
HAL Id: hal-04777703
https://hal.science/hal-04777703v1

Preprint submitted on 12 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Navigating and Exploring Software Dependency Graphs
using Goblin

Damien Jaime, Joyce El Haddad, Pascal Poizat

To cite this version:
Damien Jaime, Joyce El Haddad, Pascal Poizat. Navigating and Exploring Software Dependency
Graphs using Goblin. 2024. �hal-04777703�

https://hal.science/hal-04777703v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Navigating and Exploring Software Dependency
Graphs using Goblin

Damien Jaime
Sorbonne Université, CNRS, LIP6,

Université Paris Nanterre
F-75005, Paris, France
damien.jaime@lip6.fr

Joyce El Haddad
Université Paris Dauphine-PSL,

CNRS, LAMSADE
CF-75016, Paris, France

joyce.elhaddad@lamsade.dauphine.fr

Pascal Poizat
Sorbonne Université, CNRS, LIP6,

Université Paris Nanterre
F-75005, Paris, France

pascal.poizat@lip6.fr

Abstract—Using package managers is a simple and common
method for reusing code through project dependencies. However,
these, direct, dependencies can themselves rely on additional
packages, resulting in indirect dependencies. It may then become
complex to get a grasp of the whole set of dependencies of
a project. Beyond studying individual projects, a deep under-
standing of software ecosystems is also a critical prerequisite
for achieving sustained success in software development. This
paper presents the 2025 edition of the MSR conference mining
challenge. This year’s mining challenge focuses on dependencies
and dependency ecosystem analysis using the Goblin framework
that has been presented at the previous edition of the MSR
conference. Goblin is composed of a Neo4j Maven Central
dependency graph and a tool called Weaver for on-demand
metric weaving into dependency graphs. As a whole, Goblin is a
customizable framework for ecosystem and dependency analysis.

Index Terms—software ecosystem, dependency graph, dataset,
mining software repositories, maven central

I. DATASET AND TOOLING

The Goblin framework (see Figure 1) is organized around a
Neo4j database of the whole Maven Central dependency graph.
This database can be created and updated incrementally using
Goblin Miner. The database can be queried directly using
Cypher (the Neo4j query language) or through the Goblin
Weaver tool. More generally, Goblin Weaver comes with an
API for the on-demand weaving of user-programmed metrics
of interest (added values) into the dependency graph. Several
such metrics are already available: CVEs, popularity, freshness
and release speed. As a whole, Goblin aims to be a customiz-
able framework for working on software dependencies at the
ecosystem level.

A. Neo4j Maven Central ecosystem dependency graph

Figure 2 shows the structure of the dependency graph
database.

This database is mostly composed of two node types (for
libraries, also called artifacts, and for their releases) and two
edge types (from releases to their dependencies, and from li-
braries to their releases). The nodes for libraries (type Artifact)
contain the Maven id (g.a with g the group id, and a the
artifact id) and a boolean found. This found boolean is used

This work is funded by PhD grant 2021/0047 from ANRT.

GRAPH MANAGER
(Neo4J with Cypher query language)

ADDED VALUE RELATED
DATA SOURCES

GOBLIN
MINER

GOBLIN
WEAVER

ECOSYSTEM
REPOSITORY

REGULAR
UPDATES

INFORMATION
SOURCES

USER
APPLICATION

REST API

Database API
(creation / update)

Database API
(retrieval)

Graph Database API
(retrieval)

Graph Database API
(creation / update)

Fig. 1. Goblin framework architecture.

to know whether the library has been found in the ecosystem
or not. This allows to provide dependency information even
if the library is not found on Maven Central. The nodes for
releases (type Release) contain the Maven id (g.a.v with
g the group id, a the artifact id, and v the version), the
release timestamp, and the version information. The edges for
dependencies (type dependency) are from Release nodes
to Artifact nodes and contain target version (which can be a
range) and scope (compile, test, etc). The edges for versioning

Fig. 2. Ecosystem dependency graph model and illustrative example.



TABLE I
DATASET STATISTICS

Description Dataset Enriched dataset
Nodes 15,117,217 59,152,712
libraries 658,078 658,078
releases 14,459,139 14,459,139
added value n/a 44,035,495
Edges 134,119,545 178,155,040
dependencies 119,660,406 119,660,406
versioning 14,459,139 14,459,139
added values n/a 44,035,495

(type relationship AR) are from Artifact nodes to Release
nodes.

