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Abstract 

There is increasing interest in using specialized circuits based on emerging technologies to 

develop a new generation of smart devices. The process and device variability exhibited by 

such materials, however, can present substantial challenges for designing circuits. We consider 

the use of three models: a physical compact model, an empirical look up table and an empirical 

surrogate model based on a multilayer perceptron (MLP) regression. Each is fit to measured 

discrete organic thin film transistors in the low voltage regime. We show that the models 

provide consistent results when designing artificial neuron circuits, but that the MLP regression 

provides the highest accuracy and is much simpler to fit compared to the compact model. The 

targeted technology exhibits non-ideal behavior such as variable threshold voltage and 

hysteresis. Using the multiplayer perceptron model, we compare the effect of such variability 

on the performance of the neuron circuit. We find that these effects alter the neuron firing rate 

and change the time spent in the on/off states but do not change the basic operation.  

   



3 
 

 

1 Introduction 

Recent research on emerging flexible electronics has shown that robust transistors and digital 

circuits can be realized with a low-cost, and a greener manufacturing profile, but at the expense 

of device performance [1,2]. For many applications, such as continuous health monitoring 

devices [3] or environmental sensors, the end products target wide and relatively short term use. 

The question of sustainability and cost can therefore be more important than state-of-the art 

performance. In this paper we focus on low power organic devices, which are most promising 

for wearable devices that integrate with the human body. 

In conventional silicon research and development, mature physical compact models are 

able to capture the device behavior essential for designing circuits[4]. While there is a large 

literature on modeling Organic Thin Film Transistors (OTFTs) [5], it is a challenge is to develop 

a single model that can capture the wide variety of physical effects possible in the different 

technologies used for device fabrication. Most notably, the interfaces resulting from different 

techniques cause trap states, which can vary widely in their characteristics. In addition, 

modeling is complicated by changes due to light, moisture and history that strongly influence 

OTFT behavior. These difficulties are especially important for circuit design at lower operating 

voltages (≤ 5V) and typically models and circuits focus on higher voltage regimes.  

Fitting devices to a physical compact model for a given technology has been widely 

investigated, but the process of determining the fitting parameters is often time consuming. In 

this paper we first compare three different OTFT modeling techniques: a physical compact 

model, an empirical Look Up Table (LUT) and an empirical model based on the Artificial 

Intelligence (AI) algorithm known as a multi-layer perceptron. The compact model is based on 

a quasi-static charge model [6], which solves Poisson’s equation self-consistently using an 

appropriate density of states and an electron/hole transport model based on variable range 

hopping. The fitting procedure takes into account both transfer (drain current, Id, versus gate-
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source voltage, Vgs) and output (Id versus drain-source voltage, Vds) and curves. It involves about 

20 fitting parameters. Nevertheless, the fitting procedure can be long, making it very difficult 

to explore how changes in transistor variability within a technology can impact circuits.  

One possibility to overcome this difficulty is the use of empirical compact models. In 

this case, a large data set of OTFT transfer and output curves that includes the range of the 

targeted circuit operation is obtained. The simplest empirical model is to use LUT, where 

empirical data is placed in a table and a linear interpolation between the data points enables a 

model of its behavior for circuit design. LUTs are easily implemented in standard design tools 

such as Cadence Spectre. Nevertheless, this simplistic model is not accurate in the presence of 

hysteretic effects, where the Id at fixed Vds and fixed Vgs can be different depending on the 

history of the device. To overcome the difficulties related to the hysteresis observed in this 

dataset, the LUT used here is based on the transfer (Id versus Vgs) curves. 

Here we propose a model based on well-known AI algorithm, the multi-layer perceptron 

(MLP) regression, illustrated in Figure 1. In this method, the input consists of the particular 

function of Vds and Vgs and the output is lnሺ𝐼ௗሻ. To develop the parameters for the input vector, 

we first considered a linear regression to a typical diffusion transport in the sub-threshold 

regime[5]. It is given by: 

𝐼௦௨ ൌ  െ𝐼exp ቆ
𝐿𝑛ሺ10ሻ

𝑆
 ሺ𝑉 ௌ െ 𝑉ሻቇ 1 െ 𝑒𝑥𝑝 ൬

𝑞𝑉ௌ
𝑘𝑇

൰൨ 
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where I0 is the prefactor normally dependent on the width, length and mobility of the transistor, 

S is the subthreshold factor, Vth is the threshold voltage, kB is Boltzmann’s constant and T is 

temperature. Noting that the logarithm of this curve is linear, we first considered a linear 

regression of Id versus ln(Vgs) characteristics. The data, as shown in Figure 2, is clearly non- 

linear. We therefore extended the linear fit to a polynomial of Vds and Vgs. The results improved, 

but to obtain an even better result an MLP regression was used. Based on this initial analysis, 

we tested an input vector for the best accuracy using a polynomial of variables Vds and Vgs. The 

best results were found for 𝑉, 𝑉ଶ, 𝑉ௗ, 𝑉ௗ
ଶ, and 𝑉𝑉ௗ, as depicted in Figure 1. The input layer is 

connected to two hidden layers, also each in the form of a vector, and finally a single output 

lnሺ𝐼ௗሻ. Connections between the layers are matrices, whose values, known as weights, are 

optimized during the training process. During training, input values corresponding to known 

current output for all of the empirical data are used. The values include the ~ 14,000 current 

points from both transfer and output 

characteristics. A stochastic gradient 

descent method optimizes the weights. 

