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Abstract: This study assesses the impact of climate change on the distribution of Ixodes ricinus, which transmits Lyme disease, a 

growing public health concern. Utilizing ensemble models from the R package ‘flexsdm’ and climate data from WorldClim, 

ENVIREM, and CliMond, we project habitat suitability changes for the focus species. The models, validated against Lyme disease 

incidence rates, predict a 1.5-fold increase in suitable habitats in Latvia, contrasted with a 4.5-fold decrease in suitable habitats 

within Ukraine over the coming decades. SHAP values are analyzed to determine the most influential climatic features affecting tick 

distribution, providing insights for future vector control and disease prevention strategies. The optimal bioclimatic environment for 

I. ricinus seems to be an intricate balance of moderate temperatures, high humidity, and sufficient rainfall (bio7, 14, 18, 29). Also, 

radiation during the wettest quarter (bio24) significantly influences tick distribution in northern countries. This implies an increased 

presence of ticks in Scandinavian countries, Baltic states, etc. These findings largely coincide with our projections regarding 

bioclimatic suitability for ticks in Latvia and Ukraine. These shifts reflect broader patterns of vector redistribution driven by global 

warming, highlighting the urgent need to adapt public health planning to the evolving landscape of vector-borne diseases under 

climate change. 
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1. Introduction 

Climate change is widely recognized as a key factor influencing biodiversity [1,2]. There is a specific interest in evalu-

ating the potential shifts in habitat suitability for medically or economically important species as a result of climate 

change. According to reports from the IPCC, climate change is expected to alter the distribution of certain vectors and 

vector-borne diseases [3,4]. Tick-borne illnesses have emerged as a significant health concern in recent years. Ticks 

belonging to the suborder Ixodida are found across the globe and are highly sensitive to climate conditions due to their 

reliance on a complex interplay of climate factors for their development and survival [5]. Ticks serve as carriers for 

various pathogens, such as protozoa, viruses, bacteria, and nematodes [6,7], which are known to cause several diseases, 

including Lyme borreliosis. In Europe, Lyme borreliosis is among the most prevalent tick-borne diseases in humans [8], 

with Ixodes ricinus (Linnaeus, 1758) being the primary vector species. The disease is particularly widespread in Central 

Europe, with the highest infection rates recorded in ixodid ticks [9]. A recent study reported that Central Europe has 

the highest rate of residents with Lyme disease compared to North America (21% and 9%, respectively) [10]. 

Ixodes ricinus is the most prevalent and widely distributed tick species in Europe [11]. It parasitizes a diverse range of 

wild vertebrates, as well as incidental hosts like humans, livestock, and pets [12]. In Europe, I. ricinus is found across a 

broad geographical area including Scandinavia, the British Isles, Central Europe, France, Spain, Italy, the Balkans, 

Eastern Europe, and Ukraine [13] (ECDC 2020). Global average temperatures have increased by 0.7 °C over the past 

century, with a projected additional increase of 1.1 °C by the end of the 21st century [14]. Climate change can have a 

dual impact on tick populations and the transmission of tick-borne diseases by influencing vector biology. On the one 



 

 

hand, studies have demonstrated that climate change contributes to the expansion of I. ricinus in northern regions 

and/or increases their local abundance [15–17]. Conversely, high temperatures can lead to increased mortality in ticks 

due to desiccation [6]. Additionally, ticks are less active in seeking hosts during periods of high temperatures, which 

can result in higher mortality rates by reducing their success in finding hosts [18]. Therefore, global warming may 

negatively affect the species’ habitat suitability in the southern parts of its range of distribution [19] and may poten-

tially lead to geographical contractions of its range in areas where the combination of climate variables for develop-

ment and survival turns out to become less or entirely not favorable. Under these circumstances, there is a need to 

construct the current climatic niche of I. ricinus and project it into future conditions to assess how climatic change will 

affect the geographic distribution of the vector. Ultimately, climate-induced changes in vector distribution may affect 

the epidemiology of vector-borne diseases [20] and are expected to be of profound character [21]. 

With the global incidence of Lyme disease and other tickborne diseases on the rise, there is a critical need for da-

ta-driven tools to assess the magnitude of this problem and provide scientifically grounded guidelines for public health 

decision makers. Moreover, there is an interest in identifying potential areas of distribution of vector species in order to 

assess the future infection risks with vector-borne diseases and improve surveillance efforts [22]. In this respect, species 

distribution modeling (SDM) can be considered as a data-driven numerical tool that combines field observations of 

species occurrence or abundance with environmental estimates (usually climatic) [23]. Modeling the ecological re-

quirements of species to explore future disease transmission patterns has been found to be challenging [24]; however, it 

is essential to assess the potential impacts of climate change on vector distribution, which can provide a theoretical 

basis for the prevention and control of vector-borne diseases [25,26]. 

