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Abstract The Mexico City Metropolitan Area (MCMA) stands as one of the most densely populated urban
regions globally. To quantify the urban CO2 emissions in the MCMA, we independently assimilated
observations from a dense column‐integrated Fourier transform infrared (FTIR) network and OCO‐3 Snapshot
Area Map observations between October 2020 and May 2021. Applying a computationally efficient analytical
Bayesian inversion technique, we inverted for surface fluxes at high spatio‐temporal resolutions (1‐km and 1‐
hr). The fossil fuel (FF) emission estimates of 5.08 and 6.77 GgCO2/hr reported by the global and local emission
inventories were optimized to 4.85 and 5.51 GgCO2/hr based on FTIR observations over this 7 month period,
highlighting a convergence of posterior estimates. The modeled biogenic flux estimate of − 0.14 GgCO2/hr was
improved to − 0.33 to − 0.27 GgCO2/hr, respectively. It is worth noting that utilizing observations from three
primary sites significantly enhanced the accuracy of estimates (13.6∼29.2%) around the other four. Using FTIR
posterior estimates can improve simulation with the OCO‐3 data set. OCO‐3 shows a similar decreasing trend in
FF emissions (from 6.37 GgCO2/hr to 6.36 and 5.04 GgCO2/hr) as FTIR, but its correction trends for biogenic
sources differ, changing from 0.37 to 0.48 GgCO2/hr. The primary reason is OCO‐3's lower temporal sampling
density. Aligning the FTIR inversion timing with that of OCO‐3 yielded comparable corrections for FF
emissions, yet discrepancies in biogenic emissions persisted, which can be attributed to their different sampling
locations in the rural region and discrepancy in XCO2 observations. Our findings mark a significant step toward
validating OCO‐3 and FTIR inversion results in metropolitan region.

Plain Language Summary Urban areas are significant hotspots for CO2 emissions due to their high
energy consumption, prompting a strong push toward ambitious greenhouse gas reduction initiatives. Our study
harnessed data from the OCO‐3 satellite and an extensive ground‐based sensor network to map CO2
concentrations on an intra‐city scale, aiming to update outdated emission inventories. We delved into the effects
of observed CO2 gradient differences on the optimization results, leveraging these two distinct data sources.
Although both OCO‐3 satellite and ground‐based observations offer detailed insights into Mexico City's urban
region, they reveal discrepancies in the sampling of rural area data. The local FF inventory, when constrained by
ground‐based observations, indicates an 18.73% overestimation, whereas the OCO‐3 data set points to only a
6.44% overestimation. Our findings highlight that utilizing ground‐based observations exclusively during OCO‐
3 overpass times aligns the correction from ground‐based data (6.41% overestimation) with that derived from
the OCO‐3 data. However, biogenic emissions optimization differs significantly, primarily due to OCO‐3's
limited rural observations, the rural sampling locations, and the discrepancies in observed XCO2 values in these
data sets.

1. Introduction
Cities and city agglomerations, serving as hubs for approximately 57% of the global population (Dorrell
et al., 2024), are accountable for over 80% of energy consumption and have produced approximately 75% of the
global carbon dioxide (CO2) emissions in the past decades, thus pose a serious threat to global CO2 emissions
control (Hong et al., 2022). Numerous cities have committed to reducing CO2 emissions to mitigate the accel-
erating impact of climate change resulting from human activities (Ahn et al., 2023). The monitoring and
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quantification of CO2 emissions in cities offer valuable insights for policymakers to draft and implement effective
carbon reduction strategies (Gately & Hutyra, 2017; Gately et al., 2015; Gurney et al., 2015; Lauvaux
et al., 2020).

Two prevalent methodologies for quantifying CO2 emissions in urban regions are the “bottom‐up” and “top‐
down” approaches. The first involves the disaggregation of national or provincial statistical data over urban areas
or the aggregation of various contributors, utilizing various “proxy” activity data sets, such as the emission factors
from industry, traffic and road maps, nightlight information, fuel consumption, etc (Guo et al., 2023). This
method encounters challenges not only in obtaining the latest data but also introduces significant uncertainties
arising from the diversity in methods and tools (G. Chen et al., 2019; Gately & Hutyra, 2017; Oda et al., 2019).
Despite concerted efforts in bottom‐up urban inventories to address issues such as substantial latency and res-
olution problems through innovations such as near‐real‐time carbon monitoring inventories for cities (Huo
et al., 2022), there persists a lack of validation to support city‐wide urban CO2 planning. In contrast, “top‐down”
atmospheric observations offer a more comprehensive perspective, furnishing robust validation or updates for
bottom‐up inventories but often lacking the granularity to evaluate specific mitigation actions at the sectoral or
district levels (Gurney et al., 2019; Lauvaux et al., 2016; Newman et al., 2016).

Observed urban CO2 enhancements can provide valuable information in quantifying urban CO2 emissions.
Specifically, total column measurements offer distinct advantages over in situ measurements since these exhibit
reduced sensitivity to vertical transport errors (Lauvaux & Davis, 2014). Thus, the three‐dimensional perspective
in in situ measurements are simplified into a more relevant two‐dimensional (2‐D) view, closely aligned with the
horizontally distributed emissions (Wunch et al., 2011). This characteristic proves advantageous for background
selection. Since CO2 is an inert gas, most of the observed CO2 concentration comes from long‐range and medium‐
range air masses (so called “background concentrations”), which is crucial when estimating enhancements.
Common methods for background selection include using 2‐D approximations with spatially adjacent satellite
measurements (Li et al., 2023; Qin et al., 2023), extracting data from global models (Yang et al., 2020) or directly
obtaining data from observations (Che et al., 2022; Lauvaux et al., 2016). In the case of in situ measurements, the
intricacy of background selection is heightened, requiring careful consideration of the CO2 concentration at the
altitude corresponding to the endpoint of the observation's backward trajectory (Sargent et al., 2018). Column
measurements with different observation strategies have been proven to effectively minimize background errors,
particularly beneficial for larger cities with high pollution levels (Che et al., 2022; J. Chen et al., 2016; Shekhar
et al., 2020).

Column measurements are classified as ground‐ and space‐based observations. The Total Carbon Column
Observing Network (TCCON) and Collaborative Carbon Column Observing Network (COCCON) are two global
initiatives that set the guidelines of ground‐based measurements with Fourier transform spectrometers, from
which the CO2 column‐averaged dry‐air mixing ratio (XCO2) are retrieved from their spectral absorption features
in the direct solar sunlight. TCCON uses the standard IFS125 HR high‐resolution instrument (spectral resolution
better than 0.02 cm− 1), whereas the COCCON strategy relies on the lower resolution EM27/SUN (better than 0.5
cm− 1) instrument that can deliver XCO2 measurements with sufficient quality and has the additional advantage of
portability (Alberti et al., 2022). Thus, the COCCON network serves as a valuable complement to the existing
more stationary TCCON network, offering the possibility for the deployment of dense COCCON networks within
urban areas. Field campaign deployment has proven effective in quantifying urban CO2 emissions as demon-
strated in various cities such as Berlin (Hase et al., 2015; Zhao et al., 2019), Paris (Vogel et al., 2019), Indianapolis
(Jones et al., 2021), Munich (Dietrich et al., 2021; Rißmann et al., 2022; Zhao et al., 2022), Beijing (Cai
et al., 2021; Che et al., 2022), St Petersburg (Ionov et al., 2021), Tokyo (Ohyama et al., 2023), and Madrid (Tu
et al., 2022). Simplified methods have been tested, such as employing the mean wind with differential COCCON
gradients to infer local emissions (J. Chen et al., 2016; Taquet et al., 2024) or cross‐sectional flux method with
mobile measurements to determine the source intensity (Luther et al., 2019). A more comprehensive approach
involves using an inversion system to update prior urban estimates, particularly suitable for certain sites that
account for computational considerations (Che et al., 2022; Jones et al., 2021; Lauvaux et al., 2016; Nalini
et al., 2022; Ohyama et al., 2023; Pisso et al., 2019).

