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A composite fermion (CF) is a topological quasiparticle that emerges from a nonperturbative attachment of
vortices to electrons in strongly correlated two-dimensional materials. Similar to noninteracting fermions that
form Landau levels in a magnetic field, CFs can fill analogous “Lambda” levels, giving rise to the fractional
quantum Hall (FQH) effect of electrons. Here, we show that Lambda levels can be directly visualized through the
characteristic peak structure in the signal obtained via spectroscopy with scanning tunneling microscopy (STM)
on a FQH state. Complementary to transport, which probes the low-energy properties of CFs, we show that
high-energy features in STM spectra can be interpreted in terms of Lambda levels. We numerically demonstrate
that STM spectra can be accurately modeled using Jain’s CF theory. Our results show that STM provides a
powerful tool for revealing the anatomy of FQH states and identifying physics beyond the noninteracting CF
paradigm.

DOI: 10.1103/PhysRevB.110.L081107

Introduction. Fractional quantum Hall (FQH) phases [1]
of matter possess nonlocal order which gives rise to topolog-
ically quantized Hall conductance, dissipationless boundary
modes, and emergent quasiparticle excitations that are dis-
tinct from fermions or bosons [2–5]. While some of these
properties have been successfully accessed via transport [1]
and interferometry [6,7] measurements, recent advances in
scanning tunneling microscopy (STM) [8–11] have opened
a new window to directly probe FQH states at much higher
energies than in the past. The sensitivity of early spectroscopy
experiments on GaAs materials [12–16] was heavily con-
strained by the two-dimensional electron gas residing deep
inside the semiconductor heterostructures. These limitations
have recently been lifted in two important ways: by utilizing
ultraclean graphene materials, which host FQH states atomi-
cally close to the vacuum [17–24], and by STM tip preparation
[10,11] that allows performing noninvasive imaging of FQH
states. Moreover, in samples with a few defects, STM was
used to directly probe the spatial structure of the Landau orbits
[25], and in materials such as bismuth, it was used to visualize
lattice-symmetry-broken ground states [26].
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In light of these developments, a question arises: what does
the STM, performed on a FQH state, actually measure? A
textbook answer is that STM probes the local density of states
(LDOS) for the injection or removal of an electron from the
system. However, the underlying quasiparticles of FQH states
are composite fermions (CFs) [27]—electrons bound to vor-
tices. Due to the nonperturbative nature of vortex attachment,
predicting the measured STM signal becomes a highly non-
trivial task, as anticipated in early theoretical works [28–30].
At low electron densities insufficient to form a FQH state, the
LDOS can be analytically computed [31–33] and shown to
consist of a series of peaks at energies given by the Haldane
pseudopotentials [34], providing a useful characterization of
the relevant energy scales in a Landau level (LL) [10,16].
By contrast, the understanding of the detailed structure of
the STM spectra in the FQH regime has so far been lacking.
For Jain states at electron filling factors ν = 1/3, 2/5, 3/7,
etc., it was previously argued that a single hole and electron
excitations have finite overlap on a tightly bound state of
multiple CFs, which should manifest as a resonance in the
LDOS [35]. However, recent high-resolution experiments on
Bernal stacked bilayer graphene have reported multiple sharp
resonances for various FQH states realized in this system [11].
Moreover, the observed pattern of resonances displayed an
intriguing asymmetry between the addition and removal of an
electron.

In this Letter, we show that the LDOS, measured by
scanning tunneling spectroscopy on a FQH state, consists
of multiple peaks that can be naturally interpreted as CF
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FIG. 1. (a) Schematic of the STM probe of a ν = 2/5 FQH state
and measured signal on the hole and particle sides. (b) and (c) The
signal peaks are fingerprints of CF Landau levels. The first peak on
the hole side corresponds to the E∗

K = 0 state where five CF holes are
in the lowest two �Ls, as shown (see text for the definition of E∗

K ).
On the particle side, the E∗

K = 0 state is obtained when one electron
is added, corresponding to five CF particles that occupy higher,
n � 2, �Ls.