In this study, we used an SDM approach to investigate the distribution of the Lyme disease vector I. ricinus under the 

current and forecasted (by 2030 and 2050) climate and to rank habitat suitability areas for the tick at a country scale 

with a focus on Latvia and Ukraine. Of particular concern is Russia’s military action in eastern Ukraine since 2022, 

which has resulted in the substantial relocation of Ukrainian citizens to mainly western and central regions of the 

country [27,28]. Therefore, this raises the question of how safe these regions are in terms of disease transmission. This 

could substantially help health officials in managing and monitoring tick distributions, assessing their overlap and 

potential contact with humans because it is vital to decrease the risk of zoonotic disease transmission. 

2. Materials and Methods 

2.1. Tick input Data 

As input, SDMs require georeferenced biodiversity observations. Faced with limited data for Ukraine, we built species 

distribution models using European and adjacent occurrences. Presence data were retrieved from online public data-

bases, which were accessed using the R package ‘rgbif’, an interface to the Global Biodiversity Information Facility 

[29,30] (GBIF.org, 2022), supplemented from the literature [31–34], including Ukrainian and Latvian sources [35–37]. 

The conducted search for occurrence data yielded a total of 12,095 non-duplicate georeferenced records of I. ricinus 

across Europe and adjacent areas. Using the pre-modeling functions from the ‘flexsdm’ R package, the number of 

presence records was reduced to 1827 [38]. 

 

2.2. Climate Data 

SDMs are predominantly influenced by climate, with the variables used in their development typically reflecting cli-

matic factors [39,40]. This is logical as climate plays a key role in determining environmental suitability [41]. Biocli-

matic parameters were gathered as raster layers from three climatic databases and utilized separately to construct the 

projected SDMs and assess their performance. 

Nineteen bioclimatic variables indicating general patterns in precipitation and temperature, including extremes and 

temperature seasonality, were obtained at a resolution of 2.5′ from the WorldClim website 

(https://www.worldclim.org/; accessed on 21 November 2022; [42]; Table S1; Miroc6 ssp126). 

For the modeling in this study, a set of 16 climatic and 2 topographic variables (from the ENVIREM dataset, down-

loaded from http://envirem.github.io; accessed on 26 November 2022; Table S2) at a resolution of 2.5′ was utilized. 

These variables were selected based on a recent reassessment of their biological significance, with many likely to have 

direct relevance to ecological or physiological processes that influence species distributions [43]. These variables are 

important to consider in species distribution modeling applications, particularly as some (such as potential evapo-

transpiration) are directly linked to processes crucial for species ecology. The inclusion of topographic variables is also 

significant as they can alter the impacts of climate descriptors. 



 

 

Datasets from CliMond v.1.2 were downloaded from https://www.climond.org/ at a resolution of 10′ (accessed on 28 

November 2022; Table S1; A1B). These datasets comprised the core set of 19 bioclimatic variables (temperature and 

precipitation) and an additional set of 16 variables (solar radiation and soil moisture) [44,45]. 

In previous studies, we used various climate change scenarios to predict future conditions [3,40]. We believe that sce-

narios utilizing average or minimum climate change values are the most optimal for our purposes. After reviewing the 

literature, we concluded that scenarios such as A1B (CliMond) and Miroc6 (ssp126—WorldClim) are the most suitable 

[33,34,39,40,42,44,45]. These scenarios assume a balanced emphasis on all factors and represent a middle path between 

various possible climate changes, making them useful for our forecasts and analysis. 

Climate variables often exhibit high collinearity, and most SDM approaches necessitate selecting one variable from 

highly correlated ones [46]. To address this, the “removeCollinearity” function in the “virtualspecies” R package was 

utilized [47]. This function evaluates the correlation among variables in the provided stack of environmental variables, 

identifying variables that are not collinear and grouping them based on their collinearity levels. Collinearity was as-

sessed across Europe and neighboring regions to avoid shifts in collinearity when projecting training extents [48]. 

Given that climate variables frequently have skewed distributions or outliers, the Spearman correlation method was 

applied with a threshold of 0.8 [49]. 

