈ Ω ∩ ∂V , there exists a unit vector ν1 ∈ RN such that

lim
t→0

t−N
∣∣B(x, r) ∩ V∆H+

1

∣∣ = 0, (43)

where H+
1 = { y ∈ RN | (y − x) · ν1 ≥ 0 }. At a point x where both (42) and (43) hold, we see

that we must actually have ν = ν1 and thus

lim
t→0

t−N |B(x, t) ∩ V \ Z| = 0.

We observe finally that for all small t > 0, the co-area formula

|B(x, t) ∩ V \ Z| =
ˆ t

0
HN−1(∂B(s, t) ∩ V \ Z) ds

allows to find a radius s ∈ (t/2, t) such that

HN−1(∂B(x, s) ∩ V \ Z) ≤ Ct−1|B(x, t) ∩ V \ Z|.

We can also assume that s satisfies HN−1(K∩∂B(x, s)) = 0 since this holds for a.e. s ∈ (0, t).
Now, we fix ε > 0 and we apply the Vitali covering theorem [27, Theorem 2.8] to find a

family of balls (B(yk, tk))k, where yk ∈ B(x0, r) ∩ ∂∗Z ∩ ∂V ∩ ∂Vi and tk > 0, such that the
closed balls (B(yk, tk))k are disjoint,

HN−1
(
B(x0, r) ∩ ∂∗Z ∩ ∂V ∩ ∂Vi \

⋃
k

B(yk, tk)
)
= 0 (44)

and for all k,

(i) B(yk, tk) ⊂ B(x0, r);

(ii) HN−1(K ∩ ∂B(yk, tk)) = 0;

(iii) B(yk, tk) meets exactly two components of Ω \K;

(iv) HN−1(∂B(yk, tk) ∩ V \ Z) ≤ εtN−1
k .

Note that the balls are centred in K since ∂V ⊂ K. As HN−1(B(x0, r) ∩ ∂∗Z ∩ ∂Vi) < +∞,
we can assume that the family is finite but at the price of replacing (44) by

HN−1
(
B(x0, r) ∩ ∂∗Z ∩ ∂V ∩ ∂Vi \

⋃
k

B(yk, tk)
)
≤ ε. (45)

We define

F :=
(
K \

⋃
k

B(yk, tk)
)
∪
(⋃

k

∂B(yk, tk) ∩ V \ Z
)
∪
(
∂Z ∩ V

)
.

We then justify that F is a topological competitor of K in B(x0, r). Since Z is open and
Ω ∩ ∂V ⊂ K, we see that K ∪ (∂Z ∩ V ) and K ∪ (∂B(yk, tk) ∩ V \ Z) are relatively closed
subsets of Ω. Therefore, F is relatively closed in Ω as a finite union of relatively closed sets.
Now, let x and y be two points in Ω \ (B(x0, r)∪K) which are connected by a path in Ω \F .
We want to show that x and y lie in the same component of Ω\K. Assuming by contradiction
that the two points x and y are not in the same component of Ω \K, then the path should
meet K and this can only happen within the interior of a ball B(yk, tk). We consider the
portion γx of the path which starts from x and meet a ball ∂B(yk, tk) for the first time at
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some point zx. Note that γx connects x to zx in Ω \ (K ∪ F ). In view of the definition of
F , we see that z is either in Vi or in Z. We can observe similarly that y is connected by a
path γy in Ω \ (K ∪ F ) to a point zy which is either in Vi or in V . Since x and y cannot
be both connected to a point of Vi in Ω \K, either zx or zy must be in Z, let’s say zx. We
finally reach a contradiction because if γx connects x to zx ∈ Z in Ω \K, then it must cross
∂Z \K ⊂ ∂Z ∩ V ⊂ F . We conclude that F is a topological competitor of K in B(x0, r).

By applying the quasiminimality property (2) in B(x0, r),

HN−1(K \ F ) ≤ MHN−1(F \K),

we get

HN−1(K ∩
⋃
k

B(yk, tk)) ≤ MHN−1(∂Z ∩ V ) +M
∑
k

HN−1(∂B(yk, tk) ∩ V \ Z)

≤ MHN−1(∂Z ∩ V ) + Cε
∑
k

tN−1
k .

By (45) and the properties of the family of balls, we have

HN−1(B(x0, r) ∩ ∂∗Z ∩ ∂V ∩ ∂Vi) ≤ HN−1(K ∩
⋃
k

B(yk, tk)) + ε

≤ HN−1(K ∩
⋃
k

B(yk, tk)) + ε.

Since the balls (B(yk, tk))k are disjoint and contained in B(x0, r) and since K is Ahlfors-
regular, we can also bound from above

Cε
∑
k

tN−1
k ≤ CεHN−1(B(x0, r) ∩K);

in particular this term goes to 0 when ε → 0. We conclude that

HN−1(B(x0, r) ∩ ∂∗Z ∩ ∂V ∩ ∂Vi) ≤ CHN−1(∂Z ∩ V ),

where C ≥ 1 depends on N and M . This proves (41) and ends the proof.

