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ABSTRACT: Near-infrared (NIR) luminescence and photoacoustic (PA) imaging have attracted an increasing attention for the 
real-time monitoring of biological samples due to high sensitivity, resolution and pronounced signal detection depth, respectively. 
For improved contrast, both techniques require imaging agents possessing high absorption in the red-NIR range. Herein, we took 
advantage of a ternary complex formed with the anionic ytterbium(III) tetrakis(2-thenoyltrifluoroacetonate) ([Yb(tta)4]–) and the 
cationic NIR-absorbing chromophore, 1,1′-diethyl-2,2′-dicarbocyanine (Cy+) to evaluate its potential to act as a dual-mode NIR 
luminescence and PA imaging agent. We demonstrated that, upon excitation with red-NIR light, Cy[Yb(tta)4] encapsulated into 
polystyrene nanoparticles is able to generate both NIR Yb3+ emission and PA signal in an imaging experiment performed in a 
tissue-mimicking phantom. 

The field of molecular imaging and medical diagnosis has 
witnessed an exponential growth in the last few years, largely 
due to the rapid development of non-invasive, real-time, easy 
to use, portable and convenient for patient imaging modali-
ties. Among them, near-infrared (NIR) luminescence1-3 and 
photoacoustic (PA) imaging4-7 use non-ionizing excitation fol-
lowed by the detection of emission signals or acoustic waves, 
respectively. NIR luminescence imaging is a very sensitive 
technique that allows molecular visualizations with high res-
olution (<10 µm) and contrast at depths of few mm. 2-3, 8 Due 
to different absorption of light by biological molecules (hemo-
globin, lipids, collagen, water), PA imaging, depending on the 
configuration and the frequency of the ultrasound detector 
that is used, can offer anatomic and functional information in 
addition to molecular imaging at depths up to 6 cm.9-11 

To enhance contrast both NIR luminescence and PA imag-
ing modalities require the use of imaging agents possessing 
specific properties, a common one being a high absorbance in 
the biological transparency window (650–1700 nm).1-2, 12 Since 
acoustic waves are much less attenuated by biological mole-
cules than light, dual-mode NIR luminescence and PA imag-
ing agents will allow to collect images at greater depths and 
complement optical performance by absorption contrast in-
formation, e.g. tissue vascularization and oxygenation, or li-
pids concentration, therefore, broadening the scope of the de-
tection and diagnostic. In respect to biology, a single imaging 
agent implies a unique characterization of its behavior (bio-
distribution, toxicity and kinetics). As of today the number of 
such dual-mode imaging probes remains scarce13-18 despite the 
increasing demand.19 

Lanthanide(III)-based probes have shown to be promising 
candidates for NIR luminescence imaging20-22 because of their 
unique optical properties23 resulting from the forbidden na-
ture of most of f-f transitions, such as line-like emission bands 
in the visible and in the NIR domains with fixed barycenter 
positions and excellent photostability.24-25 However, free lan-
thanide(III) cations (Ln3+) have very low absorption cross-sec-
tions. To generate a sufficient number of photons using ordi-
nary excitation sources, they need to be sensitized with a 
highly absorbing chromophore which can absorb the excita-
tion light and transfer the resulting energy to the electronic 
levels of Ln3+, leading to their characteristic emission. This 
process is called the “antenna effect”.26-27 

Luminescent Ln3+ β-diketonates28 have been used for bio-
logical applications due to the ease of synthesis and the versa-
tility of the chemistry of the β-diketones.29 However, except 
few examples,30-34 the majority of luminescent Ln3+ β-diketo-
nates can only be sensitized by UV- or blue-absorbing chro-
mophores.23, 29, 35 In general, the creation of biologically com-
patible NIR-absorbing-NIR-emitting (NIR-NIR) Ln3+ com-
plexes remains a challenge.30-31 A few examples are based on 
Ln3+ tetrapyrrole and Kläui ligands,36 while the most relevant 
one is Er3+ bacteriochlorin.37 Such complexes usually require 
multi-step syntheses and Q bands at wavelengths above 600 
nm exhibit low absorptivity (ε < 104 M-1cm-1). We have there-
fore designed, synthesized and characterized a tetrakis 
β-diketonate Cy[Yb(tta)4] (Figure 1) containing a NIR-
emitting Yb3+, a NIR-absorbing cationic chromophore 1,1′-di-
ethyl-2,2′-dicarbocyanine (Cy+) with a large molar absorption 



 

coefficient (ε710 nm ~2.5·105 M-1cm-1) and four 2-thenoyltri-
fluoroacetonate (tta–) ligands. To ensure stability in aqueous 
solution and allow NIR and PA imaging experiments using 
specially-designed phantoms mimicking blood vessels and bi-
ological tissues, Cy[Yb(tta)4] has been encapsulated inside 
100-nm NH2-functionalized polystyrene (PS/NH2) nanoparti-
cles (NPs). The resulting Cy[Yb(tta)4]_α@PS/NH2 NPs (α is the 
loading concentration, vide infra and Supporting Information) 
have been used in a proof-of-concept demonstration of their 
ability to, upon NIR excitation, emit NIR light and generate 
PA signal. 

