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Abstract 
Motivation: Mitochondria perform several essential functions in order to maintain cellular homeostasis 
and mitochondrial metabolism is inherently flexible to allow correct function in a wide range of tissues. 
Dysregulated mitochondrial metabolism can therefore affect different tissues in different ways which 
presents experimental challenges in understanding the pathology of mitochondrial diseases. System-
level metabolic modelling is therefore useful in gaining in-depth insights into tissue-specific mitochon-
drial metabolism, yet despite the mouse being a common model organism used in research, there is 
currently no mouse specific mitochondrial metabolic model available.  
Results: In this work, building upon the similarity between human and mouse mitochondrial metabo-
lism, we have created mitoMammal, a genome-scale metabolic model that contains human and mouse 
specific gene-product reaction rules. MitoMammal is therefore able to model mouse and human mito-
chondrial metabolism. To demonstrate this feature, using an adapted E-Flux algorithm, we first inte-
grated proteomic data extracted from mitochondria of isolated mouse cardiomyocytes and mouse 
brown adipocyte tissue. We then integrated transcriptomic data from in vitro differentiated human brown 
adipose cells and modelled the context specific metabolism using flux balance analysis. In all three 
simulations, mitoMammal made mostly accurate, and some novel predictions relating to energy me-
tabolism in the context of cardiomyocytes and brown adipocytes. This demonstrates its usefulness in 
research relating to cardiac disease and diabetes in both mouse and human contexts. 
Availability and implementation: MitoMammal is formatted in SBML3. The code required for constraint-
based modelling used in this work is implemented in Python 3 and is available as a Jupyter Notebook. 
The mitoMammal metabolic model, along with Jupyter notebooks and data used in this work are avail-
able at: https://gitlab.com/habermann_lab/mitomammal.  
Contact: stephen.chapman@liverpool.ac.uk and bianca.habermann@univ-amu.fr 
Supplementary Information: Supplementary data are available at Bioinformatics Advances online . 
Keywords: Systems biology, Metabolism, Transcriptomics, Proteomics, Data integration. 
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1 Introduction  
Mitochondria are essential organelles found in almost all eukaryotic 

cells and are indispensable for cellular bioenergetics, metabolism and ho-
meostasis. One of their main objectives is to produce ATP through oxida-
tive phosphorylation (OXPHOS). OXPHOS occurs within the inner mito-
chondrial membrane, where electrons are shuttled along an Electron 
Transport Chain (ETC) mediated by the mobile electron carriers, Coen-
zyme Q (CoQ) and cytochrome C. Electron transfer through each complex 
is coupled to proton translocation from the mitochondrial matrix to the 
intermembrane space which generates a Proton Motive Force (PMF) 
across the inner membrane that is used by ATP-synthase, to phosphorylate 
ADP to ATP (Hatefi, 1985). Several other metabolites are also directly 
oxidised by the ETC by reducing CoQ. In mammals, these include the 
mitochondrial glycerol-3-phosphate dehydrogenase (G3PDH) (Mráček et 
al., 2013), dihydroorotate dehydrogenase (DHODH)(Molinié et al., 
2022), proline (Tanner et al., 2018; Pallag et al., 2022) and the electron 
transfer flavoprotein dehydrogenase (Lenaz et al., 2007), the first step of 
mitochondrial fatty acid oxidation.  

Apart from the production of cellular energy, mitochondria are integral 
to various cellular and metabolic processes including pacing organism-
specific development rates (Diaz-Cuadros et al., 2023), apoptosis (Suen et 
al., 2008), calcium signalling (Nicholls, 2005) and regulating ROS pro-
duction, which itself is an important secondary messenger (Forman et al., 
2010). Mitochondria also generate metabolic intermediates crucial for bi-
osynthetic pathways and redox regulation (Borst, 2020). Due to their cen-
tral roles in cellular metabolism, signalling and bioenergetics, dysregu-
lated mitochondrial metabolism is associated with various human dis-
eases, emphasising their critical role in maintaining cellular health (Liesa 
et al., 2009). Understanding the intricacies of mitochondrial metabolism 
is therefore essential for advancing knowledge of cell biology, physiology 
and medicine. 

1.1 Tissue-specificity of mitochondrial structure and con-
tent  

Mitochondrial structure (Kuznetsov et al., 2009; Liesa et al., 2009), and 
proteome content vary across tissues (Hansen et al., 2024; Calvo and 
Mootha, 2010; Williams et al., 2018). Considering the metabolic roles 
played by proteins, proteomic changes would reroute metabolism to sus-
tain different biological objectives in various cellular contexts. Therefore, 
mitochondrial metabolism and function are highly specialised to meet di-
verse cellular functions and bioenergetic needs. This is strongly evidenced 
in cardiomyocytes which are responsible for the control of the rhythmic 
beating of the heart and rely heavily on ATP to achieve maximal cardiac 
output (Karbassi et al., 2020). Brown Adipose Tissue (BAT) is a special-
ised type of adipose tissue with unique mitochondrial properties that per-
mit thermogenic heat generation (Flatmark and Pedersen, 1975; Takeda et 
al., 2023). One key characteristic of brown adipocyte mitochondria is a 
high abundance of uncoupling protein 1 (UCP1), which is responsible for 
uncoupling OXPHOS from ATP production (Wang et al., 2019; Hansen 
et al., 2024). This uncoupling leads to the dissipation of the PMF across 
the inner mitochondrial membrane as heat, a process crucial for non-shiv-
ering thermogenesis (Nicholls, 1979, 2021), thus highlighting an alternate 
biological objective of the mitochondria within BAT. A better understand-
ing of mitochondrial metabolism could, for instance, help reduce the prev-
alence of metabolic diseases in cardiac and other chronic metabolic 

diseases like diabetes. To give just one example, dysregulated ATP syn-
thase activity following activation of inhibitory factor 1 (IF1) is implicated 
with a wide range of metabolic diseases including diabetes (Sergi et al., 
2019; Wei et al., 2024). 

1.2.  System-level modelling to gain in-depth insight into tis-
sue-specific mitochondrial metabolism.  

Systems-level modelling of mitochondrial metabolism is essential to pro-
vide novel and testable model-driven insights into mitochondrial function 
and disease (Ben Guebila and Thiele, 2021; Heinken et al., 2021; Wagner 
et al., 2021; Tomi-Andrino et al., 2022). Flux Balance Analysis (FBA) is 
a computational method that implements linear programming in conjunc-
tion with a metabolic reconstruction to predict metabolic fluxes on the 
systems level (Orth et al., 2010; Sahu et al., 2021; Westerhoff, 2023). By 
integrating existing knowledge of mitochondrial biology into such a mod-
elling framework, researchers can specifically analyse mitochondrial me-
tabolism. Omics data, such as transcriptomics or proteomics can be inte-
grated into a metabolic reconstruction using a variety of methods such as 
E-Flux (Colijn et al., 2009) / E-Flux2 (Kim and Lun, 2014; Kim et al., 
2016), to produce context-specific metabolic models. Thus, metabolic 
modelling can facilitate a better understanding of the metabolic differ-
ences between tissues or disease conditions. 

