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Optimal regularity for quasiminimal sets of codimension
one in R? and R?

C. Labourie, Y. Teplitskaya

Abstract

Quasiminimal sets are sets for which a pertubation can decrease the area but only in
a controlled manner. We prove that in dimensions 2 and 3, such sets separate a locally
finite family of local John domains. Reciprocally, we show that this property is sufficient for
quasiminimality. In addition, we show that quasiminimal sets locally separate the space in
two components, except at isolated points in R? or out a of subset of dimension strictly less
than N — 1 in RV,

Mathematics Subject Classifications: 49K99, 49Q20.

Keywords: Quasiminimal sets, Plateau problem, local finiteness, John domains.
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1 Introduction

Minimal sets are a central focus in classical geometric measure theory and in variational
problems involving a surface term. Inspired by soap films, their area is minimal compared to
admissible pertubations. In contrast, the area of quasiminimal sets can decrease but only to
a limited extent. This notion allows to represent sets minimizing inhomogeneous and possibly
highly irregular energies. Building on Almgren’s foundational work [I], subsequent research by
David and Semmes established uniform bounds for their geometric structure, such as uniform
rectifiability [13]. This paper is motivated in particular by [12], where David and Semmes



characterize domains with a quasiminal boundary as bi-John domains with an Ahlfors-regular
boundary. We prove an analogue optimal regularity theorem for quasiminimal sets in R? and
R3.

The primary difference between the setting of [12] and ours is that the boundary of a
connected domain W separates the space in two regions: W and RY \ W, whereas a quasi-
minimal set of codimension one may separate the space into multiple, potentially infinitely
many, components. In [9], David and Pourmohammad extended the techniques of [12] to the
case of a finite Caccioppoli partition minimizing a general energy. They proved that such a
partition is composed of local John domains but with constants depending on the number of
partition elements. Therefore, a central novelty and challenge in our work is to show that
quasiminimal sets locally separates a finite number of components in R?, with a controlled
upper bound on the number of these components.

The local finiteness of minimal partitions was previously studied by Tamanini, Massari,
Congedo and Leonardi in a serie of works [25 26, 29, 23]. Their techniques rely however
on arguments specific to minimal sets, such as the fact that their blow-up limits are cones.
Unlike minimal sets, quasiminimal sets lack Euler-Lagrange equations, monotonicity formulas,
e-regularity theorems and their blow-up limits are not cones in general. This necessitates new
techniques which are robust enough to apply to a broader setting.

In Section [3] we provide simple proofs for standard regularity properties of quasiminimal
sets such as Ahlfors-regularity and uniform rectifiability. In Section [} we show that almost-
every point of a quasiminimal set is an “interface point” where two components meet. We
establish our main results in Section [5] and Section [6.1] where we show that in dimension 2
and 3, quasiminimal sets partition a domain into a locally finite family of local John domains.
Reciprocally, we justify in Section [6.2] that this is a sufficient condition for quasiminimality in
every dimension. We finally investigate “‘junction points” where multiple components meet in
Section [7] and show that they are isolated in the plane and have a dimension < N — 1 in RV.
These results not only extend the theoretical understanding of quasiminimal sets but also offer
new perspectives for applying these sets in complex geometric and variational contexts, such
as image segmentation and fracture mechanics.

Our local finiteness theorem applies to the dimensions N = 2 and 3 and it remains an
open question whether quasiminimal sets locally separate a finite number of components in
higher dimension.

2 Definitions

For the whole paper, we fix an open subset Q of RY, where N > 2. Given a set A, the
notation A CC ) stands for A C Q. A coral set K C ) is a relatively closed subset of € such
that for all z € K and for all » > 0, we have

HN"YK N B(z,r)) > 0.

We now turn our attention to the definition of admissible competitors. There exists different
notions of competitors in the literature but in general a competitor F' of a set K in a ball
B should satisfy F'\ B = K \ B and F should «span K N dB» in the same way as K does.
A typical class of competitors, introduced by Almgren [1], are the images f(K) of K under
a Lipschitz deformation f : K — R” such that f = id in K \ B and f(K N B) C B. In
this paper, we work with a class of competitor which is more convenient to deal with, called
topological competitors. This notion was introduced by Bonnet [5] in the context of image
segmentation.

A topological competitor of K in a ball B(xg,r) CC € is a relatively closed subset F' C 2
such that F'\ B(zg,r) = K \ B(zp,r) and

for all points x,y € Q\ (B(zo,7) U K),
if x,y are separated by K, then they are separated by F'.

(1)



This means that if x, y lie in distinct connected components of 2\ K, they also lie in distinct
connected components of 2\ F.

Figure 1: A topological competitor of K in a ball B.

Definition 2.1. Let M > 1. A M-quasiminimal set is a coral set K C Q which is HV~1-
locally finite in © and such that for all g € K, r > 0 such that B(xg,7) CC Q and for all
topological competitor F' of K in B(zg,r), we have

HYTHE N\ F) < MHYH(F\ K). (2)

In the case M = 1, such a set is called a minimal set (there are also different notions of
minimal sets in the literature, for instance [I], 28] [13, 20]).

Remark 2.2. Notice that implies a weaker quasiminimality property, namely
HN"YK N B) < MHN"YFnB). (3)

Property will be sufficient for some of our first results such as Ahlfors-regularity but not
for the rest of the paper.

Remark 2.3 (Motivation). Quasiminimal sets represent sets minimizing Borel regular measures
p in  such that
AHYN L < < ARV (4)

for some constants 0 < A < A. Let us justify this claim. Let K C Q be a local minimizer of p,
that is, a coral "~ !-locally finite set in 2 such that for all zg € K, r > 0 with B(zg,r) CC Q
and for all topological competitor F' of K in B(xg,r), we have

w(K N B(xg,r)) < p(F N B(xg,r)).

It follows that
WK\ F) < p(F\ K)

and then by that
HN"YK\F) < MHN Y F\ K), where M = A/A> 1. (5)
Reciprocally directly translates as
u(K N B(xo,7)) < u(F N B(xo, 7)),

where = H¥N LK + MHY 1L (RN \ K).

Remark 2.4 (Quasiminimal sets in fracture mechanics). Another motivation for the study of
quasiminimal sets is their application to the theory of brittle fractures in linear elasticity. Let
Q be a bounded open set of R representing a homogeneous isotropic brittle solid. If a loading
is applied on 9%, the solid will deform and absorb energy. But if this exceeds the material’s
limit, the solid will releave (totally or partially) this energy by making a crack. Based on the
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pioneering work of Griffith in the 1920’s, Francfort and Marigo [I8] formulated the equilibrium
state of the fracture as the minimization of the Griffith functional

Ce(u) : e(u) dz + SHY "HK),
O\K

over pairs (u, K), where K is a relatively closed subset of € of dimension N — 1 and u :
Q\ K — RY is a smooth vector field satisfying a Dirichlet condition along 9. Here, K is
the fracture, u is the displacement field, e(u) := (Vu + Vu’)/2 is the linear strain tensor,
C is an elasticity tensor and § > 0 is the fracture toughness (it quantifies the ability of the
material to resist a crack propagation). The Griffith functional is a vectorial analogue of the
Mumford-Shah functional [3, 8, [I5] which is more physically relevant in dimension N = 3.

A particular case of interest is when fQ\K Ce(u) : e(u)dzr = 0; this corresponds to an
asymptotic behavior of materials with no fracture toughness. In this case, it is standard that
K is a minimal set in §2. In the general case, fractures look like minimal sets at points x € K
where the elastic energy [ Ber) le(u)|* dz becomes negligible compared to the surface term

HYN=YK N B(x,r)) when r goes to 0. This is actually the behavior of fractures at generic
points since this holds almost-everywhere along the crack. This connection plays an important
role in the regularity theory of Mumford-Shah minimizers, for instance [8] (15, 2] [14] [16] [17],
and in their recent adaptations to the Griffith functional [19, 21].

For general brittle solid with inhomogeneous and possibly irregular fracture toughness, one
would minimize

Ce(u) : e(u)dr + p(K),
O\K

where u is a Borel regular measure in §2 satisfying . In that case, when there is no elas-
tic energy or when it is neglible compared to the surface term, the fracture behaves like a
quasiminimal set.

Remark 2.5 (Example). If K is a quasiminimal set in R and f : RY — R is a bi-Lipschitz
map, then f(K) is a also quasiminimal set in R" (with a bigger constant). We deduce that
Lipschitz graphs are quasiminimal sets because they can be written as bi-Lipschitz images of
hyperplanes.

This shows also that a blow-up limit of a quasiminimal set may not be a cone, neither
unique in general. Indeed, let K be the graph of z € R + dist(|z|, C), where C = {2 |i € Z }.
As a Lipschitz graph, K is a quasiminimal set but one can see that 2K = K so for all A > 0,
the set AK concides with lim; oo 75 g , where 7; = A\™127%. Hence, K has an infinite number
of blow-up limits at 0 which are not cones (see Fig. [2).

=

-
cml"‘ooh—t

A 4

oo~
NS
N[~

Figure 2: An example of quasiminimal set with different blow-up limits at the origin.

3 Standard results

Ahlfors-regularity and uniform rectifiability are well-known for Almgren quasiminimizers [I}
13] of any codimension. These properties actually have a simpler proof when one consider
quasiminimal of codimension 1 sets with respect to topological competitors. We present
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these proofs below for the sake of completeness and as some intermediate results will have an
independent interest in the rest of the paper. Let us make a few preliminary remarks.

Remark 3.1. Let K be a quasiminimal set in Q. For all connected component V' of Q \ K,
we have QN OV C K, and as K is HV"!locally finite, we deduce that V has locally finite
perimeter with QN 9*V C K (see |3, Proposition 3.62]).

