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ENUMERATION OF CROSSINGS IN TWO-STEP PUZZLES

QUENTIN FRANÇOIS

Abstract. We prove a formula which gives the number of occurrences of certain labels and local
configurations inside two-step puzzles introduced by Buch, Kresch, Purbhoo and Tamvakis from the
work of Knutson. Puzzles are tilings of the triangular lattice by edge labeled tiles and are known to
compute the Schubert structure constants of the cohomology of two-step flag varieties. The formula
that we obtain depends only on the boundary conditions of the puzzle. The proof is based on the study
of color maps which are tilings of the triangular lattice by edge labeled tiles obtained from puzzles.

1. Introduction

In his article [9], Knutson conjectured that the structure constants of the cohomology ring of a partial
flag variety GL(n)/P can be computed by the number of tilings of the triangular lattice called puzzles
using specific tiles with side labels. The conjecture was first proved in the case of the Grassmannian
variety [10], [11]. The puzzle rule was extended in [4] to compute the Gromov-Witten invariants which
are structure constants for the small quantum cohomology ring of the Grassmannians. Gromov-Witten
invariants are particular instances of structure constants of the two-step variety Fl(a, b, n), see the work
of Buch [2] using the kernel and span of rational curves. The puzzle conjecture for the two-step flag
variety was eventually proved in [3]. The proof is based on an analogue of the jeu de taquin algorithm
where local configurations are propagated in puzzles according to specific rules. Another combinatorial
expression of the structure coefficients for the two-step flag variety had been proved by Coskun [5]
using diagrams called Mondrian tableaux. The extension of the puzzle rule to equivariant Schubert
structure constants for the two-step flag variety was conjectured by Coskun and Vakil [6] and proved
by Buch [1]. In the latter, the author introduced transformations on equivariant two-step puzzles
called mutations which in particular encompass the local rules of [3].

Edge labels on boundaries of two-step puzzles [3] can be either 0, 1 or 2. At the scale of the whole
puzzle, the labels 0 and 1 create lines starting from the boundaries and crossing each other inside the
puzzle. There are two possible types of crossings up to rotations. In one type of crossing, the lines
joining identical labels from both sides cross each other by keeping their direction constant which is
encoded in the puzzle by the label 7 inside the configuration. In the other type of crossing, the line
joining labels 0 may not keep its direction constant which is encoded by the presence of at least one
label 3 in the configuration. In [7], inspired from the hive model by Knutson and Tao in [10] and
[11], Tarrago and the author constructed a bijection between two-step puzzles and objects called dual
two-colored hives which involve tilings of the triangular lattice called color maps together with edge
labels satisfying inequality and equality conditions. The bijection converts labels 7 in two-step puzzles
to edges of color m in color maps. Moreover, the number of crossings of the second type is equal to
the number of edges of color 3 in the color map.

The present paper gives a formula for the number of crossings of each type that is, for both the
number of labels 7 and the number of crossings of the second type in any two-step puzzle of Fl(a, b, n).
The formula depends only on the 012 labels on the puzzle boundary. This paper is organised as follows.
In Section 2 we give the necessary definitions to state the main result. The latter is first expressed in
terms of color maps in Theorem 2.5 which translates to crossings in two-step puzzles in Corollary 2.6.
Section 3 recalls some definitions of local configurations in color maps useful for the rest of the paper.
Section 4 proves the main identity in a special case where the boundaries of the color map are in a
simple form. Section 5 starts with local propagations of configurations in color maps called gashes
which are directly inspired from [1] and proves the main identity by induction using propagations.

Acknowledgement. The author is supported by the Agence Nationale de la Recherche funding
CORTIPOM ANR-21-CE40-0019. We thank Pierre Tarrago and Anders Skovsted Buch for the fruitful
discussions on puzzles and related notions.
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2 QUENTIN FRANÇOIS

2. Main result

Definition 2.1 (Triangular lattice). Let n ≥ 1 and let ξ = e
iπ
3 . Denote Tn = {r+sξ, 0 ≤ r+s ≤ n} the

vertices of the triangular lattice of size n and En = {(x, x+v) : x, x+v ∈ Tn and v ∈ {−ξ2l, 0 ≤ l ≤ 2}}
the set of edges in Tn. The faces of the lattice Tn are triangles which are called direct (respectively
reversed) if the corresponding vertices (x1, x2, x3) ∈ T 3

n can be labeled in such a way that x2−x1 = (1, 0)
and x3 − x1 = ξ (respectively x3 − x1 = ξ).

Edges in En can only have three possible orientations. If x = r+ sξ ∈ Tn, we define three coordinates
(x0, x1, x2) by

x0 = n− (r + s), x1 = r and x2 = s.

Definition 2.2 (Edge coordinate and type). We say that an edge e = (x, x + v) is of type l for
l ∈ {0, 1, 2} when v = −ξ2l. The origin of e is x and the coordinates of e is the triple (e0, e1, e2) =
(x0, x1, x2). The height of e of type l is h(e) = el. Define also the boundary edges of En by

∂
(n)
0 = (((n− r + 1, 0), (n− r, 0)), 1 ≤ r ≤ n)

∂
(n)
1 =

(
(nξ + (r − 1)ξ, (nξ + rξ)), 1 ≤ r ≤ n

)
∂
(n)
2 =

(
((r − 1)ξ, rξ), 1 ≤ r ≤ n

)
.