The mitochondrial metabolism of humans and mice is included in sev-
eral metabolic reconstructions. Recon 1 was the first generic human met-
abolic model (Duarte et al., 2007). Recon 1 has been updated to Recon 
R2, which included additional biological information and the correction 
of various modelling errors such as Recon 1’s inability to correctly predict 
realistic ATP yields (Thiele et al., 2013). Recon R2 was subsequently up-
graded to Recon 3D, which includes a total of 13,543 metabolic reactions 
and extensive human GPR associations (Brunk et al., 2018). In parallel to 
the recon lineage of human metabolic models, a Human Metabolic Reac-
tion series (HMR1 and 2) were developed and used to specifically model 
a human adipocyte and a hepatocyte, respectively, containing 6160 and 
7930 metabolic reactions. Metabolic information from HMR2 was then 
complemented with information from Recon 3D to produce a unified met-
abolic model of human metabolism, called Human1, now containing over 
13,000 reactions, 10,000 metabolites and 3625 genes. Human1 has since 
been used as a template to produce specific genome scale metabolic mod-
els of the fruit fly, worm, zebrafish, rat and mouse using ortholog mapping 
and identification of species-specific metabolism using literature and da-
tabases. The mouse specific metabolic model remains the most concise 
mouse metabolic model to date and contains more metabolic reactions 
than its predecessor, iMM1865, which was produced using a top-down 
orthology-based methodology by mapping human genes of Recon 3D to 
mouse genes (Khodaee et al., 2020). 

One challenge facing predictive modelling at the genome-scale level is 
that large models are more error prone than smaller models. This is a con-
sequence of missing knowledge and/or incorrect annotation. For example, 
the reconstruction and interpretation of the GPR rules adds uncertainty to 
the annotation process, and the process of constructing genome scale mod-
els involves gap filling that connects dead-end metabolites using reactions 
inferred from other models. This is essential to satisfy steady-state metab-
olism, however this step is inherently uncertain as the new reactions might 
not be supported by the genome (Bernstein et al., 2021). Other sources of 
error include missing information relating to metabolite mass due to in-
correct formulas (Chapman et al., 2017), incorrect parameterisation of re-
action directionality constraints and issues relating to the incorrect 
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compartmentalisation of reactions and metabolites. These uncertainties 
accumulate and can account for mispredictions that include the incorrect 
operation of metabolite shuttles and the reversal of proton pumping (Smith 
et al., 2017), and the generation of infeasible metabolic cycles. As such, 
using large genome-scale models to specifically predict mitochondrial me-
tabolism can therefore result in mispredictions (Fritzemeier et al., 2017; 
Karp et al., 2023; Bi et al., 2022; Ong et al., 2020). 

Several concise models of human mitochondrial metabolism exist 
(Smith and Robinson, 2011; Smith et al., 2017), with mitoCore represent-
ing the latest and most comprehensive model of human cardiomyocyte 
mitochondrial metabolism (Smith et al., 2017). MitoCore includes the 
ETC within its reconstruction and can accurately model the PMF associ-
ated with ATP production. This model has successfully been applied to 
model fumarase deficiency (Smith et al., 2017), impaired citrate import 
(Majd et al., 2018) and predicted accurate respiratory quotients on glucose 
and palmitate substrates (Cabbia et al., 2021) which demonstrates mito-
Core’s potential to model human cardiomyocyte mitochondrial metabo-
lism. 

Mice are often employed as a model organism in mitochondrial re-
search due to their highly similar structure, function and genetic homology 
with human mitochondria. This similarity makes mice a valuable model 
system for advancing our understanding of mitochondrial biology, mito-
chondrial dysfunction and disease, and for exploring potential interven-
tions for mitochondrial-related disorders in humans. Because of these sim-
ilarities, mouse mitochondrial metabolism is routinely compared to human 
mitochondrial metabolism in diverse biological contexts (Porter et al., 
2016; Diaz-Cuadros et al., 2023). Despite the prevalence of mice in vivo, 
in vitro and in silico models, there are no concise in silico models of mouse 
mitochondrial metabolism. 

To address this limitation, and to valorise the opportunity presented by 
mitochondrial similarity, in this work, we have created mitoMammal, a 
mitochondrial metabolic network which can be used for constraint-based 
metabolic modelling of human and mouse mitochondria. Importantly, mi-
toMammal can be contextualised with -omics data emerging from humans 
or mice, allowing for the capacity to model the metabolism of both spe-
cies. To demonstrate this novelty, we have integrated mitochondrial tran-
scriptomic data from Brown Adipocytes (BAs), and then mitochondrial 
proteomic data from mice BAT and cardiac tissues. We found that inte-
grating proteomic and transcriptomic data from humans and mice into mi-
toMammal predicted proline dehydrogenase and G3PDH reduction of 
CoQ, the export of hexadecanoic acid from BAT tissue, and glycine im-
port to sustain cardiomyocyte metabolism. 

2 Methods 

2.1. Conversion of mitoCore into mitoMammal 
To build the mitoMammal mitochondrial metabolic model, we identified 
the mouse orthologs of mitoCore’s gene-product-reaction (GPRs) using 
BioMart (Kasprzyk, 2011) and the ENSEMBL database (Martin et al., 
2023), as well as orthology information stored within MitoXplorer2 (Mar-
chiano et al., 2022; Yim et al., 2020). This resulted in 389 mouse orthologs 
out of the original complement of 391 MitoCore genes) (Supplementary 
Table S1). The set of mitoCore GPR rules was compiled to their corre-
sponding logical expressions for mitoMammal based on orthology rela-
tions between human and mouse genes. A summary of mitoMammal con-
struction is represented in Figure 1A (see also Supplementary Table S1). 
Gene modifications in the mouse version of the metabolic model recon-
struction are listed in Table 1.  

 
Table 1. Changes applied from human to mouse in mitoMammal. 
 