Remark 3.2. If a relatively closed subset F' C € satisfies the definition of topological competi-
tors with B(zg,r) replaced by B(zo,r), we say that F is a topological competitor in B(xq, ).
This implies that F' is a topological competitor in all balls B(xg,t) such that ¢ > r and
B(wo,t) C Q. Applying property in such a ball B(xg,t), we still get

HN YK\ F) < MHYYF\ K).

We can similarly apply in B(xo,t) such that ¢ > r and let ¢ — r (using the fact that K
has locally finite measure in Q) to get

HY YK N B(zo,7)) < MHYN 71 (F N B(xo,r)).

3.1 Ahlfors-regularity

We start by observing that any ball centred on K must separate at least two components of

Lemma 3.3. Let K be a M-quasiminimal set in Q. For all xg € K and r > 0 such that
B(xg,7r) C Q,
B(xg,r) meets at least two components of Q\ K.

Proof. We proceed by contradiction and assume that there exists a connected component V
of Q\ K such that
B(xg,r) C KUYV,

Then, let us check that F' := K \ B(xo,7/2) is a topological competitor of K in B(xg,7/2).
We consider two points = and y in Q\ (B(xo,7/2) UK ) which are connected by a path in Q\ F
and we want to show that x and y are connected in 2\ K. There are two possibilities. If the
path does not pass through dB(xq,r/2), it stays in Q\ B(xg,7/2) where F and K coincide
so z and y are connected in Q \ K. If the path passes through 0B(xo,7/2) this can only be
at a point of dB(xg,r/2)\ K C V. Considering the portion of the part that starts from x
and meets 0B(xo,t) for the first time, we see that x is connected to V' in © \ K and thus
x € V. Considering similarly the portion of the path that leaves dB(xq,t) for the last time
and arrive at y, we see that y is connected to V in 2\ K so y € V. We conclude that x and
y are connected in 2\ K and that F' is a topological competitor of K in B(xzg,7/2).
We finally apply the quasiminimality property in B(zg,r/2), which gives

HN"Y(K N B(zo,7/2)) < MHYN"Y(F N B(xo,7/2)),

and thus
HN"Y(K N B(xo,7/2)) = 0.

This contradicts the fact that zg € K and that K is coral. O

In the following Lemma, we show that in every ball B centred on K, a connected component
of B\ K cannot be too big.

Lemma 3.4. Let K be a M-quasiminimal set in Q). Then for all xo € K, for all v > 0 such
that B(xo,r) C Q and for all connected component V' of Q\ K, we have

|B(zo,r) \ V| > C1rY, (6)

where C' > 1 is a constant which depends only on N and M.



Remark 3.5. As an application of @ which will be very helpfup in the rest of the paper,
notice that the relative isoperimetry inequality

min (|B(zo,r) N V|, |B(zo,r) \ V]) < CHN "1 (B(zo,r) N *V)N/N-D

simplifies to

|B(z0,7) N V| < CHNY(B(zg,7) N O* V)N V=1,

Proof. Let 9 € K and r > 0 such that B(zg,r) C Q. Let V be a component of Q\ K. We
assume that
|B(zo,7) \ V| < er?, (7)

for a small € > 0 which will be fixed later. According to the co-area formula,
|B(z0,7) \ V| :/ HN (OB (w0, t) \ V) dt
0

so we can find a radius ¢ € (r/2,r) such that
HN L OB(xo,t) \ V) < Cr Y B(xg,r) \ V| < Cer¥ L. (8)

We then justify that
F := (K \ B(wo,t)) U (0B(z0,t) \ V).

is a topological competitor of K in B(xg,t). We consider two points z and y in Q\ (B(z¢, t)UK)
which are connected by a path in Q \ F' and we want to show that x and y are connected in
Q\ K. If the path does not intersect OB(xo,t), then it stays in the complement of B(xo,t),
where F' coincides with K. In this case, the path does not meet K and the points x and y
are also connected in '\ K. If the path path meets 0B(zo,t), it can only be at a point of V.
Considering the portion of the path starting from z until the first time it meets 0B(xo,t), we
see that x is connected to V in the complement of K. Similarly, y is connected to V in the
complement of K. As V is connect and disjoint from K, the points  and y are also connected
in 2\ K. We conclude that F is a topological competitor of K in B(x,t).
We apply the quasiminimality property in B(xo,t), which gives

HY (K N B(zo,t)) < MHN"Y(F N B(x0,1)),
whence by ,
HN Y B(z0,7/2) NO*V) < MHN "1 (OB(x0,t) \ V) < CerV 1
By assumption , we can choose € small enough so that
|B(wo,7/2)\ V| < 51B(x0,7/2)],

and thus we can apply the relative isoperimetric inequality to B(zg,r/2) \ V in the ball
B(xp,r/2). This gives

|B(z0,7/2) \ V| < CHN"Y(B(x0,7/2) N 0*V)N/ -1, (9)
As 0*V C 0V C K, we can combine (3.1]) and @ to estimate
|B(x0,7/2) \ V| < CeN/N=1pN,

We finally choose € small enough so that |B(zg,7/2)\ V| < er¥. We can thus iterate this
estimate and deduce that for all integer k > 0,

B(zo,27 %)\ V| <e(27Fr)V.
A simple interpolation arguments allow to conclude that

|B(zo,r) \ V| < er¥ = }ir%t_N]B(mo,t) \ V| < 2Ve. (10)
—
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Let us assume now that we have |B(zq,7) \ V| < e(r/2)". For all z € K N B(zg,7/2), we
have
|B(w,r/2)\ V| < e(r/2)",

which implies by ,
lim ¢tV |B(z,t) \ V| < 2"e. (11)
t—0
We take ¢ a bit smaller so that the small volume of B(zg,r) \ V implies that
|V N B(zo,7/2)| > 0.

According to Lemma B(zg,7/2) \ K must meet another component of 2\ K so we also
have |B(zg,7/2) \ V| > 0. It follows that HN~1(B(zg,7/2) N0*V) > 0 and, by the properties
of the reduced boundary, we can find a point © € B(xz,r/2) N 0*V C B(xo,7/2) N K such
that

1
g B DAV 1
t—=0  |B(x,t)] 2
which contradicts if € is chosen small enough once again. O

We finally arrive at the Ahlfors-regularity property for quasiminimal sets.

Proposition 3.6 (Ahlfors-regularity). Let K be a M-quasiminimal set in Q. Then for all
zog € K and for all r > 0 such that B(zg,r) C Q, we have

c Nl < HN_I(K N B(xg,7)) < crV1,
where C > 1 is a constant that depends only on N and M.

Proof. Let x9 € K and r > 0 be such that B(zg,r) C Q. We start by proving the upper
density bound. For ¢t < r, we consider the relatively closed subset F' C 2 defined by

F := (K \ B(xo,t)) U9dB(xo,t).
Then, F is a topological competitor of K in B(zg,t) and we deduce by quasiminimality ,
HN"HK N B(xo,t)) < MHYN 1 (0B(x0,t)) < CtN 7,
where C' > 1 depends on N and M. Letting ¢t — r, we deduce the upper bound
HN"YK N B(zo,7)) < CrV L,

We now pass to the lower bound. We let (V;);>o denote the connected components of
Q\ K, ordered in such a way that

H/Z N B(.’L‘O,T)’ > “/:H‘l N B(l‘o,?“)’-
We show that

| B(xo,7) \ Vo| < CHN MK N B(ao, )N/ N, (12)
As (Vi)i>o is a Caccioppoli partition of €, it follows from [3] Theorem 4.17] that
> HNTH(07Vi N B(ao, 1)) < 2HNTH(K N B(xo, 7). (13)
i>0

By the ordering property of the sequence, we see that for all ¢ > 1, we have
|B(xo,7) NVi| < [B(xo, ) N Vol < [B(xo,r) \ Vil,
and thus by the relative isoperimetric inequality

Blan, ) Vi < CHY (Blan, 1) 1 0V) VO

We sum the inequality above over i > 1, we use the superadditivity of ¢ — tN/®O=1 and we
apply to get the wanted estimate . To conclude, we know by Lemma that
|B(xo,m) \ Vo = C~HY

and thus implies
HN YK N B(zg,r))V N1 > o1 N1



3.2 Uniform rectifiability

A uniformly rectifiable set in RY of dimension N — 1 is a closed Ahlfors-regular set £ ¢ RN
which is contained in an image of a fairly nice parametrization z : R¥~1 — R . The following
definition is extracted from |10, Theorem 1.57].

Definition 3.7. Let C' > 1 be a constant. We say that a closed set E C R" is a uniformly
rectifiable set of constant C' > 1 if

C N <HN"YENB(zo,7r) <CrV! forallzge E,r>0

and E C z(RV), where z : RV~1 — R is such that there exists a positive function w €
L .(RY) satisfying {5 wdz < Cess.inf pw for all ball B C R and such that

Vz] < W’/ =1" almost-everywhere,

and
w(y)dy < CrN=1 for all ball B(x,r) c RY.

/{yERdZ(y)GB(l‘J)}

The parametrization z is called a w-regular parametrization and w is called a A;-weight.

The definition allows bi-Lipschitz images of RV~1 into RN but also surfaces with cusps
and self-intersections to some extent. Whereas rectifiable sets are contained in a countable
union of surfaces, a uniformly rectifiable set is contained in a single surface and the properties
of the parametrization are meant to give quantitative information at all scales and locations
(instead of in the blow-up regime almost-everywhere).