The latest version of our dataset, dated August 30th, 2024,
has statistics given in Table I. We also provide a second version
of this dataset enriched with Weaver-computed metrics, which
(see below in Section I-C) has the effect of creating new
AddedValue nodes in the database for CVE (dated September
4th, 2024), freshness, popularity, and speed.

B. Goblin Miner

The Goblin Miner allows one to update the dependency
graph database or recreate it from scratch. First, it retrieves all
releases in the Lucene Maven Central Index archive,1 extracts
the data from it, and creates the library and the release nodes,
together with the version edges, in a Neo4j database. Then, it
goes through all releases to retrieve their direct dependencies
with the org.eclipse.aether library. Information on
create and update computation times are given in [1].

C. Goblin Weaver

The Goblin Weaver REST API is available as an alternative
to the direct access to the database using the Cypher language,
and for on-demand enrichment of the dependency graph with
new information. A memoization principle has been imple-
manted to avoid re-computing enrichments, as soon as the base
graph itself is not re-computed or updated. For this, new kinds
of nodes (type AddedValue) and edges (type addedValues
from an Artifact or Release node to an AddedValue node)
are used in the graph database. One should be careful, as the
graph is large, computing metrics (especially aggregate ones)
for the whole graph can be time-consuming. When the Weaver
computes a metric, it adds a new node type AddedValue with
edge type addedValues to the graph. Consequently, once a
metric has been computed, it becomes directly accessible in
the graph, and the Weaver is no longer required for its retrieval.

Added values are assigned to a certain type of node (Artifact
or Release). Currently, the Weaver API can be used to
compute and add the following metrics.

1) Release nodes added values: The added values of a
release can be computed either locally (e.g., the CVEs of a
release) or aggregated (e.g., the CVEs of a release and of all
its direct and indirect dependencies). To use the aggregated
value of a metric, add AGGREGATE after the metric name.

1https://maven.apache.org/repository/central-index.html

For example, to use the aggregated value of the CVE metric,
use CVE AGGREGATE.

CVE: Common Vulnerabilities and Exposures,2 is a dic-
tionary of public information on security vulnerabilities. We
use the osv.dev3 dataset to get CVE information. Our added
value contains for each CVE its name, its CWE (type of
vulnerability), and its severity (low, moderate, high, critical).

FRESHNESS: This corresponds, for a specific release, to
the number of more recent releases available and to the time
elapsed in milliseconds between it and the most recent release.
More information about freshness is given in [2].

POPULARITY 1 YEAR: To compute the popularity of a
release, we compute the number of dependants of the version
of the library over a one year window (back from the date
of the dependency graph). This corresponds for a release r to
the question: ”How many releases declared a dependency to
r in the year before the dependency graph date?”. There are
many other ways to calculate the popularity of a release [3],
and you can extend the Weaver to create your own, or modify
the one-year window we have defined.

2) Artifact nodes added values: For now, only one metric
is available for library nodes.

SPEED: This corresponds to the average number of re-
leases per day of a library. More information is given in [4].

II. POTENTIAL RESEARCH QUESTIONS

The analysis of a software ecosystem graph presents numer-
ous research opportunities, allowing for the investigation of
various questions in areas such as structural analysis, commu-
nity detection, dependency optimization, and risk assessment.

The following suggested questions outline potential research
directions. Questions in groups 1 to 5 can be addressed with
the dependency graph database alone, questions in group 6
require the additional use of the Weaver (or the enriched
dataset), and questions in group 7 illustrate examples of
inquiries that would require an extension of the Weaver.

1) Ecosystem evolution
a) What are the patterns in the growth of the Maven

Central graph across different time periods?
b) Do artifacts tend to use more dependencies than in

the past?
c) Is the rhythm of library release higher than in the

past, and how has this rhythm evolved over time?
d) Does the emergence of project management meth-

ods (e.g., agile methods) have any impact on the
release rhythm of artifacts?

e) To what extent does the ecosystem contain unmain-
tained artifacts?

f) How do projects with unmaintained dependencies
cope with the challenges they face?

2) Clustering

2https://cve.mitre.org/
3https://osv.dev/

https://maven.apache.org/repository/central-index.html
https://cve.mitre.org/
https://osv.dev/


a) Can we deduce different clusters from Maven Cen-
tral’s complete dependency graph? How do these
clusters interact with one another?

b) Can dependency-based clustering reveal domain-
specific groupings, and how well do they align with
known categorizations of projects?

c) How can clustering be used to identify high-risk
clusters in the Maven Central ecosystem?

d) Which artifacts serve as the most crucial dependen-
cies for the ecosystem (i.e., most depended upon)?

e) How do these central nodes affect the overall health
and stability of the ecosystem?

