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Abstract The results of probabilistic event attribution studies depend on the choice of the extreme value
statistics used in the analysis, particularly with the arbitrariness in the selection of appropriate thresholds to
define extremes. We bypass this issue by using the Extended Generalized Pareto Distribution (ExtGPD), which
jointly models low precipitation with a generalized Pareto distribution and extremes with a different Pareto tail,
to conduct daily precipitation attribution across the contiguous United States (CONUS). We apply the ExtGPD
to 12 general circulation models from the Coupled Model Intercomparison Project Phase 6 and compare
counterfactual scenarios with and without anthropogenic emissions. Observed precipitation by the Climate
Prediction Center is used for evaluating the GCMs. We find that greenhouse gases rather than natural variability
can explain the observed magnitude of extreme daily precipitation, especially in the temperate regions. Our
results highlight an unambiguous linkage of anthropogenic emissions to daily precipitation extremes across
CONUS.

Plain Language Summary We investigate how human‐induced emissions affect daily rainfall
extremes across the United States. The attribution of an extreme event to human‐induced emissions depends on
the selected extreme event statistics, with setting a threshold to define what counts as an extreme event
remaining a major challenge. To overcome this, we used the Extended Generalized Pareto Distribution
(ExtGPD) that jointly models both low and heavy rainfall events without defining a threshold, providing a more
complete picture of the full distribution including extremes. We fitted the ExtGPD to 12 general circulation
models and compared scenarios with and without human‐induced emissions. Our findings suggest that human
emissions are responsible for the observed intensity of daily rainfall extremes across the United States,
especially in regions with temperate climates, and that these extremes would have been smaller without
greenhouse gases.

1. Introduction
Climate attribution studies that examine the role of anthropogenic climate change in altering the probability of
observed weather extremes have proliferated since Allen (2003), who proposed a simple probabilistic framework
for attributing the role of anthropogenic forcing in the occurrence of an observed extreme. The availability of
large ensemble climate model simulations and the Detection and Attribution Model Intercomparison Project
(DAMIP) gave further impetus to climate attribution studies. The goal of these studies is to quantify the
contribution of historic emissions and natural forcing in altering the risk of observed extremes and to project their
changes (e.g., Gillett et al., 2016). This is generally accomplished using frequentist probabilistic methods
(Oldenborgh et al. (2021) and references therein). Most of these studies are event‐specific attribution of observed
extraordinary weather extremes in recent years, while a few of them evaluate the role of anthropogenic emissions
in altering the observed changes in extremes based on fingerprint techniques (e.g., Kirchmeier‐Young et al., 2020;
Risser et al., 2022).

Previous studies have reported an observed intensification of precipitation extremes in the central and eastern
parts of the contiguous United States (CONUS) and no detectable change is reported in the western United States
(Easterling et al., 2017; Guo et al., 2019; Trenberth, 2018). However, the existing event attribution studies have
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reported a low to medium confidence in human attribution to observed precipitation extremes across the CONUS
(Seneviratne et al., 2021). For instance, event attribution studies found that the 3‐day rainfall that caused the
Louisiana floods of 2016 had become 40% more likely since 1900 (Van Der Wiel et al., 2017) and extreme
precipitation associated with Hurricane Harvey in August 2017 in Houston was intensified due to global warming
(e.g., Wang et al., 2018; Wehner & Sampson, 2021; Zhao et al., 2018). Similarly, external forcing reportedly
caused the intensification and increased frequency of 1‐day and 5‐day annual maximum precipitation across
North America based on optimal fingerprinting techniques (Kirchmeier‐Young et al., 2020). On the other hand,
an unequivocal role of human forcing was not detected in the 2013 Colorado heavy rainfall events (Hoerling
et al., 2013; Pall et al., 2017). Most of the existing attribution studies are based on specific observed precipitation
extremes spanning a few days in duration and impacting a specific region of interest. Moreover, the use of
different approaches in the extreme event definition and statistical modeling makes a direct comparison of these
studies difficult.