Human 
gene 

Action in mitoMammal 

G6PD renamed as G6pd2 
ATP5F1 renamed as Atp5pb 
ATP5I renamed as Atp5k 

Pc renamed as Pcx 

NME2 renamed as Gm20390 
FH renamed as Fh1 
ACSM6 deleted - no evidence in mouse 
OGDH renamed as Dhtkd1 
GLUD2 deleted - no evidence in mouse 
DHFRL1 renamed as Dhfr 
GCAT has two mouse orthologs; so ENSMUSG00000116378 

was complemented with ‘OR’ 
ENSMUSG00000006378 

SLC25A6 deleted - not found in mouse 
 

2.2.  DHODH expansion 
The discovery that dihydroorotate can reduce CoQ in mouse mitochondria 
suggests that this is a conserved feature of all mammalian mitochondria 
(Molinié et al., 2022). MitoCore (Smith et al., 2017) was missing the re-
duction of CoQ by DHODH within the de novo pyrimidine synthesis path-
way, while it contained glutamine metabolism, which is the starting sub-
strate for this pathway. Initially, glutamine is converted to carbamoyl 
phosphate facilitated by carbamoyl phosphate synthase. Carbamoyl phos-
phate is then metabolised to carbamoyl aspartate through the activity of 
aspartate carbamoyltransferase, which is subsequently metabolised into 
dihydroorotate by the enzyme dihydroorotase (Figure 1B). In mammals, 
these three enzymes are part of a single multifunctional protein abbrevi-
ated as CAD (Carbamoyl Aspartate Dihydroorotase). Dihydroorotate then 
reduces CoQ to produce orotate, facilitated by the enzyme dihydroorotate 
acid dehydrogenase (DHODH) that sits at the surface of the outer mito-
chondrial membrane. As such, orotate is never imported into the mito-
chondria and remains cytoplasmic (Zhou et al., 2021). We included these 
metabolic reactions and new metabolites in mitoMammal. Orotate re-
moval from the model was implemented by the addition of a demand re-
action to maintain flux consistency. In total, five new reactions were added 
that incorporate four new metabolites and two new genes.  

2.3.  Correction of the mitoMammal model based on gene ex-
pression data 

Because the ETC is at the heart of mitoMammal, we closely inspected the 
GPR rules of the 5 ETC complexes and found a number of paralogous 
genes that were bound by an AND relationship. Furthermore, by integrat-
ing gene expression data, we observed that fluxes of Complex I and IV of 
the respiratory chain in the mitoMammal model, and hence also in mito-
Core, are strongly reduced, or even shut down completely. We analysed 
the gene expression patterns of the paralogs and then corrected paralogous 
gene pairs to an OR relationship. These specifically included (mentioned 
as human paralog and mouse paralog pairs): Complex I: Ndufb11b / 
Ndufb11b (ENSMUSG00000031059 / ENSMUSG00000061633 (mouse 
only)). NDUFA4 / NDUFA4L2 (ENSG00000189043 / 
ENSG00000185633) and Ndufa4 / Ndufa4l2 (ENSMUSG00000029632 / 
ENSMUSG00000040280). Complex IV: COX4I1 / COX4I2 
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(ENSG00000131143 / ENSG00000131055) and Cox4i1 / Cox4i2 

(ENSMUSG00000031818 / ENSMUSG00000009876). 
COX6A1 / COX6A2 (ENSG00000111775 / ENSG00000156885) and 
Cox6a1 / Cox6a2 (ENSMUSG00000041697 / ENSMUSG00000030785). 
COX6B1 / COX6B2 (ENSG00000126267 / ENSG00000160471) and 
Cox6b1/Cox6b2 (ENSMUSG00000036751 / ENSMUSG00000051811). 

COX7A1 / COX7A2 (ENSG00000161281 / ENSG00000112695) and 

Cox7a1 / Cox7a2 / Cox7a2l (ENSMUSG00000074218 / 
ENSMUSG00000032330 / ENSMUSG00000024248). COX8A / COX8C 
(ENSG00000176340 / ENSG00000187581) and CoX8a / Cox8c 
(ENSMUSG00000035885 / ENSMUSG00000043319). We furthermore 
added UCP1 (ENSG00000109424, Ucp1 in mouse 

Figure 1: Conversion of mitoCore to mitoMammal. (A) Workflow for the construction of the mitoMammal metabolic network. (B) The DHODH pathway of CoQ reduction was 
added to the mitoMammal mitochondrial metabolic model. 
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(ENSMUSG00000031710)) to the model, as this gene was not included in 
the original mitoCore model due to the model’s specificity for heart me-
tabolism.  

2.4. Update to SBML3 (version 1) 
The original MitoCore model was encoded using Systems Biology 
Markup Language (SBML) level 2 annotation. We updated the mitoMam-
mal to the most recent, relevant specification of SBML level 3 (version 1) 
(Keating et al., 2020) and validated the model for correctness using the 
online SBML validation tool (https://synonym.caltech.edu/valida-
tor_servlet/index.jsp; (Lister et al., 2007)). 

2.5. Adapting the E-Flux algorithm for mitoMammal 
Because the MitoMammal metabolic model can integrate -omics data 
from two, instead of one species, we modified the E-Flux algorithm by 
allowing the user to select the organism the data originates from. The 
adapted algorithm then uses -omics data to constrain the reactions specific 
to the chosen species. All other features of the original E-Flux method 
were maintained as in the original description of the algorithm (Colijn et 
al., 2009). The adapted E-Flux algorithm was used to constrain mitoMam-
mal with mouse proteomic data and transcriptomic data from humans.  

The adapted E-Flux algorithm first selects the data for the genes or pro-
teins that are in the model and scales everything between 0 and 1 by di-
viding by the 90th percentile and values greater than 1 are capped at 1. 
These scaled values are then used to calculate the upper-bound of each 
reaction based on the GPR. For reactions that require multiple genes that 
all have to be expressed and are thus linked by an AND relationship, we 
assume as the upper bound the value of the gene with lowest expression. 
In case of an OR relationship between genes, each individual gene can 
contribute to the reaction and the sum of their values is used as the upper 
bound. This algorithm corresponds to the original E-Flux algorithm 
(Colijn et al., 2009) and has been adapted in python to work with CO-
BRApy (see Supplementary Figure S1 for a workflow). The adapted E-
Flux algorithm was used to constrain mitoMammal with mouse proteomic 
data and transcriptomic data from human and mouse. 

2.6. Mouse proteomic data 
For mouse simulations, we integrated proteomic data from a recent study 
that extracted the mito-proteomes of isolated mitochondria from a range 
of mouse tissues (Hansen et al., 2024). Normalised protein counts of car-
diac and brown adipose tissue (BAT) were scaled between 0 and 1. For 
cardiac tissue, we optimised ATP hydrolysis and for BAT simulations, we 
optimised the UCP reaction considering its essential role in producing 
non-shivering heat in this tissue. 

2.7. Human transcriptomic data 
We used normalised RNA-sequencing data from Rao (Rao et al., 2023) 
(GEO dataset GSE185623) to model an in vitro differentiated hiPSC-de-
rived BA. Normalised read counts were scaled between 0 and 1. The UCP 
reaction was chosen to be optimised considering the essential role that 
UCP1 plays in uncoupling ETC from ATP synthesis in BAs which is a 
pre-requisite for producing non-shivering heat. 

2.8. Flux balance analysis (FBA) 
 

Parsimonious FBA was performed using Python (version 3.8.5) in con-
junction with the COBRApy toolbox (Ebrahim et al., 2013), using the de-
fault ‘GLPK’ solver. 

