
HAL Id: hal-04777376
https://hal.science/hal-04777376v1

Submitted on 10 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Enumerating Error Bounded Polytime Algorithms
Through Arithmetical Theories

Melissa Antonelli, Ugo Dal Lago, Davide Davoli, Isabel Oitavem, Paolo
Pistone

To cite this version:
Melissa Antonelli, Ugo Dal Lago, Davide Davoli, Isabel Oitavem, Paolo Pistone. Enumerating Error
Bounded Polytime Algorithms Through Arithmetical Theories. CSL 2024 - 32nd EACSL Annual
Conference on Computer Science Logic, Feb 2024, Napoli, Italy. �10.4230/LIPIcs.CSL.2024.10�. �hal-
04777376�

https://hal.science/hal-04777376v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Enumerating Error Bounded Polytime Algorithms
Through Arithmetical Theories
Melissa Antonelli #

Helsinki Institute for Information Technology, Finland

Ugo Dal Lago #

Bologna University, Italy
Inria, Université Côte d’Azur, Sophia Antipolis, France

Davide Davoli #

Inria, Université Côte d’Azur, Sophia Antipolis, France

Isabel Oitavem #

Center for Mathematics and Applications (NOVA Math), NOVA FCT, Caparica, Portugal
Department of Mathematics, NOVA FCT, Caparica, Portugal

Paolo Pistone #

Bologna University, Italy

Abstract
We consider a minimal extension of the language of arithmetic, such that the bounded formulas
provably total in a suitably-defined theory à la Buss (expressed in this new language) precisely
capture polytime random functions. Then, we provide two new characterizations of the semantic
class BPP obtained by internalizing the error-bound check within a logical system: the first relies
on measure-sensitive quantifiers, while the second is based on standard first-order quantification.
This leads us to introduce a family of effectively enumerable subclasses of BPP, called BPPT and
consisting of languages captured by those probabilistic Turing machines whose underlying error can
be proved bounded in T. As a paradigmatic example of this approach, we establish that polynomial
identity testing is in BPPT, where T = I∆0 + Exp is a well-studied theory based on bounded
induction.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory
of computation → Proof theory

Keywords and phrases Bounded Arithmetic, Randomized Computation, Implicit Computational
Complexity

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.10

Related Version Extended Version: https://arxiv.org/abs/2311.15003 [1]

Funding The first, second, third and fifth authors’ work is supported by the European Research
Council through the project DIAPASoN ERC COoG 818616, and by the French “Agence Nationale
de la Recherche” through the project PPS ANR-19-C48-0014. The first author’s work is supported
by the Helsinki Institute for Information Technology. The third author’s work is supported by the
French “Agence Nationale de la Recherche” through the project UCA DS4H ANR-17-EURE-0004.
The fourth author’s work is supported by national funds through the “FCT-Fundação para a Ciência
e a Tecnologia, I.P.”, through the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for
Mathematics and Applications).

1 Introduction

Since the early days of computer science, numerous and profound interactions with mathemat-
ical logic have emerged (think of the seminal works by Turing [55] and Church [9]). Among
the sub-fields of computer science that have benefited the most from this dialogue, we should

© Melissa Antonelli, Ugo Dal Lago, Davide Davoli, Isabel Oitavem, and Paolo Pistone;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 10; pp. 10:1–10:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:melissa.antonelli@helsinki.fi
https://orcid.org/0009-0006-9072-4847
mailto:ugo.dallago@unibo.it
https://orcid.org/0000-0001-9200-070X
mailto:davide.davoli@inria.fr
mailto:oitavem@fct.unl.pt
https://orcid.org/0000-0002-3573-9281
mailto:paolo.pistone2@unibo.it
https://orcid.org/0000-0003-4250-9051
https://doi.org/10.4230/LIPIcs.CSL.2024.10
https://arxiv.org/abs/2311.15003
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

certainly mention the theory of programming languages (e.g. through the Curry-Howard
correspondence [17, 38, 54]), the theory of databases (e.g. through Codd’s Theorem [11])
and computational complexity (e.g. through descriptive complexity [4, 39]). In particular,
this last discipline deals with complexity classes [36, 10, 3], the nature of which still remains
today, more than fifty years after the introduction of P and NP [12, 36], somewhat obscure.