The definition of extremes is an important criterion in determining the apparent role of anthropogenic climate
change (e.g., Philip et al., 2020). Kirchmeier‐Young et al. (2019) suggested that longer spatial and temporal scales
increase the signal‐to‐noise ratio of extreme weather events, making it easier to attribute longer‐than shorter‐scale
events to human influences. Statistical approaches used for extreme value analysis in climate attribution studies
also influence the attribution statements (Naveau et al., 2020). The block maxima or peak‐over‐threshold (POT)
approaches are usually employed to select the extreme events that are used for subsequent statistical modeling.
While a block maxima approach reduces the sample size of observed extremes to one per year, the POT method is
constrained by the arbitrary choice of the threshold (e.g., Nerantzaki et al., 2023). The threshold selection in a
POT method represents a tradeoff between ensuring an adequate sample size for statistical testing and adhering to
the assumptions of extreme value distributions. The different approaches in event definition and arbitrary choice
of thresholds make it difficult to interpret the existing studies. This necessitates the use of statistical approaches
that are not dependent on threshold specification for climate attribution studies.

To address this issue, we employ the Extended Generalized Pareto distribution (ExtGPD; Naveau et al., 2016),
which jointly models low precipitation with a GPD and heavy rainfall with a different Pareto tail, for building the
statistical framework for climate attribution. The ExtGPD helps in modeling the entire range of data without the
need for specifying a threshold, thereby increasing the sample size needed for fitting the statistical model. Here,
we use the ExtGPD for providing a comprehensive statement on the role of anthropogenic forcing on altering the
risk of daily precipitation extremes by sampling the entire precipitation time series across CONUS. We use
counterfactual simulations from 12 general circulation models (GCMs) that participated in the DAMIP of the 6th

Coupled Model Intercomparison Project (CMIP6) for generating the attribution statements. We organize the
study into three sections: (a) evaluation of the performance of the GCMs in capturing daily precipitation extremes;
(b) attribution of human contributions to daily precipitation extremes by comparing historical simulations with
counterfactual scenarios based on n‐year return level extremes; and (c) estimation of the sensitivity of anthro-
pogenic forcing to the magnitude of extremes and climatic regions.

2. Data and Methods
2.1. Data

We used daily precipitation by the Climate Prediction Center (CPC) available at 0.25° resolution over CONUS.
For the evaluation and attribution study, we used 12 CMIP6 GCMs (Table S1 in Supporting Information S1)
simulations from hist‐nat, hist‐GHG and historical scenarios. The hist‐nat simulations are based on natural forcing
(solar irradiation and volcanic aerosols) and exclude anthropogenic forcing (anthropogenic aerosols and emis-
sions). The hist‐GHG simulations are forced by well‐mixed greenhouse gas emissions and exclude both natural
and anthropogenic aerosols. The historical scenarios of GCMs are based on anthropogenic (GHG and aerosols)
and natural forcing (volcanic and solar). The DAMIP GCMs are forced from 1850 to 2014 (Gillett et al., 2016).
We used 34‐year simulations from 1981 to 2014 to focus on the most recent decades and to mitigate potential
issues related to the presence of non‐stationarities. We regridded the CPC daily precipitation and climate model
simulations to 1‐degree resolution using bilinear interpolation to ensure consistency among the data sets. We
excluded daily gridded precipitation below 0.1 mm of both CPC and CMIP6 data sets for the analysis to remove
drizzle bias in the GCMs (e.g., Dai, 2006; DeMott et al., 2007).
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2.2. Methods

2.2.1. Extreme Value Modeling

The generalized Pareto distribution (GPD) family is widely used for modeling extreme precipitation exceeding a
particular threshold as it is appropriate for modeling heavy tail distributions (e.g., Coles, 2001) (Equation 1);
however, the threshold selection is challenging. A large threshold could reduce the sample size and leads to higher
uncertainty in the parameter estimations, while a smaller threshold does not satisfy the approximations of the
GPD leading to model errors (e.g., Rivoire et al., 2021; Serinaldi & Kilsby, 2014). Naveau et al. (2016) proposed a
transition function to the GPD that provides a smooth connection between the upper tail and the main body of the
function. This approach, called the extended GPD (ExtGPD), avoids the need for threshold specification and
helps in sampling the entire timeseries for modeling extremes. This approach has been applied and tested in
various contexts (e.g., Gamet & Jalbert, 2022; Haruna et al., 2023; Legrand et al., 2023; Rivoire et al., 2021).