The mitoMammal metabolic model, along with Jupyter notebooks and 
data used in this work are available at: https://gitlab.com/habermann_lab/mi-
tomammal.  

3 Results 

3.1 The mitoMammal metabolic network for human and 
mouse mitochondrial metabolism 

This work aimed to produce a generic mammalian metabolic model of 
mitochondrial metabolism that incorporates new knowledge on CoQ fuel-
ing. We first translated the genes from the human mitoCore model into 
mouse genes using orthology inference to create the basic mitoMammal 
model. Key metabolic pathways that include the TCA cycle, the Malate 
Aspartate Shuttle (MAS); OXPHOS and ATP synthesis; the Glycine 
Cleavage System (GCS), the proline cycle and fatty acid oxidation were 
also retained from the original model. MitoMammal now includes de novo 
pyrimidine synthesis from glutamate leading to the reduction of the CoQ 
complex by the enzyme DHODH. MitoMammal contains 780 genes en-
coding 560 metabolic reactions that involve 445 metabolites. The com-
plete lists of reactions, metabolites, and associated fluxes from each sim-
ulation are available in Supplementary Table S1a, Supplementary Table 
S1b and Supplementary Table S1c respectively. The core metabolism and 
bioenergetics with associated import/export reactions of the model are de-
picted in Figure 2.  

MitoMammal is based on MitoCore, a human specific cardiomyocyte 
mitochondrial model. MitoMammal was first tested on its ability to cor-
rectly produce accurate ATP levels from glucose oxidation. All nutrient 
input reactions except glucose and oxygen were constrained to zero to re-
flect aerobic glycolytic conditions. Maximisation of ATP hydrolysis was 
used as the objective function for these simulations and the model was 
then optimised using parsimonious FBA for all simulations reported in 
this work. As expected, MitoMammal correctly predicted the production 
of 31 molecules of ATP from 1 molecule of glucose (Supplementary Fig-
ure S2). 

3.2 Modelling cardiac mitochondrial metabolism by inte-
grating mouse proteomic data of cardiac tissue 

To demonstrate mitoMammal’s ability of modelling mouse cardiac mito-
chondrial metabolism, we integrated proteomic data harvested from mito-
chondria isolated from mouse cardiac tissue and optimised ATP hydroly-
sis. This resulted in 330 constrained reactions out of the complement of 
560 reactions. In satisfying the objective subject to these constraints, Mi-
toMammal predicted the import of ɑKG, H2O, oxygen, oxaloacetate glu-
tamine, 3-mearcaptoacetate and glucose. The model also predicted the ex-
port of alanine, NO, citrulline, lactate, fumarate, citrate, cysteine, NH4, 
CO2, isocitrate, hydrogen and succinate (Figure 3A). 
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Flux predictions (Figure 3B) revealed that the flux of pyruvate 
emerging from glycolysis was partitioned between lactate production in 
the cytoplasm, and pyruvate import into the mitochondria. This is in agree-
ment with the literature that reports a mitochondrial involvement of lactate 
production (Flick and Konieczny, 2002). It is now understood that the 
shuttle of lactate from and between cardiomyocytes to other cells facili-
tates lactate supply to cells in need of lactate, and acquired lactate plays a 
plethora of important roles such as cell signalling (Daw et al., 2020), the 
regulation of cell proliferation (Liu et al., 2023) and development of or-
gans and in the coordination of vascular development and progenitor cell 
behaviour in the developing mouse neocortex (Dong et al., 2022). TCA 
cycle fluxes were sustained by the import of citrate, ɑKG, fumarate and 
malate. Glycine was imported into the mitochondria and converted to glu-
tamate. 

 
  

3.3 Modelling mouse BA metabolism by integrating mouse 
proteomic data with mitoMammal 

We next wanted to show the predictive power and usability of mitoMam-
mal to predict mouse mitochondrial metabolism in a BA cell by integrat-
ing mitochondrial proteomic data extracted from a BA cell (Hansen et al., 
2024). Following data integration, we then optimised flux towards the 
UCP reaction. From the model's complement of 560 reactions, our modi-
fied E-Flux algorithm constrained 329 reactions. In order of decreasing 
flux magnitude, mitoMammal predicted the import of hydrogen, citrate, 
ɑKG, fumarate, cysteine, sulphate, glutamate, acetoacetate, butanoic acid, 
glycine, oxaloacetate, aspartate, alanine and O2. Secreted metabolites con-
sisted of malate, propionate, lactate, glutamine, hexadecenoic acid, thio-
sulfate, NH4, isocitrate, succinate and CO2 (Figure 4A). 
  

Figure 2:  MitoMammal metabolic reconstruction consists of 780 genes (human and mouse orthologs) encoding 560 metabolic reactions. Initially constructed from mitoCore 
(Smith et al., 2017), it was expanded to include DHODH reduction of CoQ and then supplemented with mouse orthologous genes. MitoMammal can be used for detailed mito-
chondrial metabolic studies of both human and mouse. 
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Figure 3: Metabolic flux prediction from mitoMammal following integration of mouse proteomic data isolated from cardiac tissue and optimising ATP production. (A) Imported 
(orange bars) and secreted (green bars) metabolites were predicted to result in steady-state mitochondrial fluxes of mitochondria isolated from mouse cardiac cells following the 
integration of proteomic data. Imported metabolites by convention, are associated with negative fluxes whilst secreted metabolites are described with positive fluxes. (B) The 
predicted flux distribution describes an import of glycine into the mitochondria, along with the import of citrate, fumarate and ɑKG. De novo fatty acid synthesis occurs as a result 
of pyruvate conversion into acetyl-CoA. 
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In this simulation, citrate, fumarate, ɑKG and to a lesser extent, malate 
were predicted to be imported into the mitochondria to establish steady-
state TCA cycle fluxes. Imported ɑKG was metabolised into succinyl-
CoA within the TCA, and into 3-Mercaptopyruvic acid (mercppyr) exte-
rior of the TCA cycle which then fed into pyruvate metabolism. Pyruvate 
metabolism was also established by the import of alanine and with con-
version of malate into pyruvate. The majority of pyruvate was converted 
into acetyl-CoA and with the addition of citrate, channelled flux towards 
fatty acid synthesis and the export of hexadecanoic acid. Citrate was im-
ported into mitochondria and assimilated into the TCA cycle, and upon 
conversion to Isocitrate, was then partially exported from mitochondria. 

Complex I (CI) was predicted to be reduced by NADH emerging from 
the TCA cycle, which injected electrons into the ETC and reduced the 
CoQ complex. MitoMammal also predicted the reduction of CoQ with 
proline via the proline dehydrogenase reaction (PROD2mB, encoded by 
the PRODH gene). CII was predicted to operate in reverse and reduce 
fumarate leading to succinate production and its subsequent export. From 
CoQ, electrons were passed along the ETC towards CIII and CIV which 
produced PMF, however ATP synthase (CV) in this situation was pre-
dicted to be inactive, and the UCP reaction was active and carried the larg-
est flux in this simulation. Mitochondrial uncoupling via UCP1 is a pro-
cess that expends energy by oxidising nutrients to produce heat, instead of 
ATP. To better understand the role played by the UCP reaction in BAT 
tissue, we next examined the reactions that would consume the newly un-
coupled protons after their re-entry into the mitochondria to identify novel 
functionalities of the UCP reaction in BAT. 20 proton-consuming reac-
tions were identified and are shown in Supplementary Table S2.  