As in [12], we shall prove uniform rectifiable of quasiminimal sets using the following
critera. It is proved in [I1].

Theorem 3.8 (Condition B implies UR). Let E C RN be a closed set and assume that there
exists a constant C > 1 such that

(i) for all xy € E, for all r > 0,
C Nt < HN=YEN B(x,7));

(ii) E satisfies condition B: for all xg € E, for all v > 0, there exists two balls By, By C
B(xg, )\ E with radius > C~'r and which lie in distinct connected components of RN\ E.

Then E is a uniformly rectifiable set with a constant that depends only on N and C.
We now come back to the properties of quasiminimal sets.

Proposition 3.9 (Condition B). Let K be a M-quasiminimal set in . For all zog € K and
r > 0 such that B(xo,2r) C Q, there exists exists two balls By, By C B(xo,r) with radius
> C~Yr which lie in distinct connected components of Q\ K.

Proof. We let C' > 1 denote a generic constant which depends only on N and M. Let e € (0,1)
and let (y;)icr denote a maximal family of points y; € K N B(xg,3r/2) that lie at distance
> er from each other. Since the balls B(y;,er/2) are disjoint, contained B(z,2r) and since
K is Ahlfors-regular, we have on the one hand

HNH(K N UB(yi,sr/2)) > Z”HN_l(Kﬁ B(yi,er/2)) > C tmeN 71N -1,

where m is the number of element of I, and on the other hand

HNH (K N UB(yi,ar/Q)) < HN"YK N B(xg, 2r)) < CrV L,

2



It follows that m < Ce'=N. For t € (r/2,r), we let m(t) denote the number of 4 € I such that

B(yi, 2er) meets 0B(xo,t). Then,

./ nﬂﬂdthi/ D 1y o<yl <trer At < Cmer.
r/2 r/2 i - -

which allows to find a radius t € (/2,7) such that m(t) < Ce?>~V. Setting

Z = 0B(zo,t) N <U B(yi, 2sr)> :

(2

we can thus estimate HV~1(Z) < Cer¥~1. Let us show that if ¢ is small enough (depending
on N and M) then 0B(x,t)\ Z cannot be contained in a single connected component of Q\ K.
We proceed by contradiction and observe that if this is the case, then

F=KUZ\ B(zo,?t)

is a topological competitor of K in B(xg,r) (this is the same argument as in the Proof of

Lemma . This yields by quasiminimality
HN K N B(xo, t)) < MHN"Y(Z) < Cer¥ T,

and contredicts to Ahlfors-regularity (Proposition for e chosen sufficiently small (depend-
ing on N and M). We conclude that 0B(zg,t) \ Z meets at least two components of Q \ K.
It is left to observe that for all z € 0B(xo,t), one has

dist(z, K) > er.

Indeed, if there exists y € K such that |z —y| < er, then y € K N B(zp,3r/2) and by
maximality of the family (y;);, there exists i such that |y — y;| < er, whence |x — y;| < 2er.
This contredicts the fact that « ¢ Z. O

Proposition 3.10 (Uniform rectifiability). There exists a constant C > 1 depending only on
M and N such that the following holds. Let K be a M -quasiminimal set in Q. For all xg € K
and r > 0 such that B(xg,2r) C §, there exists exists a uniformly rectifiable set E C RN with
constant C such that K N B(zg,r) C E.

Proof. Let zgp € K and 7 > 0 be such that B(zg,2r) C Q. Let P by an hyperplane pass-
ing through zp. Then the union (K N B(xp,r)) U dB(xg,r) U P satisfies the conditions of
Theorem We omit the details. O

Uniform rectifiability is not yet an optimal description of quasiminimal sets but is has
many useful consequences, in particular it implies that the set is relatively flat in many balls.
We are going to state this more precisely in Corollary but let us first recall the definiton
of the flatness. For all g € K and r > 0, the flatness of K in B(xzg,r) is defined as

Br (zo,r) := r~Linf sup dist(y, P),
P yeKNB(zo,r)
where the infimum is taken among all hyperplanes P passing through zg. The infimum is
always attained for some hyperplan P by compacity of the Grassmanian space G(N — 1, N).
Thus, Bk (zo,r) is the smallest € > 0 for which there exists an hyperplan P passing through

o such that
K N B(zg,r) C {dist(-,P) <er}.

When there is no ambiguity, we write 3(xzg, ) instead of Sx(xg,7). A standard consequence
of rectifiability and Ahlfors-regularity is that for HV " '-a.e. zg € K, we have

ligr[l)ﬁK(xo,r) =0. (14)

Quasiminimal sets satisfy a more quantitative variant of 7 called the Weak Geometric
Lemma.



Lemma 3.11 (Weak Geometric Lemma). Let K be a M -quasiminimal set in Q. For all
e > 0, there exists a constant C = C(1) > 1 (which depends only on €, N, M) such that for
all xy € K and for all v > 0 with B(xg,2r) C Q, we have

" dt B -
/ / L) Brc(tyze y (0, ) AN Hy) < OrV L,
KNB(ao,r) 0

This means that there are many balls where Sk (y,t) < €. The Weak Geometric Lemma
has the following consequence: in any ball, one can find a smaller ball (but not too much
smaller) with a shifted center where the flatness is small.

Corollary 3.12. Let K be a M -quasiminimal set in Q2. For all € > 0, there exists a constant
C =C(g) > 1 (which depends only on N, M and ¢) such that for all xy € K and for all r > 0
with B(zg,7) C Q, there exists y € K N B(wo,r/2) and t € (C~'r,7/2) satisfying

Br(y,t) <e.

Proof. This is proved by contradiction using the fact that

r/2 di N .
/ / 1/3(y7t)25(y7t) ; dH (y) < C[)T’ .
KNB(zo,r/2) J0

and that HV~1(K N B(xg,r/2)) > C~1rN-1L O

We conclude this section by stating a consequence of Proposition [3.9] which will be useful
in later sections.

Corollary 3.13. There exists a constant £y € (0,1/2) which depends on N, M such that the
following property holds true. Let K be a M-quasiminimal set in . Let xg € K, r > 0 be
such that B(xg,r) C Q and for which there exists some hyperplane P passing through xo such
that

K N B(zg,r) C {x € B(xg,r) | dist(z, P) < eor}. (15)

Then the two components of { x € B(xo,r) | dist(x, P) > eor } lie in in distinct connected com-
ponents of O\ K.

Y
g

Figure 3: An illustration for Corollary

Proof. We let C' > 1 denote a generic constant which depends only on N and M. According
to Proposition there exists two balls By, By C B(zg,r/2) which are of radius > C~1r and
which lie in distinct connected component of Q \ K, say V and W. Taking £y small enough
in , none of these two balls can be contained in the strip

{x € B(xg,r) | dist(z, P) < egor }.

Since the two components {x € B(xg,r) | dist(z, P) > or } are connected subset of Q \ K,
one must be in V' and the other in W.
Ul
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3.3 No isolated components

Proposition 3.14. Let K be a M -quasiminimal set in Q2. For all xg € K and for all r > 0
such that B(xzo,r) CC Q, there is not connected component V- of Q\ K such that V' C B(xg,T).

Proof. Let us assume that there exists such a connected component V. We know that V is a
set of finite perimeter with 9*V C K and that there exists a universal constant Cy > 1 such
that for HNV"l-a.e. & € 9*V, we have

liminf [V N B(z,r)| > Cy V.
t—0

We also know by rectifiability and Ahlfors-regularity of K that for HNl-a.e. z € K, we have
lim 5(z, 1) = 0.

We let € > 0 which will be chosen small enough later (depending on N and M). As V is
a non-empty open set such that V. CcC B(xg,r), we have HY~1(9*V N B(xo,t)) > 0. This
allows to select a point 1 € OV and a small radius ¢ > 0 such that B(x1,t) C B(xo,7),

[V N B(x1,t)] > Cy 'Y
and such that there exists an hyperplane P passing through z; satisfying
K N B(x1,t) C B(zy,t) N{dist(-, P) <et}.
We choose ¢ small enough (depending on N) so that
|B(z1,t) N {dist(-, P) <er}| < Cy't™
Thus, it is not possible that
VN B(xi,t) C {dist(-,P) <et}

and this guarantees that one of the components of B(x1,t) N {dist(-, P) > et } must be con-
tained in V. Now, we set

F=(K\ Bay,1) UZ,
where

Z :={x € 90B(x1,t) | dist(y, P) < et }.
and we check that F' is a topological competitor of K in B(zg,r) (not B(x1,t)). We consider

Figure 4: The competitor in Proposition

two points z and y in Q\ (B(zo,r) U K) which are connected by a path in Q\ F and we want
to show that = and y are connected in  \ K. If the path does not meet dB(z1,t), then it
stays outside of B(x1,t), where F and K coincide so x and y are connected in 2\ K. If the
path meets 0B(z1,t), it can only be at a point of 0B(x1,t) \ Z We observe that 0B(x1,t) \ Z
is composed of two spherical caps, denoted by Z1, Z5, which are disjoint from K. We consider
the portion of the path which starts from = and meets 0B(x1,t) for the first time. This portion
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is disjoint from K so Z; must be contained in the same connected component of Q\ K as
z. As x ¢ V, then Z; is contained in a connected component of 2\ K which differs from V
and this forces Zo C V. Similarly, we consider the portion of the path which leaves 0B(z1,t)
for the last time and arrives at y. This portion is disjoint from K and as y ¢ V, it connects
necessarily y to Z;. We conclude that = and y are connected in 2\ K a Z; and as Z; is a
connect dpart of 2\ K, the points z and y area also connected in 2\ K. We conclude that F
is a topological competitor of K in B(xg,r). We finally apply the quasiminimality property
in B(xzg,r),
HNTHEN\F) < MHYH(F\ K),

SO
HN"YK N B(z1,t)) < MHYN"Y(Z) < OMetN L,

This contradicts the Ahlfors-regularity of K if g is chosen small enough. O

4 Interface points

Definition 4.1. Let K be a M-quasiminimal set in 2. We define the set of interface points
K* as the set of points xg € K for which there exists a radius r > 0 such that B(zg,7) C Q
and B(xzg,r) \ K meets exactly two components of Q\ K.