Removing high collinearity and the selection of one amongst strongly correlated predictors gave the following results, 

presented in Table 1. 

 

Table 1. Results of the selection of uncorrelated predictors (Spearman’s r < 0.8). 

Predictor Dataset Selected Subsets of Predictors 

WorldClim v.2 

Annual mean temperature (bio1), Mean diurnal range (bio2), Temperature seasonality (bio4), 

Maximum temperature of warmest month (bio5), Annual precipitation (bio12), Precipitation 

seasonality (bio15), Precipitation of driest quarter (bio17) 

ENVIREM 

Annual PET *, Continentality, Emberger’s pluviothermic quotient, mean monthly PET of coldest 

quarter, mean monthly PET of driest quarter, PET seasonality, mean monthly PET of wettest 

quarter, terrain roughness index 

CliMond v.1.2 

Mean diurnal temperature range (bio2), Minimum temperature of coldest week (bio6), Annual 

temperature range (bio7), Mean temperature of driest quarter (bio9), Annual precipitation 

(bio12), Precipitation of driest week (bio14), Precipitation seasonality (bio15), Precipitation of 

warmest quarter (bio18), Radiation of wettest quarter (bio24), Radiation of warmest quarter 

(bio26), Radiation of coldest quarter (bio27), Highest weekly moisture index (bio29) 

* PET = potential evapotranspiration. 

 

2.3. Modeling Procedure 

To prepare the input data, pre-modeling functions from the ‘flexsdm’ R package were utilized [38]. The calibration area 

was delineated by creating 500 km buffers around presence points. Occurrence data filtering was implemented to 

mitigate sample bias by randomly eliminating points that were densely clustered (oversampling) in both environ-

mental and geographical space. The modeling functions within the package facilitated the fitting and evaluation of 

various modeling approaches, encompassing individual algorithms, tuned models, and ensemble models. Seven ma-

chine learning (ML) SDM (species distribution models) methods were applied, including ‘Generalized Additive Mod-

els’, ‘Gaussian Process Models’, ‘Generalized Linear Models’, ‘Maximum Entropy’, ‘Artificial Neural Networks’, 

‘Random Forest’, and ‘Support Vector Machine’. This led to the development of a comprehensive ensemble model, 

where predictions from individual algorithms were amalgamated to generate a consensus distribution, thereby re-

ducing model uncertainty and enhancing model transferability [50]. To create a global model across Europe using 

SDMs, we applied the Maxent method based on Maximum Entropy (see Supplementary Materials, Figures 4 and S3, 

Tables 3 and S1, https://biodiversityinformatics.amnh.org/open_source/maxent/; accessed on 28 November 2022) 

[51,52]. 

Initially, the models were assessed using the area under the receiver operating characteristic curve (AUC) and the true 

skill statistic (TSS)[53,54]. AUC scores range from 0 to 1, with 0 indicating consistently incorrect model predictions and 

1 signifying consistently accurate model predictions. AUC values between 0.7 and 0.8 are deemed acceptable, while 



 

 

values exceeding 0.8 are considered good to excellent. TSS values range from −1 to +1, with −1 representing systematic 

inaccuracies and +1 indicating systematic correctness. TSS values below 0.4 are considered poor, those between 0.4 and 

0.8 are considered useful, and values above 0.8 are classified as good to excellent [25]. In addition to AUC, the contin-

uous Boyce index from the ‘flexsdm’ package was employed to address the limitations of the AUC. This index, which 

only requires presence data, evaluates how closely model predictions align with the observed distribution of presences 

across prediction gradients [55]. It ranges from −1 to +1, with positive values indicating consistent predictions, values 

near zero suggesting similarity to a random model, and negative values indicating contradictory predictions [56]. 

Subsequently, it was assumed that maps depicting habitat suitability for the Lyme disease vector could serve as proxies 

for the potential distribution of the disease agent itself. The performance of each ensemble model was assessed by 

correlating the derived habitat suitability values with the reported incidence of Lyme disease (expressed as the number 

of reported cases per 100,000 people) sourced from the Johns Hopkins Lyme and Tick-Borne Disease Dashboard 

(https://www.hopkinslymetracker.org; accessed on 23 December 2022). To address spatial dependencies, a modified 

t-test was employed to calculate the statistical significance of the correlation coefficient (a corrected Pearson’s correla-

tion) based on geographically effective degrees of freedom, as implemented in the ‘SpatialPack’ package [57,58]. 