Cy[Yb(tta)4] was synthesized in a one-step reaction using an 
adapted literature procedure38 from Cy iodide, Htta and 
Yb(NO3)3·5H2O in EtOH-H2O (Scheme S1). Its composition 
was confirmed by elemental analysis, PXRD and FTIR spec-
troscopy (Supporting Information). A single crystal of 
(Cy[Yb(tta)4])3(CH3CN)4(Et2O)2 was obtained by diffusion of 
Et2O vapors into an acetonitrile saturated solution of 
Cy[Yb(tta)4]. Crystallographic analysis (Figure 1) has revealed 
that it is constituted by Cy+ and [Yb(tta)4]–, with the shortest 
distance between Cy+ and Yb3+ being ~7.3 Å. Yb3+ is coordi-
nated by eight oxygen atoms belonging to four tta– ligands and 
adopts a distorted square antiprismatic coordination environ-
ment (Figure S1). No solvent molecule is directly coordinated 
to Yb3+. 

 

Figure 1. Molecular structure of 
(Cy[Yb(tta)4])3(CH3CN)4(Et2O)2 obtained from X-ray diffrac-
tion on a single crystal. Thermal ellipsoids are drawn at 50% 
probability (Ortep view). Hydrogen atoms and lattice solvent 
molecules are omitted for clarity. Colour code: C, white; O, 
red, N, blue, S, yellow, F, green; Yb, brown. 

The photophysical properties of Cy[Yb(tta)4] have been stud-
ied in DMF solution. The absorption spectrum (Figure 2, 
dashed trace, Figure S5) of Cy[Yb(tta)4] presents a broad band 

in the red-NIR spectral range (550-780 nm; ε715nm= 2.16·105 M-

1cm-1) that can be assigned to π→π* transitions of the Cy+ chro-
mophore.39-40 Under excitation at 660 or 715 nm, Cy[Yb(tta)4] 
exhibits the characteristic Yb3+ emission signal centered at 980 
nm assigned to the 2F5/2→2F7/2 transition (Figure 2, Figure S7). 
As Yb3+ and tta– do not possess any electronic transitions in 
the range of 500–800 nm, the only possibility to populate the 
excited states of Yb3+ is by using the electronic structure of 

Cy+, generating this way an “antenna effect”.26 An evaluation 
of the resistance to photobleaching was performed in solution 
by comparing, upon constant illumination at 660 nm, the in-
tensity of the Yb3+ signal arising from Cy[Yb(tta)4] with the 
broad-band signal of the free Cy iodide that possess an appar-
ent maximum of emission at 750 nm. A lower decrease of the 
emission signal is observed for Cy[Yb(tta)4] as a strong indica-
tion of a higher photostability (Figure S9). Experimental lumi-
nescence decay curves upon monitoring the emission of Yb3+ 
at 980 nm have been best fitted with a mono-exponential 
function (τobs = 8.2±0.7 µs) confirming the presence of only 
one type of Yb3+-emitting species in the DMF solution of 
Cy[Yb(tta)4] and being in agreement with the molecular struc-
ture (Figure 1). Mono-exponential luminescence decays were 
also observed in CH3OH and CD3OD solutions of Cy[Yb(tta)4]. 
The obtained values of τobs (1.4±0.1 µs and 18.5±0.1 µs, respec-
tively) allowed to estimate the Yb3+ hydration number q which 

was found to be one (Table S4).41 Quantum yields (𝑄𝑌𝑏
𝐶𝑦

) were 

measured in DMF solution to evaluate the global efficiency of 
the Yb3+ sensitization upon Cy+ excitation at 660 nm. The ob-
tained value of (3.5±0.4)·10–4 is high in comparison to the 
quantum yields of the few examples of NIR-NIR coordination 
compounds such as Yb3+ MOF (9.0·10–5, λex = 660 nm, in 
solid)34 or Er3+ bacteriochlorin complex (1.38·10–4, λex = 760 nm, 
in CH2Cl2).37  
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Figure 2. Corrected and normalized (left – solid black traces) 
excitation spectra (λem = 980 nm) and (right – solid red traces) 
emission spectra (λex = 660 nm) of Cy[Yb(tta)4] (14 µM in 
DMF) at room temperature. Normalized absorption spectrum 
is superimposed for comparison (dashed grey traces). 