When B(z,7) \ K meets exactly two components of  \ K, Lemma [3.3shows that this is
also the case of B(xo,t) \ K for all 0 < ¢ < r. We deduce that for all z € K*, there exists a
unique pair of components V, W of Q \ K such that x € 9V N OW. One can justify similarly
that K* is a relative open subset of K. The main goal of this section is to prove the following
Proposition.

Proposition 4.2. Let K be a M-quasiminimal set in Q, then HN "1 (K \ K*) =0 and for all
component V of Q\ K,
HY L QNoV\ o V) =0

In order to prove Proposition [4.2] we start with a Lemma in the same spirit as Lemma|3.4]
It says that if two components V, W of Q \ K fill most of the volume of a ball B(zg,r) \ K,
there cannot be an inflitration of another component of Q\ K which meets B(zg,r/2). Results
of this type are standard in the literature [25], 29] 30, 22} 24] and the proof consists in building
a competitor by merging the infiltration in V' or in W. Our setting differs though because our
objects are not Caccioppoli partitions but closed sets: we should build the competitor through
set operations on the topological boundaries of V', W and (V U W) instead of their reduced
boundaries. This poses a difficulty in the case where they share a common and non-negligible
piece of boundary, similarly to the lakes of Wada.

Lemma 4.3. There exists a constant €9 € (0,1) which depends on N, M such that the
following property holds true. Let K be a M-quasiminimal set in Q). Then for all xg € K and
for all v > 0 such that B(xzg,r) C Q and for all distinct connected components V., W of Q\ K,

if
|B(wo,r) \ (VUW)| < eor™,

then B(zg,r/2)\ K only meets V and W.

Proof. We let xy € K and r > 0 be such that B(zg,r) C Q and V, W be distinct connected
components of 2\ K such that

|B(zo,7) \ (VUW)| < egor?, (16)

for some small g > 0 which will be fixed later (depending on N and M). According to the
co-area formula,

|B(xo,7)\ (VUW)| = /0 HN OB (z0,t) \ (VUW))dt
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so we can find a radius ¢ € (r/2,r) such that
HN (OB (z0,t) \ (VUW)) < CrYB(zg,r)\ (VUW)| < Ceor¥ 1, (17)
The next step of the proof consists in showing that
HY Y B(x0,t) NO(VUW)) < CHN 1 (0B(x0,t) \ (VUW)). (18)

The principle is to build a competitor by removing the piece B(xg,t) N0V No(V U W) or
B(xo,t) N OW N o(V UW) (depending on which choice removes the most area) but adding
0B(zg,t) \ (V. UW) (for the topological condition to be satisfied). Then follows by

quasiminimality and the fact that

HN Y B(20,t) NO(VUW)) < HN"H(B(z,t) NOV NIV UW))
+ 1YY (B(zo,t) NOW NA(V UW)).

The issue here is that admissible competitors must be closed sets so we can only remove a
relative open subset of K. A first try is to take B(xzg,t) N OV \ OW as an open replacement
of B(zo,t) N OV NIO(V UW). However, the former might have a strictly smaller area in case
the set of “triple points” OV N OW N A(V U W) is not HYN~1-neglible. We will instead build
the competitor via a more technical covering argument.

We consider some £ > 0 and a family of balls (B(yk, tx))x, where yi € B(xg,t)NO*(VUW)

and tg > 0, such that the closed balls (B(yx, tx))r are disjoint,

N1 (B(a:o, Hno (v uw)\ B tk)> —0 (19)

and for all k,

(i) B(yk.tk) C Blzo,t);
(ii) there exists an hyperplane Py passing through y such that

K N By, tr) C {dist(-, Py) < ety };

(iii)
1 1 1 1

<2 - 100) |B(yk tie)| < |B(yk, te) N (VUW)| < <2 + 100) | B(yk, tr)|- (20)
Here, note that QN o*(V U W) C K so the balls are centered in K. The existence of such
a family of balls can be justified using the Vitali covering Theorem [27, Theorem 2.8| with
respect to the Radon measure u = HV 'L K and using also the standard properties of reduced
boundaries [3, Theorem 3.61]. As HN=1 (B(z0,t) N 0*(VUW)) < 400, we can also assume
that the family of balls is finite, provided that we replace by

HN’1<B(x0,t) N (VUW)\ UB(yk,tk)>§ e. (21)
k

If £ is small enough as in Lemma the connected components of
{2 € B(ye, te) | dist(x, Py) > ety } (22)

lie in distinct connected components of Q\ K. In view of (20), it is not possible for B(y, tx) N
(VUW) neither B(yg,tx) \ (VUW) to be contained in { dist(-, P;) < et} } if € is small enough
because otherwise B(yg, tx) N (V UW) would have a too small or a too big measure. Therefore,
one of the components of must be contained in V or W, and the other component of
must be contained in a component of  \ K which is neither V', neither W and which we
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denote by U. We let S(V') denote the set of indices k such that one of the component of
is contained in V' (resp. S(W) for W). By and Ahlfors-regularity of K, we have

HN Y (B(xo, ) NO*(VUW)) < HVN YK N UE Yistr)) + €

<C Y tN1+ DA (23)
keS(V) keS(W)
Without loss of generality, we assume that
HN N (B(zo, ) NO*(VUW)) <C Yt (24)
keS(V)

where the constant C has only be multiplied by 2 compared to . In the construction
below, we build a competitor by making holes in the balls indexed by k € S(V') and this this
meant to remove most of B(xg,t) NV NJ*(VUW). For all k € S(V), we let

Zy = {z € 0B(yk, ty) | dist(z, Py) < ety }
and we define

= (K U (west)) U 260 (0B, )\ (v UW)).

1eS(v keS(V)

We then justify that F is a topological competitor of K in B(wg,t). It is clear that F is
relatively closed in €2 because it is a finite union of relatively closet set. Let x and y be two
points in Q \ (B(xo,t) U K) which are connected by a path in Q\ F. We want to show that
x and y lie in the same component of 2\ K. If the path does not intersect dB(xg,t), then it
stays in the complement of B(xg,t), where F coincide with K. In this case, the path does not
meet K and the points x and y are also connected in Q\ K. If the path meets 9B(xo, t), it can
only be at a point of V.UW because F' contains 0B(zo,t) \ (V UW). Considering the portion
of the path leaving x until the first time it meets 0B(x,t), we see that x is connected to V'
or W in the complement of K, and similarly for y. Assuming by contradiction that the two
points x, y are not in the same connected components of Q2 \ K, then at least one of them is
in W, let’s say x. We consider the portion of the path which starts for z and meets K for the
first time. As the path is disjoint from K \ |J{ B(yk,tx) | K € S(V)} C F, the meeting point
with K can only be at a point of B(yg,t;) N K. In particular, the path must cross 0B (yg, t)
before meeting K and since it is disjoint from Z; C F, it can only be at a point of V' or Uy.
This contradicts the fact that before meeting K for the first time, the path must be contained
in W. We conclude that F' is a topological competitor in B(wg,t).

We finally apply the quasiminimality property in E(;U(), t),

HYNTHEN\F) < MHYTH(F\ K),
whence
HY U EN | By tr) < MHY 1 OB(mo, ) \(VUW) + M > HY 1 (Z)
kesS(V) keS(V)

< MHNH0B(zo,t) \(VUW)) +Ce > 77"
keS(V)

By and since the balls (B(yg, tr))r are disjoint, centered on K and K is Ahlfors-regular,
we have

HN N (B(zo, ) NO*(VUW) <C Y ' +e
keS(V)

<HYUKN | Blmt) +e
keS(V)
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We can bound from above similarly

Ce Y ' < CeHN T (B(ao,t) N K).
keS(V)

but the important point is that this term goes to 0 when € — 0. We conclude that
HN =Y B(z0,t) N*(VUW)) < CHY"YHIB(x0,t) \ (VUW)), (25)

where C' > 1 depends on N and M.
Next, by and , we find

HN*I(B(:EO, HNO(VUW)) < CeorN-1.

Using , we can choose gy small enough (depending only on N) so that the small volume
of B(zg,r) \ (V UW) implies

|B(wo,r/2)\ (VUW)| < 5|B(xo,7/2)],

and thus we can apply the relative isoperimetric inequality to B(zg,7/2)\ (V UW) in the ball
B(xg,r/2). This yields

|B(wo,7/2) \ (VUW)| < CHN Y (B(wo,r/2) N 0" (V UW))N =1
< Csév/(N_l)rN.
We can thus choose €y small enough again (depending only on N and M) so that
|B(zg,7) \ (VUW)| < eor™ = |B(xo,7/2) \ (VUW)| < eo(r/2)V.
Iterating this estimate, we deduce

|B(zo,7) \ (VUW)| < eor = }inét_N]B(mo,t) \ (VUW)| < 2Ve. (26)
—

Let us assume now that we have |B(zg,7) \ (V UW)| < eo(r/2)", where ¢y is small enough
for to hold. We see that for all x € K N B(zg,r/2), we have

Bz, 7/2) \ (VUW)| < eo(r/2)",
and then by that for all x € K N B(xo,7/2),

im ¢~ < 2N,

lim V| Bz, )\ (VU )| < 2V

This holds true in particular for all points z € B(xg,7/2) N 0*(V U W) but, if g¢ is chosen
small enough (depending only on N), this contredicts the properties of the reduced bound-
ary ([3, Theorem 3.61]) so HN~1(B(zo,7/2) N 0*(V UW)) = 0. Then the relative isoperi-
metric inequality in B(xg,7/2) shows that we must have |B(xg,7/2) N0*(VUW)| = 0 or
|B(z0,7/2) \ (VUW)| = 0 but the former is impossible due to our initial assumption
with a small enough £9. We conclude that B(zg,r/2) cannot meet a component of 2\ K other
than V or W. O

We deduce a sufficient condition for a point zg € K to be in K*.