The NASA Orbiting Carbon Observatory‐3 (OCO‐3) mission collected XCO2 concentrations from May 2019
until November 2023 (Eldering et al., 2019; Taylor et al., 2020). Its innovative feature is to map out CO2 column
measurements over regional spatial‐scale emitters like cities or point sources (industries, power plants) using a
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targeted observation mode called Snapshot AreaMaps (SAMs). OCO‐3 SAMs have demonstrated their capability
to enhance estimates of FF CO2 emissions, as validated through synthetic Bayesian experiments conducted over
the Los Angeles Basin (Kiel et al., 2021; Roten et al., 2022). Subsequently, Roten et al. (2023) employed Bayesian
inversion techniques to analyze real SAMs observations, providing further evidence of its effectiveness in dis-
entangling specific events impacting the CO2 emissions within the Los Angeles Basin. OCO‐3 SAMs also can be
used to assess the point CO2 emissions from power plants, often in conjunction with Gaussian plume models or
cross‐sectional flux methods (Cusworth et al., 2023; Guo et al., 2023; Hakkarainen et al., 2023; Lin et al., 2023).
Nevertheless, factors such as aerosols with undetermined optical or geometry‐related properties introduce biases
in SAMs observations (Bell et al., 2023). Accurate differentiation of urban‐scale XCO2 signals requires validation
through ground‐based Fourier transform infrared (FTIR) measurements. Kiel et al. (2021) found a reasonable
consistency between TCCON sites (with an Root Mean Square Error (RMSE) of 0.23 ppm) and OCO‐3 SAMs
over Los Angeles. Zhou et al. (2022) identified a positive XCO2 difference of 0.92 ppm in the urban area of
Beijing and 1.48 ppm in the surrounding countryside through urban‐rural EM27/SUNmeasurements compared to
OCO‐3 SAMs. A higher error estimate of 1.06 (±1.08) ppm between OCO‐3 and a dense FTIR network was
found over Mexico City (Che et al., 2024b). The measurements conducted in the tropical African city of Jinja
using EM27/SUN indicate a lower estimate of 1.15 (±1.61) ppm for OCO‐3 (Humpage et al., 2023). This prompts
an exploration into the capability of OCO‐3 SAMs as an observational constraint for urban CO2 emissions. A
potential approach is to compare the inversion results from OCO‐3 and FTIR for urban areas under various
conditions to determine more rigorously the potential of XCO2 retrievals from space to constrain urban CO2
emissions.

The Mexico City Metropolitan Area (MCMA) has become the most populous urban region in North America and
in the top five megacities worldwide (around 22 million inhabitants as of 2023). To quantify the urban CO2
emissions in the MCMA, a dense network of FTIR spectrometers, including 6 portable EM27/SUN and 1 IFS120/
5 HR instrument were deployed within and around theMCMA. This network aimed to track intra‐city gradients in
atmospheric column CO2 concentrations (XCO2) from October 2020 to May 2021 as part of the French‐Mexican
MERCI‐CO2 project, providing a unique opportunity to validate the capability of OCO‐3 SAMs in constraining
the urban CO2 emissions. Over these 7 months, 20 XCO2 images (OCO‐3 SAMs) were collected over the
MCMA. Che et al. (2024b) revealed that the XCO2 gradients observed between the urban plume and its sur-
roundings show a good agreement between OCO‐3 and the FTIR stations with a Pearson correlation coefficient
(R) of 0.92, decreasing significantly when comparing intra‐city gradients (R = 0.24).

In this study, we conducted separate assimilations of two types of dense column‐integrated observations (the
FTIR network and OCO‐3 SAM observations). These assimilations aimed to optimize the estimation of
anthropogenic and biogenic CO2 emissions from the MCMA, with further utilization of FTIR data to evaluate the
constraining capability of OCO‐3. Section 2 introduces the data utilized in this study along with details on the
Lagrangian inversion system. Section 3 presents an analysis and comparison of the posterior results obtained from
OCO‐3 and FTIR. Finally, Section 4 offers a discussion and summary of this study.

2. Lagrangian Inversion Framework
2.1. Observed Constraints

Two distinct types of dense column measurements were employed over the MCMA. The first involves daylight
column data collected from 7:00 to 18:00 local time in central Mexico, gathered at seven FTIR sites (Figure S1 in
Supporting Information S1). The second type comprises SAMs observations from OCO‐3(Figure S2 in Sup-
porting Information S1). A detailed description of this FTIR campaign and data retrieval method is presented in
Taquet et al. (2024) and Che et al. (2024b). It is important to note that we used GGG2014 as the prior profiles for
EM27/SUN and WACCM as the prior profiles for IFS125HR in the retrieval algorithm. Additionally, we
incorporated the latest GGG2020 a priori profiles (Figure S3 in Supporting Information S1) and conducted a
sensitivity test using GGG2020. The results, with approximately 1‐min intervals for EM27/SUN and approxi-
mately 10‐min intervals for IFS125HR, are shown in Figure S4 in Supporting Information S1. The bias is less than
0.34 ppm, and when considering hourly analysis, the bias is effectively 0 ppm. Thus, the change to the latest a
priori profiles has nearly zero impact on our study. AMEC and ALTZ are sites outside Mexico City in a less
populated area and served as background sites, whereas three sites (UNAM and VALL, and BOXO) are well‐
populated within the urban area. The other two sites (CUAT and TECA) are in peri‐urban areas, less impacted by
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local emissions. During the seven months of deployment, these instruments have collected a total of 5,228 hourly
FTIR observations during the period between October 2021 and May 2022. These data were not evenly
distributed spatially or temporally. Figure S1 in Supporting Information S1 illustrates the number of hourly data
points for each site used in the FTIR inversion. UNAM, VALL, and AMEC contributed the most to the overall
observations (24.2%, 23.1%, and 19.9%, respectively), followed by CUAT, BOXO, TECA, and ALTZ (14.9%,
7.0%, 6.1%, and 4.7%, respectively). Throughout the entire 5,136‐hr inversion period, only 1,162 hr recorded
observations, as FTIR exclusively operates during cloudless daylight. However, because each observation is
influenced by multiple hours of emissions prior to the measurement time (travel time of air masses across the
basin), these observations can be used to constrain a larger fraction of the surface fluxes over the observing period.
The cumulative influence totaled 4,929 hr, representing nearly 96% of the entire inversion period. For certain time
periods, the observational influence is diminished due to the temporal distance of emissions to the observation
time, suggesting that our FTIR observations may not effectively constrain CO2 emissions during these specific
times. The measurement cadence of EM27/SUN (nearly 1 min) and IFS 125 HR (nearly 10 min) is high.
Consequently, the statistical observed error in the time series of XCO2 (in Equation 10) could be obtained by
comparing the raw time series with a smoothed version calculated using a running mean with a time window of
1 hr. The average observed error for FTIR measurements is 0.25 ppm.

OCO‐3 is fixed‐mounted on the International Space Station and is equipped with a 2‐D pointing mirror assembly
that enables scanning larger areas during a single overpass (SAM observation mode) with a sounding area of 80 ×
80 km2(Bell et al., 2023), which is suitable to detect the intra‐urban XCO2 characteristic (Kiel et al., 2021). The
spatial resolution for each pixel size is ∼1.29 × 2.25 km2. Unlike other sun‐synchronous orbit satellites (OCO‐2,
GOSAT, TanSat, etc.), OCO‐3 undertakes a non‐sun‐synchronous orbit, so OCO‐3 does not overpass over a
specific city at a fixed time. We used OCO‐3 level 2 bias‐corrected XCO2 data (version 10.4r) generated by the
Atmospheric CO2 Observations from Space (ACOS) algorithm (Taylor et al., 2023). MCMA was likely to be
selected as an OCO‐3 SAM‐targeted region thanks to the absence of other hot spots along the track, allowing for
the Mexico City plume to be easily detectable. Figure S2 in Supporting Information S1 shows all the 20 OCO‐3
SAMs images collected over MCMA of sufficiently high‐quality (xco2_quality_flag= 0) during our study period.
A distinct urban signal fromMCMA is evident in these fine‐spatial XCO2 maps. As mentioned earlier, the OCO‐3
overpass times in MCMA vary, ranging from 10:00 to 15:00 (local time). The measurement errors of OCO‐3,
considering its high spatial resolution, were calculated using a spatial 10 km circle smoothing mean, resulting in
an averaged observed error of 0.7 ppm for OCO‐3, approximately two times higher than that of the FTIR data set.
In the inversion process, only OCO‐3 data within MCMA is utilized. The number of individual soundings utilized
in each day ranges from 62 to 858. Data on April 20th, 2021 is not used in the inversion due to the low data
availability (fewer than 10 high‐quality soundings) over MCMA.

2.2. Forward Lagrangian Transport Model

The X‐Stochastic Time‐Inverted Lagrangian Transport (X‐STILT) model (D. Wu et al., 2018) driven by the
Weather Research and Forecasting (WRF) at 1‐km resolution was used here to relate our atmospheric obser-
vations to surface fluxes and background conditions. The configuration in WRF and X‐STILT are detailed and
evaluated in Xu (2023) and Che et al. (2024b). WRF model performance was evaluated using meteorological
surface stations across the MCMA region for wind speed and direction (with errors ranging from − 0.36 to
− 0.72 m/s) and planetary boundary layer (PBL) height using a lidar at the UNMA site south of MCMA (afternoon
errors from − 550 to 110 m). Detailed evaluation is provided in Xu (2023). WRF winds are used to drive an
ensemble of particles in backward trajectories, which are released and traced 24 hr backwards in time from each of
the seven site locations for all observed hours. In the forward process, simulated XCO2 (XCO2, sim, unit of ppm)
are the sum of prior FF emissions (sp, f f , in units of μmol/m2s) and biogenic emissions (sp, bio, in units of μmol/
m2s) enhancements, combined with the background values (zback, in units of ppm, representing every contribution
from outside the MCMA domain).