The largest subset of these reactions performed metabolism of fatty acid 
and consisted of MECR14C and MECR16C which are responsible for 
fatty acid elongation of 3-Hydroxy Tetradecenoyl-7 Coenzyme A and 3-
Hydroxyhexadecanoyl Coenzyme A respectively. Also belonging to this 
group were the reactions MTPC14, MTPC16, r0722, r0726, r0730, r0733 
and r0791 all performed fatty acid oxidation roles and released NADH 
within the mitochondria. The remaining reactions of this subset (r0633, 
r0638, r0735) all consume mitochondrial NADP. 4 more reactions per-
formed metabolite transport functions with a citrate-carrying reaction 
(r0917b) carrying the greatest flux of this analysis. This reaction exports 
isocitrate and protons in exchange for citrate import. The model predicted 
flux associated with the characterised mitochondrial carrier responsible 
for the export of phosphate and photons (Plt2mB) out of the mitochondria. 
The citrate-malate antiporter (CITtamB) was also predicted to be active in 
exporting malate and protons in exchange for the import of citrate. Un-
coupled protons were also predicted to leak out of the mitochondria, facil-
itated by the Hmt reaction. 

A further subset of 3 reactions were implicated with amino acid metab-
olism. Within this subset, the reaction to carry the largest flux was 3-Mer-
captopyruvate:Cyanide Sulfurtransferase (r0595m) in mouse BAT, which 
converts mercaptopyruvate and sulfate into pyruvate and thiosulfate. Also 
within this subset is the P5CRxm that involves the production of proline, 
and finally the methylmalonyl Coenzyme A decarboxylase reaction 
(MMCDm) which converted methylmalonyl-CoA into propionyl-CoA. 
The remaining reaction predicted to metabolise uncoupled protons was the 
CI reaction of the OXPHOS subsystem. 

3.4 Modelling brown adipocyte metabolism in humans 
Next, we wanted to demonstrate mitoMammal’s ability of modelling hu-
man mitochondrial metabolism. To this end, we integrated transcriptomic 
data (Rao et al., 2023) from a brown adipocyte (BA) that was 

differentiated from an IPSC and optimised the UCP reaction. This resulted 
in constraining 488 reactions out of the complement of 560 reactions. 
Analysis of the resulting fluxes revealed that 15 metabolites were pre-
dicted to be imported into mitoMammal to support steady-state mitochon-
drial BA metabolism. Similar to the mouse model, H+, glutamate, cyste-
ine, aKG, aspartate, O2, oxaloacetate, fumarate and glycine were im-
ported, however with different magnitudes. The largest flux was again as-
sociated with H+ import. In addition, glutamine, glucose, formate, citrate, 
Fe2, and argininosuccinate were imported.  Similar excreted metabolites 
included NH4, CO2, isocitrate, malate, lactate, propionate and hexadeca-
noic acid. Opposed to the mouse model, alanine was exported, and not 
imported. In addition, the human model secreted proline, H2O, urea, 
NAD, folate and phosphate (Figure 5A).  

Similar to the mouse simulation (Figure 4B), the import of citrate, 
fumarate, ɑKG and malate were predicted to contribute to sustaining 
steady-state TCA cycle fluxes. In human BAs, pyruvate emerging from 
glycolysis was predicted to be imported into the mitochondria and con-
verted to alanine which was then, opposite to mouse BAs, exported out of 
the mitochondria. Citrate played a dual role and was also metabolised into 
acetyl-CoA which subsequently fed into endogenous fatty acid synthesis 
via acetyl-CoA, which agrees with the literature that describes mammalian 
BAT as possessing high endogenous fatty acid synthesis activity (Calde-
ron-Dominguez et al., 2016; Schlein et al., 2021)(Figure 5B). In particu-
lar, the model predicted the synthesis and export of hexadecanoic acid and 
5-Aminolevulinate (5aopm) from the mitochondria.  

Fluxes through ETC were similar to Mouse BA simulation, except now, 
CV which in this simulation was predicted to operate in reverse and con-
sumed ATP. Similar to before, CII was predicted to operate in reverse. 
The model furthermore predicted the reduction of CoQ with proline via 
the proline dehydrogenase reaction (PROD2mB, encoded by the PRODH 
gene). PRODH forms part of the proline cycle that regenerates proline via 
pyrroline-5-carboxylate which, in contrast to the mouse model, leads to 
the subsequent export of proline. In addition, we predicted the reduction 
of CoQ by G3PDH, which was not predicted in the mouse simulation. The 
reaction carrying the greatest flux in this simulation was again the UCP 
reaction which uncoupled the ETC from ATP production. We then ana-
lysed all proton consumption reactions predicted to be active as a conse-
quence of optimal UCP1 activity. All reactions that carry a flux greater 
than 0.01 are also shown in Supplementary Table S2. 