The possibility of describing fundamental classes within the language of mathematical
logic offered a better understanding of their nature: since the seventies [22, 15], but especially
from the eighties and nineties [7, 32, 4, 39, 42], the logical characterization of several crucial
classes has made it possible to consider them from a new viewpoint, less dependent on
concrete machine models and explicit resource bounds. Characterizing complexity classes
by way of a simple enough proof-of-recursion theoretical system also means being able to
enumerate the problems belonging to them, and thus to devise sound and complete languages
for the class, from which type systems and static analysis methodologies can be derived [37].

Among the various classes of problems considered in computational complexity, those
defined on the basis of randomized algorithms [49] have appeared difficult to capture with
the tools of logic. These include important and well-studied classes like BPP or ZPP.
The former, in particular, is often considered as the class of feasible problems, and most
complexity theorists conjecture that it actually coincides with P. One might thus expect
it to be possible to obtain an enumeration of BPP, along the lines of the many examples
known for classes like P, or even PP [18, 19]. However, by simply looking at its definition,
BPP looks pretty different from P. Notably, the former, but not the latter, is an example
of what is usually called a semantic class: the definition of BPP relies on algorithms which
are both efficient and not too erratic: once an input is fixed, one of the two possible outputs
must clearly prevail over the other; in other words, there is some fixed probability p, bounded
away from 1

2 , such that, on any input x, the machine outputs some value bx ∈ {0, 1} with
probability at least p. The existence of an effective enumerable family of algorithms deciding
all and only the problems in BPP is still an open question.

In this paper we make a step towards a logical understanding of semantic complexity
classes, and in particular of the logical and proof-theoretic complexity involved in keeping
error-bounds under control. Our contributions can be divided in three parts. First, we
generalize to the probabilistic setting the path indicated by bounded arithmetic [7, 24], a
well-known approach to capture polynomial time algorithms, by extending usual arithmetical
languages with a distinguished unary predicate Flip(x), playing the role of a source of
randomness. We define a bounded theory RΣb

1-NIA as the randomized analogue of Buss’
S1

2 [7] and Ferreira’s Σb
1-NIA [25], and show that the functions which can be proved total in

RΣb
1-NIA are precisely the polytime random functions [53], i.e. those functions from strings

to distributions of strings which can be computed by polytime probabilistic Turing machines
(PTM, for short). Then, we move towards proper randomized classes by considering ways to
keep the probability of error under control from within the logic. We first consider measure
quantifiers [48, 46, 2], well-studied second-order quantifiers capable of measuring the extent
to which a formula is true; we then show that these quantifiers, when applied to bounded
formulas, can be encoded via standard first-order quantification. This way we obtain two
characterizations of the problems in BPP, yet still semantic in nature: the error-bound
check is translated into conditions which are not based on provability in some formal system,
but rather on the truth of some formula in the standard model of first-order arithmetic.

While these results, which rely on semantic conditions, do not shed light on the enumera-
tion problem for BPP directly, they set the conditions for a proof-theoretic investigation of
this class: our last contribution is the introduction of a family of new syntactic subclasses of

M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone 10:3

BPP, each called BPPT, and consisting of those languages for which the error-bounding
condition is not only true, but also provable in some (non necessarily bounded) theory T.
This reduces the enumeration problem to that of finding a recursively enumerable (r.e., for
short) arithmetical theory T such that BPP = BPPT. To witness the difficulty of this
problem, we show that the error-bounding condition is Π0

1-complete and that establishing
that BPP cannot be enumerated would be at least as hard as refuting the BPP = P
conjecture. At the same time, we show that polynomial identity testing (PIT), one of the few
problems in BPP currently not known to be in P lies in BPPT, where T = I∆0 + Exp is a
well-studied [35] sub-theory of PA, thus identifying an interesting and effectively enumerable
subclass of BPP.