“Lambda levels” (�Ls)—analogs of LLs of electrons [36];
see Fig. 1 for a schematic summary. We develop an efficient
method for extracting LDOS spectra of FQH states belonging
to the Jain sequence using CF wave functions, and we confirm
its accuracy against exact diagonalization simulations. The
interpretation of LDOS spectra in terms of �Ls explains the
strong asymmetry in the numerically computed spectra for
the addition vs removal of an electron, which relates to the
well-known asymmetry between CF quasiparticles and quasi-
holes. Implications for future experiments and potential uses
of STM as a probe of new FQH states extending beyond the
noninteracting CF paradigm are also discussed.

CF model for LDOS. We consider tunneling an electron
into a FQH ground state |�〉 with N electrons. We assume
the electrons are on the surface of a sphere, with a Dirac
monopole at the center carrying 2Q flux quanta [34]. The
radius of the sphere is R = √

Q�, where � = √
h̄c/eB is the

magnetic length at magnetic field B. We consider Coulomb
interaction for simplicity and express all energies in units of
EC≡e2/ε�. We will focus on uniform FQH states residing in
the lowest LL (LLL), with orbital angular momentum L = 0.
The electron is tunneled into the north pole, which is defined
by the LL orbital with Lz = Q, and the corresponding energy-
resolved LDOS is [37,38]

LDOS(E , Lz = Q) =
∑

n

δ(E − E−
n )|〈n|c−Q|�〉|2

+
∑

n

δ(E − E+
n )|〈n|c†

Q|�〉|2, (1)

where c and c† are the electron annihilation and creation
operators and n runs over all eigenstates with energy E±

n
for N±1 electrons at the same flux 2Q as in the ground
state. For convenience, we will always assume that the tun-
neling process involves removing an electron from the south
pole or adding it to the north pole, resulting in a state with
L = Lz = Q. This can be assumed without any loss of

generality since the FQH ground state is uniform. Henceforth,
we will suppress the Lz dependence.

In principle, one could evaluate LDOS in Eq. (1) by brute
force, obtaining all the eigenstates via exact diagonalization.
However, this severely limits the accessible system sizes, am-
plifying the finite-size effects; furthermore, it sheds little light
on the physics behind any of the observed LDOS features.
We turn to CF theory [27,36] to overcome these obstacles.
In CF theory [27,36], Jain states at fillings ν = n/(2pn±1)
are mapped into integer quantum Hall (IQH) states of CFs
carrying 2p vortices and filling n �Ls in a reduced effective
flux of 2Q∗ = 2Q−2p(N−1) [all CF quantities are marked
by a superscript asterisk (*)]. An example of ν = 2/5 is given
in Fig. 1(b), with the shaded holes also filled. The Jain wave
functions for these FQH states are given by �ν=n/(2pn±1) =
PLLL	±n	

2p
1 , where 	n is the Slater determinant wave func-

tion of n filled LLs (	−n = [	n]∗) and PLLL is the projection
operator to the LLL. From here on in, for convenience, we
shall restrict our discussion to the n/(2n+1) Jain states.

In CF theory, the removal of an electron from an FQH
ground state (i.e., creating a hole excitation) is equivalent to
creating 2n+1 holes in the lowest n �Ls (n = 0, 1, 2, . . .), as
shown in Fig. 1(b). We refer to the “CF space” as the Hilbert
space of 2n+1 holes with L = Lz = Q in the lowest n �Ls.
While the dimension of the Hilbert space of N−1 electrons in
the LLL with 2Q fluxes and L = Lz = Q grows exponentially
with N , the dimension of the CF space is a constant (up to
a linear dependency for small N): for example, at ν = 1/3
there is a unique state, at ν = 2/5 there are 3 states, at ν = 3/7
there are 27 states, etc. This makes the diagonalizations in CF
space much more efficient than in the full LLL space. Further-
more, CF theory provides explicit wave functions for the basis
states that span the CF space, which we write as �−,i