Proposition 4.4. There exists a constant 9 € (0,1) which depends on N, M such that the
following property holds true. Let K be a M -quasiminimal set in Q. For all xg € K andr > 0
such that B(zg,r) C Q and B(xo,7) < €0,

B(zg,r/2) meets exactly two components of '\ K.
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Proof. Let P be an hyperplane passing through xy and which atteins the minimum in the
definition of S(x,r). We know by Lemma that if £¢ is small enough (depending on N

and M), then the two components of
{z € B(xg,r) | dist(x, P) > er}

are contained in distinct components of Q\ K. If £¢ is chosen small enough once again, Lemma
shows that that there cannot be any other component of Q2 \ K which meets B(zg,r/2),
and thus, x € K*. O

We are now ready to justify Proposition [4.2

Proof of Proposition[{-3 It is standard by Ahlfors-regularity and rectifiability that for H¥ ~1-
a.e. ¢ € K, we have lim,_,o f(x,r) = 0, and according to Proposition , such a point belongs
to K*. If V is a component of Q\ K, then for HN"1-a.e. z € QNAV, we have lim, ¢ B(z,7) = 0
and, from the proof of Proposition [£.4] one can see that this implies

. VnB(z,r)] 1
lim —————— = =
r—0  |B(z,r)| 2

This property characterizes the reduced boundary 0*V' (up to a HN~Lnegligible set), see [3,
Theorem 3.61]. O

It will now be easier to build competitor by merging components into an other; the covering
argument of Lemma [£.3] won’t be needed anymore.

Remark 4.5 (Merging components into others). Let B(zg,r) C €2 be an open ball with center
xo € K and radius r > 0. Let (V});esr denote the connected components of Q \ K. We select
one of them, say Vj, and a selection of other components (V})jcy with J C I'\ {k}. The
competitor obtained by merging (V) ey into Vi, within B is defined as

F::(@BnUVj)uK\(BmK*m U (awmm/j)).
jeJ i,j€JU{k}

This is a relatively closed subset of 2 as K*NIV NIV, and QNI(U,e,; Vi) C K. We will check

soon F is a topological competitor of K in B but let us already state what quasiminimality
property says in this case. The inequality

HYN"YK\ F) < OHYY(F\ K)
entails
W (Bn | avinov) <c> w(oBnY;). (27)
i,jeJU{k} jeJ

Property will be instrumental in the next sections and we shall refer to it as the inequality
obtained by merging (V}) e into Vi, within B.

> >
/Y /<

Q Q

Figure 5: Merging V5, V5, V5 into V4 within B.

We finally justify the validity of by showing that F' is a topological competitor of K
in B. We consider two points z and y in Q \ (B U K) which are connected in Q\ F and we
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want to show that x and y are connected in Q \ K. We proceed by contradiction and assume
that  and y are not connected in Q \ K. If the path connecting  and y does not intersect
OB, then it stays in the complement of B and does not meet K, which is a contradiction.
Otherwise, the path meets 0B and it can only be at a point of 9B\ (K UUjes V]> because
F contains 9B N K and 9B N UjeJ Vj. Considering the portion of the path leaving x until
the first time it meets B, we see that x belongs to some connected component Wi of Q\ K
which is distinct from the Vj for al j € J. Similarly, y belongs to a connected component Wy
of Q\ K which is distinct from the Vj for all j € J. If W, differs from Wy, then at least one
of them, say Wy, is distinct from V. We consider the portion of the path which starts from
2 and meets K for the first time. As the path is disjoint from

K\(BNnK*n |J ovinov))
i,j€JU{k}

it can only meets K at a point of BN K* N Ui7j€Ju{k} 0V; N 9Vj. Therefore, there exists a
small 7 > 0 such that B(x,r) \ K is covered by exactly two components V; and V}, where i
and j belong to J U {k}. In particular, this point cannot be in 0W but this contradicts the
fact that before meeting K, the path was contained in W. We conclude that W7 = W5 so x
and y are connected in Q \ K. This is again a contradiction to the assumption, and proves
that F is a topological competitor of K in B.

5 Local finiteness

5.1 In the plane

In the plane, the local finiteness is standard and not difficult to prove. This is based on the
observation that the components of  \ K have an Ahlfors-regular boundary.

Lemma 5.1. We work in R?. Let K be a M-quasiminimal set in Q, let xo € K and r > 0
such that B(xg,r) C Q. For all connected component V- of Q\ K such that VN B(xo,7/2) # 0,
we have

HY(OV N B(xzg, 7)) > /2.

Proof. Let p € (r/2,r). According to Proposition we cannot have V' C B(zg,p). Thus
there exists a continuous path 7 contained in V' which leaves B(xo,7/2) and arrives in €\
B(zo,p). For all t € (r/2,p), the sphere 0B(zp,t) must meet v so it must also meet V.
Lemma shows that we can also find in B(xo,7/2) \ V another connected component, say
W, of 2\ K. Reasoning like before, we see that for all ¢t € (r/2, p), the sphere 0B (x¢,t) must
meet W and thus Q\ V. It follows that for all ¢ € (r/2, p), the sphere dB(z¢,t) meets OV
We then apply the co-area formula

P
HY(V N B(zo,7) > [ H(VNAB(0,t)dt > p—r/2.
r/2

and let p > 7 O

Corollary 5.2 (Local finiteness). Let K be a M-quasiminimal set in Q and assume that
N =2. Forall xzg € K and r > 0 such that B(zo,r) C Q,

B(xo,7/2) meets at most C components of Q\ K,
where C' > 1 depends only on N and M.

Proof. Let xg € K and r > 0 be such that B(xg,7) C Q. Let (V;); be the connected
components of B(xg,r) \ 2. For all ¢ such that V; meets B(xg,r/2), we have

HY(OV; N B(zg,7)) > C~r
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and as QN AV; C K and HV~1(K \ K*) = 0, we also have
HYK* N OV; N B(xg,r)) > C . (28)

For all point € K™, there exists exactly two indices 7 # j such that z € 0V; N 9V} and
therefore ). 15y, = 2 on K*. It follows that

> HNTH KT N0V, N B, 7)) < HNTHEK N B(xo, 7)) < CrN L (29)

Combining and , we conclude that the number of indices ¢ such that V; meets
B(x,7/2) is bounded depending on M. O

The argument of Lemma [5.1] is very specific to the dimension 2. In the next section, we
present a proof of local finiteness which is suitable in R3.

5.2 In the three-dimensional space

Theorem 5.3 (Local finiteness). Let K be a M -quasiminimal set in Q and assume that N = 2
or 3. For all xg € K, for all r > 0 such that B(xo,7) C €2,

B(xg,7r/2) meets at most C' components of Q\ K,
where C' > 1 depends only on M.

Proof. For the moment, we let N be any integer greater than or equal 2. We shall only
consider the cases N = 2 or 3 at the end of the proof. So let us fix xg € K. For r > 0, we
let B, denotes the open ball of center xy and radius r. We fix some radius R > 0 such that
Bpr C Q. We denote (V;);>1 the connected components of 2\ K. If the sequence is finite, we
complete it by setting V; = () so that it is defined for all indices ¢« > 1. For all indices 1, j, we
then set

0 if i = j.

We assume that the components (V;);>1 are ordered in such a way that

{Wmavj if i j
Vij =

|BrRNV;| > |BrN Vi1
and we assume that for some exponent o > 1 and some constant Cy > 1, we have

CoRN

|Br N V| < for all k£ > 1. (30)

Let us justify that such an assumption always hold true, at least for « = N/(N —1). We start
by recalling the following standard Lemma.

Lemma 5.4. Let (ci)r>1 be a non-increasing sequence of non-negative real numbers such that

>, ¢i < +oo. Then for all k > 1,
C
¢ < T Z Ci,
i>1
where C' > 1 is a universal constant.

According to the relative isoperimetric inequality (Remark and the Ahlfors-regularity
of K (Proposition , we have

ST BrO VNN < 0N HN Y (BrnoVy) < CRV
E>1 E>1

Then, we apply Lemma and conclude that holds true for « = N/(N — 1) and a
constant Cy which depends on N and M.
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We are going to see that an assumption such as (30| implies a better decay at a smaller
scale, namely (up to reordering the sequence)

N

|Brja N Vi| < Sl

7@ for all k£ > 1,

where C' > 1 is a constant which depends on Cy, N, M, a and f is the function

fite (t+tt-1).