The main technical contributions of this paper can thus be summarized as follows:
We introduce the arithmetical theory RΣb

1-NIA and prove that the random functions
which are Σb

1-representable in it are precisely those which can be computed in polynomial
time. The proof of the correspondence goes through the definition of a class of oracle
recursive functions, called POR, which is shown equivalent to the class of probabilistic
polytime random functions RFP. The overall structure of the proof is described in
Section 3, while further details can be found in the extended version of this paper [1].
We exploit this result to obtain a new syntactic characterization of PP and, more inter-
estingly, two semantic characterizations of BPP, the first based on measure quantifiers
and the second relying on standard, first-order quantification. This is in Section 4.
Finally, we introduce a family of syntactic subclasses BPPT ⊆ BPP of provable BPP-
problems, relative to a theory T. After showing that the property of being non-erratic is
Π0

1-complete, we establish that PIT is in BPP(I∆0+Exp).We conclude by showing how our
approach relates to existing works capturing BPP languages in bounded arithmetic [41].
All this can be found in Section 5 and Section 7.

Related Work. While a recursion-theoretic characterization of the syntactic class PP
can be found in [18], most existing characterizations of BPP are based on some external,
semantic condition [20, 47]. In particular, Eickmeyer and Grohe [21] provide a semantic
characterization of BPP in a logic with fixed-point operators and a special counting quantifier,
associated with a probabilistic semantics not too different from the quantitative interpretation
we present in Section 3. On the other hand, [41] and [40] uses bounded arithmetic to provide
characterizations of (both syntactic and semantic) randomized classes, such as ZPP, RP
and coRP, and also provides a semantic characterization of BPP. An in-depth comparison
is thus in order, and can be found in Section 7. Finally, [47] defines a higher-order language
for polytime oracle recursive functions based on an adaptation of Bellantoni-Cook’s safe
recursion.

2 On the Enumeration of Complexity Classes

Before delving into the technical details, it is worth spending a few words on the problem
of enumerating complexity classes, and on the reasons why it is more difficult for semantic
classes than for syntactic ones.

First of all, it is worth observing that, although the distinction between syntactic and
semantic classes appears in many popular textbooks (e.g. in [3, 50]), in the literature these
notions are not defined in a precise way. Roughly speaking, syntactic classes are those which
can be defined via limitations on the amount of resources (i.e. units of either time or space)
that the underlying algorithm is allowed to use. Typical examples are the class P of problems

CSL 2024

10:4 Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

solvable in polynomial time and the class PSPACE of problems solvable in polynomial
space. Instead, the definition of a semantic class usually requires, beyond some resource
condition, an additional condition, sometimes called a promise, typically expressing that the
underlying algorithm returns the correct answer often enough. A typical example here is the
class BPP considered in this paper (cf. Definition 12), corresponding to problems solvable
in polynomial time by probabilistic algorithms with some fixed error bound strictly smaller
than 1

2 . Sometimes the distinction between syntactic and semantic classes may be subtle.
For instance, as we discuss in Section 4, the class PP, whose definition also comprises a
promise, is generally considered a syntactic class.

Notice that the sense of the terms “syntactic” and “semantic”, when referred to complexity
classes, is not clearly related to the sense that these terms have in mathematical logic. To
a certain extent, the analysis that we develop in this paper with the tools of bounded
arithmetic may help to clarify this point. On the one hand, well-known results in bounded
arithmetic (cf. [7, 8]) provide a characterization of syntactic classes like P in terms of purely
proof-theoretic conditions (i.e. provability in some weak fragment of Peano Arithmetic); on the
other hand, we establish that, for a semantic class like BPP, an arithmetical characterization
can be obtained by employing both proof-theoretic and model-theoretic conditions (i.e. truth
in the standard model of Peano Arithmetic).