ν=n/(2n+1) =
PLLL	−,i

n 	2
1. Here, 	−,i

n denote Slater determinants, indexed
by i, of N−1 particles, which is equivalent to 2n+1 holes
in the lowest n �Ls at flux 2Q∗ = 2Q−2(N−2), with total
angular momentum L = Lz = Q. These basis states, however,
are not orthogonal, and we perform CF diagonalization (CFD)
[39] to obtain orthonormal states in the CF space, as detailed
in the Supplemental Material (SM) [40].

Similarly, we consider adding one electron at the north
pole. This is equivalent to creating 2n+1 particles in the
m � n �Ls, as shown in Fig. 1(c). The CF space is now
spanned by states of the form �+,i

ν=n/(2n+1) = PLLL	+,i
n 	2

1,
where 	+,i

n are Slater determinants for (2n+1) particles in the
�Ls with index � n at flux 2Q∗ = 2Q−2N with angular mo-
mentum L = Lz = Q. Naively, one might think the dimension
of the CF space for adding one electron would be infinite, as
the �Ls do not have an upper bound. Nevertheless, this is not
true because the CF space is still a subspace of the original
Hilbert space of N+1 electrons in the LLL. This implies that
the basis states of the CF space are not linearly independent.
We classify the CF basis states by their effective kinetic en-
ergy, E∗

K = ∑2n+1
l=1 (nl−n)−E0, where nl is the �L index of

the lth particle and E0 is the minimal value of
∑2n+1

l=1 (nl−n) in
the Lz = Q sector. For instance, E0 = 7 for the configuration
shown in Fig. 1(c). The CF kinetic energy is expressed in units
of h̄ω∗

c , where ω∗
c is the CF cyclotron frequency. In practice,

we carry out CFD in the CF subspace obtained by imposing
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FIG. 2. LDOS for FQH states at ν = 1/3, 2/5, and 3/7, obtained using CF theory reveals distinctive peak structures on the hole and
particle sides. We include the full CF space for the hole side and do a truncation E∗

K � 2 for the particle side. For the hole side, the data are well
converged across the range of systems shown in the legend. The computation of the particle side of the LDOS is computationally intensive due
to the unbounded growth of CF space; hence, convergence was achieved only at ν = 1/3, 2/5, and thus, the particle side is omitted for 3/7.
All energies are quoted in units of EC = e2/ε�.

an upper cutoff on E∗
K and checking for convergence as this

cutoff is increased. Similarly, E∗
K is defined for the hole side

with the replacement nl − n → n − nl [E0 = 1 for the state
shown in Fig. 1(b)].

We refer to the orthonormal states obtained from CFD as
|α±

n 〉 for adding and removing electrons, with the correspond-
ing energy eigenvalues E±

n , and define their corresponding
overlaps with the electron and hole excitations as η+

n =
〈α+

n |c†
Q|�〉 and η−

n = 〈α−
n |c−Q|�〉, where |α±

n 〉, c†
Q|�〉, and

c−Q|�〉 are all normalized to unity. Following Eq. (1), we
define the CF approximation to the LDOS as

LDOS(E ) =
∑

n

[δ(E − E−
n )|η−

n |2+δ(E−E+
n )|η+

n |2]. (2)

When plotting the LDOS, we express the energy relative to
the chemical potential [29], including the appropriate electro-
static corrections as described in the SM [40]. We smear the
δ function in Eq. (2) by a Gaussian of width σ = 0.01EC for
easier visualization.

Results. We benchmarked the accuracy of the above CF
computation of LDOS against exact diagonalization, finding
excellent agreement within the system sizes accessible to both
methods [40]. Although CF theory is known to successfully
capture the ground states and low-lying excitations of Jain
states [5,41], the accuracy of its LDOS approximation is, nev-
ertheless, remarkable, given the smallness of the CF subspace
and the high energies probed by electron tunneling into a FQH
state.