Definition 2.3 (Color map). Let n ≥ 1. A color map is a map C : En → {0, 1, 3,m} such that the
boundary colors around each triangular face in the clockwise order is either (0, 0, 0), (1, 1, 1), (1, 0, 3)
or (0, 1,m) up to a cyclic rotation.

The values of a color map C on the boundary edges are denoted ∂C = (∂0C, ∂1C, ∂2C) and are defined
for l ∈ {0, 1, 2} as ∂lC = C|∂(n)

l

. We say that C has boundary condition ∂ = (∂0, ∂1, ∂2) if ∂C = ∂.

Alternatively, one can view a color map C as a tiling of Tn by the set of edge labeled tiles of Figure 1
where tiles can be rotated. The last two tiles are respectively called 3 and m lozenges in accordance
with the color of their middle edge.

1 1
1

0 0
0

0 0
1

1
3 1 1

0

0
m

Figure 1. Possible tiles for color maps

As there is an equal number of both 0 and 1 labels on each side of two-step puzzles, we will consider
boundary conditions ∂C ∈ {0, 1}3n having an equal number of 0 and 1 colored edges respectively
denoted by n0 and n1 so that n0 + n1 = n, see Figure 2 below. Such boundary conditions correspond
to those of two-step puzzles [3] where one removed the labels 2 from the boundary 012 strings.
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(0
, 1
, 0
, 1
, 1
) ∂

1 C
=
(1, 1, 0, 0, 1)

∂0C = (1, 0, 1, 1, 0)

Figure 2. A color map on E5 with boundary condition ∂C = ((1, 0, 1, 1, 0), (1, 1, 0, 0, 1), (0, 1, 0, 1, 1)).

Definition 2.4 (Gash numbers). Let C : En → {0, 1, 3,m} be a color map. For any l ∈ {0, 1, 2}
and edge e ∈ ∂

(n)
l denote by n(C, e) = |{e′ ∈ ∂

(n)
l : h(e′) < h(e) and C(e′) = 1}| the number of 1
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colored edges east (respectively north, south) to e if e ∈ ∂
(n)
0 (respectively e ∈ ∂

(n)
1 , e ∈ ∂

(n)
2 ). The gash

numbers of the color map C are defined for l ∈ {0, 1, 2} as

(2.1) G(C, l) =
∑

e∈∂(n)
l :C(e)=0

n(C, e).

For instance, in the color map C of Figure 2, one has G(C, 0) = 4, G(C, 1) = 4, G(C, 2) = 1. The
main result of this paper is the following count of the number of 3 and m colored edges in color maps
which depends only on the gash numbers.

Theorem 2.5 (Label count in color maps). Let C be a color map on En having n0, respectively n1,
edges of color 0, respectively 1, on each of its boundaries. Let m(C) and s(C) denote respectively the
number of m and 3 colored edges in C. Then,

(2.2) m(C) = G(C, 0) +G(C, 1) +G(C, 2)− n0n1

and

(2.3) s(C) = 2n0n1 −G(C, 0)−G(C, 1)−G(C, 2).

Let us also mention that one can count other types of tiles in C. The enumeration of triangular faces
having edges of the same color is given in Corollary 5.6.

In [7, Theorem 5.3] a bijection was defined between two-step puzzles of [3] and objects called two
colored dual hives consisting of a color map together with a label map, see [7, Definition 5.1] for
details on the definition. In particular, this bijection converts labels 7 of two-step puzzles into to m
colored edges. Moreover the number of edges e ∈ En with color C(e) = 3 in the obtained color map
is equal to the number of pieces of the form of Figure 3 where the number of labels 2 is arbitrary and
where the configuration can be rotated. This piece is one of the composed puzzle pieces of [3] which
we call a soft crossing in the rest of this paper.

1
0
3
2
6
2 2

1
0
36

2
3 . . .

Figure 3. A soft crossing in two step puzzles.

Recall that the clockwise labels on boundaries of two-step puzzles are 012 strings. Let u be a 012
string of length n: u = u1 . . . un where ui ∈ {0, 1, 2}, 1 ≤ i ≤ n. In accordance with Definition 2.4,
define

G(u) =
∑

1≤i≤n:ui=0

|{j ≤ i : uj = 1}|.

Theorem 2.5 yields a direct computation of the number of labels 7 and soft crossings in any two-step
puzzle given in Corollary 2.6.

Corollary 2.6 (Labels 7 and soft crossings in two-step puzzles). Let P be a two-step puzzle with
boundary given by three 012 strings u, v, w respectively on the left, right and bottom sides in clockwise
order, each having n0 symbol 0 and n1 symbol 1. Let n(P, sc) and n(P, 7) denote respectively the
number of soft crossings and labels 7 in P . Then,

n(P, 7) = G(u) +G(v) +G(w)− n0n1,

n(P, sc) = 2n0n1 −G(u)−G(v)−G(w).

Proof. Let C be the color map associated to the image of P by the bijection from [7, Definition
5.2]. Then, G(C, 0) = G(w), G(C, 1) = G(v) and G(C, 2) = G(u). Moreover, n(P, sc) = s(C) and
n(7, P ) = m(C) from which one derives the result using (2.2) and (2.3). □

Sketch of the proof of Theorem 2.5. In Section 3, we introduce some transformations on color
maps that will play a role in the rest of the paper. In Section 4, we prove Theorem 2.5 in the case
where G(C, 2) = 0. This is done by showing that when G(C, 2) = 0, the color map can be reduced to
a simple color map in which the counting is explicit. In Section 5, we give a procedure to transform
any color map C to another color map C ′ such that G(C ′, 2) = G(C, 2)− 1 from which one can prove
Theorem 2.5 by induction.
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3. Arrows

In this section, we recall some definitions on local configurations that were introduced in [7].