The probability distribution of the GPD when the shape ξ (upper tail parameter) is larger than zero (i.e., heavy tail
behavior) is:

H(x/σ) = 1 − (1 +
ξx
σ
)

− 1
/ξ for ξ> 0 (1)

where, σ is the scale parameter of the GPD and x is a scalar in the support of H.

The ExtGPD is a transformation of the GPD, such that:

G(v) = vk ; where v = H(x/σ) (2)

and k > 0 is the lower tail parameter.

Naveau et al. (2016) proposed four different statistical formulations for the extended GPD model. We use the
ExtGPD with three parameters (i.e., scale, lower tail parameter and the shape or upper tail parameter) owing to its
simplicity and convergence of the statistical framework (Equation 2). We estimate the parameters using the
probability weighted moments method as it converges better than the maximum likelihood estimation (Naveau
et al., 2016). We use the following initial values for the parameters: shape ξ = 0.2; scale, σ = 1; lower tail
parameter, k = 0.5. We fit the ExtGPD to CPC and GCM daily precipitation values above 0.1 mm for each 1‐
degree grid and estimate daily precipitation extremes of various return periods.

We compared the shape parameters of the ExtGPD and GPD for three different POT thresholds (Figure S1 in
Supporting Information S1) since the shape parameter of a distribution is crucial in the determination of extreme
values. We observed that the shape parameter of the ExtGPD follows the spatial pattern of extreme precipitation,
with a median value of 0.25 ([0.21; 0.30] as the 95% confidence intervals). The GPD shape parameter is sensitive
to the record length and the selected threshold. Higher POT thresholds result in a low sample size and lead to
increased uncertainty in the estimation of the shape parameter, for instance, the range of GPD shape parameter for
a POT threshold of 99th percentile is in the interval (− 0.27,0.37; Figure S1 in Supporting Information S1)
(Alonso et al., 2014; Serinaldi & Kilsby, 2014). The result of the comparison provides a strong case for the use of
the ExtGPD in place of GPD as the former bypasses these limitations. Although there is an apparent bias in the
shape parameter estimates between the GPD and ExtGPD approaches, it is noteworthy that the GPD confidence
intervals for higher POT thresholds (98th and 99th percentiles) contain the ExtGPD interval (Figure S1 in
Supporting Information S1). So, for higher thresholds, it will be difficult to reject the hypothesis that shape
parameter estimates of GPD and ExtGPD are equal. More importantly, in the present study we focus only on
comparisons across different climate scenarios, and the relative bias in ExtGPD shape parameter with respect to
the GPD shape parameter is expected to remain constant and not impact our results.

We evaluate the performance of the GCMs in simulating observed precipitation based on the ability of the
historical GCM simulations to capture CPC precipitation extremes: for each grid, we select only those models
whose n‐year return level of precipitation in historical simulations falls within the 95% confidence interval (CI) of
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the n‐year return level of the CPC observations. Thus, we identify a subset of good‐performing GCMs for each
grid, which we use in the subsequent event attribution.

2.2.2. Climate Attribution of Extreme Precipitation

We use the 34‐year counterfactual scenarios of hist‐nat and hist‐GHG (1981–2014) from the subset of GCMs to
make a probabilistic attribution statement. We estimated the ratio of change in the return level of extreme pre-
cipitation of the counterfactual scenarios to that of the historical simulations to quantify the impact of anthro-
pogenic emissions (Equation 3).

Attribution Ratio =
PCounterfactual − Phistorical

Phistorical
, (3)

where counterfactual stands for both hist–nat and hist–GHG. We reiterate that the hist‐nat simulations are forced
by natural forcing and the hist‐GHG simulations are forced by well mixed greenhouse gases alone.

A ratio greater (smaller) than zero implies that the counterfactual scenario increases (decreases) the n‐year return
level precipitation compared to the historical forcing. Further, we evaluate the sensitivity of the attribution ratio to
different return periods and climate zones. The CONUS mainly falls within three climatic zones: arid, temperate
and cold as per the Köppen‐Geiger climate classification (Beck et al., 2018). We separately assess the attribution
ratio for each of the three climate zones. The analysis for the ExtGPD is performed in R using the mev and gmm
libraries (Belzile et al., 2015; Chaussé, 2010).