The final architecture with the trained 

values is encoded into VerilogA format 

that can then be read by a circuit 

simulator such as Cadence Spectre.  

Further details are provided in greater 

detail in the Methods section. 

Our simulations focus on the low 

voltage regime of device operation 

because our goal is to simulate spiking 

neuron circuits. Such low power circuits 

 

Figure 1. The MLP regression architecture. The 
input layer consists of a vector derived from 
polynomial terms of Vgs, Vds. The first hidden layer 
(HL1) is connected to the input by a matrix that fully 
connects the 5 weights with each 256 elements. The 
second hidden layer (HL2) consists of 128 elements 
and is also fully connected to HL1. Finally, the 
output is a single value fully connect to HL2.  
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take advantage of the exponential dependence of the sub-threshold region.[7,8] A strong impetus 

for developing neuromorphic hardware in flexible materials lies in the observation that 

biological brains perform very well at very low speeds, low energies and with hardware prone 

to variability as in these technologies. While the first realization of neuromorphic hardware in 

organic technologies was considered more than a decade ago [9,10], this field has recently 

blossomed following several very important breakthroughs[11]. The majority of recent 

demonstrations[12–15] have used organic electrochemical transistors (OECTs)[16]. The gate action 

of these devices is driven by ionic doping/dedoping of the semiconductor, which has a direct 

analogy with the coupled ion/electron transport in biological neurons. OECTs offer facile 

integration with biological systems, and provide an unparalleled opportunity in health 

sensors.[13,15,17,18] While circuits have been realized in OECTs [19,20], the main drawback is the 

slow speed of the devices, at best 10s-100s of milliseconds, typically due to the thickness of the 

electrolyte in the gate. 

Although organic thin film transistor (OTFT) technologies are comparatively well-

established compared to OECTs, neuromorphic functionalities lag in comparison[21–25]. 

Previous demonstrations have shown spiking organic neurons in the µWs and in the ~Hz range. 

OTFTs, however, can operate up to MHz frequencies[26]. One target of these studies was the 

Axon-Hillock (AH) circuit, first proposed by Mead in 1989 [7]. Biologically the AH neuron is 

where the membrane potentials from the synaptic inputs are summed before being transmitted 

to the axon. In circuit form it is a relatively simple to realize and therefore amenable to OTFT 

implementations. It is a self-resetting circuit where spikes are generated above a threshold that 

is dependent on the geometry of the transistors and their properties. Two demonstrations of 

organic neuron circuits have been reported[25,27]. In one case a complementary OTFT 

technology used relatively low cost (vacuum evaporation)  and simple processing, however 

very large differences in the n- and p- transistor characteristics limited its performance [27]. In 



7 
 

the second case, pOTFT were fabricated using solution processing and discrete resistors and 

capacitors were used. Spiking was observed when voltage spikes were applied to the input.  

Improving performance by modeling is one potential way to advance this line of research. 

While the first paper developed a novel modeling methodology, parameter extraction was 

shown to be quite time consuming. The second paper used a simple MOSFET model with 

parameters corresponding to the organic devices. Little discussion was provided as to the 

reproducibility of these circuits.  

To surmount these difficulties, we explore empirical modeling of OTFTs  for circuit 

design. We focus on devices fabricated in a well-developed organic technology using flexible 

Thin Organic Large Area Electronics TOLAE processes. Current research has already 

demonstrated many capabilities of such technologies including analog front-end [28] and 

multiplexing circuits [29], and Serial-Parallel conversion [30]. To date the majority of applications 

in organic hardware have focused on using conventional digital approaches, but there are much 

    
Figure 2. Id versus Vds for the a) 10 µm channel length from die 1, and b) 400 µm channel length transistors 
from die 1. All transistors have a 1 mm width.  Id versus Vg characteristics for the c) 10 µm channel length 
and d) 400 µm channel length transistors. The inset depicts a device schematic. The fabrication methods of 
these devices are discussed in the methods section. Data for all 10 die for these two devices are provided in 
Figs SI1-4. 
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fewer explorations of analog and low power operation.  

2. Results 

2.1 Characterization and modeling of the OTFTs 

We performed a detailed characterization at low voltages of a large set of p-type OTFTs 

consisting of 10 different size transistors repeated on 10 different die. Figure 2 shows a sample 

of the characteristics of two devices with 10 µm and 400 µm channel lengths with 1 mm widths. 

We observe an important hysteresis that complicates the modeling effort, where the voltage 

from zero towards greater 

negative voltages (forward 

sweep) have a lower absolute 

value of current compared to the 

sweep towards zero (reverse 

sweep). For the smaller length 

transistors, the hysteresis is larger 

but recovers more quickly as can 

be seen when comparing the 

hysteresis response of the Id vs Vds 

and Id vs Vgs in the two transistor 

sizes. Hysteresis is likely due to 

charge trapping.  Holes are 

trapped at defects in the forward 

sweep and then remain trapped causing a shift in the threshold voltage in the return sweep. The 

dependence of the hysteresis and the recovery time on the channel length suggests that the traps 

are dependent on the field due to the Vds, possibly due to traps at the source/drain to channel 

interface. A complete understanding would require detailed measurements of the time 

dependence, which is outside the scope of this paper.  