Definition 3.1 (Opening). Let x ∈ Tn. An opening of type l ∈ {0, 1, 2} at x is a pair of edges
(e, e′) ∈ E2

n such that if e = (e1, e2), e
′ = (e′1, e

′
2) with (e1, e

′
1, e2, e

′
2) ∈ T 4

n and t(e), t(e′) are the types
of e and e′,

ei = e′i = x for some i ∈ {1, 2},
{t(e), t(e′)} = {l − 1, l + 1} and C(e) = C(e′) ∈ {0, 1}.

The color of the opening is defined as the color of edges e and e′.

Consider an opening a = (e, e′) at x of type l and color c ∈ {0, 1}. Let e′′ = e′′(a) be the edge such
that e, e′ are edges of the lozenge with middle edge e′′. The only possible colors of the edge e′′ are
C(e′′) ∈ {0, 1}. If C(e′′) = c, the two triangular faces of the lozenge with middle edge e′′ have all
of their edges colored c. If C(e′′) ̸= c, then there is an opening a′ of type l and color c at the other
endpoint of e′′. Note that there can only be finitely many such openings before C(e′′) = c.

Definition 3.2 (Arrow). Let a = (e, e′) be an opening of type l and color c. Let r ≥ 0 be the number of
successive openings having middle edge e′′ such that C(e′′) ̸= c with C(e′′) ∈ {0, 1} as in the previous
paragraph. We say that the configuration of edges consisting of the r ≥ 0 successive pairs of 3 and m
lozenges together with the pair of direct and reverse faces with boundary edges of color c is an arrow
of length r ≥ 0 at the opening a.

See Figure 4 for examples of openings and arrows.
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Figure 4. First row from left to right : an opening a with color 0 and type 0 at x,
the case C(e′′) = c, the case C(e′′) ̸= c and an arrow of length r = 4. The second row
is the analog for color 1.

Let A be an arrow of length r ≥ 1 at an opening with center x. The reversal of A is the configuration
obtained by applying a rotation of π to A. An example of arrow reversal is given in Figure 5.

x•
0

0

0

0

1

1

1
m

3 0

0

1

1

1
m
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0

1

1
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0

1

1

1
m

3
0
00

0
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0

0
0
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0

1

1

1

m

3

0

0

1

1

1

m

3

0

0

1

1

1

m

3

0

0

1

1

1

m

3

0

0

Figure 5. Reversal of an arrow of length 4 at x.

4. The case G(C, 2) = 0

In this section, we prove (2.2) for color maps C such that G(C, 2) = 0. We first reduce the color
map C to C ′ so that all the 0 colored edges on ∂0C

′ are consecutive starting from the bottom left
coner of Tn. This is done in Section 4.1. In Section 4.2, we give an explicit counting of m(C ′) and in
Section 4.3 we show (2.2) when G(C, 2) = 0 using the two previous sections.

4.1. Reduction of color maps.

Definition 4.1 (Lozenge and trapeze regions). Let x = (x0, x1, x2) ∈ Tn and let r, s ≥ 0 be such that
(r, s) ̸= (0, 0). Define the lozenge region L[r, s, x] ⊂ En as

(4.1) L[r, s, x] = E({x+ u+ vξ, (u, v) ∈ {0, . . . , r} × {0, . . . , s}})
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where for a subset V ⊂ Tn, E(V ) ⊂ En is the subset of edges having both endpoints in V . Moreover,
the trapeze region T [r, s, x] ⊂ En is defined for s ≥ r as

(4.2) T [r, s, x] = E({x+ u+ vξ, (u, v) ∈ {0, . . . , r} × {0, . . . , s} : v + u ≤ s}).
For an illustration of lozenge and trapeze regions, see Figure 6.

Lemma 4.2 (Filling a lozenge region). Let L[r, s, x] be a region as in (4.1). Suppose that its boundary
edges {(x + u, x + u − 1), 1 ≤ u ≤ r} and {(x + vξ, x + (v + 1)ξ), 0 ≤ v ≤ s − 1} are colored 1 and
0 respectively. Then, every edge in L[r, s, x] of type 1 has color 3, which determines the color of all
edges in L[r, s, x] uniquely.

Proof. For any v ∈ Tn such that C((v+1, v)) = 1 and C((v, v+ ξ)) = 0, there is only one possible set
of values for a color map C on edges (v + ξ, v + 1), (v + 1 + ξ, v + ξ), (v + 1, v + 1 + ξ) which is given
by (3, 1, 0). Applying this constraint to v = x, x + 1, . . . , x + r − 1 in this order and using induction
to fill the remaining region L[r, s− 1, x+ ξ] shows the result. □

Lemma 4.3 (Filling a trapeze region). Let T [r, s, x] be a region as in (4.2). Suppose that its edges
{(x+ u, x+ u− 1), 1 ≤ u ≤ r} and {(x+ vξ, x+ (v + 1)ξ), 0 ≤ v ≤ s− 1} are colored 0. Then, up to
some arrow reversals, every edge in T [r, s, x] has color 0.