Our main results are presented in Fig. 2, which shows the
LDOS of FQH states at ν = 1/3, 2/5, and 3/7 obtained with
the CF method. These plots reveal characteristic sequences
of LDOS peaks, e.g., one peak on the hole side for ν = 1/3,
three peaks on the particle side for ν = 1/3, and three peaks
on both the hole and particle sides for ν = 2/5. These features
are well converged across a range of system sizes; thus, they
act as a universal “fingerprint” of each state, whose origin will
be elucidated below. The LDOS is particularly well converged
on the hole side, where we kept all basis states in the relevant
CF space. On the particle side, the CF basis is unbounded,
and we must enforce an explicit truncation to keep the compu-
tation tractable. The numerics become computationally more
intensive as the number of CF basis states increases. In Fig. 2,

we restrict the CF subspace to states with E∗
K = 0, 1, 2, which

is sufficient to converge the particle side of LDOS at ν = 1/3
and 2/5. For ν = 3/7, however, this is insufficient to achieve
convergence [40], and we do not show those data in Fig. 2.

To quantify the convergence of the CF calculation of
LDOS, it is instructive to compute the total weight of states
c−Q|�〉 and c†

Q|�〉 in the CF space. If the total weight extrap-
olates to a value of the order of unity in the thermodynamic
limit, we can be confident that the CF approximation is cap-
turing the key spectral features associated with the addition
or removal of an electron from a FQH state. These weights
are shown in Fig. 3 for ν = 1/3, 2/5, and 3/7 FQH states
as a function of 1/N . We see that the hole excitation fully
resides within CF space, i.e., the total overlap of c−Q|�〉 on
the CF basis is unity, and thus, the hole side of the LDOS is
fully captured by the CF theory. On the other hand, due to
the imposed truncation, the support of c†

Q|�〉 in the truncated
CF space is generally less than 1; thus, the particle side of
LDOS is only partly captured by CF theory. In particular,

FIG. 3. Total weight
∑

n |η−
n |2, which represents the amplitude

of cQ|�〉 in the CF space, is unity. This shows the hole state is fully
contained within the CF space. Inset: Total weight

∑
n |η+

n |2, i.e., the
amplitude of the state c†

Q|�〉 in the CF space. Lines are linear fits
through the data. These amplitudes can be increased by increasing
the value of E∗

K at which we truncate (see text; we choose E∗
K � 2).
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FIG. 4. Reconstructing the full LDOS by populating successive
�Ls with CFs in (a) the ν = 1/3 and (b) 2/5 states with N = 20
electrons and (c) ν = 3/7 with N = 21 electrons. The plots show
the LDOS in different CF subspaces made up of states with a single
value of E∗

K for the particle or hole side, indicated in the legend, after
removing all contributions with lower values of E∗

K . Each LDOS peak
is associated with a definite CF kinetic energy. Black dashed lines
represent the full LDOS from Fig. 2.

in the thermodynamic limit, the truncated CF space captures
about 80% of the electron excitation for ν = 1/3 and 40% for
ν = 2/5. This number is expected to increase as we include
more states with higher E∗

K .
We note that Ref. [35] computed overlaps similar to those

in Fig. 3 by keeping only the unique state with the lowest E∗
K

for both the particle and hole sides. By contrast, we include
the full CF space on the hole side and a much bigger portion
of CF space on the particle side. Nevertheless, even when
restricting ourselves to the unique state with the lowest E∗

K ,
we find overlaps larger than those reported in Ref. [35]. Our
results have been additionally verified by direct calculation in
the Fock space for small N [42,43].

Relating LDOS peaks to �Ls. The CF theory not only
allows us to model LDOS quantitatively but also provides an
understanding of the origins of peaks. We surmise that each
peak can be associated with CF states that carry a well-defined
value of the kinetic energy E∗

K . Numerical tests of this hypoth-
esis are summarized in Fig. 4.