 

 
Figure 3: a) Id vs Vds at Vg = -3.5 V and b) Id versus Vg at Vds =-3.5 
V measurements for all die for the 10 µm channel length devices.  
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We next consider the variability in the technology. Figs S1-S4 show the large variability 

for the two different device sizes for 10 transistors that are nominally the same size but are 

located on different die. Note that the size of the hysteresis varies from device to device. Figure 

3 compares the transfer and output characteristics for ten 10 µm channel length devices on 

different dies for fixed biases. We observe important changes in the threshold voltage and turn-

on Von, defined as the value of Vg at which the transistor current exceeds the background (in this 

case, when |Id| > 1 x 10-13 A).  

This large variability is an important concern when designing circuits. First, it prevents 

the use of a simple scaling rule to describe the technology, which is typically used in physical 

compact models. Instead, a model is needed for every device size and in fact for very device.  

A second concern is the impact of the large variation in Von on the circuits. 

 

Figure 4. Transfer (a), (b) and output (c), (d) characteristics and fits to the three models for 10 µm 
and 40 µm channel lengths respectively. The fits used the forward sweep. Die 1 was used for both 
device sizes. 
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The dataset describing the devices are done using DC measurements and the lack of 

time dependent measurements precludes realization of an AC model. This situation is not 

unique. It may be encountered when trying to use data provided by a foundry to develop a 

model for a device that is operating in a transport regime that is not mainstream, for instance at 

low voltage values. In this case, time dependent measurements may not be possible to obtain 

and yet circuit designs need to be realized based on the DC transistor measurements. For this 

reason, we develop a methodology that can be used to understand the impact of the observed 

hysteresis during circuit design based on the partial information provided by a forward and 

reverse sweep.  

Our modeling analysis begins with Figure 4, which compares the fitting of the three 

models using the data from forward sweep (from 0 towards negative bias). There is significantly 

 IdVgs     IdVds 

  Compact  
MLP  

Regression  LUT     Compact  
MLP  

Regression  LUT 

|Vds| 

Root 
mean 
square 
error 
(nA) 

Root 
mean 
square 
error 
(nA) 

Root 
mean 
square 
error 
(nA) 

|Vgs| 

Root 
mean 
square 
error 
(nA) 

Root 
mean 
square 
error 
(nA) 

Root 
mean 
square 
error 
(nA) 

5  11.40  7.03  0  5  135  162  160 

4.5  9.91  2.78  0  4.5  71.5  84.6  85.8 

4  8.73  1.67  0  4  28.7  32.9  34.3 

3.5  7.68  2.3  0  3.5  6.76  7.75  8.52 

3  7.40  1.88  0  3  0.654  0.727  1 

2.5  7.50  1.34  0  2.5  0.0858  0.0859  0.0859 

2  7.96  9.67  0  2  0.0987  0.0972  0.105 

2.5  8.72  1.22  0  2.5  0.108  0.108  0.108 

1  9.04  1.72  0  1  0.132  0.132  0.132 

Table 1. Root mean square error of the 3 different models for a sampling of transfer and output 

curves for the 10 µm channel length device from die 1.   
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more data for the transfer characteristics and as a result the MLP regression and LUT (based 

only on the Id-Vgs curves) fit better than the compact model. However, for the Id - Vds, where 

less data is available, the compact model is able to better capture the transport because it is 

based on physical reasoning. The time to simulate the transistor characteristics in cadence is ~ 

0.5 s and does not substantially differ with the three models, indicating that it is negligible 

compare to starting the Cadence software. 

Table 1 compares the root mean square error (RMSE) (definition given in the methods) 

for the three different models. The LUT model has zero RMSE for the transfer characteristics 

because the values of the transfer curves were used in the look up table. The MLP has a 

significantly smaller RMSE compared to the compact model for the transfer curves. For the 

output characteristics, we see that the compact model always performs better. This is because 

there were much fewer points for the output characteristics and the compact model is able to 

work with fewer points in general.  The MLP is able to capture the output characteristics better 

than the LUT for a large portion of the range. In the SI Table 1 we report other error measures 

such as the relative root mean square error and the relative mean square error, which are 

necessary to compare the technique with other methods. We find that the compact model 

performs as well as previously reported compact models [24]. The MLP perceptron performs 

much better than the compact model for the transverse curves and very similarly in the output 

curves.  

The fitting score (R2, explained in methods) for all the MLP regressions (10 die each 

with 10 different device sizes) are reported in Fig. SI5. The model for Die 1, 10 µm channel 

length has an excellent accuracy >0.999, which can be seen as a typical value. The worst model 

has overall accuracies of 0.98. We have chosen to use a fixed architecture for the MLP 

regression for devices, as depicted in Figure 1. In future work accuracies could be improved 

by optimizing the architecture for each individual device.  
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2.2 Inverter Circuit 

Figure 5 shows simulations for 

inverters consisting of a single 

transistor and a single resistor, 

which are important elements in the 

neuron circuit. A resistor loaded 

inverter has several disadvantages 

compared to a CMOS inverter, 

mainly a continuous power 

dissipation and a slower switching 

speed. However, here it allows us to 

reduce the variability of the circuit design by only using a single active transistor. An improved 

design could have a two resistor, one-transistor design where one resistor serves as the pull-up 

load and the other is used in series with the transistor to limit the power consumption. Figure 

5b compares the simulation results for the three models. Despite the differences in fitting from 

the previous section and also the different origin of the models, they result in very similar 

characteristics. Because the inverter only uses a single transistor, the simulation times for this 

circuit were also ~ 0.5 s and it was hard to detect timing differences in the three models. 