Finally, the ‘best’ ensemble SDM was selected based on the aforementioned performance criteria and the correlation 

between I. ricinus habitat suitability values and reported Lyme disease incidence. The top-performing SDM was cate-

gorized into areas of low, medium, and high potential habitat suitability. These thresholds were defined using Jenks 

natural breaks, a method that optimizes the grouping of numerical variables by minimizing the deviation within each 

class while maximizing the deviation from the means of other groups. Jenks natural breaks provide a standardized 

approach to determining class intervals for continuous numerical variables [59]. 

 

2.4. Feature Importance 

A critical challenge in the adoption of ML models is their inherent lack of interpretability, which is often referred to as 

the “black box” problem. Shapley Additive exPlanations (SHAP) [60–62] represents a significant advancement in ad-

dressing this concern by providing a framework for understanding how ML models arrive at their predictions. SHAP 

offers various advantages over other feature importance methods, including its model-agnostic nature. Leveraging 

game theory concepts, SHAP provides a robust framework for feature importance attribution in ML models, despite 

the number of used variables. The SHAP value quantifies the magnitude and direction (positive or negative) of the 

feature’s influence on the prediction [60,61]. In our case, the relative importance of predictors was measured with mean 

absolute Shapley values, which can be interpreted as the magnitude of the relative contribution of a predictor (feature) 

towards a model output [63]. The R package ‘shap-values’ (https://github.com/pablo14/; author Pablo Casas; accessed 

on 10 December 2023) was used in a modified version to calculate SHAP values for a selected model. A summary plot 

offers a comprehensive view of the most influential features in a model and ranks features based on their effect on the 

model’s predictions. In other words, SHAP values can be integrated into global explanations such as variable im-

portance, but using a completely different method from the various feature selection methods widely applied so far 

[64]. Until only now has the use of SHAP for explaining which environmental factors (including climatic) influence the 

spatial distribution of species occurrences started to be explored more widely [65–69]. 
Maps of habitat suitability in the GeoTIFF format were processed and visualized in SAGA GIS v.9.3.0 [70]. Statistical data were 

analyzed using the PAST v.4.04 software package [71,72] and/or the R environment [73]. 

 

3. Results 

As a result of the modeling, we obtained models with a sufficiently high evaluation (Table 2). SDMs built using various 

selected subsets of predictors from the WorldClim v.2, ENVIREM, and CliMond v.1.2 datasets performed satisfyingly, 

with the AUC values considered to mostly correspond to good and excellent, and sound TSS values. In this respect, 

more weight should be given to the continuous Boyce index, which is considered one of the most appropriate metrics 

for assessing model predictions applied to presence-only datasets and which is a more reliable metric than the AUC 

[74-77,]. Also, the continuous Boyce index shows a high uniformity of performance of the obtained SDMs and it now 

reveals a challenge to picking the ‘best’ model. Importantly, values reported in Table 2 indicate models in which present 

predictions are highly consistent (>0.9) with the distribution of presences in the datasets. 

The ‘flexsdm’ package supports model evaluation based on a number of the abovementioned performance metrics. 

Amongst the threshold criteria, maximum training sensitivity plus specificity was considered a reasonable choice 

[78,79]. 



 

 

  



 

 

Table 2. Evaluation metrics for SDMs built using various selected subsets of predictors. 

Predictor Da-

taset/Subset 

Evaluation Metrics 

Area Under 

Curve (AUC) 
SD * of AUC 

True Skill Sta-

tistic (TSS) 
SD of TSS 

Continuous 

Boyce Index 

(BOYCE) 

SD of BOYCE 

WorldClim v.2 0.84 0.01 0.59 0.02 0.91 0.07 

ENVIREM 0.84 0.01 0.56 0.02 0.92 0.06 

CliMond v.1.2 current 0.79 0.06 0.50 0.12 0.91 0.07 

CliMond v.1.2 A1B sce-

nario for 2030 
0.76 0.06 0.46 0.13 0.87 0.18 

CliMond v.1.2 A1B sce-

nario for 2050 
0.74 0.08 0.41 0.12 0.69 0.16 

* SD = standard deviation. 

Further, the ensemble models for current and projected climate scenarios were clipped to Latvia and Ukraine and 

classified using the corresponding module in SAGA GIS, in accordance with Jenks natural breaks, into three categories, 

i.e., “high”, “medium” and “low” habitat suitability (Figures 1–3). 