We first look at the simplest case: the hole side of ν = 1/3.
In this case, there is only a unique state in the CF space with
L = Lz = Q, and it is clear from Fig. 2 that this CF state
accounts for the only peak seen in this case [28]. Next, we
consider the particle side of ν = 1/3. We first look at the CF
space of the E∗

K = 0 state, where there is only one state. We
find that this state perfectly captures the lowest energy peak
(blue line) on the particle side as shown in Fig. 4(a). Next,
we go to the subspace made up of states with E∗

K = 1. Unlike
in the IQH case, the states with different E∗

K are not naturally
orthogonal to each other [39,41,44,45]. Therefore, we apply
the Gram-Schmidt procedure to obtain a new basis for E∗

K = 1
which is orthogonal to the states with E∗

K = 0. We then carry
out CFD on this new basis to obtain the LDOS [40]. After
this, we find that the states in the resultant subspace perfectly
capture the second peak (orange line) on the particle side.
Finally, we repeat the above procedure for E∗

K = 2. While the
peak height (green line) corresponding to this subspace does
not perfectly match the third peak, the energy range where
it occurs agrees well. We performed a similar analysis for
ν = 2/5 and the hole side of ν = 3/7, finding similarly good
agreement [see Figs. 4(b) and 4(c)].

Conclusions and discussion. We proposed that STM ex-
periments, performed on FQH states belonging to the primary
Jain sequence ν = n/(2n+1), can reveal sharp resonances
associated with CF LLs. For sufficiently small n � 3, these
features were shown to be robust across various system sizes,
with good agreement between CF theory and exact numerics,
despite the high energy of excitations probed in this setup.

A recent experiment on Bernal stacked bilayer graphene
[11] reported three LDOS peaks for electronlike excitation
for ν = 3/5, which would correspond to our predicted ν =
2/5 holelike excitation. In contrast, in the same experiment,
ν = 2/3 appeared to show not just one electronlike peak,
but two, which our model would predict to have just one
resonance. Future experiments would be required to make
comparisons with our theoretical prediction. In particular, an
important test for identifying the predicted �L peaks would
be precise measurements of their field dependence. All the
peaks in this work are interaction driven; hence, their positions
should scale as EC∝√

B. This would distinguish them, e.g.,
from additional features associated with the spin physics of
CFs. Furthermore, for a direct comparison with experiment, it
would be necessary to also include the effects of disorder and
screening. Nevertheless, while these effects may impact the
precise shape of LDOS spectra, we expect the correspondence
between peaks and CF kinetic energy to continue to hold. We
reserve detailed investigation of these effects for future work.

For larger n, i.e., filling factors approaching ν = 1/2, the
calculations presented above are expected to become signifi-
cantly harder due to the faster growth of CF space. Moreover,
the CF cyclotron energy becomes smaller as the CF Fermi liq-
uid state at 1/2 is approached, implying that the identification
of LDOS peaks with CF �Ls may no longer be as straightfor-
ward as in Fig. 4 above. Due to the “aliasing” problem on the
sphere [46], the study of such FQH states would also require
larger system sizes, presenting an interesting challenge for
theory.

Finally, our study opens up several interesting questions.
Additional degrees of freedom such as spin, layer, valley, etc.,
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will naturally give rise to richer LDOS spectra that could
be studied using the present method. On the other hand, for
higher-order CF states such as those at ν = 2/7, 2/9 (where
non-CF partonic features might be present [47]) and for states
beyond the noninteracting CF paradigm, e.g., the paired ν =
5/2 state, a different approach altogether may be needed to un-
derstand the LDOS. Consequently, we expect some violations
of the peak structure identified above, which could serve as a
diagnostic tool for unconventional physics extending beyond
the standard CF theory at high energies [47,48].

Noted added. Recently, we became aware of a related work
by Gattu et al. [49] which also studies the CF description of
LDOS of FQH states.
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