N-1

When N = 2 or 3, we have f(t) > t for all ¢ > 1, allowing the procedure to be iterated

[ [9Y)
‘
wli
‘

e

Figure 6: The function f and its fixed points in Lemma [5.4]

indefinitely. Besides, the successive iterates f(a), f®(a),... of a := N/(N — 1) go to oo
and we will see that if the volumes (|B, N Vi|), decay too fast in a ball B,, then almost-all
components have zero volume in B, ;. When N = 4, the function f has a fixed point at
t_ =ty =2 and we have f(t) > ¢ for t € (1,2) U (2,400). If N > 5 then f has two fixed

oints
g ty :=(N+£+/N(N —4))/2

and we have f(t) > t for t € (1,t_) U (t4+,00) and f(t) < t for t € (t_,t4). In these two
last cases, the successive iterates of a := N/(IN — 1) converge to the fixed point ¢_ but this
does not provide a contradiction. Reasonning as in the N = 2,3 case, our argument would
nevertheless imply that for all s < t_, we have [V N B,| < k7% in a ball B, of sufficiently
small radius (depending on s) and that if |V N Bg| < k~° for some s > ¢, then almost-all
components have zero volume in a smaller ball B, (with r depending on s).

In what follows, the letter C' stands for a generic constant > 1 which depends on N, M,
Co and . Let r € (R/2, R). By the relative isoperimetric inequality (Remark [3.5), and the
properties off (V;); (Proposition , we have for all j > 1,

B, n V| NN <HNTU (B novy) < S HN (B N V)
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and then for all £ > 1,
SB. VNN < oNTN T HN Y (B, V).
j>k Jjzk i

In order to estimate the right-hand side, we are going to use the quasiminimality property by
merging components into others (see Remark and in particular (27))). For i # j, we merge
Vj into V; to obtain

HNN(B, N Vi) < HNL(V; N 0B,) (31)
and for all k£ > 1, we merge all the components (V;);~x into V}, to obtain
ST HN B, NVy) < Y HY T (VN 0B,). (32)
VRS >k

We decompose

J
SO THN Y B N Vy) SZZ HY U BN Vi) + )Y HN (B, N V)
Z =1

ji>k 1 j>k i>j

and already allows to estimate the second term at the right-hand side

SN HN BNV <> HYTH(V;NOB,).

j>k i>j >k

To estimate the first term, we consider some sequence non-decreasing (INVj)>1 of positive
integers such that N, < k but which is left unknown for the moment. We use Fubini, ,
to estimate

. N, .
> iHN_l(Br Vi) <D ) HY Y BN Vi) + > ZJ: HN LB, NV;)

j>k =1 j>k =1 j>k i=Nj
N
<Y HYTB AV + DY HNT(BNVy)
j>k i=1 i>Ny, j>i
<CY NHNYV;NOB,) +C Y HN TN (VindB,).
>k i> Ny,

In conclusion, we obtained
SB. VNN < 0N NyHN Y (VN 0B,)
7>k ji>k
+C > HNTH V0B + Y HN TN (VN oB,).
i> Ny, >k
Integrating over r € [R/2, R] and in view of the co-area formula
R
HN Y (V;ndB,)dr < C|BgnVi|  for all i,
R/2
we deduce that

(v C | . ¢ . ¢ |
Z\BR/QM/;\ gEZN]\BRmVJHE.Z \BRM/;HEZyBRmv;\.
Jjzk Jjzk i>Nj, J>k

We recall that by assumption , we have |Br N Vi| < CoRN /k® for all k > 1, so

CRNfl

S Br 0|V < RN IZ L+ CRVTINS e 4+ S

Jjzk J>k

(33)
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07

The optimal choice for (Ni)p>1 is to take Ny as the integer part of k(@—1/
notice that we always have

In particular,

C_lk’(a_l)/a <N, < k,(a—l)/a

SO yields
N-1yN _ CRN7!
> Br v YN < e (34)
Jj>k
The sequence (‘B Rr/2 N Vk‘) k>1 may not be non-increasing but if we re-order the sequence in a
non-increasing way, the conclusion remains true because we have only made the left-hand

side of smaller. We can then apply Lemma below (the proof is the same as in Lemma
and is omitted) to deduce that for all k > 1,

Y N
}BR/szk|§i]fa), where f(t):N—l(t+t_1_1)'

Lemma 5.5. Let (c)i be a non-increasing sequence such that for all k, ¢, > 0 and
Co
Zci S H?
i>k

for some constants Co > 1 and v > 0. Then for all k > 1,

¢k < pRang
where C' > 1 depends only on Cy and .

In the case N = 2 or 3, we can repeat the procedure indefinitely and obtain that the
volumes |By-pp N V| decay faster than 1/k® after a finite number p of iterations (which
depends on M). In view of Lemma below, this shows that only a controlled number of
(Vi)i can meet By—p-1. The statement of Theorem follows by a covering argument. [

Lemma 5.6. Let K be a M-quasiminimal set in Q. Let (V;)i>1 denote the components of
O\ K, the sequence being finite or infinite. For all o € K and r > 0 such that B(xg,r) C Q,
and for all k > 1,
C_lT'N
> IB(xo,r/2)NVi| >0 = > |B(xg,r)NV;| > e

>k i>k

where C' > 1 depends on N and M.

Proof. If the sequence (V;);>1 is finite, we complete it by setting V; = () so that it is defined
for all indices @ > 1. Let 9 € K and let r > 0 be such that B(zo,r) C © and assume that for
some k > 1,

> " [B(xo,7/2) N Vi| > 0.
>k

For s € (0,r], we let By denote B(xo, s) and for i # j, we set

o Jovinovy i #
Y0 ifi=j.

For s € (0,7) and i = 1,...,k, we merge (V});>; into V; within B, to obtain

> WY BNV <CY HNTH OB NT).

>k >k
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By the relative isoperimetric inequality applied to <Uj>k BsN V]) in Bs, we have

(N-D/N
Z\Bsﬁ‘/ﬂ SZZHN_I(BSOV;'J‘)
i>k i=1 j>k

< CkY HNTH0B.NVj).

i>k
We set f(s) := > ;- |Bs N Vj|. The function f is absolutely continuous on (0,7), with

f'(s) = Z’HNA((‘)BS NV;) forae se(0,r).

j>k
The previous inequality tells us that for a.e. s € (r/2,7), we have
FWIN < Chf(s).
As f(r/2) > 0 and f(s) € [f(r/2), f(r)] for all s € [r/2,r], we deduce that

SN — ey > CT

whence

for some bigger constant C'. O

5.3 Applications

As an application of the local finiteness, we are going to see that for all component V' of
Q\ K, the boundary 0V locally satisfies Ahlfors-regularity and condition B. The statements
are limited to R? and R? only because they rely on Theorem .

Proposition 5.7 (Ahlfors-regularity for the boundaries). Let K be a M -quasiminimal set in
Q and assume that N =2 or 3. For all xy € K, for all v > 0 such that B(xzo,r) C Q, for all
connected components V' of Q\ K such that V N B(xo,7/2) # 0, we have

|0V N B(xg,7)| > cr,
where C > 1 depends on M.

Proposition 5.8 (Condition B for the boundaries). Let K be a M -quasiminimal set in Q and
assume that N = 2 or 3. Let xg € K, r > 0 be such that B(xo,r) C Q. If V is a connected
component of Q\ K such that V N B(xo,7/2) # 0, then

both B(z,7) NV and B(z,7)\'V contain a ball of radius > C~'r,

where C > 1 depends on M.

In order to show Proposition and Proposition [5.8], we start by proving a lower bound
on the volume of the components of Q \ K.

Lemma 5.9. Let K be a M-quasiminimal set in Q0 and assume that N = 2 or 3. Let
xg € K, r > 0 be such that B(xzo,r) C Q. If V is a connected component of Q\ K such that
V N B(xg,7/2) # 0, then

|V 0 B(zg,r)| > C N1

where C' > 1 depends on M.
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Proof. The proof is in the same spirit as Proposition [3.6] Let zp € K and r > 0 be such that
B(zg,r) C Q2 and let V be a connected component of Q\ K. Let (V;);>1 denote the connected
components of \ K with V; = V.
Step 1. We are going to prove that there exists some small ¢ > 0 (which depends only on
M) such that
|V N B(zg,7)| < erV = }i_r)r(l)r_N\VﬂB(mo,r)] =0. (35)

Let us assume that |V N B(xg,7)| < er¥ for some € > 0 to be chosen later. According to the
co-area formula

|V N Bz, )| = /0 HN=HV N OB (z0,t)) dt
we can find a radius ¢t € (r/2,7) such that
HN LV N OB(x0,t)) < Cer¥ 1L (36)
By Theorem there exists at most m components of the family (V;);>1 such that
Vi B(wo,r/2) # 0,

where m > 2 depends on M. We re-order the indices so that V; N B(zg,7/2) = 0 for i > m.
By properties of (V;);>1 stated in Proposition we have

HNY(B(zo,7/2) NOV) = i HYNY(B(zg,7/2) N OV N IV;)
=2

so there exists an index ¢ = 2,...,m such that
HY Y B(x0,7/2) N OV NOV;) > CT*HN Y B(20,7/2) NOV). (37)
By merging V' into V; within B(zo,t), see Remark we know that
HN =Y B(z0,t) N OV NOV;) < HY YV N IB(x0,1))

and thus by ,
HN Y (B(xg,7/2) NOV) < CerN 1

Then, we apply the relative isoperimetric inequality to V in B(x,7/2), see Remark ,
[V N B(zo,7/2)| < CHN"Y(B(z0,7/2) N V)N N1 < N/ (N=1).N
Choosing e small enough, we see that
VN B(zg,r)| <er™ = |VNB(xo,r/2)| <e(r/2)V

and the argument can be iterated to concludes Step 1.
Step 2. The parameter ¢ being fixed as in Step 1, we observe that if |V N B(zg,7)| <
e(r/2)N, then for all z € K N B(xg,7/2), we have |V N B(x,7/2)| < e(r/2)" so

lim r~|V N B(z,r)| = 0. (38)

r—0

It follows that V' N B(xg,7/2) = 0 by Lebesgue’s density theorem. This proves the Proposition
by contraposition. O