 

Figure 1. Jenks natural breaks maps of habitat suitability (HS) for Ixodes ricinus under current bioclimatic conditions. (a) Ukraine: 

red, green, and blue, respectively, for HS of high (0.52–0.71), medium (0.29–0.52), and low (0.08–0.29) value (oblasts: 1—Zakarpatska, 

2—Lvivska, 3—Volynska, 4—Rivnenska, 5—Ternopilska, 6—Ivano-Frankivska, 7—Zhytomyrska, 8—Khmelnytska, 

9—Chernivetska, 10—Vinnytska, 11—Crimea). (b) Latvia: red, green, and blue, respectively, for HS of high (0.62–0.77), medium 

(0.46–0.62), and low (0.32–0.46) values (regions: 1—Kurzeme, 2—Pieriga, 3—Vidzeme). Administrative units according to OECD, 

2022. 

  



 

 

 

 

Figure 2. Jenks natural breaks maps of habitat suitability (HS) for I. ricinus as predicted by our models by 2030. (a) Ukraine: red, 

green, and blue, respectively, denote areas with high (0.61–0.77), medium (0.36–0.61), and low (0.1–0.36) HS. Oblasts: 

1—Zakarpatska, 2—Lvivska, 3—Ternopilska, 4—Ivano-Frankivska, 5—Chernivetska. (b) Latvia: red, green, and blue, respectively, 

denote areas with high (0.62–0.76), medium (0.48–0.62), and low (0.34–0.48) HS. Regions: 1—Kurzeme, 2—Pieriga, 3—Vidzeme. 

 

Figure 3. Jenks natural breaks maps of habitat suitability (HS) for I. ricinus as predicted by our models by 2050. (a) Ukraine: red, 

green, and navy blue, respectively, denote areas with high (0.63–0.73), medium (0.45–0.63), and low (0.33–0.45) HS. Oblasts: 

1—Lvivska, 2—Ivano-Frankivska, 3—Odeska. (b) Latvia: red, green, and navy blue, respectively, denote areas with high (0.69–0.8), 

medium (0.51–0.69), and low (0.33–0.51) HS. Regions: 1—Kurzeme, 2—Pieriga, 3—Vidzeme, 4—Zemgale. 

To gain a comprehensive understanding of tick distribution in Europe, we developed a global European model of tick 

distribution. Our analysis revealed that factors such as the annual temperature range (bio7) and the precipitation of the 

driest week (bio14) also influence tick distribution (Table 3, Figures 4, 5, S3, and S4). 

Table 3. Analysis of variable contributions in the SDM Maxent model for I. ricinus in Europe (CliMond Dataset, see Table S1). 

Variable Percent Contribution % 
Permutation Im-

portance % 

bio7 Annual temperature range 

(Bio05-Bio06) (°C) 
34.6 21.8 

bio14 Precipitation of driest week (mm)  15.6 2.1 

bio24 Radiation of wettest quarter (W m−2) 9.1 8.6 

bio1 Annual mean temperature (°C) 7.7 1.7 

For the spread of ticks in Ukraine, the most significant parameters are bio18—precipitation of the warmest quar-

ter—and bio7—annual temperature range. In Latvia, the most important factors are bio29—the highest weekly mois-

ture index—and bio24—the radiation of the wettest quarter (Figures 5, S1, S2, and S4). 



 

 

Figure 4. Results of the analysis of SDM Maxent for I. ricinus in Europe (current, CliMond). The average training AUC 

for the replicate runs is 0.849, and the standard deviation is 0.001. 

Figure 5. Absolute summary plots of the datasets for Ukraine (a) and Latvia (b), where the average absolute value of the SHAP 

values for each variable is taken in order to obtain a bar chart as a function of the contribution of each variable to the prediction of 

the CliMond current model. The variables are ordered from most (top) to least (bottom) important. The y-axis represents the varia-

bles used in the study, which refer to Bio6—minimum temperature of coldest week; bio7—annual temperature range; bio9—mean 

temperature of the driest quarter; bio15—precipitation seasonality; bio18—precipitation of the warmest quarter; bio24—radiation of 

the wettest quarter; bio29—highest weekly moisture index. The x-axis represents the corresponding SHAP value. 