Proof. We will prove the result by induction over r. Assume that r = 1. The triangular face having
edges (x+1, x) and (x, x+ ξ) colored 0 has its third edge (x+ ξ, x+1) of type 1 also colored 0. Then,
the edges (x+ ξ, x+1) and (x+ ξ, x+2ξ) form a 0 opening that we call o1. Consider the arrow A1 at
o1 of length ℓ ≥ 0 having its other endpoint at x+ℓ+1. Apply the arrow reversal as in Figure 5 which
only changes the colors of edges inside A1. Then, the edges (x + 1, x + 1 + ξ), (x + 1 + ξ, x + ξ) and
(x+2ξ, x+1+ ξ) have color 0. Notice that in the resulting configuration, the edges (x+2ξ, x+1+ ξ)
and (x+2ξ, x+3ξ) form a 0 opening. Moreover, reversing an arrow between endpoints x and x+ ℓ+1
does not modify the colors of the edges e having origin y such that y0 ≥ x0. By successively considering
the 0 openings formed by edges (x+ vξ, x+ 1+ (v− 1)ξ) and (x+ vξ, x+ (v+ 1)ξ) for 1 ≤ v ≤ s− 1,
we get that T [1, s, x] has every edge colored 0.
For r ≥ 2, using the same argument as above shows that all edges in T [1, s, x] are colored 0. Since
T [r, s, x] = T [1, s, x] ∪ T [r − 1, s− 1, x+ 1], one gets the result by induction. □

Remark 4.4 (Filling lozenge and trapeze regions). Note that the results of Lemmas 4.2 and 4.3
remain valid if one swaps labels 0 and 1, replacing 3 lozenges in a lozenge region by m lozenges and
0 colored edges in the trapeze region by 1 colored edges.

The next Lemma shows that the bottom region adjacent to ∂
(n)
0 of a color map has an explicit

description in terms of lozenge and trapeze regions. An illustration of that region is given in Figure 6
where the lozenge regions are filled with lozenges having middle edge of type 1 colored 3 and trapeze
regions have all of their edges colored 0.

Lemma 4.5 (Structure above ∂
(n)
0 ). Let C be a color map such that G(C, 2) = 0. Then, there exists

p = p(C) ≥ 1 and 0 = y0 ≤ x1 < y1 < x2 < · · · < yp−1 < xp < yp ≤ n such that up to some arrow
reversals, denoting ri = yi − xi and bi = xi − yi−1 for 1 ≤ i ≤ p, the regions

L[b1, n0, (y0, 0)], L[b2, n0 − r1, (y1, 0)], . . . , L[bp, rp, (yp, 0)]

are filled by lozenges having middle edge of type 1 colored 3 and such that regions

T [r1, n0, (x1, 0)], T [r2, n0 − r1, (x2, 0)], . . . , T [rp, rp, (xp, 0)]

have their edges colored 0.

Proof. Set y0 = 0 and by convention C((0,−1)) = C((n+ 1, n)) = 1. Define

(4.3) p = |{1 ≤ x ≤ n− 1 : C((x, x− 1)) = 0 and C((x+ 1, x)) = 1}| ≥ 1

and for 1 ≤ i ≤ p,

xi = inf{u ≥ yi−1 : C((u, u− 1)) = 1 and C((u+ 1, u)) = 0}(4.4)

yi = inf{u ≥ xi : C((u, u− 1)) = 0 and C((u+ 1, u)) = 1}.(4.5)

We have that y0 ≤ x1 < y1 < x2 < · · · < yp−1 < xp < yp. Recall that ri = yi − xi and bi = xi − yi−1

for 1 ≤ i ≤ p.
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Since G(C, 2) = 0, the region L[b1, n0, (0, 0)] has its edges {(x, x− 1), 1 ≤ x ≤ b1} and {(x, x+ ξ), 0 ≤
x ≤ n0 − 1} colored 1 and 0 respectively which implies by Lemma 4.2 that it is filled by lozenges
having middle edge of type 1 colored 3 except in the case where b1 = 0 for which L(b1, n0, (0, 0)) =

{(x, x+ ξ), 0 ≤ x ≤ n0−1} has all of its edges on ∂
(n)
2 colored 0. Remark that edges in L(b1, n0, (0, 0))

with coordinate e1 equal to x1 are colored 0. Therefore, the trapeze region T [r1, n0, (x1, 0)] has its
boundary edges colored 0 as in Lemma 4.3 which shows that up to arrow reversals, it has all of its
edges colored 0. Using Lemmas 4.3 and 4.2 successively on the regions

L[b1, n0, (y0, 0)], L[b2, n0 − r1, (y1, 0)] . . . , L[bp, rp, (yp−1, 0)]

and

T [r1, n0, (x1, 0)], T [r2, n0 − r1, (x2, 0)] . . . , T [rp, rp, (xp, 0)]

gives the result. Notice that the order of the applications of Lemma 4.3 is compatible with the arrow
reversals involved for the trapeze regions in the sense that arrow reversals in T [a, b, x] only affect edges
e ∈ En such that e1 ≥ x1.

0 0
1

1
3

L(b1, n0, (y0, 0))

x1y0

n0ξ

T (r1, n0, (x1, 0))

y1

r1 = y1 − x1

L(b2, n0 − r1, (y1, 0))

x2

. . .

xp yp

Figure 6. Region at the bottom of C. Lozenge regions are filled with 3 lozenges and
trapeze regions are filled with 0 colored edges.

□

Recall that for 1 ≤ i ≤ p, ri(C) = yi − xi denotes the number of edges of ∂0C which are in the i-th
trapeze region of Figure 6.