To evaluate the potential of Cy[Yb(tta)4] for NIR and PA im-
aging and to overcome its limited solubility in water, we 
loaded it inside 100 nm polystyrene NPs coated with NH2 
groups (PS/NH2) using a swelling methodology (Supporting 
Information).42 Aqueous suspensions of colored 
Cy[Yb(tta)4]_α@PS/NH2 NPs with different loading concen-
trations α (0.54–108 nmol/mg, Table S5) were obtained. For 
comparison, we also prepared aqueous suspensions of Cy io-
dide incorporated NPs (Cy iodide_β@PS/NH2) with different 
loading concentrations β (0.37–76 nmol/mg, Table S6). 

Upon excitation at 660 or 750 nm into the π→π* bands located 
on the Cy+ chromophore (Figure S22), aqueous suspensions of 
Cy[Yb(tta)4]_α@PS/NH2 NPs with α≥30 nmol/mg exhibit NIR 
Yb3+ emission (Figures S25). Moreover, excitation spectra are 
similar to the ones acquired for the free Cy[Yb(tta)4] complex 
in DMF and match the shapes of the absorption ones. These 
observations show that the incorporation of the Yb3+ complex 
in the PS/NH2 NPs doesn’t affect its spectral properties and 
that the antenna effect is maintained. 



 

Quantitative photophysical data were also collected for 
Cy[Yb(tta)4]_α@PS/NH2 NPs with the highest loading concen-
tration α (108 nmol/mg). Luminescence decay curves obtained 
upon monitoring the emission at 980 nm were best fitted with 
a bi-exponential function, indicating the presence of Yb3+ in 
two different coordination environments. The longest τobs 
(2.5±0.6 µs) can be associated with Yb3+ located in the core of 
the NPs. The shortest value of τobs (0.35±0.05 µs) corresponds 
toYb3+ located closer to the surface, being therefore more ex-
posed to sources of non-radiative deactivations.42-43 The meas-

ured 𝑄𝑌𝑏
𝐶𝑦

 value of (3.8±0.4)·10–6 is the first example of an abso-

lute quantum yield for a water-compatible system based on a 
NIR-NIR Yb3+ complex formed with an organic ligand. 

A significant decrease of the 𝑄𝑌𝑏
𝐶𝑦

 was observed for Cy[Yb(tta)4] 

when loaded inside of NPs and measured in water. This be-
havior can be attributed to a non-radiative quenching of Yb3+ 
through the overtones of O–H vibrations of the water mole-
cules that is also reflected by the shortening of Yb3+ τobs values. 

PA properties of aqueous suspensions of 
Cy[Yb(tta)4]_α@PS/NH2 and Cy iodide_β@PS/NH2 NPs were 
investigated using blood vessels mimicking polymer tubes in-
serted into a custom-made phantom filled with water44 (Fig-
ure S29). PA spectra profiles of both types of NPs, 
Cy[Yb(tta)4]_α@PS/NH2 (Figure 3a, solid traces) and Cy io-
dide_β@PS/NH2 (Figure S30), are similar to those of the cor-
responding absorption spectra17, 45-48 (Figure 3a, dashed traces; 
Figures S22-23). Quantitative data were obtained by measur-
ing the PA signal intensity at its maximum (λex = 720 nm). The 
analysis of these results reveals that the PA signal intensity de-
pends linearly (i) on the amount of molecules loaded in NPs, 
α or β (Figure 3b), and (ii) on the concentration of NPs in sus-
pension45 (Figure S31). For a comparable amount of chromo-
phores per NP, Cy[Yb(tta)4]_α@PS/NH2 generates a twice 
more intense PA signal in comparison to Cy io-
dide_β@PS/NH2 NPs (Figure 3b, Figure S32). This enhance-
ment is attributed to the difference between the absorption 
spectra of Cy[Yb(tta)4]_α@PS/NH2 and Cy iodide_β@PS/NH2 
NPs (Figures S22-23). Moreover, for a similar chromophore 
concentration, Cy[Yb(tta)4]_α@PS/NH2 NPs show a PA signal 
that is as intense as the one recorded for the indocyanine 
green (Figure S32), an FDA approved molecule which is con-
sidered to be a gold standard for in vivo PA imaging.49 