 

 



 

 

4. Discussion 

The distribution of ticks, especially Ixodes ticks, depends on numerous environmental factors that influence their life 

cycle, survival (including host seeking), and distribution. Key factors include temperature and humidity, which play a 

critical role in the physiological processes of ticks. These parasites can exist outside of hosts for extended periods, and 

their sensitivity to climate changes makes them particularly vulnerable to fluctuations in temperature and humidity 

levels. To better understand pan-European trends, we conducted a study within Europe. Our analysis revealed that fac-

tors such as the annual temperature range (bio7) and the precipitation of the driest month (bio14) also influence tick dis-

tribution. Bio14, the precipitation of the driest month, is determined by identifying the driest month for each year in the 

period, i.e., the month with the least precipitation, and then averaging the precipitation across all of the driest months. It 

is important to note that the driest month may vary from year to year. The annual temperature range (bio7) measures the 

temperature range between the most extreme (warmest and coldest) months (Table 3, Figure 4). Sharp temperature 

fluctuations and insufficient humidity can also affect the viability and distribution of ticks [80-83]. 

In our study, we analyzed SHAP values to understand feature importance governing current tick distribution in 

Ukraine and Latvia by calculating the average absolute values for each feature. This permitted us to provide an idea of 

which features are generally most important in influencing predictions within the area of our countries of interest 

(Figure 5). Given their extended off-host existence as generalist parasites, ixodid ticks, including the castor bean tick, 

exhibit a marked sensitivity to both temperature and humidity [84]. This sensitivity arises from the critical influence 

these environmental factors exert on physiological processes and desiccation rates, both of which are essential for tick 

survival and life cycle completion [33,88]. In our study, SHAP analysis suggests that rainfalls during the warmest 

quarter (bio18 in Figure 5a) have a particularly strong influence on predictions for Ukraine. Checking the correlation 

between bio18 and the ensemble SDM for the current climate demonstrated a strong relationship too, which could be 

explained by the fact that ‘precipitation during the warmest quarter’ acts as a trade-off factor for other environmental 

variables, including temperature and humidity. Overall, the optimal bioclimatic environment for the tick species seems 

to be an intricate balance of moderate temperatures, high humidity, and sufficient rainfall to maintain that humidity, 

despite the fact that the correlation between humidity and precipitation is not straightforward [82–83]. 

In addition to climate, the distribution of I. ricinus may also be affected by factors such as land cover, particularly veg-

etation. Ticks require moisture and humidity to survive and dense vegetation provides these conditions by shading the 

ground and preventing moisture loss [83]. Additionally, ticks in some stages of the tick lifecycle feed on the blood of 

various animals that frequent forested and other vegetated areas [12]. Because in our modeling we focused on biocli-

matic predictors, strictly speaking, vegetation features were not used; however, we tested the connection between bio18 

and NDVI (Normalized Difference Vegetation Index). NDVI is a measure of vegetation health and density. Corre-

sponding rasters for the warmest quarter (June–August) were downloaded from the EDIT geoplatform 

(http://edit.csic.es/GISdownloads.html; accessed on 4 April 2023). Previous studies have shown that areas with higher 

NDVI values tend to be more suitable habitats for I. ricinus ticks [81]. Indeed, we found fairly strong correlations for 

summer months (June, July, and August). In our opinion, this once again highlights the importance of the ‘precipitation 

of warmest quarter’ factor and/or, associated with it, factors in shaping the tick’s ecological niche and distribution, 

specifically in Ukraine. 

In fact, for Latvia we have an analogous situation, where the most important features in influencing predictions within 

the country are suggested to be bio29 (‘highest weekly moisture index’) and bio24 (‘radiation of wettest quarter’) 

(Figure 5b). Both characterize the moisture regime, with a direct or indirect emphasis on the warm time of the year. The 

study area experiences its highest weekly moisture index in July. Secondly, the wettest quarter occurs from July to 

September, with peak rainfall in July. 

As already implied, there may be another approach, tentatively tagged “biological”, to finding a model that would 

meet our objective aiming to aid health officials in managing and monitoring tick and tick-borne disease distributions. 

We assume this can be accomplished by correlating the obtained habitat suitability values of each SDM with the re-

ported incidence of Lyme disease and hypothesize that a closer correlation would point towards a model that fits our 

needs the most. Existing studies in Europe mainly focus on acarological risk assessment, with very limited investiga-

tions exploring Lyme disease occurrence in humans [84]. As an example, incidences of Lyme disease in Ukraine are 

scarcely reported, so proper statistical analyses cannot be achieved. 