Proof of Proposition[5.7 This is a direct application of Lemmal5.9] together with the relative
isoperimetric inequality in B(zg, ), see Remark O
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Proof of Proposition[5.8 Let V be a connected component of Q\ K. Let x € V and r > 0
be such that B(xz,r) C Q. If B(x,r/4) C V, then the proof is over. Otherwise, there exists a
point zg € K N B(x,r/4) and as V N B(xg,r/4) # 0, it follows from Proposition [5.7| that

HN=YOV N B(xg,r/2)) > C~ N1,

We also know by uniform rectifiability of K that for all € > 0, there exists a constant Cy =
Co(g) > 1 (which depends on N, M, and ¢) such that

r/2 dt N .
102 (v, 1) dHY 7 (y) < Cor™ .
KNB(xo,r/2) JO

As HN=Y(OV N B(xg,7/2)) > C~1rN~1 we prove by contradiction (as in Corollary|3.12)) that
their exists a point yo € OV N B(zo,7/2) and a radius ¢t € (C] 'r,r/2) such that

B(y(]’t) <eg,

where C; = Cy(g) > 1 depends on N, M and ¢). We choose € small enough (depending on N,
M and m) so that Proposition [4.4] yields that that B(yo,¢/2)\ K has exactly two components
and as, yo € 9V, one of them is contained in V. The other cannot be contained in V because
of Lemma Finally we observe that since K has a a flatness < 2¢ in B(yo,t/2), with say
€ < 1/100, one can build a ball of radius ¢/10 in each component of B(yp,t/2) \ K. O

6 Quasiminimal sets and John domains

6.1 Components of 2\ K are local John domains

A John domain is a bounded open set V C RY where any point z € V can be connected to
a center zg € V via a path that gets away fast enough from the boundary. Examples of John
domains are Lipschitz and snowflake domains. The main counter-example are the domains
with outward cusps.

Definition 6.1 (John Domain). Let V' be a bounded open set and zp € V. We say that V'
is a John domain of center zy if there exists a constant C' > 1 such that for all z € V, there
exists a C-Lipschitz path v : [0,¢] — V', where £ = |z — z|, such that v(0) = z, v({) = zp and

dist(y(t), RN\ V) > C~1t forall t € [0,4].

The property also extends to points z € @V by an application of Arzela-Ascoli theorem.
Our goal is to prove that the components of Q \ K are local John domains in the following
sense.

Theorem 6.2 (Existence of escape paths). Let K be a M -quasiminimal set in Q and assume
that N =2 or 3. LetV be a component of Q\ K. Then for all x € V, there exists a 1-Lipschitz
path v : [0,4] = V, where £ := dist(x,0Q), such that v(0) = = and

dist(y(t), K) > C~' for allt € [0,4].

This property states that any point z € V has an escape path that gets away fast enough
from K. This provides a good nontangential access region to z. In contrast to Definition [6.1
however, it does not request a single center where all escape paths ends. The existence of
escape paths has the following easy consequence.

Corollary 6.3 (Local truncations are John domains). There ezists a constant Cy > 2 which
depends only on M such that the following holds true. Let K be a M -quasiminimal set in €2
and assume that N = 2 or 3. For all xo € K and r > 0 with B(xg,Cor) C Q and for all
connected component V- of Q\ K, the set

[V N B(xo,2r)] U[B(xo,2r) \ B(zo,7)] (39)

is a John domain with constant Cy.
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This is a quantitative strengthening of the fact that V' cannot stay within B(z,r), seen
in Proposition 3.14] An alternative way of truncating of V' could be to take the intersection
V N B(zg,r) but this does not produce a John domain in general as V N B(xg,r) can be
disconnected or have an outward cusp near 0B (zg,r) NIV

John domains are closely related to domains of isometry [12, Definition 5.1], whose defini-
tion we recall below.

Definition 6.4. An open set V C RY is a domain of isoperimetry if there exists a constant
C > 1 such that for all open subset Z C V', we have

min(|Z|, |V \ Z))N VN < onN-YoznV).

Bojarski [4] proved that John domains are domains of isoperimetry but the converse is not
true in general, see for instance the generalized Eiffel tower in [I2, Remark 6.2]. There are how-
ever some partial converse results due to Buckley—Koskela [7, Theorem 1.1] and David-Semmes
[12 Theorem 6.1]. We are going to establish first in Proposition that the components of
Q\ K satisfy a local relative isoperimetric inequality. We will then deduce Theorem using
the method of [12] Theorem 6.1].

Proposition 6.5. Let K be a M -quasiminimal set in  and assume that N = 2 or 3. Then,
for all xg € K and r > 0 such that B(xo,2r) C §, for all connected component V of Q\ K,
and for all open subset Z C 'V N B(xg,1), one has

|Z| VDN < cuN-YoznV),
where C' > 1 depends only on M.

Proof. Let 9 € K and r > 0 be such that B(xg,2r) C . Let V be a connected component
of @\ K and let Z be an open subset of V' N B(xg,r). We let (V;);>1 denote the components
of @\ K with V; = V. Since B(z,r) meets a most m components (where m > 2 depends on
M), we can order the family so that for all i > m, V; N B(xg,r) = 0. According the properties
of (V;)i>1 (Proposition [£.2), we have

HN o Znov) =Y HN T (0Z N oV N V)
=2
so we can find an index ¢ = 1,...,m such that
HNY 0 ZnoV) < CHN"HIZ N oV N aV;), (40)

where C > 1 depends on m. Now we want to prove that
HN L@ Znov nav;) < MHN Y 9Z2n V), (41)

by merging Z in V;, that is, building a competitor by removing K N B(xg,r) N9Z N OV and
adding 0Z N V. From and , we would have

HYN L@ Znov) < CHN Yoz nV).
and finally by applying the isoperimetric inequality in RY, we would conclude

|Z|(N71)/N < C/HN—I(a*Z)
<CHN Yo Zznav)+ CHN Lo ZznV)
<CHN Y 9znV).
As in Lemma the proof of by merging poses a technical difficulty because com-

petitors must be closed subset of 2. We are going to build the competitor by a covering
argument. We first justify that for V¥ -a.e. 2 € B(zo,r) N 9*Z N OV N IV;, one can find

25



arbitrary small balls centered on x with good properties. By standard theorems on reduced
boundaries [3, Theorem 3.61 and Example 3.68], we know that for HV~l-a.e. x € 9*Z, there
exists a unit vector vy € RN such that

limt N |B(z,t) N ZAH{ | =0, (42)
t—0

where Hi = {y € RV | (y — x) - vo > 0}. Similarly, since H¥N~1(QN oV \ 8*V) = 0 (Propo-
sition , then for HV"1-a.e. £ € QN OV, there exists a unit vector v, € RY such that
lim¢ N |B(z,r) N VAH{| =0, (43)

t—0

where H;” = {y € RV | (y —z) - 11 > 0}. At a point = where both and (43)) hold, we see
that we must actually have v = v and thus

lim+ V|B Z| = 0.
tgr(l)t |B(z,t)NV\Z|=0

We observe finally that for all small ¢ > 0, the co-area formula

B, 1)V \ Z] = /Ot HY Y OB (s, 1) NV \ Z) ds

allows to find a radius s € (¢/2,t) such that
HN"YOB(x,s) NV \ Z) < Ct Y B(z,t)NV \ Z|.

We can also assume that s satisfies HV "1 (K NdB(z,s)) = 0 since this holds for a.e. s € (0,1).
Now, we fix ¢ > 0 and we apply the Vitali covering theorem [27, Theorem 2.8] to find a
family of balls (B(yg,tx))k, where yi € B(zg,r) N0*Z N OV NIV, and ¢ > 0, such that the

closed balls (B(yg, tr))x are disjoint,

HN’I(B(:UO,T) ma*ZmanaV,-\UE(yk,tk)) —0 (44)
k

and for all k,
(i) B(yk,tr) C B(zo,r);
(i) HN"Y(K N OB (y, t)) = 0;

(iii) B(yk,tr) meets exactly two components of 2\ K;
(iv) HN"HOB(yp, tr) NV \ Z) < eth .