Lemma 4.6 (Grouping columns). Let C be a color map and let p = p(C) and 0 = y0 ≤ x1 < y1 <
x2 < · · · < yp−1 < xp < yp ≤ n be defined as in Lemma 4.5. Assume that p(C) ≥ 2. Using arrow
reversal, adding rp × bp m-colored edges and removing rp × bp 3-colored edges, one can map C to C ′

such that p′ = p(C ′) = p(C)− 1 and rp′(C
′) = rp(C) + rp−1(C).

Proof. Let us first define a local transformation. Consider any vertex v ∈ Tn such that C((v + ξ −
1, v)) = 3 and C((v + 1, v)) = 0, so that C((v + ξ, v + 1)) = 0. Consider the color map Cv where
Cv((v, v − 1)) = 0 and Cv((v, v + ξ)) = m. We call C 7→ Cv the replacement at v, see Figure 7. The
color map Cv has one less 3 colored edge and one more m colored edge than C.

00
0

0
1

1
00

0 1
0

1
m

v
•

v
•

3

Figure 7. Replacement at vertex v.

Consider the lozenge region L[bp + 2, rp, (yp−1 − 1, 0)] where bp = xp − yp−1 and rp = yp − xp ≥ 1, see
Figure 8. Apply replacements successively at xp, . . . , yp−1 +1 and call C1 the resulting color map, see
Figure 9 and Figure 10 for an illustration of this step. Notice that C1 has an arrow of length bp at the
0 opening at v1 = (yp−1, 0) + ξ. Reverting this arrow creates an arrow at v2 = v1 + ξ of length bp, see
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Figure 11. By reverting arrows with openings at (yp−1, 0) + qξ, 1 ≤ q ≤ rp each with length bp, the
resulting color map φ(C) satisfies

p(φ(C)) = p and rp(φ(C)) = rp − 1 if rp ≥ 2,(4.6)

p(φ(C)) = p− 1 and rp(φ(C))(φ(C)) = rp−1 + 1 if rp = 1,(4.7)

see Figure 12. By applying the previous transformation C 7→ φ(C) a number of times equal to rp, one
gets a color map C ′ such that p(C ′) = p− 1 and rp(C′)(C

′) = rp−1 + rp.

0 0
0

0 0
0

0 0
1

1
3

L(bp, rp, (yp−1, 0))

xpyp−1

0
0 0
1

1
3 0 0

0

0
0

0

0
0

0

Figure 8. Initial
color map C.

0 0
0

0 0
0

0 0
1

1
3

L(bp, rp, (yp−1, 0))

xpyp−1

0
0 0
0

m
1

1

0
0

0

0
0

0

Figure
9. Replacement
at xp.

0 0
0

0 0
0

0 m
1

0
1

L(bp, rp, (yp−1, 0))

xpyp−1

0
0 0
0

0 m
1

1

0
0

0

0
0

0

0 00
1

0 0 33v1•

Figure
10. Replacements
at xp, . . . , yp−1+1.

0 0
0

0 0
0

0 0 3 0

0

1

L(bp, rp, (yp−1, 0))

xpyp−1

0
0 0
0

0
1

1
0 m

3

0
0

0

0

0
1

0 0
0

m
1

v2• 1
0

1
03

Figure 11. First arrow
reversal creating an arrow
at v2.

0 0
0

0 0
0

0 0 3 0
1 xpyp−1

3
0
0 0
0

0
1

1
0 m

3

0

1

0 0
0

0 0

0

0 0
0 1 1

Figure 12. Final config-
uration φ(C).

□

From the previous Lemmas, one derives the following result.

Proposition 4.7 (Edge count during reduction). Let C be a color map such that G(C, 2) = 0 and
let b1 be defined as in Lemma 4.5. One can reduce C to a color map C ′ such that p(C ′) = 1 and
b1(C

′) = 0 by removing (respectively adding) M = n0n1 − G(C, 0) edges of color 3 (respectively of
color m) so that m(C ′) = m(C) +M and s(C ′) = s(C)−M .

Proof. Apply the transformation of Lemma 4.6 until p = 1. Let us compute the total number M of
exchanged 3 and m colored edges in the process. The only tranformation that changes the number of
edges of color 3 and m is the replacement as in Figure 7. By Lemma 4.6, one has applied

M̃ = rpbp + bp−1(rp−1 + rp) + · · ·+ b2(r2 + · · ·+ rp) =

p∑
j=2

rj

j∑
i=1

bi − b1

p∑
j=2

rj

replacements of 3-colored edges by the same number of m-colored edges. Moreover,

G(C, 0) =

p∑
j=1

rj(n1 −
j∑

i=1

bi) = (n1 − b1)

p∑
j=1

rj − M̃ = (n1 − b1)n0 − M̃.
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If the resulting color map C̃ has b1(C̃) ≥ 1, apply Lemma 4.6 a number of times equal to n0 so

that the obtained color map C ′ has x1(C̃) = 0. This last step removed b1(C)n0 = b1(C̃)n0 edges

of color 3 from C̃ and added the same number of edges of color m. Therefore, one has removed
M = M̃ + b1n0 = n0n1−G(C, 0) edges of color 3 and added the same number of edges of color m. □

Definition 4.8 (Reduced color map). A color map C : En → {0, 1, 3,m} such that G(C, 2) = 0,
p(C) = 1 and b1(C) = 0 is called a reduced color map.