Therefore, we used data from Romania since this neighboring country presents a fairly similar climate compared to 

Ukraine, especially if accounting for warm-season temperatures when tick activity is the highest [85]. Annual inci-

dences of Lyme disease were downloaded for 41 counties and the Bucharest Municipality from the Johns Hopkins 

Lyme and Tick-Borne Disease Dashboard for a 10-year period (from 2012 to 2021) and averaged. Corresponding av-

eraged habitat suitability values for each administrative entity, represented by a polygon shapefile, were obtained 

http://edit.csic.es/GISdownloads.html


 

 

using the ‘grid statistics for polygons’ module in SAGA GIS. Firstly, using the R package ‘trafo’, suitable transfor-

mations depending on statistical requirements and the data being analyzed were assessed by checking assumptions of 

normality, homoscedasticity, and linearity. By log-transforming the annual incidences of Lyme disease using the for-

mula ln(x + 1), all specified assumptions were shown to be acceptable (p > 0.05). Secondly, using log-transformed an-

nual incidences of Lyme disease and the averaged habitat suitability values regarding the considered administrative 

units in Romania, corrected Pearson’s correlation coefficient (r) controlling for spatial non-independence were calcu-

lated. Results concerning each of the SDMs reveal the following: for data extracted from the SDM based on the 

WorldClim v.2 subset, r = 0.3815 and p-value = 0.0584, meaning no confirmation of statistical significance; in the case of 

the SDM based on the ENVIREM subset, r = 0.3989 and the p-value is 0.0422; and in the case of the SDM based on the 

CliMond v.1.2 subset, r = 0.59150 and the p-value is 0.0015. For the last two subsequent cases, conclusions regarding 

correlations are of sound statistical significance (p < 0.05); however, a stronger correlation coefficient was found for the 

SDM built on the CliMond v.1.2 subset. Therefore, we can conclude that this particular model is the best fit for our 

purpose. 

In this study, besides the investigation of the present distribution of the tick I. ricinus, we aimed to assess how future 

climatic changes predicted for 2030 and 2050 could affect tick distribution in order to be prepared for proactive man-

agement actions involving both the vector and spread of Lyme disease. For this, we employed the CliMond v.1.2 da-

taset projection of future climate for 2030 and 2050 generated for the A1B scenario for emissions of greenhouse gases 

and sulfate aerosols (Figures 4, 5, and S4 [39]), which envisages a balanced emphasis on all energy sources. The pro-

duced ensemble models using the ‘flexsdm’ algorithm performed fairly well (Table 2), with acceptable AUC values, 

consistent TSS, and a high value of the continuous Boyce index. Somewhat poorer was the performance of the 2050 

model, but it was within acceptable limits. 

In terms of the current bioclimate, such as for Latvia, areas of high habitat suitability for I. ricinus occur on 22% of the 

territory of the country, mainly in the west and, to a lesser extent, in the north (Figure 1b). In Ukraine, areas of high habitat 

suitability for I. ricinus occupy around 20% of the country, with locations found predominantly in the west (Figure 1a). 

Other smaller patches of habitat suitability were found around Kyiv and in the south of Crimea, where ticks are the 

most abundant representative of the family [86]. Russia’s military action in Ukraine since 2022 has resulted in the in-

ternal displacement of over 3.5 million people (The UN Refugee Agency; 

https://www.unhcr.org/emergencies/ukraine-emergency; accessed on 4 April 2023), with potential health consequences 

[87–90]. Moreover, while refugee movements are associated with increased risks of infectious disease transmission and 

are likely to affect zoonotic disease risks, it remains unclear how forced migrations affect disease dynamics [90]. Hu-

man susceptibility to disease during forced migration might increase due to exhaustion, malnutrition, and stress aris-

ing from displacement, magnified by crowded and substandard living conditions [71,72]. 

In Ukraine, by 2030, our models predict a reduction in surface area of around two-fold of high habitat suitability for I. 

ricinus, decreasing to <10% of the country area (Figure 2a). These are expected to be located exclusively in the west of 

Ukraine, whereas patches of habitat suitability around Kyiv and in the south of Crimea are predicted to most likely 

disappear. By 2050, highly suitable habitats for I. ricinus are predicted to continue their contraction (to only 4.5% of the 

country area), with potential reduction to Lvivska and Ivano-Frankivska oblasts, despite a patch of high habitat suita-

bility that is predicted to appear in the southern region of Odesa (Figure 3a). 