As with the previous simulation of mouse BAT, the reaction to carry 
the greatest flux was attributed to the citrate-carrying reaction (r0917b). 
The largest subset of reactions was also implicated with the same fatty 
acid metabolic reactions as reported in the previous simulation, however 
carrying much reduced predicted fluxes. The next subset of reactions 
again, all involved transport functions with the first that exported phos-
phate and protons (Plt2mB) out of the mitochondria, and the citrate-malate 
antiporter (CITtamB). Uncoupled protons were also predicted to leak out 
of the mitochondria, as facilitated by the proton-transport reaction. The 
final reaction predicted to be active in this simulation, which also was pre-
dicted to be active in the previous simulation, was the Pyrroline-5-Car-
boxylate Reductase reaction (P5CRxm). Similarly to the mouse BAT sim-
ulation, complex 1 of the ETC was also predicted to be active, however 
with a lower flux magnitude. 
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Figure 4: Proteomic data of mitochondria isolated from murine BAT was used to constrain mitoMammal. (A) Imported (orange bars) and secreted (green bars) metabolites were 
predicted to result in steady-state mitochondrial fluxes of mitochondria isolated from mice BAT cells following the integration of proteomic data. Imported metabolites by conven-
tion, are associated with negative fluxes whilst secreted metabolites are described with positive fluxes. (B) As a result of optimising the UCP reaction, the ETC is disengaged from 
ATP production emerging from OXPHOS. Steady-state TCA cycle fluxes are established by the import of alanine, citrate, fumarate, and ɑKG. De novo fatty acid synthesis occurs as 
a result of pyruvate conversion into acetyl-CoA. mitoMammal also predicts the reduction of CoQ by proline, which is produced by 1-Pyrroline-5-Carboxylate (1pyr5c).   
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  Figure 5: Flux distribution following the integration of transcriptomic data from a human brown adipocyte into mitoMammal. (A) Imported (orange bars) and secreted (green 
bars) metabolites predicted from steady-state mitochondrial fluxes of mitochondria from a human brown adipocyte following the integration of transcriptomic data. Imported 
metabolites by convention, are associated with negative fluxes whilst secreted metabolites are described with positive fluxes. (B) Metabolic fluxes are predicted to activate the 
UCP reaction which has the effect of uncoupling the ETC from OXPHOS to support steady-state metabolism during thermogenesis. Import of glycine, fumarate and ɑKG were 
predicted to sustain flux through the TCA cycle. Acetyl-CoA emerging from citrate import was then predicted to feed into de novo fatty acid synthesis. Metabolites exported out 
of the mitochondria were 5-aminolevulinic acid (5aop), proline, succinate, malate and alanine. Fluxes are highlighted in arrow thickness and colour; green colours: positive 
fluxes; orange colours: negative fluxes.   
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The model also predicted a subset of reactions implicated with amino 
acid metabolism to be active in this simulation that was not predicted to 
be active in the mouse BAT simulation. Instead of predicting flux through 
the r0595 reaction that is responsible for methionine and cysteine metab-
olism, the model predicted the consumption of uncoupled protons by 5-
Aminolevulinate Synthase (ALASm) which metabolises glycine into 
5aop_m. The final reaction of this subsystem involved the Glycine-Cleav-
age Complex (GCCAm) which converts glycine and lipoyl protein 
(lpro_m) into amino-methyl dihydrolipoyl protein (Alpro_m). The re-
maining reactions that were predicted to metabolise uncoupled protons 
following UCP reaction optimisation and specific to the human simula-
tions were Malate dehydrogenase (MDMm), a reaction belonging to folate 
metabolism (MTHFCm) and finally a reaction involved in the urea cycle 
(G5SDym). 

4 Discussion 
We present mitoMammal, the first mitochondrial metabolic network re-
construction that serves for modelling mitochondrial metabolism for two 
species, mouse and human. MitoMammal contains two sets of GPR rules, 
one set of mouse genes, and another set of human genes, meaning the 
model can be constrained by integrating -omics data from these two or-
ganisms. Given the high similarity between mouse and human mitochon-
drial metabolism, we had the choice between two possible ways to model 
murine metabolism with -omics data-based constraints: either we would 
transform mouse gene identifiers to human and use the human mitoCore 
model for subsequent constraint-based modelling; or we could generate a 
mitochondrial metabolic model based on mitoCore that could be used for 
both species. We chose the latter, as it first makes the workflow for mod-
elling mito-metabolism for the user straightforward; and second, it also 
allows the researcher to consider metabolic differences between the two 
organisms as each organism comes with its own set of GPR rules. We 
further added the DHODH reduction of CoQ following pyrimidine syn-
thesis as this pathway was absent in mitoCore. As such, mitoMammal is 
the most comprehensive metabolic model of mammalian mitochondria to 
date.  

To demonstrate the model’s ability to model mouse and human mito-
chondrial metabolism we first verified mitoMammal’s ability to capture 
realistic rates of ATP production. We then constrained mitoMammal by 
integrating proteomic data extracted from mouse cardiac tissue and opti-
mised ATP production. Predicted fluxes included lactate production from 
pyruvate and the assimilation of pyruvate into the TCA cycle, the import 
of glycine into the mitochondria and the involvement of CV within 
OXPHOS to produce optimal ATP to support cardiomyocyte mitochon-
drial function. The model also predicted the reduction of CoQ by CI, yet 
fatty acid oxidation to support ATP synthesis was not predicted. These 
predictions are in agreement with data reported on immature cardiomyo-
cytes, which express low levels of fatty acids and high levels of lactate in 
the blood that activates anaerobic glycolysis as the major source of ATP 
production (Karbassi et al., 2020).  

We hypothesise that the reversal of CII in heart is an artefact due to 
missing values in the proteomics data we used. We found that several pro-
teins that are part of the ETC were not detected in the dataset from (Hansen 
et al., 2024). We confirmed this further by using mouse bulk transcriptome 
data from the Tabula muris project (Schaum et al., 2020) from heart tissue 
of 18 months old mice, where flux through the respiratory chain was as 

expected and high, including a forward flux through CII (Supplementary 
Table S3). Given this experience, we hypothesise that the original mito-
Core model was not used in combination with gene expression data, which 
left incorrect GPR rules undetected. The resulting predictions of the model 
also suggest that using constraints based on gene expression data is an 
excellent method to validate the correctness of GPR rules in genome-scale 
metabolic models, as it will reveal problems of the constructed model with 
respect to gene paralogs whose expression is restricted to specific tissues 
(the gene Ndufb11b, as an example, is only expressed in testis and, 
weakly, in the intestine). 

In this simulation, glycine was predicted to be imported into mitochon-
dria and converted to glutamate. Glycine has been shown to protect against 
doxirubicine induced heart toxicity in mice (Shosha et al., 2023) which 
validates this prediction, and highlights the important role of glycine me-
tabolism in cardiomyocytes (Quintanilla-Villanueva et al., 2024) in sus-
taining steady-state metabolism. Glycine has been shown to increase the 
ATP content of mitochondria isolated from cardiac cells, which serves as 
another validation, however in this simulation we chose to optimise ATP 
production, so understanding if glycine plays an essential role in mito-
chondrial metabolism to support optimal ATP yields requires further re-
search, and suggests another application of how mitoMammal can further 
our knowledge in this respect. 

Lactate is reported to fulfil important purposes that include providing 
an energy source for mitochondrial respiration, and being a major gluco-
neogenic precursor. As such, it is heavily involved in cellular signalling 
(Brooks, 2020). Several basic and clinical studies have revealed the role 
that lactate plays in heart failure with the consensus that high blood lactate 
levels indicate poor prognosis for heart failure patients (Zymliński et al., 
2018). Current research on this topic aims to target lactate production, reg-
ulate lactate transport, and modulate circulating lactate levels in an attempt 
to find novel strategies for the treatment of cardiovascular diseases. The 
in-depth knowledge gained by metabolic modelling with mitoMammal 
could also facilitate advances in this field. 