3. Results
3.1. Evaluation of CMIP6 GCMs

We validated the performance of the GCMs by comparing their ability to capture the observed extremes. The
spatial pattern of extremes is well captured by CESM2, CanESM5, E3SM‐2‐0, FGOALs‐g3 and MRI‐ESM2‐
0 (Figure 1b). The largest values in precipitation extremes based on CPC (Figure 1a) tend to be concentrated
along the Gulf Coast and to decrease as we move inland northward, and on the Sierra Navada in the west; most
GCMs can capture this gradient, even though some of them fail to do so. For instance, ACCESS‐CM2, ACCESS‐
ESM1‐5, BCC‐CSM2‐MR, GFDL‐ESM4 and MIROC6 overestimate extremes in the central part of the study
region. Despite being comparatively better, E3SM‐2‐0 and FGOALS‐g3 slightly underestimate precipitation
extremes in the west‐central regions and CanESM5 underestimates extremes along the Gulf Coast. We observed
the GCMs to perform well in simulating the extreme rainfall patterns in the U.S. Northeast, West Coast, the Great
Plains of the North and South, and southeastern regions, which receive relatively high extreme precipitation
(Figure 1). We also examined the performance of GCMs in capturing higher return level precipitation (Figures
S2–S4 in Supporting Information S1) and found similar spatial patterns to those in the 100‐year return period.
Overall, most GCMs capture the spatial pattern of extreme precipitation across CONUS, even though a few of
them overestimate extremes, limiting their use in subsequent modeling.

Srivastava et al. (2020) evaluated the performance of CMIP6 GCMs in capturing precipitation extremes across
CONUS. They found MRI‐ESM2‐0 and IPSL‐CM6A‐LR tend to overestimate total annual precipitation in the
western CONUS, while BCC‐CSM2‐MR and CESM2 show a dry bias in the central Great Plains. The under-
estimation of precipitation in the central Great Plains is in general attributed to the poor convective parametri-
zation, which fails to represent the mesoscale convective systems active in this region (e.g., Na et al., 2022). The
wet bias in the U.S. Southwest is attributed to the higher number of wet days in certain GCMs, resulting in higher
total annual precipitation. We observe MRI‐ESM2‐0 and IPSL‐CM6A‐LR show wet (dry) bias of daily pre-
cipitation extremes along the U.S. West Coast (U.S. Southeast), consistent with their findings. On the contrary,
BCC‐CSM2‐MR overestimates extremes in the central Great Plains. Evaluation of GCMs depends on the
assessment period, evaluation metrics and the GCMs considered, resulting in potentially contrasting findings. We
find both wet and dry biases in daily precipitation extremes in different regions across CONUS, supporting and
contradicting existing studies (Srivastava et al., 2020; Wang and Asefa, 2024).

To mitigate issues with the biases in the estimates of extremes in certain GCMs, for attribution we considered only
those models whose n‐year precipitation falls within the 95% CI of the observations for each grid (Figure 1b). This
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approach helps in removing the GCMs that significantly underestimate or overestimate the observed precipitation
pattern, helping to reduce the uncertainty in climate attribution statements. More than five GCMs satisfy the
above condition in most grids across CONUS, with the highest number of GCMs available in the western and
central United States, as well as the northeastern regions (Figure S5 in Supporting Information S1). At least three
GCMs with satisfactory performance are available in more than 87% grids (730 grids of the total 831 grids) across
CONUS, thereby ensuring the robustness of the estimates. In short, over five GCM simulations of n‐year return
level precipitation are consistent with the corresponding CPC simulation of precipitation extremes across most of
the CONUS and we use them for climate attribution (Figure S5 in Supporting Information S1). Moreover, the
whole time series of precipitation (>0.1 mm) are sampled by fitting the ExtGPD distribution. Therefore, the
comparison of extremes in CMIP6 GCMs and CPC observations provides more confidence in the GCM pre-
cipitation simulations.