On the contrary, in Latvia, areas of high habitat suitability for I. ricinus are predicted to expand and occupy up to 27% of 

the territory of the country by 2030, and up to 33% in 2050, engulfing the entire western region of Kurzeme (Figure 2b). 

Upon analyzing the models, we can predict that in the north and south of its range, the potential distribution of I. 

ricinus may take different directions: for instance, in Ukraine, in the south of its range, predicted increased fragmenta-

tion may lead to a significant decrease in tick populations. On the contrary, in the northern part of Ukraine, the models 

predict an increase in the potential suitable territory for the spread of the species. 

In this context, it is important to consider changes in the distribution of host species, which can significantly affect the 

spread of ticks such as I. ricinus. These ticks feed on the blood of various animals, including rodents, birds, foxes, hares, 

and larger animals such as deer, moose, humans, and domestic animals. Changes in the distribution of host species, 

especially in the context of the large-scale migration of people and domestic animals associated with military actions, 

can be a significant factor influencing the spread of ticks. This is an important topic for future research, especially for 

those dealing with the medical aspects of tick distribution and related diseases. Furthermore, understanding the eco-

logical niche of I. ricinus is crucial for predicting its distribution under current and future climatic conditions. The 

ecological niche encompasses the range of environmental conditions that support the survival and reproduction of the 

species. Climate change scenarios, such as those used in our study, help model potential changes in these niches, al-

lowing us to anticipate shifts in tick distribution. Species distribution modeling (SDM) primarily focuses on the theo-

retical or potential niche, also known as the fundamental niche [40]. This is because SDM typically uses environmental 

https://www.unhcr.org/emergencies/ukraine-emergency


 

 

and species presence data to predict where a species could potentially exist in the absence of constraints such as com-

petition or predation. 

Our results regarding the prospects of bioclimatic suitability for the castor bean tick in Ukraine and Latvia are con-

sistent with findings from previous studies. Indeed, previously published SDMs have predicted that Ixodes ticks will 

increase their distribution and abundance under global warming, with the most generally envisaged scenario being an 

expansion of the geographical range for ticks, including I. ricinus, with potential increases in abundance in some re-

gions [91–93]. Bioclimatic models also predict a shift in the distribution of the tick species, particularly at higher alti-

tudes and latitudes, like Scandinavia, the Baltic states, and Belarus. Conversely, tick populations are expected to decline 

in areas like the Alps, central and western Italy, and northwestern Poland. This means an increase in tick presence for 

Scandinavian countries (Sweden, Norway, and Finland), the Baltic states (Estonia, Latvia, and Lithuania), Denmark, 

and Belarus [94-97]. 

5. Conclusions 

Global warming is one of the most important factors in the redistribution of tick populations and the outbreak of 

tick-borne diseases, and this is supported by recent studies [96–98]. SDMs built for estimating such redistribution using 

various selected subsets of predictors from the WorldClim v.2, ENVIREM, and CliMond v.1.2 datasets performed sat-

isfyingly. In particular, the continuous Boyce index shows a high uniformity of performance of the obtained SDMs. In 

another approach correlating the obtained habitat suitability values of each SDM with the reported incidence of Lyme 

disease, we found a stronger correlation coefficient for the SDM built on the CliMond v.1.2 subset; therefore, we con-

cluded that this particular model is the best fit for our purpose. 

SDMs employing the CliMond v.1.2 dataset projection for future climates (2030 and 2050) generated for the A1B sce-

nario for emissions of greenhouse gases and sulfate aerosols performed fairly well; somewhat poorer was the perfor-

mance of the 2050 model, but this was within acceptable limits. In terms of the current bioclimate, areas of high habitat 

suitability for I. ricinus in Ukraine are predicted to occupy around one-fifth of the country, with locations found pre-

dominantly in the west, thus highlighting here the elevated risk of disease transmission. Regarding Latvia, areas of 

high habitat suitability for the tick are predicted to occur mainly in the west and, to a lesser extent, in the north of the 

country. Modeling suggests a significant reduction in highly suitable habitats for I. ricinus within Ukraine over the 

coming decades, whereas for Latvia the expansion of such suitable habitats is expected to continue, aggravating future 

health concerns accordingly. 

We report that the relative importance of predictors in our case study was successfully measured with mean absolute 

Shapley values, underlining the pivotal significance of moisture conditions in the warm months of the year for creating 

highly suitable habitats for the tick species. Therefore, we believe that the use of multiple types of climatic factors can 

significantly improve the quality of predictions. 
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