To further demonstrate the usability of mitoMammal with alternative 
objective functions, and to highlight the ability of mitoMammal to model 
mouse and human metabolism, we integrated proteomic data extracted 
from the isolated mitochondria of mouse BAT (Figure 4) and integrated 
transcriptomic data of human BAs (Figure 5). For both simulations, we 
optimised the UCP reaction considering its central role in uncoupling elec-
trons from the ETC and sustaining BAT metabolism (Hansen et al., 2024). 
This leads to the dissipation of the PMF across the inner mitochondrial 
membrane which is essential for BAT function. Despite modelling two 
species with different -omics data sets, modelling BA metabolism with 
either human transcriptome or mouse proteome data resulted in several 
similar flux predictions. One such prediction relates to the metabolism of 
hexadecanoic acid, also known as palmitic acid, which has been shown to 
increase BA differentiation, decrease inflammation and improve whole-
body glucose tolerance in mice (Unno et al., 2018) and humans (Wade et 
al., 2021). These data validate the predictions of hexadecanoic acid me-
tabolism in both simulations.  

Elevated levels of proline have been measured in mammalian BA tissue 
(Okamatsu-Ogura et al., 2020) and elevated levels of proline dehydrogen-
ase have also been associated with BA differentiation, and thermogenesis 
and are correlated with UCP1 activity (Li et al., 2023). In both these 
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simulations, mitoMammal indeed predicted proline reduction of CoQ via 
proline dehydrogenase, which is in line with these published data. Further-
more, it has been proposed that CoQ reduction by proline dehydrogenase 
activates ROS production which then activates signalling pathways that 
facilitate hormone-independent lipid catabolism and support adipose tis-
sue thermogenesis (Lettieri Barbato and Aquilano, 2016; Chouchani et al., 
2017). 

Both simulations of BA metabolism predicted the reverse activity of 
CII. It has been experimentally demonstrated that CII can work in reverse 
in bacterial mitochondria (Maklashina et al., 1998) and mammalian mito-
chondria (Spinelli et al., 2021; Kumar et al., 2022). There is an increasing 
evidence that reversal of Complex II is relevant for brown adipocytes in 
mice. CII reversal has been experimentally verified in conditions where 
oxaloacetate correlates to a reverse CII activity in mice BAT (Som et al., 
2023). The authors demonstrate that high UCP levels resulted with a re-
duced mitochondrial membrane potential, which then consequently low-
ered the NADH/NAD+ ratio, increased oxaloacetate accumulation and re-
versed CII. The authors propose a physiology relevant role of CII reversal 
in regulating ROS production. Metabolic models predict steady-state me-
tabolism, and thus without modification, can’t account for metabolite ac-
cumulation, but as observed in Figure 4A we do predict an import of OAA 
within the mitochondria which again serves as model validation. Simi-
larly, OAA is also predicted to be imported into the mitochondria follow-
ing the integration of human BAT transcriptomic data (Figure 5A). 

We also observed differences in metabolic fluxes when comparing the 
predictions following human transcriptome integration and mouse prote-
omic integration. Following human transcriptomic integration, the model 
predicted the import of pyruvate into the mitochondria which was not pre-
dicted following mouse proteomic data integration. Instead, pyruvate was 
predicted to be converted to mercaptopyruvate (mercppyr). The simula-
tion involving integrating human transcriptomic data also predicted the 
export of 5aopm which was not predicted when integrating mouse prote-
omic data. 5aopm is a precursor metabolite of the heme biosynthesis path-
way and is required for adipocyte differentiation (Moreno‐Navarrete and 
Fernández‐Real, 2024). Disrupted heme biosynthesis in human and mouse 
adipocytes has been shown to result in decreased adipogenesis, impaired 
glucose uptake, and reduced mitochondrial respiration (Handschin et al., 
2005; Moreno‐Navarrete and Fernández‐Real, 2024). These experimental 
discoveries of 5aopm therefore serve to further validate flux predictions 
following transcriptomic data integration and account for the mispredic-
tion associated with proteomic data integration. Alanine was also pre-
dicted to be exported into the mitochondria for the human transcriptome 
simulation, yet the mouse proteomic simulation predicted the import of 
alanine. Alanine import (Rodríguez-Martín and Remesar, 1991) and ex-
port (Frayn et al., 1991) into mammalian BAT tissue has been previously 
reported; however, the more comprehensive analysis reported by (Park et 
al., 2023) describes that alanine is an abundant circulating amino acid and 
functions as a nitrogen carrier where it is transported to the liver for nitro-
gen release. In their paper, the authors observe a net zero exchange flux 
and account for this to an equivalent uptake and release flux of alanine. 
As such, the model's prediction of alanine import could be correct con-
cerning mice metabolism (Figure 4). Regarding human BAT metabolism, 
it is understood that accumulation of glutamate may increase the transam-
ination of pyruvate to alanine (Borkum, 2023; Legendre et al., 2020), 

which mitoMammal predicts, but much less is known of the fate of alanine 
and further research is necessary to validate the specific prediction of the 
directionality of alanine metabolism in human BATs. 

One remaining difference between the predictions (shown in Figures 
4B and 5B) is the activity of ATP synthase (CV) which was reported to 
operate in reverse following integration of RNA sequencing data and pre-
dicted to be inactive following integration of proteomic data from mice. 
MitoMammal represents the activity of CV as a Boolean representation of 
14 genes that share an ‘AND’ relationship and so all 14 genes, or proteins 
need to be expressed to correctly produce all the individual subunits for a 
fully-functional enzyme. For these GPRs, all 14 RNA sequencing tran-
scripts were quantified, and because of the known reversibility of CV, our 
adapted E-Flux algorithm constrained the upper and lower bounds that 
correlated to the lowest transcript level of these 14 genes. As a conse-
quence, mitoMammal in this simulation predicted the reverse activity of 
CV. For the proteomic simulation however, two of the 14 proteins were 
not identified (ENSMUSG00000000563; ENSMUSG00000064357) and 
an additional 4 proteins (ENSMUSG00000006057; 
ENSMUSG00000062683; ENSMUSG00000018770; 
ENSMUSG00000018770) were recorded as zero counts. As such, CV in 
this simulation was effectively constrained to zero and took no part in sus-
taining metabolic flows. ATP synthase (CV) is well known to operate in 
reverse during a wide range of different physiological environments to 
generate a mitochondrial membrane potential through ATP hydrolysis  
(Junge and Nelson, 2015; Acin‐Perez et al., 2023) and the capacity of ATP 
hydrolysis has been observed in mitochondria isolated from BAT from 
mice (Acin‐Perez et al., 2023; Brunetta et al., 2024) and from humans 
(Harb et al., 2023). Reversal of ATP synthase in mice has recently been 
attributed to the activation of Inhibitory Factor 1 (IF1) (encoded by 
Atp5if1/ATP5IF1), which when activated, inhibits the reverse activity of 
ATP synthase. The work by (Brunetta et al., 2024) demonstrates that 
downregulation of IF1 is critical to support ATP hydrolysis, by allowing 
ATP synthase to operate in reverse, which then permits non-shivering 
thermogenesis in mouse BAT. As such, these findings serve to validate 
the predictions made following the integration of human transcriptomic 
data, and highlight limitations of proteomic data in terms of missing data, 
as discussed in (Vanderaa and Gatto, 2021) and (Boys et al., 2023). We 
have indeed quantified this by observing the fact that integrating tran-
scriptomic data resulted in constraining more reactions than proteomic 
data (489 reactions (BA, Human) vs. 329 (BAT mouse) or 330 (Cardiac 
mouse)). 