XCO2, sim = Hs × sp, f f + Hs × sp, bio + Hb × zback (1)

Column footprint (Hs, in unit of ppm/μmol/m2s) is a function of backward time and location for each observation.
It is used to transform emissions into XCO2 enhancements, as shown in Figure 1. The integrated area overlap
measurement index (IAOMI), as described by Yadav et al. (2023), quantifies the overlap and shared information

Journal of Geophysical Research: Atmospheres 10.1029/2024JD041297

CHE ET AL. 4 of 22

 21698996, 2024, 20, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JD

041297 by C
ochrane France, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



between two observations by calculating their common contributions, serving as a tool for understanding the
uniqueness and similarity in observations data, analyzed in terms of spatial‐temporal intensity and used to
describe the footprint overlap of different sites (F for site 1 and G for site 2 as an example), with its methodology
akin to a Venn diagram (Equation 2) and will be analyzed in Section 3.1.

vF, G =
∑AF∪AGmin(F, G)
∑AF∪AGmax(F, G)

(2)

Where AF (or AG) represents the set of values for which the forward operator F (orG) produces positive outcomes.
The footprint for background (Hb, ntime × nobs, dimensionless quantity) differs from the footprint for emissions
(Hs, ntime × nobs × nland). Hb only has a temporal dimension and is utilized to transform background values over
the entire inversion time period (dimension is: ntime) to the background extracted time (dimension is: nobs). zback is
the integrated column extracted from CAMS (version: v21r2). This extraction is based on backward trajectories
from X‐STILT and the averaging kernel derived from column measurements, and the detailed background
extraction method is outlined in Che et al. (2024b). Given that background values either account for the spatial
pattern or introduce no bias (0 ± 0.09 ppm in Figure S3 in Supporting Information S1), we only consider their
time variations.

Prior anthropogenic CO2 emissions at 1 km (sp, f f ) are from a Mexico‐specific inventory UNAM_EMI and the
global inventory ODIAC (Open‐source Data Inventory for Atmospheric Carbon dioxide) (Oda et al., 2018).
These two inventories exhibit significant discrepancies over MCMA (approximately 40%), with UNAM_EMI
providing more detailed information on point sources across our inversion domain (see Figure 2). High‐resolution
prior biogenic CO2 emissions (sp, bio) were from the ecological model CASA (Carnegie‐Ames‐Stanford
Approach). Biogenic emissions are zero over urban areas and distributed more evenly outside the urban areas
(Figures 2a and 2e). Moreover, we simply define the urban boundary as the region with zero biogenic emissions.

Figure 1. Averaged footprints for all sites during study period with footprint contours of its 50, 75, and 99 percentile level shown over (a) central Mexico and (b) Mexico
City Metropolitan Area (MCMA). Note the Log10 scale as footprint very quickly decreases away from the observation location. Seven sites used in this study are
marked with stars in deep teal color. (c) Integrated Area Overlap Measurement Index to demonstrate similarity between footprints at different Sites. (d) Cumulative
footprints over MCMA on the whole campaign period on an hourly basis.
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For detailed information on prior inventories and prior background values, refer to Che et al. (2024b). All these
linear operators in Equation 1 are combined into Jacobian (H) and all the prior information are grouped into one
vector (sp) , which can be used in the inversion system. The Hs matrix comprises elements represented as
(ntime × nobs × nland) , where ntime denotes all inversion time, nobs signifies the total number of observations, and
nland encompasses all spatial points. On the other hand, the Hb matrix is solely composed of an ntime‐dimensional
vector. As for sp, f f and sp, bio, each consists of a (ntime × nland) ‐dimensional structure. Meanwhile, zback is
uniquely characterized by an ntime‐dimensional configuration.

H = [Hs Hs Hb] (3)

sp =

⎡

⎢
⎢
⎢
⎢
⎣

sp, f f
sp, bio
zback

⎤

⎥
⎥
⎥
⎥
⎦

(4)

As mentioned in Section 2.1, for FTIR, ntime is set to 5,136 and nobs is 5,228. However, for satellite data, due to the
substantial time gap between each overpass, we perform independent inversion for each overpass. Regarding
nland, two inversion schemes are considered and will be discussed in Section 3.1. The primary configuration
involves considering the spatial grid within MCMA with a 1‐km spatial resolution, resulting in nland = 9,751.
Another configuration is for the entire grid (the entire central Mexico region, which includes the total 99%
footprint region shown in Figure 1a), but opting for an inversion across the entire area with a 1 km resolution
would result in over 25,000 grids, leading to a substantial spatial error covariance matrix (will be introduced in the
next Section). To address this, we adopted the un‐gridded technique utilized in previous studies such as L. Wu
et al. (2011) and Gómez‐Ortiz et al. (2023). This technique involves setting a fine resolution near the observation
sites (1 km) and a coarser resolution in the outer regions (10, 50 km) (will be introduced in the first paragraph of
Section 3.1). The spatial grid for the entire inversion was reduced to 10,877 through the implementation of a
multi‐resolution grid scheme.

Figure 2. (a, e) Map of biogenic CO2 emissions (μmol/m2s) from CASA.Maps of fossil fuel CO2 emissions (log10 (μmol/m2s)) fromUNAM_EMI (b, f) and ODIAC (c,
g). The differences of UNAM_EMI and ODIAC are also shown in panels (d, h). The Mexico City Metropolitan Area is indicated with black line. Footprint contours are
also shown in each figure with 50% and 75% percentile.
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2.3. Bayesian Inversion Model

Our analytical inversion framework computes algebraic solutions for the linear Gaussian Bayesian problem but
faces limitations due to memory constraints arising from the construction of large spatial and temporal covariance
matrices, particularly when aiming to enhance spatial‐temporal resolution in the inversion process. To address
challenges associated with these matrices, various ensemble methods provide approximate solutions for the
analytical approach (e.g., H. W. Chen et al. (2023)). In dealing with large temporal matrices, some studies adopt
the practice of using the current time period as the prior for the next, although this method tends to introduce
discontinuities in results and encounters difficulties in capturing temporal correlations at nodal points. Addi-
tionally, the variational method proves effective for addressing nonlinear problems; however, it is limited in its
ability to offer accurate posterior uncertainty and is associated with elevated computational expenses. Some
studies seek to improve uncertainty estimation in variational methods through ensemble approaches, thereby
further increasing computational demands for inversion research (Desroziers et al., 2016). This study presents a
novel approach that employs a multi‐node parallel strategy to tackle the computational challenges associated with
analytical methods to some extent for high spatial and temporal estimation of CO2 emissions in urban studies. The
proposed approach leverages 120 nodes to efficiently process the expansive matrix. Additionally, these matrices
can be temporarily stored as sparse matrices to reduce storage requirements.

An analytical inversion model spanning from October 2020 to May 2021 was implemented to robustly derive
posterior estimates s encompassing FF and biogenic components at 1‐km and 1‐hr resolutions (sf f , sbio) with
dimension of ntime × nland. Additionally, background posterior values at a 1‐hr resolution (zback) over the MCMA
were also updated. Vs represents the posterior covariance for s.

ŝ = sp + (HQ)
T
(HQHT + R)− 1 (z − Hsp) (5)

Vŝ = Q − (HQ)T (HQHT + R)− 1HQ (6)

An advantage of the analytical inversion method is that it allows us to evaluate the inversion performance using
the averaging kernel and error reduction (ER). Error reduction (ER) is the relative reduction of posterior un-
certainty (σV) compared to prior uncertainty (σQ). The averaging kernel (A) indicates the sensitivity of the
posterior results to the true state and is used to assess the spatial structure of inverse flux estimates. It is calculated
using the Kalman gain (G) with H. The degrees of freedom for signal (DOFS) is the trace of A and describes the
amount of independent information that can be obtained from the observations.

ER = (1 −
σV
σQ
) × 100% (7)

A = GH, G = (HQ)T (HQHT + R)− 1 (8)

For each component of Q, it is structured as the prior error variance (σs2) and the Kronecker product of temporal
covariance (D) and spatial covariance (E) following the methodology proposed by Yadav andMichalak (2013). It
is important to note that we only considerD in the background component, while both D and E are considered for
the FF and biogenic components.

Q =

⎡

⎢
⎢
⎢
⎢
⎣

Qff 0 0

0 Qbio 0

0 0 Qback

⎤

⎥
⎥
⎥
⎥
⎦

(9)

Q = σs2D⊗ E (10)

where σs is a time‐space varying element assumed to have a linear relationship with prior emissions:

σs = bsp + c (11)
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For the FF and biogenic components, c is set to 0 for simplicity. Concerning the background error component, a
comparison was conducted between the simulated background from CAMS and the observed values from
background sites (AMEC and ALTZ). A fitting slope near unity was identified for both FTIR and OCO‐3, with
biases of 1.34 and 0.11 ppm, respectively (Che et al., 2024b). Consequently, we set b to 0, and c was assigned the
determined bias for the background part. D and E are defined using exponential decay equations.

E = e−
Xs
ls (12)

D = e−
Xτ
lτ ⊗ e−

Xτ, intra
lτ, intra (13)

where Xτ and Xs are the separation distances between the estimated locations in time and space, lτ and ls are the
corresponding correlation range parameters. As for the temporal correlation, we account for both daily correlation
and intradiel correlation of 3 hr, as suggested in Wesloh et al. (2020). Each component is defined by an expo-
nential correlation function (refer to Equations 12 and 13). Figure S5 in Supporting Information S1 provides an
illustrative example of the temporal correlation decay function.