 

Figure 3. (a) PA spectra (left scale, solid traces, α = 0.54–108 
nmol/mg) and the corresponding absorption spectrum (right 
scale, dashed trace, α = 62 nmol/mg) of 
Cy[Yb(tta)4]_α@PS/NH2 NPs. (b) Dependence of the PA signal 
recorded upon excitation at 720 nm on α 
(Cy[Yb(tta)4]_α@PS/NH2, red line, R2 = 0.995) or β (Cy io-
dide_β@PS/NH2, blue line, R2 = 0.96). All data for 10 mg/mL 
aqueous suspensions of NPs. 

 

Figure 4. Color images of blood vessels mimicking polymer tubes filled with (1, 3, 5) water or 10 mg/mL aqueous suspensions of (2) 
PS/NH2 and (4) Cy[Yb(tta)4]_α@PS/NH2 (α = 108 nmol/mg) NPs, and inserted into a custom-made phantom (a) without media 
and (b) filled with tissue-mimicking media (thickness of the top layer is 3 mm). (c) NIR luminescence image upon laser excitation 
at 637 nm. Yb3+ signal was detected with a 996 nm band-pass 70 nm filter, τexp = 2 ms. (d) Ultrasound, (e) PA and (f) merge of (d) 
and (e) images; λex = 720 nm.  
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To further evaluate the potential of Cy[Yb(tta)4]_α@PS/NH2 
(α = 108 nmol/mg) NPs as imaging agents, NIR luminescence 
and PA images were acquired using a custom-designed phan-
tom filled with tissue-mimicking media and containing blood 
vessels mimicking polymer tubes (Figure 4, Figure S33). NIR 
Yb3+ luminescence, although scattered, was unambiguously 
detected through a 3 mm layer of a tissue-mimicking media. 
In addition, sharp PA signal arising from the tube filled with 
an aqueous suspension of Cy[Yb(tta)4]_α@PS/NH2 NPs was 
clearly distinguished by superposition of ultrasound and PA 
images obtained upon excitation at 720 nm. 

In summary, we have created NIR-NIR Yb3+ complex that 
can operate as a dual-mode NIR luminescence and PA imaging 
agent. We took advantage of Cy[Yb(tta)4] that contains Yb3+ 
tetrakis(2-thenoyltrifluoroacetonate) and a cyanine chromo-
phore with large molar absorptivity at low energies. When ex-
cited with red-NIR light, Cy[Yb(tta)4] in solution demon-
strates the highest Ln3+ quantum yield among NIR-NIR Ln3+ 
complexes reported to date.34, 37 Moreover, Yb3+ NIR lumines-
cence and PA signals arising from aqueous suspensions of 
PS/NH2 NPs loaded with Cy[Yb(tta)4] could be unambigu-
ously detected through a 3 mm of a tissue-mimicking phan-
tom under excitation with red-NIR light. These results show 
great promises for the creation of a new generation of imaging 
agents based on Cy[Yb(tta)4]@ PS/NH2 NPs, while the quanti-
fication of the Yb3+ emission in the NIR is the first example of 
an absolute quantum yield for the NIR-NIR water-compatible 
system based on Yb3+ complex. Remaining a proof-of-concept 
work, we believe that the same strategy, due to its versatility, 
can be extended to other NIR luminescence and/or PA imag-
ing agents based on NIR-NIR Ln3+ coordination compounds 
towards practical applications. 

The Supporting Information is available free of charge on the 
ACS Publications website.  
Experimental details and additional information about the 
synthesis and characterization of Cy[Ln(tta)4], 
Cy[Yb(tta)4]_α@PS/NH2 and Cy iodide_β@PS/NH2, including 
absorption spectroscopy, dynamic light scattering, inductively 
coupled plasma atomic emission spectroscopy, Fourier-trans-
form infrared spectroscopy, single crystal and powder X-ray 
diffraction, photoluminescence spectroscopy, NIR lumines-
cence and PA imaging data (PDF). 
Crystal structure of (Cy[Yb(tta)4])3(CH3CN)4(Et2O)2. CCDC 
2172491 contains the supplementary crystallographic data for 
this paper. The data can be obtained free of charge from The 
Cambridge Crystallographic Data Centre via 
www.ccdc.cam.ac.uk/structures. 
Printable file for the custom-made 3D printed phantom 
(Phantome_insert and Phantome_support.123dx). 
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CNRS UPR4301, Université d’Orléans, Rue Charles Sadron, 
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