4.2. Structure of reduced color maps. In this section, we only consider reduced color maps as
any color map C such that G(C, 2) = 0 can be reduced thanks to Proposition 4.7 above. We first show
that most of the edges in reduced color map have their color fixed except in some region, see Figure
13. This region consists of specific configuration of edges described in Remark 4.10. From this we
derive the main result of this section in Proposition 4.11 which gives the number of m and 3 colored
edges in reduced color map.
By Lemma 4.3, every reduced color map has every edge of its trapeze region T [n0, n0, (0, 0)] colored
0. Let R = (En \T [n0, n0, (0, 0)])∪{(n0+ sξ2, n0+(s+1)ξ2), 0 ≤ s ≤ n0−1} be the remaining region
pictured in Figure 13.

T [n0, n0, (0, 0)]

y1 = n0x1 = 0 n = n0 + n1

n0ξ

R

(n0 + n1)ξ

Figure 13. The region R in a reduced color map. Edges outside R have their color fixed.

The next Lemma shows that edges of color 0 in R can only be of type 1.

Lemma 4.9 (Edges of color 0 in R). Let R be the region above associated a to reduced color map C.
Then, every edge of color 0 in R is of type 1.

Proof. Assume for the sake of contradiction that there exists an edge e(0) of type 0 or 2 in R. Take e(0)

such that its origin x(0) has minimal coordinate x2. Since the color map is reduced, edges in R ∩ ∂
(n)
0

have color 1 so that x2 ≥ 1 for edges of type 0. If e(0) is of type 0, then one of the edges of type 0
with origins x(0) − ξ, x(0) − ξ +1 or the edge of type 2 with origin x(0) − ξ is colored 0. In either case,
the minimality of the x2 coordinate of x(0) is violated. If e(0) is of type 2, the type 2 edge with center
x(0) + 1 is colored 0 and both are opposite edges of a lozenge with middle edge of type 1 colored 3 as
any other piece would either contradict the minimality of x2 or introduce an edge of type 0 and color

0 in R. Without loss of generality, one can thus assume that x
(0)
0 = 1. Since ∂

(n)
1 has edges with colors

0 or 1, the upward triangular face containing e(0) would have colors (0, 0, 0) or (0, 1,m) which would
either imply that R has an edge of type 0 and color 0 or contradict the minimality of x2. □

Remark 4.10 (Lozenges in R). The two opposite 0 colored edges of a either 3 or m lozenge have the
same type. Since Lemma 4.9 shows that 0 colored edges in R have type 1, the only orientations of 3
and m lozenges in R are such that the 3 edge has type 0 and the m edge has type 2, see Figure 14.
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1

0

0

1
3

0
1
0

1
m

Figure 14. The two possible orientations of 3 and m lozenges in the region R.

We know from Lemma 4.9 that the color map C in R consists in triangular faces f such that C(f) =
(1, 1, 1) together with either 3 or m lozenges oriented as in Figure 14. In the rest of this section, we
will view the color map C on R as a configuration of paths of color 0 from R ∩ ∂T [n0, n0, (0, 0)] to
R ∩ ∂2C as follows.
To each 3 or m lozenge of Figure 14, associate a line segment by joining the two centers of the opposite
0 colored edges. We define paths (pi, 1 ≤ i ≤ n0) simultaneously. For each 1 ≤ i ≤ n0, the path pi
starts in the middle of the edge of type 1 in R∩∂T [n0, n0, (0, 0)] with origin (n0, 0)+ iξ2. At each step,
a path having its endpoint with coordinate x2 is continued by the affine line segment in the adjacent
lozenge in R having an edge of color 0 with origin of coordinate x2 − 1. Since this lozenge can only
be one of the two lozenges of Figure 14, the paths are non-intersecting. After n1 steps, endpoints are
located in the middle of type 1 edges of color 0 on R ∩ ∂2C. As there are n0 such edges, the paths
(p1, . . . , pn0) form a set of non-intersecting paths where for each 1 ≤ i ≤ n0, the path pi has origin at
oi = (n0, 0) + (i − 1

2)ξ
2 and target ti = o(ei) +

1
2ξ

5 where e1, . . . en0 are the 0 colored edges on ∂1C
ordered such that h(e1) > h(e2) > · · · > h(en0).
The paths (pi, 1 ≤ i ≤ n0) can have two possible steps. We call the step induced by a m lozenge a
horizontal step and the step induced by a 3 lozenge a vertical step in accordance with the red line
segment joining the two opposite 0 colored edges in the lozenges of Figure 14.

Proposition 4.11 (Number of m edges in reduced color maps). Let C be a reduced color map. Denote
by n(m,R) and n(3, R) the respective number of horizontal and vertical steps in R. Recall that m(C)
and s(C) respectively denote the number of m lozenges and 3 lozenges in C. Then,

(4.8) m(C) = n(m,R) = G(C, 1)

and

(4.9) s(C) = n(3, R) = n0n1 −G(C, 1).

Proof. The only region in En where a reduced color map C has m colored edges is R. This amounts to
count the number of horizontal steps in any path configuration (pi, 1 ≤ i ≤ n0). Recall that e1, . . . en0

are the 0 colored edges on ∂1C ordered such that h(e1) > h(e2) > · · · > h(en0). As each path pi goes
from

oi = (n0, 0) + (i− 1

2
)ξ2 =

(
n0 −

1

2
(i− 1

2
), (i− 1

2
)

√
3

2

)
to

ti = o(ei) +
1

2
ξ5 = (n, 0) + (n− h(ei))ξ

2 +
1

2
ξ5 =

(
n− 1

2
(n− h(ei)−

1

2
),

√
3

2
(n− h(ei)−

1

2
)

)
,

the number of vertical steps in pi is given by

2√
3
·
(√

3

2
(n− h(ei)−

1

2
)− (i− 1

2
)

√
3

2

)
= n− h(ei)− i

so that the total number of vertical steps in the path configuration is

n(3, R) =

n0∑
i=1

(n− h(ei)− i).