Regarding the other reactions of the ETC, human BAT transcriptomic 
data integration predicted the reduction of CoQ by G3PDH and proline, 
yet for the mouse proteomic integrated simulation, proline reduced CoQ, 
and G3PDH was predicted to be inactive. G3PDH reduction of CoQ has 
been experimentally determined for BAT in both humans and mice  
(Banerjee et al., 2022; Oh et al., 2024). G3PDH is involved in the glycerol 
3-phosphate shuttle, which, similarly to the MAS, shuttles reducing power 
in the form of NADH from the cytoplasm into the mitochondria. G3PDH 
then oxidises the imported NADH into NAD+ and releases an electron 
which reduces CoQ. Both mouse and human BAT express high levels of 
G3PDH, and knockout of G3PDH in both species are associated with met-
abolic Type 2 diabetes mellitus and obesity (Armani and Caprio, 2023; 
Banerjee et al., 2022; Brown et al., 2002). Given this, we believe the 
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prediction of an inactive G3PDH flux in mice associated with proteomic 
data integration to be a misprediction as the G3PDH protein abundance 
(ENSMUSG00000026827; 331) was identified in the dataset, and so the 
upper bound was constrained to a corresponding positive value and the 
lower bound was constrained to zero. We therefore attribute this error to 
the E-Flux methodology that only constrains the upper bound and neglects 
to constrain the lower bound. This, combined with linear programming to 
maximise an objective reaction meant that in the context of the mouse, the 
lower bound of zero associated to the G3PDH reaction was predicted to 
be used to optimise flux towards the UCP reaction, as such ignoring the 
reactions involvement to satisfy the objective. In the context of the human 
simulation that used transcriptomic data (Figure 5A), the model predicted 
an activity of G3PDH to optimise the UCP reaction, 

Some limitations have to be brought forward with this type of con-
straint-based modelling. For once, it is important to highlight the challenge 
associated with FBA of defining the correct biological objective reaction 
to optimise. While biomass as an approximation for bacterial growth is 
most likely justifiable in many cases, it is difficult to correctly assume a 
correct and foremost unique objective function for eukaryotic cells. There 
are promising developments in the  to circumnavigate this problem, in-
cluding context specific multi-objective optimization (Liu and 
Westerhoff, 2023), or avoidance of the objective completely using flux-
sampling methods (Galuzzi et al., 2023; Herrmann et al., 2019), whereby 
each method comes with its own set of challenges. 

Another limitation of this study is that mitochondria within a cell are 
numerous, and here we are assuming that all mitochondria within one tis-
sue conduct identical metabolism and operate  independently from others, 
which may not be realistic. Mitochondrial activity is also influenced by 
crosstalk with organelles such as the golgi apparatus and endoplasmic re-
ticulum. We chose here to specifically ignore this crosstalk in choosing 
the mitoCore model as a small and concise model that is capable of mod-
elling mitochondrial metabolism. The contribution of other organelles is 
thus limited to observed imported and exported metabolites which, if ex-
perimentally known, can be used to constrain the model. One future re-
search opportunity could be to establish small and precise models of other 
organelles, such as ER or peroxisomes, which then can be connected via 
import / export reactions.  

Finally, we chose the E-Flux algorithm to integrate expression data with 
mitoMammal. As reviewed in (Blazier and Papin, 2012), numerous meth-
ods of omic data integration are available in addition to E-Flux. For ex-
ample, gene Inactivity Moderated by Metabolism and Expression 
(GIMME) compares omic expression levels to a threshold to determine 
sets of active reactions in a metabolic model (Becker and Palsson, 2008), 
whilst Integrative Metabolic Analysis tool (iMAT) uses expression data to 
categorise reactions into high, moderate or lowly active subsets (Shlomi 
et al., 2008). Both these methods incorporate expression data into meta-
bolic models by reducing gene expression levels to discrete binary states. 
The E-Flux method however constrains the upper bound of a reaction to a 
continuous value that is relative to the expression level of the correspond-
ing gene. Because of this, the E-Flux approach offers a more physiologi-
cally relevant method of data integration which is why we used this algo-
rithm in this work. One related limitation, as reported with the original E-
Flux method, is that the method only constrains the upper bounds of irre-
versible reactions, and for reversible reactions, sets the lower bound to a 

negative value of the upper bound, and assumes that expression of a gene 
is proportional to its activity. An algorithm that could constrain both the 
upper and lower reaction constraints would therefore turn this challenge 
into an opportunity by further reducing the solution space to yield more 
accurate predictions. A further limitation of this work relates to the concise 
nature of mitoMammal with its ability to integrate concise omics data spe-
cific to the mitochondria. For this, a good and complete data set is required 
as incomplete data is not adequate to fully constrain the model. This in-
cludes for instance accurately inferred gene expression data of mitochon-
dria-encoded genes.  

We have demonstrated that mitoMammal can be used with different 
objective functions which is a crucial step in constraint-based metabolic 
modelling (Dikicioglu et al., 2015; Schnitzer et al., 2022). In our simula-
tions of heart metabolism, as a consequence of optimising maximum ATP 
production, metabolic flux was predicted to avoid the UCP reaction. This 
prediction has also been experimentally validated in the work of (Hansen 
et al., 2024) who show that the UCP1 protein is inactive for cardiac tissue, 
yet active in BAT cells which highlights the metabolic flexibility of mito-
chondria in supporting tissue-specific function. 
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ɑKG   alpha ketoglutarate 
1PYR5C  1-pyrroline-5-carboxylate reductase  
5AOP  5-aminolevulinic acid 
ALASm  5-aminolevulinate synthase 
ALPRO  amino-methyl dihydrolipoyl protein 
BAT   brown adipose tissue 
CI  complex I 
CII  complex II 
CIII  complex III 
CIV  complex IV 
CV  ATP synthase 
CITtamB  citrate-malate antiporter 
CoQ  coenzyme Q 
DHODH   dihydroorotate dehydrogenase 
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FBA   flux balance analysis 
G3PDH  glycerol-3-phosphate dehydrogenase 
GCCAm  glycine-cleavage complex  
GPR    gene-product-reaction 
HMR  human metabolic reaction 
IF1  inhibitory factor 1 
IPSC   induced pluripotent stem cell 
LPRO  lipoyl protein 
MAS  malate-aspartate shuttle 
MERCPPYR 3-mercaptopyruvic acid 
MMCDm   methylmalonyl coenzyme-A decarboxylase 
P5CRxm  pyrroline-5-carboxylate reductase 
PMF  proton motive force 
PRODH   proline dehydrogenase 
ROS   reactive oxygen species 
SBML  systems biology markup language 
TCA  tricarboxylic acid 
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