3.2. Climate Attribution

We estimate the attribution ratio by taking the ratio of the change in return level in the counterfactual scenario
(hist‐nat and hist‐GHG) to that of the historical simulations (Equation 3). We estimate the multi‐model mean
attribution ratio of the subset of GCMs that performed well compared to CPC for each grid based on 100‐year
precipitation (Figure 2 and Figures S6 and S7 in Supporting Information S1). Most regions across the country
exhibit an attribution ratio below 0 in the hist‐nat scenario and above 0 in the hist‐GHG scenario (Figure 2). The
results show a counterfactual scenario of natural‐only forcing would have made the 100‐year daily precipitation
event smaller than the observations (Figure 2). Likewise, a well‐mixed greenhouse gas emission scenario that

Figure 1. Evaluation of GCMs. Panels (a) show the 100‐year daily precipitation (mm) and their upper and lower confidence
interval (CI) (95% CI) based on Climate Prediction Center (CPC) observations from 1981 to 2014. Panels (b) show the 100‐
year daily precipitation extremes for the 12 GCMs from 1981 to 2014. The blue crosses highlight the grids that fall within the
95% CI of the CPC observations.
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excludes both anthropogenic and natural aerosols would have enhanced the 100‐year daily precipitation extremes
during the observational period (Figure 2). We observed consistent patterns in the attribution ratio at higher return
levels of daily precipitation (Figure S8 in Supporting Information S1). Overall, we identify the significant role of
anthropogenic emissions in exacerbating the daily precipitation extremes across CONUS.

We also determined the 95% CI of the attribution ratio for 100‐year precipitation extremes using 1000 bootstrap
samples (Paciorek et al., 2017). Our analysis revealed that the lower and upper confidence bounds for both
scenarios often fall below and above zero, respectively, resulting in overlapping confidence bounds for most grids
(Figures S9 and S10 in Supporting Information S1). Therefore, we conducted a Kolmogorov‐Smirnov (KS) test
between the attribution ratios of hist‐nat and hist‐GHG scenarios for each GCM and the multi‐model mean,
considering only the grids where the GCM historical simulations fall within the CPC observations. We found a
significant difference (α = 0.05) in the distribution of the attribution ratios for both scenarios for all 12 GCMs
(Table S2 in Supporting Information S1). Furthermore, the KS test between the extreme precipitation magnitudes
for the historical and counterfactual scenarios shows a significant difference (α = 0.05) between historical and
hist‐GHG scenarios for the majority of GCMs and the multi‐model mean for all return levels (Table S3 in
Supporting Information S1). However, significant differences in precipitation magnitudes are not observed in the
case of hist‐nat simulations.

Five or more GCMs that capture the historical extremes are considered for computing the multi‐model mean
attribution ratio in most grids (Figure S5 in Supporting Information S1). We compared the sign of the attribution
ratio of the subset of GCMs in each grid to assess the robustness of the estimates of different GCMs. The majority
of the GCMs show a negative sign of change in the hist‐nat scenario and a positive sign of change in the hist‐GHG
scenario (Figures S6–S8 in Supporting Information S1). We found that a high percentage of GCMs agree in the
sign of change at regions with high strength in attribution (Figure 2 and Figure S11 in Supporting Information S1).
The Northwest, U.S. East Coast, Midwest and southern regions show a high negative attribution ratio and have a
high percentage of GCMs agreeing on the sign of change (negative attribution ratio) in the hist‐nat scenario
(Figure 2 and Figure S11 in Supporting Information S1). Similarly, the Southern Plains, the east‐central United
States, U.S. Northeast and West Coast show high positive attribution ratio and have a higher percentage of GCMs
agreeing on the positive sign of change (Figure 2 and Figure S11 in Supporting Information S1). Thus, the grids
with higher magnitude of the multi‐model mean attribution ratio have more GCMs that agree on the sign of
change, making the result robust across the GCMs. The higher magnitude of extreme precipitation in a GHG‐only
scenario (hist‐GHG) compared to the historical simulations highlights the modulating effect of natural and
anthropogenic aerosols in reducing precipitation intensities. Aerosols, particularly sulfate aerosols, have a net
negative impact on radiative forcing due to their high reflectance and indirect effect on cloud formation, leading to
a reduction in precipitation (e.g., Allan et al., 2020; Risser et al., 2022). The positive attribution ratio in the hist‐
GHG also coincides with regions with high sulfate aerosols emissions across CONUS, including the northeastern,
the east‐central and southwestern United States and the U.S. West Coast (Risser et al., 2022). The increased risk of
extreme daily precipitation in the hist‐GHG scenario can be attributed to not accounting for the role of aerosols. A