Moreover, the number of 1 colored edges e′ such that h(e′) < h(ei) is given by

n(C, ei) = n1 − (n− h(ei)− i)
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so that

G(C, 1) =

n0∑
i=1

n(C, ei) =

n0∑
i=1

(n1 − (n− h(ei)− i)) = n0n1 − n(3, R).

Therefore,
n(3, R) = n0n1 −G(C, 1)

and, since each of the n0 paths has a total number of steps given by n1,

n(m,R) = n0n1 − n(3, R) = G(C, 1).

□

Remark 4.12 (Number of reduced color maps). One can derive the number of reduced color maps
Nred(n0, n1) since this number is equal to the number of paths configurations (pi, 1 ≤ i ≤ n0) which
can be computed by the determinantal formula of Lindström, Gessel and Viennot [12], [8]:

(4.10) Nred(n0, n1) = detA

where A = (ai,j , 1 ≤ i, j ≤ n0) is the matrix whose coefficients are given by

(4.11) ai,j =

(
n1

n− h(ej)− i

)
with the convention that ai,j = 0 if h(ej) + i ≥ n.

4.3. Proof of Theorem 2.5 in the case G(C, 2) = 0. Let C be a color map such that G(C, 2) = 0.
Thanks to Proposition 4.7, one can reduce C to a reduced color map C ′ such that

(4.12) m(C ′) = m(C) + n0n1 −G(C, 0)

and

(4.13) s(C ′) = s(C)− n0n1 +G(C, 0)

Using (4.8) and (4.9) for the reduced color map C ′,

m(C ′) = G(C ′, 1)(4.14)

s(C ′) = n0n1 −G(C ′, 1).(4.15)

Moreover, the reduction C 7→ C ′ does not change ∂1C = ∂1C
′ so that G(C, 1) = G(C ′, 1). Thus,

(4.16) m(C) = G(C, 0) +G(C, 1)− n0n1

which is (2.2) since G(C, 2) = 0 and

(4.17) s(C) = s(C ′)−G(C, 0) + n0n1 = 2n0n1 −G(C, 0)−G(C, 1) = n0n1 −m(C)

which is (2.3).

5. The general case

In this section, we prove (2.2) by induction on G(C, 2). The case where G(C, 2) = 0 has been
treated in Section 4.3. We first introduce a procedure in Section 5.1 which takes a color map C for
which G(C, 2) ≥ 1 and transform it to a color map C ′ such that G(C ′, 2) = G(C, 2) − 1. Using the
previous transform, we finish the proof of Theorem 2.5 in Section 5.2.

5.1. Gash propagation. We introduce local configuration of two edges of the same type sharing a
vertex called a gash, see Definition 5.1, which is inspired from gashes previously defined in [3], [1]
and [7]. Gashes will propagate across a color map C by local rules presented in Definition 5.2 until

reaching some prescribed configuration or hitting ∂
(n)
1 .

Definition 5.1 (Gash). Let x ∈ Tn. A gash with center x is the union of the two edges (x, x −
ξ2l), (x+ ξ2l, x) for l ∈ {1, 2} with the data of

(1) Original colors given by

C((x, x− ξ2l)) = 1, C((x+ ξ2l, x)) = 0 if l = 1

C((x, x− ξ2l)) = 0, C((x+ ξ2l, x)) = 1 if l = 2.

(2) New colors given by replacing 0 with 1 and vice-versa in original colors.
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The type of a gash is defined as the type l ∈ {1, 2} of its edges.

Let g be gash of type 2. The only possible values of the color map C adjacent to g are given by the
configurations of Figure 15 that we label from (i) to (vi). The configurations can be rotated for type
1 gashes.

0
0

0

0
0

01

0 1
3

(i)

0 0
1

11
1

1
1

(ii)

3 0 0
0

0
11

1
1

(iii)

3

0

01
1

0
1

m

10

0
1

(iv)

3

3 0

1
1
1 0

1
m

(v)

0

1

0
0

0
1m

(vi)

Figure 15. Possible adjacent configuration to a gash of type 2 in dashed edges. Only
the original colors of gashes are represented.

Definition 5.2 (Gash propagation). Let g be gash of type 2 with center x adjacent to a configuration
(i), (ii) or (iii). We define the propagation of g to be the gash g′ having center x + ξ (resp. x + 1)
in the case of configuration (i) (resp. (ii) or (iii)) together with the local replacement of Figure 16
depending on the adjacent configuration.

(i)
0 0
0
001

0
3
1

(1)

(0)

1 0
3
0(1)0

0
0

0 1(0)

(ii)
0 0

1
3

1
111

1

(1)

(0)

1
01 1

1
0
1

(0)3 1

(1)

(iii)
0 0
0
3
0
11 1

1

(1)

(0)

0

1

1

0 0
1

3
1 0

(1)

(0)

Figure 16. Propagation of a gash through configurations (i), (ii) and (iii). New
colors of gashes are written in parenthesis.