  Next we consider the role of the hysteresis and variability using the MLP regression 

model. Figure 6 plots the variation of the inverter using the forward and reverse fits for all die 

from Figure 3. The inverter transition in the forward direction varies over 0.6 V and in the 

reverse direction by over 0.9 V. Note that there is a definite trend for Von to shift to lower values 

as the die number increases. The hysteresis, shown in Fig 6d is relatively uniform around 0.5V. 

These changes may be due to changes in the homogeneity of the materials. Variations may also 

be due to small misalignments that are propagated in the sheet. Given these large variations, it 

Figure 5. a) The inverter circuit used in the simulations. 
VDD is set to –5V.  b) Simulations comparing the results 
of the 3 models using Cadence Spectre based on die 1 of 
the 10 µm channel length device and using the fit to the 
forward sweep model. 
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is not clear how AH circuit will function in the presence of such effects.  

 

2.2 Simulations of spiking neuron circuits 

We consider a pOTFT implementation of the AH circuit based on the work Danneville et al[31], 

depicted in Figure 7a. The implementation is very appealing for organic electronics because all 

transistors are the same dimensions allowing us to avoid the shift to higher |Vg| that is 

experienced by Von in larger channel length devices. When no excitatory current is applied (Iexc 

= 0 A), both the output voltage Vout and the membrane voltage Vmem are 0 V. The capacitor Cf 

is not charged and the output of the first inverter is high. As Iexc is increased, Cf begins to charge, 

causing Vmem to increase. When Vmem reaches the threshold voltage to switch the inverters, both 

inverters change state and Vout rises towards the supply voltage VDD. A positive feedback loop 

 

Figure 6 Variability and hysteresis of the inverter circuit (a). The forward sweep (b) and reverse sweep 
(c) is shown for all ten 10µm transistor length transistors. (d) The impact of the hysteresis on inverter 
characteristics are plotted for die 1. VDD was set at -5 V. 
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is then established through Cf, which raises Vmem to a value higher than Vout. When the reset 

current Ir through the transistor TRr significantly exceeds Iexc, Vmem starts to decrease until it 

reaches the switching voltage of the first inverter. Consequently, the inverters switch again, 

bringing Vout back to 0V, and the cycle repeats.  

This circuit is different from the conventional AH circuit [7] which includes a capacitor 

Cmem connected from Vmem to ground. Here it is replaced by the parasitic input capacitance, 

which in this case corresponds to the capacitance of TR1, estimated to be ~ 0.4 pF. This value 

is included by setting the parasitic capacitance in the simulation parameters. 

We first consider the ideal case where all the transistors use the same forward sweep 

model. The goal is to benchmark the MLP regression against the compact model and then it 

will be used more broadly to understand the expected circuit behavior. Figure 7b and 7c show 

 

Figure 7. (a) The OTFT axon-hillock circuit. VDD is set to -5 V,  the resistances are 1 GΩ, Cf = 1 
pF, Iexc is -1 nA. The Vmem (b) and Vout (c) from simulations using the three models for the 10 µm 
transistor from die 1. All transistors use the same model based on forward sweep. 
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a comparison of the AH circuits realized using the 

three models. As with the inverter, we find that the 

AH simulations do not exhibit significant variations 

for the different models. We do observe a slightly 

smaller spiking rate for the compact model, which 

is due to smaller resistances at larger voltages (see 

Figure 4). Unlike the inverter and the transistor 

characteristics, we find an important difference the simulation time of the three models, 

reported in Table 2, with the MLP model taking nearly 2 order magnitudes longer. For small 

circuits like the AH circuit, the time is still not a barrier. The power consumption in the 

simulated circuits is found to be < 5 nW and the firing rate is ~ 100 Hz. Having established that 

the MLP is representative of the transistors and provides similar results to the established 

compact models, we now consider simulations that explore the impact of the hysteresis and 

variability on the AH circuit. 

We used the MLP model to fit other transistor sizes to test 

whether the model functions for other sizes and to test how the 

firing rate varies. Table 3 reports results on the firing rate for 

different size devices. Increasing transistor sizes while keeping 

the resistors the same alters the switching voltage of the inverters 

and also changes the charging time. Due to larger resistance with 

device length, the firing rate decreases.  

Figure 8 considers how the variation of Von impacts the firing 

rate by comparing the axon-hillock circuits using different 10 µm 

transistors and the forward sweep MLP model. Note that the transistors in the circuit (TR1, TR2, 

TRr) use the same model. The firing rate varies from 80 Hz in Die 1 to 100 Hz in Die 10. This 

   Compact  LUT  MLP 

Simulation 

time (s)  

(1 Id‐Vgs) 

0.5  2  30 

 

Table 2. Simulation times in Cadence spectre 
for the AH circuit simulated for 100 ms for 
the three models. The simulation time for the 
inverter and the transistor characteristics 
was 0.5 s for all models. 

L  Spikes/sec 

    5 µm  128 

  10 µm  87 

  20 µm  91 

100 µm  11 

200 µm  9 

Table 3. Approximate firing rate 
when the AH circuit in Figure 
7a is used for other transistor 
sizes. These simulations were 
done using die 1 for each size, 
the same transistor model in the 
forward sweep for TR1, TR2 
and TRF and single transistor 
size. Iexc = -1 nA, the resistors 
were 1 GΩ and Cf = 1 pF.  
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shift corresponds to the shift in the transition in the inverter and also the shift of Von of the 

discrete transistors. A second observation is that the faster spiking neurons have a smaller 

voltage difference between the ON/OFF states. The main impact of an increase in |Von| is to 

decreases the firing rate. Note that this effect is similar to what was observed with increasing 

channel length where devices also exhibit an increase in |Von| and slower firing rates. 