R = Robs + Rtrans (14)

where Robs is the error stemming from the XCO2 observations (introduced in Section 3.1). Rtrans is the error from
the transport model. Due to the absence of an adequate meteorological data set to assess the transport error, we
determined it as a linear multiple of the simulated XCO2 enhancements (Zheng et al., 2019). This approach
introduces error, and we subsequently discuss its influence on the final posterior estimates (see Section 3.2).
Estimating the appropriate parameters in Q and R poses a significant challenge, with no universally recognized
approach for this problem. These parameters are determined either through empirical experience (Lauvaux
et al., 2016) or based on eddy‐flux measurements (Chevallier et al., 2012). In this study, we perform compre-
hensive sensitivity analyses on all relevant parameters to assess their impact on the inversion results.

The chi‐square statistic (χ2) is a metric used to assess the consistency between prescribed error parameters and
the prior model‐data mismatch (Kaminski et al., 2001). Note that this condition (χ2 = 1) is sufficient but not
necessary to define the parameter performance.

χ2 =
1
n
(y − Hsp)T (HQHT + R) (y − Hsp) (15)

Yadav et al. (2023) proposed a method based on the analysis of derivatives for various variables to determine the
most influential parameters in the inversion system. In our case, where the state vector and covariance matrix here
is a large matrix, the use of derivative equations is not suitable. Instead, we conducted a discrete value analysis of
derivatives. All undetermined parameters in the inversion system, along with their respective explanations, are
summarized in Table 1. The bold numbers with small asterisks represent the values in our baseline configuration

Table 1
Sensitivity Test Results for Inversion Analysis

Parameter Long name Sensitivity test

ls, f f Spatial error correlation length for prior fossil fuel emissions 1, 4, 8, 12*, 20, 40 km

ls, bio Spatial error correlation length for prior biogenic emissions 2, 8, 16, 24*, 40, 60 km

lτ, f f Temporal error correlation length for prior fossil fuel emissions 0, 1*, 3, 5, 10 days

lτ, bio Temporal error correlation length for prior biogenic emissions 0, 1, 2*, 6, 10 days

lτ, back Temporal error correlation length for prior background values 0, 1.5, 3*, 9, 15 days

b f f Uncertainty of prior fossil fuel emissions 0.2, 0.8*, 1.5, 3 × 100 %

bbio Uncertainty of prior biogenic emissions 0.4, 1.6*, 3, 6 × 100 %

Rtrans,percent Transport error 0.2*, 0.5, 1, 2, 3 × 100 %

Note. Baseline Values Marked with an Asterisk (*).
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used in the control experiment to explore posterior feedback for each parameter. Detailed sensitivity results will
be discussed in Section 3.2.

3. Results
3.1. Selection of the Inversion Region

To estimate urban‐scale CO2 emissions, it is essential to identify the regions that exert the greatest influence on
our seven observation sites, in other words, the regions that our observations can constrain (Shan et al., 2019).
Footprints represent the correction potential of the inversion, indicating that column measurements can only
correct emissions at specific times and region. Utilizing our footprints to determine which region plays a pre-
dominant role in influencing the observations is a reliable approach (Che et al., 2022). Figure 1 displays the
footprints of seven sites, with contours at 50%, 75%, and 99% of the footprint sum values. The aggregated
footprints from these 7 FTIR sites reveal that the 50% influence area is primarily within the MCMA, surrounded
by high mountains able to trap pollution within the basin. The largest footprint (99%) is mainly located in the
center of Mexico (Figures 1a and 1b). The 99%‐footprint region is presented at a 50‐km scale, the 75%‐footprint
region at a 10‐km scale, and the inner MCMA region (which is of particular interest) at a 1‐km scale. This multi‐
spatial setting reduces the number of unknowns and compared to a full 1‐km scale region, and the aggregation has
a negligible effect on the simulation (Figure S6 in Supporting Information S1). Footprints from different sites can
overlap, hence the IAOMI (introduced in Section 2.2) can be used to quantify the shared intensity content between
footprints at different sites (Yadav et al., 2023). We employed this index to assess the degree of connection across
all the footprints from the different sites (Figure 1c). The ALTZ site shows less connectivity with the other sites
due to its high altitude, as ALTZ is often located above the PBL height of the basin. Three urban sites (UNAM,
VALL, and BOXO) exhibit a stronger connectivity with each other and the most connectivity with the other sites,
given their central locations within the MCMA. Examining the time series of footprints over MCMA (Figure 1d)
reveals that these footprints are not evenly distributed on an hourly basis.

Figure 2 presents all the emission inventories utilized in this study, including FF emissions from UNAM_EMI
and ODIAC and biogenic emissions from CASA. Building upon our earlier work (Che et al., 2024b), we note site‐
specific variations in FF and biogenic CO2 emissions: urban sites (UNAM, VALL, and BOXO) exhibit a pre-
dominant FF signature, comprising over 90% of the total contribution from FF and biogenic emissions; inflow
sites (CUAT and TECA) display FF signals at approximately 60 ∼ 70%, whereas background sites, especially
ALTZ, demonstrate significant biogenic contributions, with 78% of the XCO2 enhancements at this site origi-
nating from biogenic fluxes. Table 2 provides a summary of simulated FF and biogenic XCO2 enhancements from
these inventories across the entire footprint area and within MCMA. Simulated FF XCO2 enhancements from
UNAM_EMI and ODIAC over the entire footprint range 0–7.16 ppm and 0–4.85 ppm, respectively. Over
MCMA, these enhancements account for around 84% and 86% of the total, respectively. Within MCMA, biogenic
enhancements range from − 1.19 to 1.57 ppm, constituting 49.5% of the total biogenic fluxes (− 1.4 to 2.0 ppm).
Urban and nonurban sites exhibit distinct emission characteristics. For the three urban sites (UNAM, VALL, and
BOXO), 92∼94% of FF XCO2 enhancements from UNAM_EMI and ODIAC occur within MCMA. Conversely,
CUAT, TECA, and AMEC show FF accounting for approximately 70%, and ALTZ presents a more complex
scenario, with the FF signal originating within MCMA accounting for only 34%. Although FF emissions exhibit a

Table 2
XCO2 Enhancements and Its Percentage Over Mexico City Metropolitan Area Compared to the Whole Central Mexico for Each Site

Site
name

Simulated ΔXCO2, f f UNAM_EMI(MCMA
percentage)

Simulated ΔXCO2, f f ODIAC(MCMA
percentage)

Simulated ΔXCO2, bio CASA(MCMA
percentage)

CUAT 0.02 ∼3.79 ppm(73.21%) 0.03 ∼2.31 ppm(81.28%) − 0.51 ∼0.54 ppm(87.19%)

TECA 0.01 ∼1.99 ppm(73.58%) 0.01 ∼1.54 ppm(76.32%) − 0.35 ∼1.22 ppm(51.65%)

UNAM 0.08 ∼7.16 ppm(95.33%) 0.09 ∼4.85 ppm(95.52%) − 0.45 ∼1.01 ppm(50.21%)

VALL 0.20 ∼4.83 ppm(94.21%) 0.17 ∼3.67 ppm(94.53%) − 0.50 ∼1.02 ppm(35.22%)

BOXO 0.03 ∼3.48 ppm(92.26%) 0.05 ∼3.13 ppm(93.42%) − 0.33 ∼0.44 ppm(30.22%)

AMEC 0 ∼2.04 ppm(68.03%) 0 ∼1.81 ppm(72.54%) − 1.19 ∼1.57 ppm(64.85%)

ALTZ 0 ∼0.45 ppm(34.02%) 0 ∼0.40 ppm(22.82%) − 0.54 ∼0.02 ppm(38.20%)
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strong signal over MCMA, biogenic emissions are more evenly distributed outside the urban areas. Despite the
limited footprint outside MCMA, suggesting potential inaccuracies in representing this outside region, the
addition of this area would incur additional computational costs. Thus, a delicate balance between computational
costs and the accuracy of posterior corrections must be maintained. As a result, it is imperative to assess the
signals outside MCMA and quantify their significance on the inversion results.