As the components of Ω\K have a boundary which is locally Ahlfors-regular (Proposition
5.7), which satisfies locally the condition B (Proposition 5.8) and which supports a local
relative isoperimetric inequality (Proposition 6.5), we can deduce the following Lemma. This
is a minor variation of the proof of [12, Theorem 6.1] and we omit the details.

Lemma 6.6. There exists a constant C0 ≥ 1 which depends only on M such that the following
holds true. Let K be a M -quasiminimal set in Ω and assume that N = 2 or 3. For all connected
component V of Ω \K, for all z ∈ V and for all 0 < r ≤ dist(z,K) such that B(z, C0r) ⊂ Ω,
there exists a path γ ⊂ V such that

(i) γ ⊂ V ∩B(z, C0r),

(ii) dist(γ,K) ≥ C−1
0 r,

(iii) γ goes from z to a point w ∈ V ∩B(z, C0r) such that dist(w,K) ≥ 2r.

Then it is standard to deduce Theorem 6.2 from Lemma 6.6. We omit the proof again and
refer to [8, Proposition 56.7] or [6, Lemma 20.1] for details.
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6.2 A sufficient condition for quasiminimality
We finally show that if K is an Ahlfors-regular set which partitions a domain into local
John domains with uniform constants, then K satisfies a local quasiminimality property. The
statement holds in all dimensions N ≥ 2.

Theorem 6.7. Let Ω be an open subset of RN and let K be a relatively closed subset of Ω.
We assume there exists a constant C0 ≥ 2 such that the following holds true.

(i) For all x0 ∈ K and r > 0 such that B(x0, r) ⊂ Ω,

C−1
0 rN−1 ≤ HN−1(K ∩B(x0, r)) ≤ C0r

N−1;

(ii) for all x0 ∈ K and r > 0 such that B(x0, r) ⊂ Ω, the ball B(x0, r) meet at least two
components of Ω \K;

(iii) for all x0 ∈ K and r > 0 such that B(x0, 2r) ⊂ Ω for all component V of Ω \ K, the
domain (

V ∩B(x0, 2r)
)
∪(B(x0, 2r) \B(x0, r))

is a John domain with constant C0.

Then for all x ∈ K, for all r > 0 such that B(x0, 2r) ⊂ Ω and for all topological competitor F
of K in B(x0, r),

HN−1(K \ F ) ≤ MHN−1(F \K),

where M ≥ 1 is a constant which depends on N and C0.

The proof of Theorem 6.7 relies on the following Lemma.

Lemma 6.8. Let C0 ≥ 1 be a constant and let B0 be a ball of radius ≥ C−1
0 such that

2B0 ⊂ B(0, 1). Let V ⊂ B(0, 1) be a John domain containing B0 with an Ahlfors-regular
boundary. Then for all open set W ⊂ RN containing B0, we have

HN−1(∂V \W ) ≤ CHN−1(V ∩ ∂W ),

for some constant C ≥ 1 which depends on N , C0, and the John and Ahlfors-regularity con-
stants of V .

Proof of Lemma 6.8. This is an application of [12, Lemma 7.12], as done in the proof of [12,
Lemma 7.46].

Proof of Theorem 6.7. We let (Vi)i denote the connected components of Ω \K, the sequence
being finite or infinite. We make first a few observations. From property iii), one can see that
for all x0 ∈ K and r > 0 such that B(x0, 2r) ⊂ Ω, there can only be a finite number of indices
i such that V ∩ B(x0, r/4) ̸= ∅ (and this number depends on N and the John constant C0).
Thus the family (Vi)i is locally finite in Ω. Next, let us also observe that for all x ∈ K, there
exists at least two indices i ̸= j such that x ∈ ∂Vi ∩ ∂Vj . This follows from the fact that for
all small r > 0, B(x, r) meets at least two components of Ω \K and that the family (Vi)i is
locally finite.

We now fix a point x0 ∈ K and a radius r > 0 such that B(x0, 2r) ⊂ Ω, we let F be a
topological competitor of K in B(x0, r). The first step consists in building a family of disjoint
open sets (Wi)i such that

(i) for all i, Wi \B(x0, r) = Vi \B(x0, r);

(ii) for all i, Ω ∩ ∂Wi ⊂ F .

For this purpose, we set Wi as the union of all components W of Ω\F such that W\B(x0, r) ̸= ∅
and W \B(x0, r) ⊂ Vi. The important point is that for all component W of Ω \ F such that
W \ B(x0, r) ̸= ∅, there exists a unique component V of Ω \K such that W \ B(x0, r) ⊂ V
(by definition of a topological competitor). From there it is easy to check the two properties
above.
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Next, we let m denote the number of indices such that such that Vi ∩ B(x0, r) ̸= ∅ (the
number m depends on N and C0) and we re-order the sequence (Vi)i so that V i∩B(x0, r) = ∅
for i > m. We set for i = 1, . . . ,m,

V̂i =
(
Vi ∩B(x0, 2r)

)
∪
(
B(x0, 2r) \B(x0, r)

)
Ŵi =

(
Wi ∩B(x0, 2r)

)
∪
(
B(x0, 2r) \B(x0, r)

)
and we apply Lemma 6.8 to V̂i and Ŵi (in particular because they contain any ball of radius
≥ r in the ring B(x0, 2r) \B(x, r)). This yields

HN−1(B(x0, r) ∩ ∂Vi \Wi) ≤ CHN−1(B(x0, r) ∩ Vi ∩ ∂Wi).