We next consider how variability of the transistors (TR1, TR2, TRr) in the axon hillock circuit 

impacts its output. Table 4 lists the dies and the distance between the |Von| of the different 

transistors. Figure 9 

shows the resulting 

voltages of the 

circuits. We find that 

when TR1 uses the 

model for Die 1, 

which has the largest 

|Von|, the firing rate is 

Curve No.  Transistor die 

𝑻𝑹𝟏,𝑻𝑹𝟐,𝑻𝑹𝒓 
𝑽𝑶𝑵 

𝑻𝑹𝟏, 𝑻𝑹𝟐 

𝑽𝑶𝑵  

𝑻𝑹𝟏, 𝑻𝑹𝒓 

𝑽𝑶𝑵 

 𝑻𝑹𝟐, 𝑻𝑹𝒓 

1  1, 2, 5  < 0.10 V  0.50 V  0.40 V 

2  1, 10, 5  0.75 V  0.50 V  0.25 V 

3  4, 6, 5  0.20 V  0.10 V  < 0.10 V 

Table 4: Transistors and their Von  (distance between the Von of the two 
transistors indicated) used in in Figure 9. 

 

 
Figure 8. (a) Comparison of Vout  of the axon-hillock circuit using the 
MLP regression empirical model for transistors on different die that 
are 10 µm length. Each curve is offset by 5V for clarity. The lines 
depict the change in the placement of the 7th or 8th spike in order to 
depict the variability due to changes in transistor characteristics. 
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reduced (curve 1 and curve 2 compared to curve 3). However, the firing rate is increased by a 

smaller |Von| in TR2. This is true for not only the firing rate in curves 1 and 2 in Figure 9, but 

also for curves 1 and 2 compared to the firing rates in Figure 8. We also observe that the faster 

firing rate in curve No. 3 (red) has a higher low state, as for the faster firing rates in Figure 8. 

Overall the impact of the variability in TR1, TR2, TRr is very similar to the variability when the 

same model is used for all three transistors: it causes a change in the spike rate and can impact 

the difference between high and low spikes but the circuit is still seen to be functional.  

Finally, we use the forward and reverse models to consider the impact of the hysteresis 

on the axon-hillock circuit. To do this we 

introduce two circuit models in Table 5 that 

account for the sweep states during circuit 

operation. The sweep states of the three 

transistors within the circuit differ 

depending on whether |Vout| is high or low. 

When |Vout| is low, |Vmem| increases linearly 

until it reaches the switching threshold of TR1. At this point TR1 switches from low to high and 

TR2 switches from high to low. This causes |Vout| to reach VDD and switch TRr for low to high. 

Therefore, in the spike up state TR1 and TRr undergo a forward sweep (circuit model 1), while 

TR  Circuit Model 1  Circuit Model 2 

TR1  Forward model  Backward model 

TR2  Backward model  Forward model 

TRr  Forward model  Backward model 

Table 5. Two circuit models that are used to 
understand how the hysteresis might impact the axon-
hillock circuit. 

Figure 9. Vmem and Vout characteristics of the axon-hillock circuit when using different transistor models 
for TR1, TR2, TRr. in the circuit 
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TR2 undergoes a reverse sweep. Conversely, during the spike down state, TR1 and TRr follow 

a reverse sweep, while TR2 undergoes a forward sweep (circuit model 2). 

Figure 10 shows the simulations for the two models. In a circuit with hysteresis, we 

expect the |Vout| and |Vmem| to follow the red lines during the spike up state, and the green line 

in the spike down state. As a result, although there is a difference in the firing dynamics between 

the circuit model 1 and 2, the overall shape of the |Vout| spiking remains unchanged. This 

suggests that while hysteresis of OTFTs can introduce variability in the firing dynamics, and 

but it does not significantly alter the fundamental waveform characteristics of the output 

voltage. The resulting firing rate will remain unchanged but the relative time spent in high and 

low states will be different. We also see that if they hysteresis increases with sweep time, which 

is typically the case, the time spent in the high/low spike states will also change. Such behavior 

has important implications for the reliability of signal transmission, as it indicates that the axon 

hillock circuit can maintain consistent spiking patterns despite some hysteresis.  

 

3. Discussion 

3.1 Comparison of modeling  

The three models considered here have advantages in different instances. The compact model, 

which is based on physics, allows us to understand the mechanisms at work in the devices. It 

 

Figure 10. Simulation of the Vout (a) and Vmem (b) for the axon-hillock circuit using the two circuit 
models in Table 2. Simulations are done using Die 7 of the 10 µm channel length devices. VDD was 
-5V, Iexc was -1 nA and Cf was 1 pF. 
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has much fewer parameters (~ 20) compared to the LUT (~ 12,000 parameters) and the MLP 

(34,176). The parameters of the compact model are physically relevant, such as the series 

resistance and the disorder parameter, which is used to model the variable range hopping in the 

semiconductor channel. The parameters can therefore be used to compare different 

technologies, different batches of devices in order to optimize the fabrication process. For a 

more mature technology the compact models can provide scalability and fitting the model to 

each size is not necessary. 

The LUT should in theory be the most realistic model given sufficient data. However, 

because of the discrepancy between the Id vs Vgs and the Id vs Vds characteristics; only the Id vs 

Vgs curves are used. At low values of Vgs and Vds, we expect the LUT to become the least 

accurate. It is important to note that the LUT is dependent on the linear interpolation between 

successive points. This requires a very fine grid of points in the more complex regions. The MLP, 

however is able to account for non-linearities between data points and is therefore more capable 

of advanced interpolations. 