If g is adjacent to a configuration (iv), notice that there is a 0 opening at its center x and thus an
arrow of color 0 at x with type 0. Reverting this arrow yields a configuration (i) adjacent to g and we
define the propagation of g to be the gash g′ of the same type as in step (1). Using a rotation, one
defines propagations for type 1 gashes with the exception of configuration (iii) where the propagated
gash is the gash of type 2 with center x′ = x+ 1.

Definition 5.3 (Propagation algorithm). Define the following algorithm.

Input: A color map C and a gash g of type l ∈ {1, 2}.
(1) Set g(0) = g, x(0) = x(g), t(0) = t(g).

(2) WHILE g(s) is adjacent to (i), (ii), (iii) or (iv): set g(s+1) to be the propagation of g(s) with

center x(s+1) and type t(s+1).

Proposition 5.4 (Gash propagation). Let g be a gash of type 2 on ∂
(n)
2 . The propagation algorithm

terminates at a gash g′ adjacent to configuration of type (v), (vi) or on ∂
(1)
n .
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Proof. One checks that propagations of Definition 5.2 do not change the type of the gash except in
the case of a configuration (iii) which turns a gash of type 2 into a gash of type 1 and vice-versa.
Since the starting gash g has type 2, the gashes have type either 1 or 2 along the propagation. At

each step of the gash propagation, one has either x
(s+1)
0 < x

(s)
0 or x

(s+1)
1 > x

(s)
1 and t(s) ∈ {1, 2} which

implies that the while loop terminates on a gash g(∞) which is adjacent to a configuration (v) or (vi)

or necessarily of type 1 on ∂
(1)
n . □

In the case where a gash is adjacent to a configuration (v) or (vi), one still wants to replace the
original colors by the new ones. To do so, we introduce a local transformation called gash removal in
Definition 5.5.

Definition 5.5 (Gash removal in (v) and (vi)). Let C be a color map and let g be a gash of type 2
with center x adjacent to a configuration (v) or (vi). The removal of g is the new color map C ′ defined
by

C ′((x, x− ξ4)) = 1, C ′((x+ ξ4, x)) = 0

C ′((x+ 1, x)) = 1, C ′((x, x− ξ2)) = 3 if C((x+ 1, x)) = m

C ′((x+ 1, x)) = 3, C ′((x, x− ξ2)) = 0 if C((x+ 1, x)) = 0

C ′(e) = C(e) otherwise.

See Figure 17 for an illustration. Using rotation, one defines the gash removal for type 1 gashes
adjacent to a configuration (v) or (vi).

(v)
0 1
m
1 01

1

(1)

(0)

1 1
1
030

1

(vi)
0 0
0

m 11
0

(1)

(0)

01
3

0
0
0 1

Figure 17. Gash removal in configurations (v) and (vi).

5.2. Proof of Theorem 2.5. We are now in position to prove Theorem 2.5 by induction on G(C, 2).
The case G(C, 2) = 0 has been treated in Section 4.3. Assume that the identities (2.2) and (2.3) hold
for color maps C such that G(C, 2) ≤ N and consider a color map C such that G(C, 2) = N + 1.

Since G(C, 2) ≥ 1, there exists a pair of edges (x, x− ξ4), (x+ ξ4, x) ∈ (∂
(2)
n )2 such that C((x, x−

ξ4)) = 0, C((x+ ξ4, x)) = 1 for some x ∈ Tn. Let g be the gash on ∂
(2)
n with center x, original colors

as above and new colors given by C((x, x− ξ4)) = 1, C((x+ ξ4, x)) = 0 as in Definition 5.1. Applying
the propagation algorithm of Definition 5.3 and using Proposition 5.4 yields a gash g′ adjacent to a

configuration (v), (vi) or on ∂
(1)
n . In the case of configurations (v) or (vi), apply the gash removal of

Definition 5.5. In the case where g′ ∈ ∂
(1)
n , replace the original colors by the new ones so that the 0

and 1 colors are swapped. Call C ′ the resulting color map. Then,

G(C ′, 2) = G(C, 2)− 1 = N(5.1)

G(C ′, 0) = G(C, 0)(5.2)

In the case where one used gash removal,

(5.3) G(C ′, 1) = G(C, 1), m(C ′) = m(C)− 1, and s(C ′) = s(C) + 1.

whereas in the case where g′ ∈ ∂
(1)
n ,

(5.4) G(C ′, 1) = G(C, 1) + 1, m(C ′) = m(C), and s(C ′) = s(C).
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In both cases, applying the induction hypothesis to C ′ gives

m(C ′) = G(C ′, 0) +G(C ′, 1) +G(C ′, 2)− n0n1(5.5)

s(C ′) = 2n0n1 −G(C ′, 0)−G(C ′, 1)−G(C ′, 2)(5.6)

which gives

m(C) = G(C, 0) +G(C, 1) +G(C, 2)− n0n1(5.7)

s(C) = 2n0n1 −G(C, 0)−G(C, 1)−G(C, 2)(5.8)

as desired.

We finally state a Corollary of the main result which counts the number of faces having all of their
edges of the same color, either 0 or 1.

Corollary 5.6 (Number of triangular pieces). Let C be a color map. Let n(j), n(j), j ∈ {0, 1} denote
respectively the number of direct and reverse triangular faces f ∈ Fn having all their edges of color j.
Then,

(5.9) n(j) =
nj(nj + 1)

2
and n(j) =

nj(nj − 1)

2
.

Proof. One can check that the gash propagation and removal steps preserve the number of faces f
having edge colors (0, 0, 0) or (1, 1, 1). It therefore suffices to count them in a reduced color map which
gives (5.9). □
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