Figure 2. Multi‐model mean attribution ratio of hist‐nat and hist‐GHG simulations estimated using the subset of GCMs that
performed well with respect to Climate Prediction Center for the 100‐year daily precipitation. For each grid, the mean is
estimated based on the GCMs that capture the observed extremes (Figure S5 in Supporting Information S1). The white color
corresponds to grids for which all GCMs failed to capture the observed extremes within the 95% confidence interval.
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lower daily precipitation magnitude in the natural‐forcing scenario emphasizes the role of GHG emissions in
exacerbating the precipitation extremes. We have not directly compared the precipitation magnitudes in the two
counterfactual scenarios of well‐mixed GHG and natural only forcing. However, it is evident that GHG forcing
alone would have enhanced the magnitude of observed extremes compared to natural forcing (Figure 2 and
Figures S6–S8 in Supporting Information S1).

We observed distinct regional patterns in the attribution ratio. The Southern Plains, east‐central and north‐eastern
United States, which receive intense precipitation, exhibit a higher sensitivity of precipitation extremes to
anthropogenic forcing (right panel in Figures 1a and 2). On the contrary, the western United States, including the
U.S. Northwest and the Northern Plains, show a higher reduction in extremes under natural‐only forcing (left
panel in Figure 2). This is consistent with the spatial pattern of observed extreme precipitation across CONUS
(Figure 1a). An intensification of heavy precipitation is observed since 1979 in the central and eastern United
States, attributed to the increased frequency of mesoscale convective systems that cause heavy precipitation
during the warm season (Easterling et al., 2017). Similarly, a linear increase in precipitation extremes is reported
in the Midwest, U.S. East Coast and the Great Plains excluding the northwest regions (Dong et al., 2021), with a
low confidence in the increase of extreme precipitation in the western regions (Seneviratne et al., 2021). Overall,
we found the Southern Plains and the northeast regions, which receive intense daily precipitation and an observed
increase in extremes, are highly sensitive to anthropogenic GHG emissions, more so than some of the drier
northwestern regions.

3.3. Role of Climate Patterns and Return Period on the Attribution Ratio

We observed regional variability in the attribution ratio under the two counterfactual scenarios. To understand the
role of climatic regions on the attribution ratio, we estimated the multi‐model mean attribution ratio for the three
major Köppen‐Geiger climate classes over CONUS, namely arid, cold and temperate regions (Beck et al., 2018).
The temperate regions exhibit the highest increase in extreme precipitation under hist‐GHG simulations, followed
by the arid regions, with the areas belonging to the cold region showing the lowest signal (Figure 3). The vast
number of event attribution studies conducted in the southern and central United States highlights the role of
anthropogenic emissions in increasing the probability of observed precipitation extremes in the temperate eastern
United States (Van Der Wiel et al., 2017; Wang et al., 2018; Zhao et al., 2018), consistent with our findings. In the
hist‐nat scenario, the temperate and arid regions show a relatively low decrease in precipitation extremes
compared to the cold regions, which show the highest decrease (Figure 3). Moreover, the cold regions have the
smallest interquartile spread in the attribution ratio in the hist‐nat scenario. However, the difference among the
climatic regions is much less in hist‐nat compared to hist‐GHG scenario. As observed earlier, the arid and cold
regions, which received low precipitation extremes during the study period, have a low attribution ratio compared
to the temperate regions in the hist‐GHG scenario, which receive intense daily precipitation. This implies that
GHG emissions exacerbate precipitation extremes in wetter regions compared to drier ones.

We also compared the sensitivity of the attribution ratio to the magnitude of the extremes. We observed a slight
increase in the risk of extreme precipitation of higher return periods (RP = 200, 250, 500) due to anthropogenic
emissions (Figure 3 and Figures S8 and S12 in Supporting Information S1). There is a nominal increase (decrease)
in the multi‐model mean attribution ratio in the hist‐GHG (hist‐nat) scenario with an increase in precipitation
return period (Figure 3 and Figure S12 in Supporting Information S1). However, there is a substantial increase in
the interquartile range as the return period increases (Figure 3 and Figure S12 in Supporting Information S1). The
temperate climatic regions exhibit a relatively higher increase in the attribution ratio in the hist‐GHG scenario
compared to the hist‐nat (Figure 3). Overall, we find that the likelihood of higher magnitude precipitation ex-
tremes would have increased in a counterfactual scenario of anthropogenic emissions alone compared to the
historical scenario. Previous studies outline that the probability of rare extremes increases at a higher rate in a
warming world (Myhre et al., 2019), in agreement with our results, even though at a more muted level.