The main disadvantage of the MLP is that it is essentially a black box regression and 

the large number of parameters do not have a physical meaning. Nevertheless, it very easy to 

employ using standard python coding. For designing small circuits and trying to quickly 

understand how variability will impact circuits, it is a very time efficient method, especially if 

an individual model is needed for each device. It is able to capture some of the discrepancies 

due to the hysteresis and in some cases the fitting of the compact model may not be sufficient 

to obtain a working model.  

We next consider the various metrics of the error. In Table 1 we considered the root 

mean square error (RMSE) to compare the three models. The unit of this error is the same as 

the data, making comparisons between it and the data very intuitive. The RMSE of the LUT in 

the transfer regime is of course a zero. In the output characteristics the LUT has a higher error 



20 
 

in a large part of the regime compared to the other two models, indicating it is important to 

include the output characteristics in the modeling.  

We compared our relative MSE with the only known accuracy for modeling that we 

were able to find in published data[24], which refers to a single transfer curve. The errors in the 

transfer curves for compact model were the same (~ 0.02), exactly the same as this previous 

work, but the rel MSE of the MLP is much lower (0.001). We believe that the more appropriate 

measure of comparison is the relative root mean square error (RRMSE) metric because in the 

presence of larger errors the rel MSE can be very large. Here we find that the RRMSE is about 

0.1 in the output characteristics, which means that they can reproduce the data within 10%, 

which is a very good model considering the changes in the transport.  For this reason, we believe 

that the MLP is an excellent model that can be used to explore the variability of devices when 

needed.  

3.2 Generalization of the MLP regression technique 

We have explored how an MLP regression can be used to model pOTFT transistors in the low 

voltage regime. A natural question is whether this can this be generalized to the entire regime. 

Similar research has explored the use of a MLP regression in a silicon nanowire reconfigurable 

(r)FET [32]. They showed that it was convenient to use two MLPs, one for the sub-threshold and 

another for the saturation regime and to stich the two together using a mathematical function. 

This type of generalization could be an interesting solution for modeling complementary OTFT 

circuits where the n-type devices may be in the on state and the p-type devices in the sub-

threshold. In this case, the model sizes should be chosen very carefully to ensure that simulation 

times are not excessive. From our simulations however, we do not expect that simulations times 

will be problematic because they are still quite small.  

 

4. Conclusion 

This paper considered modeling OTFTs in the low voltage regime using a physical compact 



21 
 

model, a look up table, and an empirical model based on the AI algorithm the multiplayer 

perceptron. The three models can be employed together to provide more insights into the 

devices physics or independently to facilitate modeling of a technology when all the effects 

cannot be described using the physical model. Our simulations indicate that organic biomimetic 

neurons using p-type OTFT technology are possible with firing rates  >100 Hz and power 

consumption < 5 nW for 10 micron channel length devices.  We found that the main impact of 

variability in |Von| results in variations in the firing rate. Hysteresis was found to change the 

relative time that Vout spends in the high and lows states. The axon-hillock neuron circuit is 

found to be very compatible with OTFT technologies but care should be taken to choose 

neuromorphic applications that are robust against the variability of spike rates and firing rate 

profile of high and low states. With improved design and a minimization of the parasitic 

capacitances, firing rates at least an order of magnitude larger should be possible than those 

previously reported. Finally, we believe that the variability in the device characteristics can be 

used advantageously to realize neuromorphic devices because in such systems, stochasticity is 

often a source of improvement via effects such as stochastic resonance.  

 

5. Methods 

The p-type OTFT transistors were realized using gravure printing on the Pilot Line at CEA-

LITEN [33]. The source/drain contacts are 30 nm Au and are patterned by photolithography. It 

is subsequently coated with a self-assembled monolayer to improve the adhesion with the 

organic semiconductor. A 50 nm organic semiconductor (SP500 Lisicon® polymer from 

Merck) with a mobility of 2 cm²/Vs is gravure printed.  A 946 nm gate dielectric (Merck D320) 

of 2.2 is gravure printed.  Interconnections between the source/drain and gate is achieved using 

vias. Finally, a conductive ink of PEDOT:PSS is screen printed on top of the stack to establish 

the gate electrode. Initial layouts of the axon-hillock circuit are 4 mm x 4mm in size and include 
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two discrete 1GΩ resistors and 1 discrete pF capacitor. 

Measurements were done at ambient conditions in the dark. The semi-automatic prober 

is connected to a semiconductor parameter analyzer (HP B1500A) with triaxial cables. Id-Vds 

characteristics was measured in steps of -20 mV, sweeping both up to negative Vds and back for 

Vgs with a uniform step size between 0 V to -5V of -0.5 V every 1s. Forward and reverse Id-Vgs 

characteristics were measured in steps of -20mV with a Vds step size of -0.1 V. This resulted in 

~ 14,000 data points that enabled us to use a MLP model.  

Ten devices for transistors lengths of 5 µm, 10 µm, 20 µm, 40 µm, 60 µm, 80 µm,100 

µm, 200 µm, 400 µm, 600 µm) with 1000 µm width were measured in the sub-threshold region 

(Vgs, Vds > -5 V). Typical mobilities were 1.8-2.0 cm²/V/sec with Vt ~ -5V.  