Two tests were conducted for MCMA‐only inversion, and an additional test focused on the inversion for the
whole region (the entire central Mexico region, which included the whole footprint area) (Introduced in Sec-
tion 2.2). We utilized the basic configuration outlined in Table 1 for both tests. The comparison of the posterior
correction for these two schemes is presented in Figures 3a and 3e and S 7–8. It is worth noting that the primary
adjustment region remains within MCMA. As corrections in the outermost regions were almost negligible, we
illustrate the corrections around the 75% footprint region in Figures 3a and 3e. The comparison of inversion
results between MCMA‐only and whole region (shown in Figure 1a) inversion reveals few differences. Spe-
cifically, for UNAM_EMI, the CO2 corrections for emissions coming within MCMA are − 1.26 ± 2.0 GgCO2/hr
(− 18.73 ± 18.87%) and − 1.13 ± 1.0 GgCO2/hr (− 16.78 ± 14.5%) for the two inversion schemes, respectively.
Simultaneously, CASA has been corrected by − 0.12 ± 2.0 GgCO2/hr (− 5.75 ± 111.89%) and − 0.12 ±

2.0 GgCO2/hr (− 4.43 ± 78.03%) within MCMA for the two inversion schemes. In the case of ODIAC, the
posterior correction is − 0.23 ± 1.0 GgCO2/hr (− 5.88 ± 19.39%) and − 0.25 ± 1.0 GgCO2/hr (− 5.8 ± 14.34%),
while the biogenic component from CASA corrects by − 0.18 ± 2.0 GgCO2/hr (− 9.24 ± 122.93%), and − 0.19 ±
2.0 GgCO2/hr (− 7.38 ± 81.47%), respectively. The fossil‐fuel correction for UNAM_EMI shows a larger value

Figure 3. Map of the difference in anthropogenic and biogenic CO2 emissions (μmol/m2s) between posterior and prior estimates. The posterior estimates are constrained
with Fourier transform infrared (FTIR) using large domain inversion region settings (first column) and Mexico City Metropolitan Area inversion settings using
observations from FTIR, OCO‐3, and FTIR during OCO‐3 overpass time (second to fourth columns, respectively). Panels (a–d) use prior estimates from UNAM_EMI
and CASA, whereas panels (e–h) use prior estimates from ODIAC and CASA. The blue‐red colorbar represents anthropogenic corrections, and the green‐brown
colorbar represents biogenic corrections. The correction values in the lower left part of each subplot represent the average and one standard deviation of the hourly
differences between spatially aggregated posterior and prior emissions for fossil fuel and biogenic (BIO) sources. The percentages in parentheses indicate the average
and one standard deviation of the correction percentages.
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compared to ODIAC. The primary reason is that UNAM_EMI assigns higher values at the Tula power plant and
industrial complex, located to the north‐east outside the MCMA. Specifically, when correcting emissions from
only within MCMA, the correction over the power station compensates within MCMA, potentially leading to
exacerbate the underestimation of FF emissions within MCMA. Nevertheless, the area located outside of MCMA
still exhibits a slight difference compared to the correction over MCMA, attributable to smaller footprints. The
substantial correction outsideMCMA requires a slight adjustment over MCMA. The comparison of UNAM_EMI
and ODIAC reveals different patterns in anthropogenic and biogenic CO2 emissions distribution. The direct
comparison of the posterior emissions from UNAM_EMI and ODIACwill be discussed in the next section. In this
section, the primary focus remains on discussing how big the area we need for inversion. Regarding the temporal
scale of this comparison, the whole MCMA correction for these two schemes and the comparison figures are
presented in Figure 3 and Figures S7–S8 in Supporting Information S1. It can be observed that the posterior
correction in temporal scale are very similar for these two schemes, with some differences that vary along with the
signals.

3.2. Inversion Results for FTIR

In the preceding section, external contributions (outside MCMA) is approximately 0.13 Gg/hr for the FF
component from UNAM_EMI and 0.02 GgCO2/hr from ODIAC, with the contribution from biogenic sources
being nearly negligible. Hence, given the close alignment in corrections for MCMA in both schemes and in an
effort to reduce computational expenses, we specifically selected MCMA as the sole focus for our inversion
study. As the result reached in the precious section, the posterior FF CO2 emissions over MCMA showed a
reduction, resulting in an 18.73 ± 18.87% overestimation for UNAM_EMI (1.26 ± 2.0 Gg CO2/hr) and a 5.88 ±
19.39% overestimation for ODIAC (0.23 ± 1.0 Gg CO2/hr). This reduction was particularly pronounced for the
urban area (defined in Section 2.2), showing a 20.6% overestimation for UNAM_EMI (1.11 Gg CO2/hr) and a
6.1% overestimation for ODIAC (− 0.21 Gg CO2/hr), respectively. Corrections for the biogenic component were
relatively minor, resulting in a decrease of 0.12 ∼0.18 Gg CO2/hr (around 5.75 ∼9.24% correction). Although the
one standard deviation of correction percentages were substantial (even larger than 100%), this was primarily due
to the small prior values associated with the biogenic component.

Three commonly employed metrics to assess the effectiveness of our inversion process are (a) a comparison with
observations, (b) the calculation of averaging kernel, ER, and (c) sensitivity tests of the parameters (Lu
et al., 2020; van der Velde et al., 2021; Yadav et al., 2023). In this study, our focus is on comparing the relative
values of XCO2 enhancements (ΔXCO2, XCO2 observed by each site against corrected CAMS background
values) rather than the absolute values. This choice stems from the realization that absolute value comparisons are
largely influenced by the simulation of background values. Our primary interest lies in evaluating the correction
part of our emissions, leading us to assess ΔXCO2 rather than XCO2. The evaluation of ΔXCO2, based on prior
(hollow triangle) and posterior estimates (filled triangle), with respect to the observations, is presented in a scatter
plot (Figures 4a and 4b and Tables S1 and S2 in Supporting Information S1). RMSE, correlation coefficient (R)
and the linear fitting slope serve as three metrics aimed at comparing simulated XCO2 enhancements with
observed ΔXCO2 from FTIR measurements. Considering the entire FTIR data set, R based on prior estimates
ranges from 0.58 to 0.62 and significantly improves to 0.92–0.95 with posterior estimates. Different sites exhibit
varying degrees of improvement. When UNAM_EMI serves as the prior, R for three urban sites (UNAM, VALL,
and BOXO) ranges from 0.31 to 0.53 and from 0.22 to 0.51 when ODIAC is the prior. The two suburban sites
(CUAT and TECA) have R ranging from 0.43 to 0.48 based on UNAM_EMI as the prior and from 0.38 to 0.43
based on ODIAC as the prior. The worst performance is observed at the two background sites (AMEC and
ALTZ), with R ranging from − 0.2 to 0.18 for UNAM_EMI and − 0.22 to 0.16 for ODIAC. Regarding the
posterior results, R for all sites improves to 0.87–0.93 for UNAM_EMI and 0.82 to 0.93 for ODIAC. The
enhanced correlation coefficient suggests that the general spatial pattern of CO2 concentration enhancements is
better captured by the inventories after optimization.

As for the overall RMSE metric based on prior estimates, it is 0.97 ppm for UNAM_EMI and 0.88 ppm for
ODIAC. These values improve to 0.28 and 0.32 ppm, respectively, in the posterior. Different sites exhibit distinct
results; RMSE based on UNAM_EMI is 0.97–1.13 ppm for three urban sites, 0.61–0.78 ppm for two suburban
sites, 0.87 ppm for AMEC, and 0.56 ppm for ALTZ. As for ODIAC, RMSE for the three urban sites is 0.92–0.99
ppm, 0.60–0.73 ppm for two suburban sites, 0.88 ppm for AMEC, and 0.56 ppm for ALTZ. Concerning the
posterior results for the different sites, RMSE improves to 0.08–0.30 ppm for UNAM_EMI and 0.08–0.42 ppm
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for ODIAC. The reduction in RMSE indicates significant adjustments in the absolute magnitude of emissions
after optimization. Regarding the linear fitting slope displayed on the right side of each triangle, we observe a
slight improvement in UNAM_EMI (from 0.93 ppm ppm− 1 to 0.94 ppm ppm− 1), whereas ODIAC shows a more
substantial improvement (from 0.65 ppm ppm− 1 to 0.9 ppm ppm− 1). It is worth noting that achieving higher R and
lower RMSE brings the slope closer to unity. Note that the prior results may appear slightly different from those
presented in the last paper (Che et al., 2024b). This discrepancy arises because, to simplify the problem, we only
consider CAMS in the time dimension and do not incorporate its spatial pattern. Whether include the spatial
pattern of CAMS does not exert a substantial influence on the obtained outcomes (see Figure S9 in Supporting

Figure 4. Comparison of the simulated XCO2 enhancements based on prior inventories (open triangles) and posterior results (a, c) using prior inventories from
UNAM_EMI and CASA; and (b, d) using prior inventories from ODIAC and CASA with observed values (filled triangles). Independent evaluations are shown in filled
circles. The x‐axis represents the root mean square error, and the y‐axis represents the correlation coefficient between simulations and observations. Panels (a–b) show
the results with Fourier transform infrared, with different colors indicating different sites, whereas panels (c–d) show the results with OCO‐3, with different colors
indicating different aggregation resolutions.
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Information S1). It is plausible that, for a global coarse model such as CAMS, the minimal spatial gradients
around a single city may not be particularly significant. From the comparison of simulated enhancements between
observed values, it is evident that posterior results are more robust, significantly improving the degree of
alignment with observations. UNAM_EMI exhibits superior performance in both prior and posterior results
compared to ODIAC when using the same covariance parameters.