4. Discussion and Conclusions
We used the ExtGPD to assess the performance of 12 DAMIP GCMs in capturing the daily precipitation ex-
tremes. Unlike the GPD, the ExtGPD samples the entire time series and removes the arbitrariness in threshold
selection in modeling extremes. Hence, the comparison of CPC observations and GCMs using the ExtGPD
provides a robust estimation of the climate model performance, and we found that most GCMs capture the spatial
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pattern of observed extremes. Our probabilistic attribution study shows an unambiguous connection of human
emissions to daily precipitation extremes across CONUS. We report higher confidence in the attribution of daily
precipitation extremes to well‐mixed GHG emissions in the Northeast, Southern Plains, east‐central United
States, and U.S. West Coast, which receive high extreme precipitation, consistent with previous studies (e.g.,
Dong et al., 2021; Easterling et al., 2017). The arid regions in the west and the colder Midwest show a higher
sensitivity to a counterfactual scenario of natural forcing, implying a reduction in extreme precipitation
magnitude compared to the observed extremes. The spatial distribution of the attribution ratio identified in the
study aligns with the observed pattern of precipitation extremes, suggesting a tendency for increased extreme
magnitudes in regions experiencing higher levels of extremes. The Fifth US National Climate Assessment report
highlights a relative increase in total annual precipitation in the Great Plains and eastern CONUS, and an increase
in extreme precipitation in the eastern CONUS in the early 21st century relative to the first half of the 20th century
(Marvel et al., 2023). Our attribution results highlight the increased role of GHG emissions in exacerbating the
observed precipitation extremes in northeastern and east‐central CONUS.

One limitation of this study is the lower spatial resolution of the DAMIP GCMs (∼120 km), which leads to an
inherent disadvantage in the accurate simulation of the regional precipitation patterns. However, the attribution
ratio defined in the study is based on the counterfactual scenarios of the same climate models forced with different
external forcings. Therefore, assuming that the response of the GCMs to the anthropogenic and natural forcing
would be the same across resolutions, then our attribution statements would not be impacted by their coarse
resolution. This assumption should be verified in future studies using a suite of models with different resolutions.
To strengthen our results and lend more credence to their robustness, we only considered a subset of GCMs that

Figure 3. Attribution ratio for the three main Köppen‐Geiger climate classes across CONUS. The spatial extent of the three
main climate classes (arid, cold, and temperate) is shown in the inset figure. The box plots depict the attribution ratio for the
three climate classes in a hist‐nat and hist‐GHG scenario for 100, 200, 250, and 500‐year daily precipitation. In the boxplots,
the dark horizontal line represents the median, the box represents the interquartile range, and the whiskers correspond to the
5th and 95th percentile values.
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performed well in reproducing the observed statistical properties of rainfall extremes, and used the ExtGPD,
which samples the entire time series with no need for thresholds. We conducted our analysis for the annual
precipitation time series. However, future research could benefit from examining each season separately as the
processes that cause extreme precipitation vary across seasons and could provide insights into the variations in
precipitation mechanisms. Furthermore, seasonal analysis is more consistent with the independent and identically
distributed assumption of extreme value statistics.

Anthropogenic warming has already increased the global mean temperature by 1°C from the pre‐industrial level
and the current emission trajectory is expected to exceed 1.5°C by the middle of the 21st century (Masson‐
Delmotte et al., 2018). An increase in global mean temperature increases the water holding capacity of the at-
mosphere according to the Clausius Clapeyron relationship, which in turn increases the frequency of precipitation
extremes (Allan & Soden, 2008; Fowler et al., 2021; Papalexiou & Montanari, 2019; Westra et al., 2014). Our
results highlight the human influence on observed daily precipitation extremes across CONUS and emphasize the
need for active reduction in human emissions to mitigate the intensification of precipitation extremes in future.
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