 The compact model is based on a DC and quasi-static charge model [6], which solve 

Poisson’s equation self-consistently using an appropriate density of states and an electron/hole 

transport model based on variable range hopping. Parameters for the model are fit to the 

measured devices for each size and each die. The model cannot take into account directly the 

hysteresis. For this reason, the fits were done either using the sweep towards more negative 

voltages or its return. The hysteresis impeded us from using the physical compact model for 

larger device sizes because the currents in the Id -Vds characteristics where often not consistent 

with the currents in the Id -Vg characteristics at the same biasing conditions. The devices reported 

in the figures are those where the model fit well. The total number of parameters used in the 

compact model is ~20. The parameter extraction and fitting was done in Matlab and the 

extracted parameters and final model were put into a verilogA code for simulations in Cadence 

Spectre. 

 In order to surmount the difficulties of the compact model, we developed a multilayer 

perceptron (MLP) regression to fit the data for each device. Simulations were performed using 

cadence and the machine learning library Sklearn[34]. Simulations were done using a single CPU 
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of Intel XEON microprocessor @ 3.2 GHz running on a Dell PowerEdge server. The training 

of an individual model requires ~ 2 minutes. We used a ReLu activation function and standard 

Adam for an optimized gradient descent.[35] All 56 Id-Vg and all Id -Vds curves were included in 

the fit, resulting in a fit with ~ 14,000 experimental data points.  We assumed that the device 

characteristics could be describe in terms of polynomials of Vgs, Vds. To determine the best 

network architecture, we did a systematic exploration of the polynomial inputs (up to 4th order), 

number of hidden layers (up to 4) and number of neurons (up to 1056). The optimal network, 

with a typical accuracy score of 0.9996, was found using five parameters: 𝑉, 𝑉ଶ, 𝑉ௗ, 𝑉ௗ
ଶ, and 

𝑉𝑉ௗ, two hidden layers (256 for the first and 128 for the second).  To benchmark the regression, 

we used the score to determine the R2 (Figure SI5). It is defined as: 

𝑅ଶ ൌ 1 െ
∑ ሺ𝑥 െ 𝑝ሻଶ
ே


∑ ሺ𝑥 െ 𝑥పഥሻଶே


 

 

After training in python, the model was made compatible with VerilogA, where matrix 

multiplications are not available. In Cadence, we set Cmin = 1 x 10-13 F to account for the 

parasitic capacitance. 

 To benchmark the different models, we used two measures: the root mean square error 

and 1- relative mean square error. These are defined as: 

𝑟𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 ൌ 𝑅𝑀𝑆𝐸 ൌ ඩ
1
𝑁
൫𝑥𝑖 െ 𝑝𝑖൯

ଶ
ே



 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 ൌ 𝑅𝑒𝑙 𝑀𝑆𝐸 ൌ
൫𝑥𝑖 െ 𝑝𝑖൯

ଶ

∑ 𝑥
ଶே



ே



 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 ൌ 𝑅𝑅𝑀𝑆𝐸 ൌ ඩ
1
𝑁∑ ൫𝑥𝑖 െ 𝑝𝑖൯

ଶே


∑ 𝑥
ଶே


 

Acknowledgements 



24 
 

This work was supported by ANR contract ANR-21-FAI1-0006-01, and from the European 
Union’s Horizon Europe Research and Innovation programme BAYFLEX under grant 
agreement 101099555. 
 

Received: (30 June 2024) 

Revised: (5 November 2024) 

Published online: (()) 

References 

[1]  F. Liu, L. Lorenzelli, Wearable Electron. 2024, 1, 137. 
[2]  Y. Bonnassieux, C. J. Brabec, Y. Cao, T. B. Carmichael, M. L. Chabinyc, K.-T. Cheng, G. Cho, A. 

Chung, C. L. Cobb, A. Distler, H.-J. Egelhaaf, G. Grau, X. Guo, G. Haghiashtiani, T.-C. Huang, M. 
M. Hussain, B. Iniguez, T.-M. Lee, L. Li, Y. Ma, D. Ma, M. C. McAlpine, T. N. Ng, R. Österbacka, S. 
N. Patel, J. Peng, H. Peng, J. Rivnay, L. Shao, D. Steingart, R. A. Street, V. Subramanian, L. Torsi, Y. 
Wu, Flex. Print. Electron. 2021, 6, 023001. 

[3]  A. Pantelopoulos, N. G. Bourbakis, IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2010, 40, 1. 
[4]  R. J. Baker, CMOS: Circuit Design, Layout, and Simulation, 4th edition., Wiley-IEEE Press, 

Piscataway, NJ, 2019. 
[5]  S. Jung, Y. Bonnassieux, G. Horowitz, S. Jung, B. Iñiguez, C.-H. Kim, IEEE J. Electron Devices Soc. 

2020, 8, 1404. 
[6]  A. Nikolaou, G. Darbandy, J. Leise, J. Pruefer, J. W. Borchert, M. Geiger, H. Klauk, B. Iñiguez, A. 

Kloes, IEEE Trans. Electron Devices 2020, 67, 4667. 
[7]  C. Mead, Analog VLSI and neural systems, Addison-Wesley Longman Publishing Co., Inc., 1989. 
[8]  G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, 

S.-C. Liu, P. Dudek, P. Häfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. 
Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, K. Boahen, Front. Neurosci. 
2011, 5. 

[9]  F. Alibart, S. Pleutin, D. Guérin, C. Novembre, S. Lenfant, K. Lmimouni, C. Gamrat, D. Vuillaume, 
Adv. Funct. Mater. 2010, 20, 330. 