Additionally, we aimed to investigate whether utilizing a subset of the FTIR observations could improve our
simulation performances at other sites (cross‐validation). We strategically selected one site from the inflow region
(CUAT), one in the urban area (UNAM), and another in the background area (AMEC). These chosen sites have a
higher number of observations compared to others (Figure S1 in Supporting Information S1), providing a larger
number of simultaneous observations aligned with our validation data sets (TECA, VALL, BOXO, and ALTZ).
In total, we gathered 3,088 observations from these three sites. The posterior results for the remaining four sites
are presented in Figure 4 (Solid triangle pointing to the left) and Tables S1 and S2 in Supporting Information S1.
For the overall set of these four sites, R increased from 0.67 (prior of these four sites) to 0.71 for UNAM_EMI (a
12.34% improvement compared to the prior simulated results using the whole data set) and from 0.64 to 0.71 for
ODIAC (a 20.11% improvement). The RMSE decreased from 0.96 to 0.74 ppm for UNAM_EMI (a 31.88%
reduction) and from 0.89 to 0.72 ppm for ODIAC (a 30.48% reduction). Considering the other sites such as
TECA, specifically when using UNAM_EMI, R improved from 0.43 to 0.49 and from 0.38 to 0.52 for ODIAC.
The corrective component contributed to a significant enhancement of 13.6%–29.2% compared to the inversion
scheme utilizing the entire FTIR data set. In the case of VALL, R improved from 0.53 to 0.61 based on
UNAM_EMI and from 0.50 to 0.62 for ODIAC, representing a substantial 20%–30% improvement over the
original scheme. Similarly, for BOXO, R increased from 0.30 to 0.37 with UNAM_EMI and from 0.22 to 0.35
with ODIAC, accounting for 12.3%–21.7% of the total improvement. ALTZ exhibited an improvement from − 0.2
to 0.28 based on UNAM_EMI and from − 0.22 to 0.33 for ODIAC, representing a substantial 44%–49.6%
enhancement of the total. These results suggest that employing three specific sites contributes to the coherence of
observations at the remaining four sites. RMSE experienced the most significant reduction over BOXO and
VALL, whereas it decreased by only less than 5% over ALTZ. This discrepancy can be attributed to the stronger
connections between BOXO and VALL with other sites, as illustrated by the IOAMI figure (Figure 1c).
Consequently, the corrections around the ALTZ site were relatively minor. Despite this, the noteworthy increase
in R for ALTZ and VALL indicates substantial improvements in the distribution of CO2 emissions surrounding
these sites.

Moreover, an assessment of averaging kernel and ER is conducted subsequent to the inversion process (Figure 5).
Averaging kernel and the ER is intricately linked with the “H filtered” Q matrix (Equations 5–8). Figures 5a, 5b,
5e, and 5f illustrate the average of the hourly averaging kernel, DOFS, and ER for FF and biogenic sources under
our fundamental parameter configuration using the FTIR data set. The spatial pattern of the averaging kernel
represents the posterior sensitivity to each grid and varies with different a priori assumptions, as we assume the
prior error has a linear relationship with the prior emissions (Equation 11). The total DOFS for the 7‐month period
is 15,655.3, with an hourly average of 3.05. The hourly DOFS for FF is 1.7, for biogenic sources is 0.8, and the
remainder is attributed to the background. The primary sensitivity region and reduction in errors attributed to FF
sources is concentrated in urban areas, observed in both UNAM_EMI and ODIAC. The hourly mean ER over
MCMA is 4.23% and 2.93% for UNAM_EMI and ODIAC, respectively. The reduction in errors related to
biogenic sources ranges from 1.9% to 2.13%. As depicted in the second row of Figures 5e and 5f, the magnitude of
ER increases with the number of observations at specific time points. When restricting the analysis to times with
available observations, the ER intensifies to 7.46% for UNAM_EMI and 4.69% for ODIAC. Correspondingly, the
reduction in biogenic errors is 3.91% and 4.38%. The distribution of ER is further influenced by the number of
observations at each site. Time series with a higher volume of data exhibit a more substantial reduction in errors.

A sensitivity analysis serves as a fundamental diagnostic tool, facilitating an understanding of the repercussions
stemming from decisions made regarding input parameters on the estimated fluxes (Yadav et al., 2023). The
sensitivity test, depicted in Figure 6, encompasses various parameters outlined in Table 1. The sensitivity to these
parameters is evaluated through the examination of R and RMSE of the simulated and observed XCO2 en-
hancements (as delineated in Figures 4a and 4b), and an additional focus on three state vectors (FF CO2 flux,
biogenic CO2 flux and background values), and DOFS as shown in Figure 6. It is important here to clarify that this
evaluation is a controlled experiment, wherein only one variable is adjusted, whereas the remaining values are
held as basic settings (Marked with asterisks in Table 1). This single‐variable approach aims to distinctly illustrate
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the sensitivity of the results to variations in each selected variable. All units conform to the standards commonly
employed in Lagrangian inversion studies (Kunik et al., 2019; Lauvaux et al., 2016; Nevison et al., 2018).

Initially, we analyze the first and second columns of Figure 6 (R and RMSE), representing a comprehensive
comparison of the ΔXCO2 posterior simulation and observations. Different variations in parameters exhibit
consistent patterns for both ODIAC and UNAM_EMI. It is worth noting that the majority of these curves
demonstrate a tendency to stabilize as we systematically test the parameters across a broad range of values. Each
parameter, characterized by unique units, undergoes a calculation of maximum‐to‐minimum values to assess its
impact on our results. The parameter with the most substantial influence is Rtrans,percent, presenting an R range of
0.26–0.35 and an RMSE of 0.55–0.58 ppm. A larger Rtrans,percent aligns the results more closely with the prior
values. Subsequently, we evaluate the impact of FF parameters (bf f and ls, f f ), revealing an R range of 0.11 and an
RMSE range of 0.25–0.29 ppm for bf f , and an R range of 0.06 and an RMSE range of 0.11–0.16 ppm for ls, f f .
Following this, the parameter bbio is considered, displaying an R range of 0.03–0.04 and an RMSE range of 0.09–
0.1 ppm. It is worth noting that three temporal covariance parameters (lτ, f f , lτ, bio, lτ, back) exhibit minimal in-
fluence on the results, as reflected in an R change of 0–0.01 and an RMSE change of 0–0.03 ppm. The DOFS (last
column of Figure 6) is sensitive to the temporal covariance parameters for FF and biogenic sources (lτ, f f , lτ, bio)
and the prior uncertainty parameters (bf f , bbio), showing a trend similar to Ohyama et al. (2023). The spatial
covariance parameters (ls, f f , ls, bio) cause the DOFS to increase, plateau, and then decrease, following the same
trend observed in the synthetic data study by Wu et al. (2018). The parameter Rtrans,percent has a different effect,
leading to a decrease in DOFS as Rtrans,percent increases.

Figure 5. Comparison of averaging kernel and error reduction (ER) using Fourier transform infrared and OCO‐3 data sets. Panels (a–d) display the average of the hourly
averaging kernel, with pink error bars representing fossil fuel (FF) and green error bars representing biogenic sources. DOFS are also indicated in the diagrams. Panels
(e–f) illustrate the averaged hourly ER, where red denotes FF and purple indicates biogenic sources. The time series for FF and biogenic sources are shown below, with
the colorbar indicating the number of observations used at each time point.
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Subsequently, we scrutinize the sensitivity of three optimization state vectors to various parameters, with a
specific focus on FF and biogenic CO2 emissions over MCMA, alongside XCO2 background values. In the
context of FF CO2 emissions over MCMA, the influences of ls, f f , bf f , and lτ, f f demonstrate parallel trends: higher
values of these variables are associated with lower FF CO2 emissions. The range of FF CO2 emissions over
MCMA is 1.68 GgCO2/hr for UNAM_EMI and 0.45 GgCO2/hr for ODIAC, influenced by ls, f f . For bf f , the
corresponding change is 1.43 GgCO2/hr for UNAM_EMI and 0.51 GgCO2/hr for ODIAC. Regarding lτ, f f , the
impact is observed as 0.99 GgCO2/hr for UNAM_EMI and 0.39 GgCO2/hr for ODIAC. Conversely, parameters
originating from biogenic (ls, bio, bbio, and lτ, bio) and transport error (Rtrans,percent) yield opposite effects:
increasing these parameters leads to an increase in FF CO2 emissions, although they remain lower than the prior
estimates. Essentially, higher values of these parameters diminish the downward correction power of the data set,
making it less substantial. it is worth noting that Rtrans,percent emerges as a pivotal parameter influencing the
inversion results, exhibiting a change of 1.10 GgCO2/hr for UNAM_EMI and 0.27 GgCO2/hr for ODIAC.
Regarding biogenic and background parameters, the observed changes are relatively minor, ranging from 0.06 to
0.13 GgCO2/hr for ODIAC and 0.10–0.18 GgCO2/hr for UNAM_EMI. In the case of biogenic CO2 emissions, the
most influential parameter is bbio, contributing to a change in results ranging from 0.75 to 0.90 GgCO2/hr. This
significance is emphasized by the absence of a clear flattening trend, particularly when opting for higher values of
bbio. Subsequent parameters, ls, bio and lτ, bio, evoke similar responses from UNAM_EMI and ODIAC, with

Figure 6. Sensitivity analysis of inversion results with UNAM_EMI (upper panel) and ODIAC priors (lower panel) to various parameters. Each column illustrates the
sensitivity test for the following variables: R and root mean square error between simulation and observation, fossil fuel CO2 emissions, biogenic CO2 emissions,
background values, and DOFS. Parameters, aligned in the same order as Table 1, are presented on the x‐axis from top to bottom. The upper triangle points in the figure
correspond to the respective prior values for each variable.