3) Dependency update
a) How often do projects update their dependencies,

and what factors influence this frequency (e.g.,
project size, popularity, type)?

b) When an artifact releases a new version, how do
its dependents react?

c) How does the removal or failure of certain projects
affect the overall network (e.g., log4j Vulnerabil-
ity)?

d) How do major versus minor dependency updates
differ in frequency and impact?

e) Do projects tend to avoid major updates due to the
potential for breaking changes?

4) Trends
a) Has (and how) the adoption of new frameworks

(e.g., Spring Boot, Microservices) changed the
dependency structures in Maven Central?

b) What impact do modern dependency management
tools (e.g., Dependabot) have on the ecosystem?

c) How does the adoption of newer Java versions
influence dependency graphs?

d) Does an artifact’s number of dependents correlate
with other popularity metrics such as GitHub stars?

5) Graph theory
a) How do metrics such as degree distribution, clus-

tering coefficient, and average path length charac-
terize the dependency graph?

b) Is the graph scale-free, small-world, or does it
exhibit other known graph structures?

c) Are certain types of projects more likely to be
central (hubs) or peripheral (leaves) in the graph
structure?

d) Is the graph made up of connected components
with no relationship between them?

e) How do shortest path lengths between projects
vary, and what does this tell us about the overall
connectivity of the ecosystem?

6) Vulnerability
a) How do vulnerabilities propagate through the de-

pendency network, and which projects are most
affected?

b) What proportion of releases have vulnerabilities?
What is the proportion of releases directly and

transitively impacted?
c) What is the average time taken to patch a vulner-

ability in a dependency?
d) How do users of an artifact react to the discovery

of a vulnerability in that artifact?
7) Licensing and Compliance

a) Are there dominant license types, and how do they
influence the usage and distribution of projects?

b) How does the choice of licenses affect the artifact
graph structure?

c) What percentage of projects have conflicting li-
censes within their dependency trees?

III. RESSOURCES

The Maven Central Neo4j dependency graph datasets are
available on Zenodo.4 To import a database dump into Neo4j,
please set your project database system version to 4.x. The
Goblin Weaver project is available on GitHub,5 as for the
Goblin Miner.6 A basic containerized project integrating both
the Neo4j database and the Goblin Weaver is also available
at GitHub.7 A tutorial dedicated to the dataset and set of
tools is available online.8 Questions are welcomed using the
issue tracking system. A more in-depth presentation of our
framework and related work is given in [1]. An example
of using this framework for automatic dependency update is
presented in [5].

REFERENCES

[1] D. Jaime, J. El Haddad, and P. Poizat, “Goblin: A framework for enriching
and querying the maven central dependency graph,” in 21st International
Conference on Mining Software Repositories (MSR), 2024.

[2] J. Cox, E. Bouwers, M. C. J. D. van Eekelen, and J. Visser, “Measuring
dependency freshness in software systems,” in 37th International Con-
ference on Software Engineering (ICSE), 2015.

[3] A. Zerouali, T. Mens, G. Robles, and J. M. González-Barahona, “On the
diversity of software package popularity metrics: An empirical study of
npm,” in 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2019.

[4] D. Jaime, J. El Haddad, and P. Poizat, “A preliminary study of rhythm and
speed in the maven ecosystem,” in 21st Belgium-Netherlands Software
Evolution Workshop (BNEVOL), 2022.

[5] D. Jaime, P. Poizat, J. El Haddad, and T. Degueule, “Balancing the
quality and cost of updating dependencies,” in Proceedings of the 39th
IEEE/ACM International Conference on Automated Software Engineering
(ASE), 2024.

4https://zenodo.org/records/13734581
5https://github.com/Goblin-Ecosystem/goblinWeaver
6https://github.com/Goblin-Ecosystem/goblinDependencyMiner
7https://github.com/Goblin-Ecosystem/Neo4jWeaverDocker
8https://github.com/Goblin-Ecosystem/goblinTutorial

https://zenodo.org/records/13734581
https://github.com/Goblin-Ecosystem/goblinWeaver
https://github.com/Goblin-Ecosystem/goblinDependencyMiner
https://github.com/Goblin-Ecosystem/Neo4jWeaverDocker
https://github.com/Goblin-Ecosystem/goblinTutorial

	Dataset and tooling
	Neo4j Maven Central ecosystem dependency graph
	Goblin Miner
	Goblin Weaver
	Release nodes added values
	Artifact nodes added values


	Potential research questions
	Ressources
	References