For all x ∈ K \ F ⊂ B(x0, r), there exists two different indices i, j ∈ { 1, . . . ,m } such that
x ∈ ∂Vi ∩ ∂Vj . As the family (Wi)i is disjoint, we have either x /∈ Wi or x /∈ Wj . Since x /∈ F
and Ω∩∂Wi ⊂ F (resp. Wj), we can deduce that either x ∈ ∂Vi \Wi or x ∈ ∂Vj \Wj , whence

HN−1(K \ F ) ≤
m∑
i=1

HN−1(B(x0, r) ∩ ∂Vi \Wi).

On the other hand, we observe that B(x0, r) ∩ Vi ∩ ∂Wi ⊂ F \K whence

m∑
i=1

HN−1(B(x0, r) ∩ Vi ∩ ∂Wi) ≤ mHN−1(F \K).

7 The dimension of junction points
It is well-known that a minimal set K is regular out a relatively closed subset of dimension ≤
N−2 (see for instance [2, Theorem 4.3]). Could there be an analogue property for quasiminimal
sets ? A first try is to define regular points as the set of points x ∈ K such limr→0 βK(x, r) =
0. But such a set may not have have a dimension < N − 1 in general as we can see on
certain Lipschitz graphs. Instead, we shall consider the points x ∈ K∗ as “regular points” of
quasiminimal sets.

Proposition 7.1. Let K be a M -quasiminimal set in Ω and assume that N = 2. Then the
points of K \K∗ are isolated in Ω.

Proof. Assume the contrary. There exists a point x0 ∈ K and a radius r > 0 that B(x0, r) ⊂ Ω
and B(x0, r/2) contains at least L points of K \K∗, where L is a number that we are going to
choose soon. Note that for each component W of B(x0, r) \K which intersects B(x0, r/2), we
have H1(∂W ∩B(x0, r/2)) ≥ r/2 (similarly as in Lemma 5.1). As H1(K ∩B(x0, r)) ≤ 2Mπr,
we deduce that there can be at most m ≤ 8πM such components. We let W1, . . . ,Wm denote
them. Choosing L =

(
m
3

)
+1, there exists three boundary, say ∂W1, ∂W2, ∂W3 and two points

x, y ∈ K ∩ B(x0, r/2) such that x, y ∈ ∂W1 ∩ ∂W2 ∩ ∂W3. For each i, there exists a path
γi connecting x to y in Wi. Due to Jordan curve theorem one of the paths, say γ3, lay in
the interior region bounded by two other paths. But since W3 cannot intersects γ1 ∪ γ2, this
implies that W3 ⊂ B(x0, r). A contradiction to Proposition 3.14.

Remark 7.2. We see from the proof that if B(x0, r) ⊂ Ω and B(x0, r) \ K has k connected
components, then the number of points of K \K∗ in B(x0, r) cannot exceed

(
k
3

)
.

In higher dimension, we can only prove that K \K∗ has a dimension < N − 1 and we will
see in Remark 7.4 that this is optimal.

Proposition 7.3. Let K be a M -quasiminimal set in Ω. Then dim(K \ K∗) ≤ N − 1 − δ,
where δ > 0 is a constant which only depends on N and M .
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Proof. Corollary 3.12 shows that for all ε > 0, there exists a constant C = C(ε) (which
depends on N , M and ε) such that the following holds. For all x0 ∈ K and r > 0 such that
B(x0, r) ⊂ Ω, there exists y ∈ K ∩ B(x0, r/2) and t ∈ (C−1r, r/2) such that βK(y, t) ≤ ε.
It follows that for all z ∈ K ∩ B(y, t/2), βK(z, t/2) ≤ 2ε. Choosing ε small enough as in
Proposition 4.4, all points z ∈ K∩B(y, t/2) are in K∗. The fact that dim(K \K∗) ≤ N−1−δ,
where δ depends only on N and M , is an abstract consequence of this property, as done in
[8, Theorem 51.20] (note that in [8], K∗ plays the role of non regular points whereas it is the
inverse for us).

Remark 7.4 (Example). Consider a bounded and connected open set D ⊂ R2 such that ∂D
has a Hausdorff dimension between 1 and 2 and each point x ∈ R2 \D admits escape paths
to ∞. We identify R2 to the hyperplane { z = 0 } in R3 and we let K be union of { z = 0 }
and the graph of x 7→ dist(x,D). The set K is Ahlfors-regular and separates R3 in three
components which admit escape paths to infinity, so K is a quasiminimal set. In this case, we
observe that K \K∗ = ∂D has a dimension between N − 2 and N − 1, where N = 3.
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