Journal of Geophysical Research: Atmospheres 10.1029/2024JD041297

CHE ET AL. 15 of 22

 21698996, 2024, 20, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JD

041297 by C
ochrane France, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



changes in biogenic CO2 emissions ranging from 0.22 to 0.29 for ls, bio and 0.20 to 0.22 for lτ, bio and also impact
biogenic CO2 results (0.23–0.24 GgCO2/hr for bf f and 0.28–0.30 GgCO2/hr for lτ, back), whereas ls, f f (0.09–
0.17 GgCO2/hr) and lτ, f f (0.16–0.17 GgCO2/hr) exhibit comparatively lesser effects. Concerning the optimized
background values, it is evident that these values do not exert significant influence and quickly stabilize. The total
change is particularly concentrated between 413 and 413.1 ppm. The most impactful parameters are ls, f f and bf f ,
contributing changes of 0.24 and 0.21 ppm, with ODIAC exhibiting a change of 0.06 ppm. For the background
temporal parameter lτ, back, the observed change is only 0.05–0.06 ppm. This phenomenon can be attributed to the
relatively modest temporal variations in CAMS, resulting in limited impact from temporal correlation length on
the inversion results.

Kunik et al. (2019) systematically examined the effect of covariance parameters through extensive sensitivity
studies to assess their impact on inversion results. They discovered that overestimating these parameters results in
over‐correction of estimates. In Table 1 and Figure 4, we establish the foundational parameters for our inversion
study, selected based on the characteristics of the curves. Our primary criteria for parameter selection involve an
extensive assessment using curves derived from R and RMSE, providing a comprehensive perspective. It is worth
noting that for bf f and bbio, it was observed that around 12 and 24 km, the curves tend to stabilize, so these values
are chosen as foundational settings. The temporal settings exhibit limited impact on the results, with 1 day chosen
for FF, 2 days for biogenic, and 3 days for background values. Upon examination of bf f and bbio, it is observed
that when bf f of 0.8 and bbio of 1.6, the curves tend to plateau. Although larger values of these parameters (bf f and
bbio) enhance performance, there is a need to balance this with the χ2 value. Larger bf f and bbio require matching
with very small ls, f f and ls, bio, which may not be entirely reasonable. A larger Rtrans,percent also brings results closer
to the prior estimates, we opt for 0.2 as our basic setting (corresponding to 20% of the simulated ΔXCO2 values).
In our basic configuration, χ2 is 1.03, approximating unity.

3.3. Inversion Results for OCO‐3

In this section, the inversion is extended to incorporate 19 OCO‐3 images collected over the FTIR deployment
period. Initial testing focuses on assessing the OCO‐3 individual inversion results against OCO‐3 observations, as
depicted in Figures 4c and 4d, illustrating the model‐data mismatch between hourly simulated and observed
XCO2 enhancements. It is worth noting that even when aggregated into spatial resolutions of 5 km, 10 km, 20 km,
or 30 km, performances (indicated by hollow triangles to the right) persist in revealing deficiencies. This
divergence from the findings in Che et al. (2024b) arises from our previous study's comparison over 7 months,
contrasting with the current hourly basis examination. The RMSE of prior results spans from 0.98 to 1.4 ppm,
with R values ranging from 0.25 to 0.33 for UNAM_EMI and from 1.01 to 1.42 ppm with R values ranging from
0.24 to 0.34 for ODIAC. When we use the FTIR posterior results to test coherence with the OCO‐3 data set
(shown as circles in Figures 4c and 4d), the RMSE ranges from 1.18 ppm at 1 km resolution to 0.68 ppm at 30 km
resolution for UNAM_EMI (improve 15.7% ∼ 30.6%), and from 1.16 ppm at 1 km to 0.65 ppm at 30 km for
ODIAC (improve 18.3% ∼35.6%). R increases to 0.31 ∼0.44 for UNAM_EMI and 0.34 ∼0.84 for ODIAC. Upon
examining the 1 km posterior results, R increases to 0.61 for UNAM_EMI and 0.34 for ODIAC, accompanied by
a decrease in RMSE to 0.96 ppm for UNAM_EMI and 1.35 ppm for ODIAC. As we aggregate the posterior into
coarser resolutions, coherence with the observations improves. Specifically, for UNAM_EMI, the R values in-
crease to 0.77, 0.85, 0.93, and 0.95 at resolutions of 5 km, 10 km, 20 km, and 30 km, respectively. Simultaneously,
RMSE decreases to 0.61, 0.46, 0.27, and 0.24 ppm for these corresponding resolutions. For ODIAC, R values
increase to 0.42, 0.56, 0.77, and 0.84, whereas RMSE decreases to 1.14, 0.87, 0.50, and 0.40 ppm. Additionally,
the slopes depicted in this figure demonstrate a consistent increase toward unity with increasing spatial aggre-
gation, rising from 0.44 to 0.88 ppm ppm− 1 for UNAM_EMI and 0.4–0.85 ppm ppm− 1 for ODIAC.

Moreover, a direct comparison between the corrected emissions during the satellite inversion period and the long‐
term FTIR inversion results reveals noteworthy findings (Figures 3c, 3d, 3g, and 3h). Specifically, for our OCO‐3
inversion results, using UNAM_EMI and CASA as priors yields a correction of − 6.44± 22.54% for FF emissions
and 11.1 ± 100.27% for biogenic emissions. When ODIAC is employed as the prior, the correction for FF is
0.01 ± 39.06%, and 8.62 ± 194.73% for biogenic emissions. However, the distinctive adjustments in the FTIR
inversion results are apparent in FF corrections, demonstrating a reduction of − 20.52 ± 16.48% for UNAM_EMI
and − 6.7 ± 15.47% for ODIAC (choosing results the same as OCO‐3 inversion time). Correspondingly, the
uncertainty of differences in biogenic corrections are more pronounced, depicting a substantial decline of
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− 32.2 ± 88.59% for UNAM_EMI and − 32.47 ± 91.63% for ODIAC. The initial conjecture for this substantial
disparity arises from the differing sounding times of OCO‐3 and FTIR. To address the potential differences
arising from sounding times, we specifically selected FTIR data sets with the same sounding times as OCO‐3
(only 63 observations out of the total 5,228 observations), presenting the results in Figures 3c, 3d, 3g, 3h, and
7. The correction for FF emissions from FTIR (− 6.41± 8.59% for UNAM_EMI and − 0.93 ± 7.18% for ODIAC)
closely aligns with OCO‐3, with only a slightly more negative adjustment to the emissions. However, for the
biogenic component, substantial differences persist, indicating adjustments in different directions. Despite these

Figure 7. Daily biogenic fluxes and fossil fuel emissions (in GgCO2/hr) a priori and optimized using OCO‐3 and Fourier
transform infrared data over the deployment period.
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differences, the correction in this inversion scheme for FTIR remains more consistent compared to the case of
inversion using all FTIR observations. The biogenic correction for FTIR remains negative (− 3.43% to − 2.82%),
whereas for OCO‐3, it is positive (8.62%–11.1%). Even when using the same time points, discrepancies persist in
the results. The primary reason, as seen in the averaging kernel comparison plot, is attributed to the different
sampling locations of the two instruments, as depicted in Figures S2, S3c, and S3d in Supporting Information S1.
Additionally, XCO2 discrepancies in observations between OCO‐3 and FTIR, or measurement errors associated
with OCO‐3, contribute to these differences. It is challenging to determine which observation type produces more
robust results without connecting additional FF or biogenic tracer gases.

The subsequent examination focuses on the temporal results between the two inversion outcomes. Figure 7 il-
lustrates the daily CO2 flux from both FTIR and OCO‐3 inversion results. A comprehensive assessment of the
overall CO2 flux over the 7‐month period reveals a reduction in the FF component in both inversion results. The
total mean prior CO2 flux for the entire inversion time series is 6.77 (±0.08) GgCO2/hr, with the value in pa-
rentheses representing the root square sum of prior uncertainty for the whole inversion period, not one standard
deviation. Specifically, the mean FF CO2 with FTIR constraints is 5.51 (±0.08) GgCO2/hr, compared to 6.36 (±
0.15) GgCO2/hr for OCO‐3. Both FTIR and OCO‐3 show a tendency to negatively adjust the initially over-
estimated UNAM_EMI emissions. Concerning the biogenic part, the prior estimates indicate − 0.14 (±0.09)
GgCO2/hr, whereas the posterior estimates based on FTIR and OCO‐3 are − 0.27 (±0.09) GgCO2/hr and 0.37 (±
0.19) GgCO2/hr, respectively. The sign of biogenic flux correction differs, and this discrepancy is not attributed to
the sounding time of the two instruments as proved in the last paragraph. When adopting ODIAC and CASA as
priors, the prior CO2 fossil flux is determined to be 5.08 (±0.06) GgCO2/hr. Subsequently, the CO2 FF flux in the
posterior results is observed to be 4.85 (±0.06) GgCO2/hr and 5.04 (±0.11) GgCO2/hr based on FTIR and OCO‐
3, respectively. Despite the alignment in the correction direction, the correction from FTIR for the FF component
is more pronounced. Regarding the biogenic component, the adjustments for FTIR (− 0.33 (±0.09) GgCO2/hr)
and OCO‐3 (0.48 (±0.19) GgCO2/hr) exhibit dissimilar trends. The discrepancies observed in Figure S10 in
Supporting Information S1 prompt us to explore the reasons behind the divergent results between FTIR and OCO‐
3 on certain days. The study maintains uniformity in error structure, prior estimates, and parameters. The primary
distinction lies in the inherent differences between OCO‐3 and FTIR, along with the measurement error of OCO‐
3. We discard the possibility of FTIR measurement errors, given its stable and consistent nature throughout the
time series. Figure S5 in Supporting Information S1 illustrates the XCO2 measurement errors of OCO‐3 and the
disparity between FTIR and OCO‐3. It is worth noting that on 21 October 2020 and 26 March 2021, substantial
differences between FTIR and OCO‐3, reaching 5.09 and 3.24 ppm over the VALL and BOXO sites, respectively,
lead to corrections in opposing directions for both data sets.