Note that the balls are centred in K since 9V C K. As HN~1(B(zg,7) N 0*Z N V;) < +o0,
we can assume that the family is finite but at the price of replacing by

’HN_I(B(:BO,T) ma*zmanaw\UE(yk,tk)) <e. (45)
k

We define
Fo= (K \ UB(yk,tk)> U (U OBy, tx) NV \ Z) U (az N v).
k k

We then justify that F is a topological competitor of K in B(xg,7). Since Z is open and
QNoV C K, we see that K U (0ZNV) and K U (0B(yk, tx) NV \ Z) are relatively closed
subsets of (2. Therefore, F' is relatively closed in {2 as a finite union of relatively closed sets.
Now, let = and y be two points in Q\ (B(zg,r) U K) which are connected by a path in Q\ F.
We want to show that x and y lie in the same component of 2\ K. Assuming by contradiction
that the two points = and y are not in the same component of 2\ K, then the path should
meet K and this can only happen within the interior of a ball B(y,t;). We consider the
portion 7, of the path which starts from x and meet a ball 0B(yk,tr) for the first time at
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some point z,. Note that 7, connects = to z, in Q \ (K U F). In view of the definition of

F', we see that z is either in V; or in Z. We can observe similarly that y is connected by a

path v, in Q\ (K U F) to a point z, which is either in V; or in V. Since z and y cannot

be both connected to a point of V; in Q\ K, either z, or z, must be in Z, let’s say z,. We

finally reach a contradiction because if v, connects x to z, € Z in Q \ K, then it must cross

0Z\ K C 9ZNV C F. We conclude that F is a topological competitor of K in B(xg,r).
By applying the quasiminimality property in B(zo,7),

HNU K\ F) < MHYH(F\ K),
we get

HY UK N Blye tr) < MHN 020 V) + MY HN 0B (ye, tx) NV \ Z)
k k

<SMHNTH0ZNV)+Ce )ty
k

By and the properties of the family of balls, we have

HN N (B(xo,r) N 0" Z N0V N Vi) < HN UK N JBlyk.te) + ¢
k

<HN UK N By te) + <.
k

Since the balls (B(y,tx))r are disjoint and contained in B(xg,r) and since K is Ahlfors-
regular, we can also bound from above

C’EthCV_I < CeHN Y (B(z0,7) N K);
k

in particular this term goes to 0 when € — 0. We conclude that
HN=YB(z0,r) N*Z NV NIV;) < CHN 182N V),

where C' > 1 depends on N and M. This proves and ends the proof.
O

As the components of 2\ K have a boundary which is locally Ahlfors-regular (Proposition
, which satisfies locally the condition B (Proposition and which supports a local
relative isoperimetric inequality (Proposition , we can deduce the following Lemma. This
is a minor variation of the proof of [12] Theorem 6.1] and we omit the details.

Lemma 6.6. There exists a constant Cy > 1 which depends only on M such that the following
holds true. Let K be a M -quasiminimal set in Q) and assume that N = 2 or 3. For all connected
component V of Q\ K, for all z € V and for all 0 < r < dist(z, K) such that B(z,Cyr) C Q,
there exists a path v C'V such that

(i) v C VN B(zCor),
(ii) dist(y, K) > Co_lr,
(iii) v goes from z to a point w € VN B(z,Cor) such that dist(w, K) > 2r.

Then it is standard to deduce Theorem [6.2] from Lemma[6.6l We omit the proof again and
refer to [8, Proposition 56.7] or [6], Lemma 20.1] for details.
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6.2 A sufficient condition for quasiminimality

We finally show that if K is an Ahlfors-regular set which partitions a domain into local
John domains with uniform constants, then K satisfies a local quasiminimality property. The
statement holds in all dimensions N > 2.

Theorem 6.7. Let Q be an open subset of RN and let K be a relatively closed subset of .
We assume there exists a constant Cy > 2 such that the following holds true.

(i) For all z9 € K and r > 0 such that B(zq,r) C £,
Cger_l < 7—[N_1(K N B(xg,7)) < COTN_I;

(ii) for all o € K and r > 0 such that B(xzg,r) C §, the ball B(xo,r) meet at least two
components of Q\ K;

(iii) for all xo € K and r > 0 such that B(xg,2r) C Q for all component V' of Q\ K, the
domain
(V' N B(o, 2r))U(B(z0,2r) \ B(xo,7))

is a John domain with constant Cy.

Then for all x € K, for all r > 0 such that B(x,2r) C Q and for all topological competitor F
of K in B(xg,7),
HYL K\ F) < MHY YR\ K),

where M > 1 is a constant which depends on N and Cy.
The proof of Theorem relies on the following Lemma.

Lemma 6.8. Let Cy > 1 be a constant and let By be a ball of radius > C’O_1 such that
2By C B(0,1). Let V. C B(0,1) be a John domain containing By with an Ahlfors-regular
boundary. Then for all open set W C RN containing By, we have

HNL OV \ W) < CHYN LV now),

for some constant C > 1 which depends on N, Cy, and the John and Ahlfors-reqularity con-
stants of V.

Proof of Lemma 6.8 This is an application of [I2] Lemma 7.12], as done in the proof of [12]
Lemma 7.46]. O

Proof of Theorem[6.7]. We let (V;); denote the connected components of Q \ K, the sequence
being finite or infinite. We make first a few observations. From property iii), one can see that
for all zy € K and r > 0 such that B(zg,2r) C 2, there can only be a finite number of indices
i such that V N B(xg,r/4) # 0 (and this number depends on N and the John constant Cp).
Thus the family (V;); is locally finite in Q. Next, let us also observe that for all x € K, there
exists at least two indices i # j such that x € 9V; N dVj. This follows from the fact that for
all small » > 0, B(z,r) meets at least two components of 2\ K and that the family (V;); is
locally finite.

We now fix a point g € K and a radius r > 0 such that B(xzg,2r) C Q, we let F be a
topological competitor of K in B(xg, 7). The first step consists in building a family of disjoint
open sets (W;); such that

(i) for all 4, W; \ B(xg,r) = V; \ B(xo,7);
(ii) for all 4, QNOW; C F.

For this purpose, we set W; as the union of all components W of Q\ F such that W\ B(zg,r) # ()
and W\ B(xg,r) C V;. The important point is that for all component W of Q \ F' such that
W\ B(xg,r) # 0, there exists a unique component V of Q\ K such that W\ B(zg,r) C V
(by definition of a topological competitor). From there it is easy to check the two properties
above.
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Next, we let m denote the number of indices such that such that V; N B(xzg,r) # 0 (the
number m depends on N and Cp) and we re-order the sequence (V;); so that Vin B(zg,r) = ()
for i > m. Weset fori=1,...,m,

Vi = (Vi N B(wg,2r)) U (B(w0,2r) \ B(wo,7))
W; = (W; N B(o,2r)) U (B(xo,2r) \ B(zo,7))

and we apply Lemma to V; and W; (in particular because they contain any ball of radius
> r in the ring B(w,2r) \ B(z,r)). This yields

HNTY(B(20,7) N OV; \ W;) < CHN"Y(B(z0,7) N V; NOW;).

For all z € K\ F C B(xg,7), there exists two different indices i,j € {1,...,m} such that
x € 0V; N OVj. As the family (W;); is disjoint, we have either « ¢ W; or « ¢ W;. Since z ¢ F'
and QNOW; C F (resp. W;), we can deduce that either z € dV; \ W; or = € dV; \ W}, whence

HN YK\ F) < Zm:HN_l(B(:no,r) Nov; \ Wy).

i=1

On the other hand, we observe that B(zg,r) N V; N OW; C F'\ K whence

> HN TN (B(@o,r) N VN OW;) < mHNTH(F )\ K).
=1

7 The dimension of junction points

It is well-known that a minimal set K is regular out a relatively closed subset of dimension <
N —2 (see for instance |2, Theorem 4.3]). Could there be an analogue property for quasiminimal
sets 7 A first try is to define regular points as the set of points x € K such lim,_,o B (z,7r) =
0. But such a set may not have have a dimension < N — 1 in general as we can see on
certain Lipschitz graphs. Instead, we shall consider the points z € K* as “regular points” of
quasiminimal sets.

Proposition 7.1. Let K be a M-quasiminimal set in ) and assume that N = 2. Then the
points of K\ K* are isolated in Q.

Proof. Assume the contrary. There exists a point g € K and a radius r > 0 that B(zg,r) C 2
and B(xg,r/2) contains at least L points of K \ K*, where L is a number that we are going to
choose soon. Note that for each component W of B(xg,r)\ K which intersects B(zg,r/2), we
have H1(OW N B(wg,7/2)) > r/2 (similarly as in Lemma. As HY (K N B(xo,7)) < 2Mnr,
we deduce that there can be at most m < 87w M such components. We let W1, ..., W,, denote
them. Choosing L = (7;) +1, there exists three boundary, say 0W7, 0Ws,, W3 and two points
x,y € KN B(xg,r/2) such that z,y € W1 N oWy N OW3. For each i, there exists a path
~; connecting x to y in W;. Due to Jordan curve theorem one of the paths, say =3, lay in
the interior region bounded by two other paths. But since W3 cannot intersects 1 U 7o, this
implies that W3 C B(xg,r). A contradiction to Proposition

O

Remark 7.2. We see from the proof that if B(zg,r) C £ and B(zo,r) \ K has k connected
components, then the number of points of K\ K* in B(z,r) cannot exceed (];)

In higher dimension, we can only prove that K \ K* has a dimension < N — 1 and we will
see in Remark [7.4] that this is optimal.

Proposition 7.3. Let K be a M-quasiminimal set in Q. Then dim(K \ K*) < N —1 -9,
where § > 0 is a constant which only depends on N and M.
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Proof. Corollary shows that for all ¢ > 0, there exists a constant C = C(g) (which
depends on N, M and ¢) such that the following holds. For all 29 € K and r > 0 such that
B(xg,7) C Q, there exists y € K N B(xg,7/2) and t € (C~'r,7r/2) such that Sk (y,t) < e.
It follows that for all z € K N B(y,t/2), Bx(z,t/2) < 2e. Choosing ¢ small enough as in
Proposition [4.4] all points = € KNB(y,t/2) are in K*. The fact that dim(K\ K*) < N—1-4,
where ¢ depends only on N and M, is an abstract consequence of this property, as done in
[8, Theorem 51.20] (note that in [8], K* plays the role of non regular points whereas it is the
inverse for us). O

Remark 7.4 (Example). Consider a bounded and connected open set D C R? such that D
has a Hausdorff dimension between 1 and 2 and each point x € R?\ D admits escape paths
to co. We identify R? to the hyperplane {2 =0} in R? and we let K be union of {2 =0}
and the graph of z — dist(z, D). The set K is Ahlfors-regular and separates R? in three
components which admit escape paths to infinity, so K is a quasiminimal set. In this case, we
observe that K\ K* = 0D has a dimension between N —2 and N — 1, where N = 3.
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