[10]  V. Erokhin, T. Berzina, A. Smerieri, P. Camorani, S. Erokhina, M. P. Fontana, Nano Commun. Netw. 
2010, 1, 108. 

[11]  Y. van de Burgt, A. Melianas, S. T. Keene, G. Malliaras, A. Salleo, Nat. Electron. 2018, 1, 386. 
[12]  P. Gkoupidenis, N. Schaefer, B. Garlan, G. G. Malliaras, Adv. Mater. 2015, 27, 7176. 
[13]  Y. van de Burgt, E. Lubberman, E. J. Fuller, S. T. Keene, G. C. Faria, S. Agarwal, M. J. Marinella, A. 

Alec Talin, A. Salleo, Nat. Mater. 2017, 16, 414. 
[14]  J. Y. Gerasimov, R. Gabrielsson, R. Forchheimer, E. Stavrinidou, D. T. Simon, M. Berggren, S. 

Fabiano, Adv. Sci. 2019, 6, 1801339. 
[15]  P. C. Harikesh, C.-Y. Yang, D. Tu, J. Y. Gerasimov, A. M. Dar, A. Armada-Moreira, M. Massetti, R. 

Kroon, D. Bliman, R. Olsson, E. Stavrinidou, M. Berggren, S. Fabiano, Nat. Commun. 2022, 13, 901. 
[16]  P. Gkoupidenis, Y. Zhang, H. Kleemann, H. Ling, F. Santoro, S. Fabiano, A. Salleo, Y. van de Burgt, 

Nat. Rev. Mater. 2024, 9, 134. 
[17]  C. Cea, G. D. Spyropoulos, P. Jastrzebska-Perfect, J. J. Ferrero, J. N. Gelinas, D. Khodagholy, Nat. 

Mater. 2020, 19, 679. 
[18]  S. T. Keene, C. Lubrano, S. Kazemzadeh, A. Melianas, Y. Tuchman, G. Polino, P. Scognamiglio, L. 

Cinà, A. Salleo, Y. van de Burgt, F. Santoro, Nat. Mater. 2020, 19, 969. 
[19]  P. Andersson Ersman, R. Lassnig, J. Strandberg, D. Tu, V. Keshmiri, R. Forchheimer, S. Fabiano, G. 

Gustafsson, M. Berggren, Nat. Commun. 2019, 10, 5053. 
[20]  R. B. Rashid, X. Ji, J. Rivnay, Biosens. Bioelectron. 2021, 190, 113461. 
[21]  Y. Yang, C. Bartolozzi, H. H. Zhang, R. A. Nawrocki, Eng. Appl. Artif. Intell. 2023, 126, 106838. 
[22]  R. A. Nawrocki, R. M. Voyles, S. E. Shaheen, IEEE Trans. Electron Devices 2014, 61, 3513. 
[23]  M. J. Mirshojaeian Hosseini, R. A. Nawrocki, Micromachines 2021, 12, 655. 



25 
 

[24]  Y. Yang, M. J. M. Hosseini, W. Kruger, R. A. Nawrocki, IEEE Trans. Circuits Syst. Regul. Pap. 2023, 
70, 1161. 

[25]  V. Tischler, P. Dudek, J. Wijekoon, L. A. Majewski, Y. Takeda, S. Tokito, M. L. Turner, Org. 
Electron. 2023, 113, 106685. 

[26]  J. W. Borchert, U. Zschieschang, F. Letzkus, M. Giorgio, R. T. Weitz, M. Caironi, J. N. Burghartz, S. 
Ludwigs, H. Klauk, Sci. Adv. 2020, 6, eaaz5156. 

[27]  M. J. M. Hosseini, E. Donati, T. Yokota, S. Lee, G. Indiveri, T. Someya, R. A. Nawrocki, J. Phys. 
Appl. Phys. 2020, 54, 104004. 

[28]  M. Sugiyama, T. Uemura, M. Kondo, M. Akiyama, N. Namba, S. Yoshimoto, Y. Noda, T. Araki, T. 
Sekitani, Nat. Electron. 2019, 2, 351. 

[29]  A. Morley, G. Lloyd, M. Charbonneau, D. Locatelli, S. Lombard, C. Laugier, L. Tournon, S. Bain, M. 
James, H. Wang, SID Symp. Dig. Tech. Pap. 2018, 49, 476. 

[30]  M. Fattori, J. Fijn, P. Harpe, M. Charbonneau, S. Lombard, K. Romanjek, D. Locatelli, L. Tournon, C. 
Laugier, E. Cantatore, IEEE Electron Device Lett. 2019, 40, 1682. 

[31]  F. Danneville, C. Loyez, K. Carpentier, I. Sourikopoulos, E. Mercier, A. Cappy, Solid-State Electron. 
2019, 153, 88. 

[32]  M. Reuter, J. Wilm, A. Kramer, N. Bhattacharjee, C. Beyer, J. Trommer, T. Mikolajick, K. Hofmann, 
IEEE J. Electron Devices Soc. 2024, 12, 310. 

[33]  M. Charbonneau, D. Locatelli, S. Lombard, C. Serbutoviez, L. Tournon, F. Torricelli, S. Abdinia, E. 
Cantatore, M. Fattori, In 2018 48th European Solid-State Device Research Conference (ESSDERC), 
2018, pp. 70–73. 

[34]  F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. 
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, 
É. Duchesnay, J. Mach. Learn. Res. 2011, 12, 2825. 

[35]  D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, arXiv, 2017. 
 

 

 

 