4. Discussion and Conclusions
This study assessed CO2 emissions over the Metropolitan Area of Mexico City (MCMA) by utilizing a dense
ground‐based FTIR network and space‐based OCO‐3 SAMs observations, with a focus on finer spatial scales for
evaluating FF and biogenic emissions of CO2 over October 2020 to May 2021. Three prior inventories, including
two for FF emissions (UNAM_EMI, ODIAC) and one accounting for biogenic activities (CASA), were optimized
in conjunction with an computational analytical Bayesian inversion technique to robustly update prior estimates at
1‐km and 1‐hr resolution. Leveraging the X‐STILT, driven by WRF at a 1‐km resolution, we connected atmo-
spheric observations to surface fluxes and background conditions. According to the column footprints from X‐
STILT, our FTIR observations are influenced by the emissions throughout central Mexico. To find a balance
between accuracy and computational efficiency, we conducted a sensitivity analysis to select the optimal
inversion area, comparing approaches focusing solely on MCMA versus the entire central Mexico. Results
indicated minor differences in the corrections applied withinMCMA between the two approaches, particularly for
UNAM_EMI (1.95% correction difference) and ODIAC (0.08% correction difference), with negligible differ-
ences for biogenic emissions. The UNAM_EMI is more sensitive to the region selection test than ODIAC is due to
its inclusion of a power station located outside the MCMA. Consequently, we have designated the MCMA as the
focal area for our inversion analysis.

In addition to selecting a reasonable region for inversion, it is imperative to choose appropriate parameters for the
inversion system, as delineated in Table 1. An extensive control experiment was conducted to evaluate the impact
of various uncertain parameters on the inversion results. Through a comprehensive assessment of both posterior
outcomes and observational data, we identified transport error as a critical factor. This error significantly
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undermines the corrective capacity of our inversion system; a higher transport error leads to minimal adjustments,
rendering posterior results nearly identical to the prior estimations. This underscores the necessity of acquiring
more accurate meteorological data and a robust transport model. Among the parameters evaluated, prior un-
certainty and spatial covariance parameters emerged as notably influential, whereas temporal parameters had a
lesser impact on the posterior outcomes. This variation in influence is likely attributed to gaps in FTIR mea-
surement observations. Regarding emissions corrections, FF CO2 emissions are significantly affected by prior
uncertainty, spatial, and temporal covariance parameters related to FF sources. Similarly, biogenic CO2 emissions
predominantly impact biogenic parameters, with posterior background values showing lesser sensitivity to these
fluctuations. An increased error covariance for FF (or biogenic) part typically results in a more substantial
negative correction for FF (or biogenic) emissions. This is due to a larger covariance that propagates the observed
negative correction to nearby grids, leading to a more pronounced decrease. An increase in biogenic covariance
results in positive FF corrections due to the opposite effect: a larger negative correction for biogenic emissions
under the same overall observational correction, necessitating a compensatory adjustment in the opposite di-
rection for other parameters.

We selected the most reasonable parameters, those corresponding to the curve's plateau, as our basic configu-
ration. This setup allowed us to achieve a χ2 value of 1 and enhanced coherence with the observational data. Based
on this configuration, we found a 1.26 GgCO2/hr (18.73%) overestimation in UNAM_EMI and a 0.23 GgCO2/hr
(5.88%) overestimation in ODIAC, the most correction region is within the urban area. The correction for the
biogenic part remains relatively small in the FTIR inversion (− 0.18 ∼ − 0.12 GgCO2/hr), possibly due to the
largest FF signals (3–4 times greater than the biogenic signal) in our modeling domain. The posterior analysis
reveals a reduction in the FF component, from an initial range of 5.08–6.77 Gg CO2/hr, narrowing down to
between 5.04 and 5.51 Gg CO2/hr. There was also a decrease in the biogenic emissions, with values shifting from
− 0.14 Gg CO2/hr to a range of − 0.27 to − 0.33 Gg CO2/hr over the span of 7 months. The correction for the FF
part is significant and tends to bring posterior results from the UNAM_EMI and ODIAC prior emission data
closer. However, discrepancies still exist between the posterior results and the priors from the two inventories.
The main reason for this is the different structures of the priors, which also affect the averaging kernel structure.
The ER for hourly FF emissions ranges between 3% and 4%, and for biogenic emissions, it is 2%. The extent of
this ER is aligned with the temporal focus of our corrections, such as annual or monthly adjustments (Lauvaux
et al., 2020). Given our emphasis on hourly corrections, these values are appropriately modest. When compared
the simulated ΔXCO2 from prior and posterior emissions with observations, it revealed that posterior results are
more robust, greatly improving the coherence of simulation and observations. Employing subsets of our FTIR
data sets has also proven to be beneficial for the remaining data sets.

The inversion analysis was expanded through the incorporation of OCO‐3 SAM observations. The refined es-
timates indicate FF CO2 emissions ranging from 5.04 to 6.36 GgCO2/hr and biogenic emissions between 0.37 and
0.48 GgCO2/hr. The ER for OCO‐3 is only significant during the overpass time, reaching 8%–11% for FF and
6.1%–7.5% for biogenic sources. The averaging kernel demonstrates the observational constraint sensitivity on
the surrounding grid. Both FTIR and OCO‐3 are sensitive to the urban region of MCMA; however, the biogenic
sensitivity differs. FTIR is sensitive to both the north and south, whereas OCO‐3 is only sensitive to the northeast
part of MCMA, which corresponds to the ER. The DOFS for OCO‐3 is lower than FTIR on an hourly basis, and
the DOFS for FF is greater than for biogenic sources in both the FTIR and OCO‐3 data sets. A comparison of the
posterior simulated results with OCO‐3 observations revealed that coherence did not significantly improve at the
original resolution. However, upon aggregating the data to a coarser resolution (from 1 to 30 km), a substantial
enhancement in alignment with observations was observed, suggesting that OCO‐3 observations could be used to
constrain urban emissions by mitigating random observational errors. In addition, comparing the FTIR posterior
results with OCO‐3 observations provides an independent evaluation, demonstrating that the FTIR posterior
results are enhancing the prior inventories. Differences between the OCO‐3 inversion results and those from FTIR
inversions were noted and the impact of sparse temporal density in OCO‐3 data was evident: using FTIR data in
OCO‐3 overpass time resulted in similar FF corrections for both OCO‐3 and FTIR (− 0.47 to 0.44 GgCO2/hr for
UNAM_EMI and − 0.05 to − 0.01 GgCO2/hr for ODIAC). However, the two data sets showed divergent cor-
rections for biogenic emissions, with OCO‐3 adjusting upward (0.21–0.31 GgCO2/hr) and FTIR adjusting
downward (− 0.3 to − 0.28 GgCO2/hr), highlighting the complexities in accurately constraining the biogenic
component in this inversion framework. The limited rural observations by OCO‐3, differences in sampling lo-
cations, and observed XCO2 disparities between OCO‐3 and FTIR contributed to discrepancies in the inversion
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outcomes, including divergent correction directions. In prospective, the incorporation of supplementary
constraints derived from tracer gasses such as NOx, CO, or radiocarbon, or a direct juxtaposition of posterior
flux outcomes against eddy flux towers, will significantly enhance the evaluation of methodological
robustness. This is particularly pertinent in the context of refining the optimization of the FF component once
the accurate calculation of the biogenic portion has been established.

Data Availability Statement
The FTIR observation data are accessible on (Ramonet et al., 2024). The OCO‐3 Level 2 bias‐corrected XCO2
data (version 10.4r) are available for download from (OCO‐2/OCO‐3 Science Team et al., 2022). The ERA5 data
are accessible at (Hersbach et al., 2022). CAMS global inversion‐optimized greenhouse gas concentrations are
accessible at the Copernicus Climate Change Service (C3S) Climate Data Store (Chevallier, 2013; Chevallier
et al., 2019, 2023). The ODIAC emission inventory is documented in Oda and Maksyutov (2015). The inversion
results for FTIR and OCO‐3 could be assess from Che et al. (2024a).
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