A natural question is whether such genuinely semantic (i.e. model-theoretic) conditions
can somehow be eliminated in favor of purely syntactic (i.e. proof-theoretic) ones. In fact,
this is a non-trivial problem, since, as proved in Section 5 (cf. Proposition 21), the promise
underlying BPP is expressed by a Π0

1-complete arithmetical formula. One should of course
recall, however, that the distinction between semantic and syntactic classes refers to how a
class is defined and not to the underlying set of problems. It is thus of intensional nature. In
other words, even if P and BPP are defined in a different way, it could well be that someday
we discover that P = BPP: in this case BPP would become a syntactic class, and, as we
show in Section 5 (cf. Proposition 20), a purely proof-theoretic characterization of BPP
would be available.

The problem of showing that a complexity class can be enumerated (i.e. that one can
devise a recursive enumeration of, say, Turing Machines solving all and only the problems in
the class) provides a different, and useful, angle to look at the distinction between syntactic
and semantic classes. Ordinary syntactic classes, such as P, PP, and PSPACE, are quite
simple to enumerate. While verifying resource bounds for arbitrary programs is very difficult,
it is surprisingly easy to define an enumeration of resource bounded algorithms containing
at least one algorithm for any problem in one of the aforementioned classes. To clarify
what we mean, suppose we want to characterize the class P. On the one hand, the class
of all algorithms working in polynomial time is recursion-theoretically very hard, actually
Σ0

2-complete [34]. On the other hand, the class of those programs consisting of a for loop
executed a polynomial number of times, whose body itself consists of conditionals and simple
enough instructions manipulating string variables, is both trivial to enumerate and big enough
to characterize P, at least in an extensional sense: every problem in this class is decided by
at least one program in the class and every algorithm in this class works in polytime. Many
characterizations of P (and of other syntactic classes), as those based on safe-recursion [4, 45],
light and soft linear logic [31, 30, 44], and bounded arithmetic [7], can be seen as instances
of the just described pattern, where the precise class of polytime programs varies, while the
underlying class of problems remains unchanged.

But what about semantic classes? Being resource bounded is not sufficient for an algorithm
to solve a problem in some semantic class, since there can well be algorithms getting it wrong
too often. For instance, it may well be that some probabilistic Turing Machine running in

M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone 10:5

polynomial time does not solve any problem in BPP. For this reason, unfortunately, the
enumeration strategy sketched above does not seem to be readily applicable to semantic
classes. How can we isolate a simple enough subclass of algorithms – which are not only
resource bounded, but also not too erratic – at the same time saturating the class?

We think that the results in this paper, concerning proof-theoretic and model-theoretic
characterizations of probabilistic complexity classes, may provide new insights on the nature
of this problem, without giving a definite answer. Indeed, observe that the existence of
a purely proof-theoretic characterization of some complexity class C via some recursively
enumerable theory T directly leads to providing an enumeration of C (by enumerating the
theorems of T). In this way, the problem of enumerating a semantic class C is directly related
to the existence of some strong enough theory T.

In the following sections we do not prove BPP to be effectively enumerable, which is still
out of reach. On the one hand we show that proving the non-enumerability of BPP is as
hard as proving that P is different from BPP. On the other hand, we show that there exist
subclasses of BPP which are large enough to include interesting problems in BPP and still
“syntactic enough” to be effectively enumerable via some arithmetical theory.

3 Bounded Arithmetic and Polytime Random Functions

In this section we discuss our first result, namely, the characterization of polytime random
functions via bounded arithmetic.

3.1 From Arithmetic to Randomized Computation, Subrecursively
We introduce the two main ingredients on which our characterization of polytime random
functions relies: a randomized bounded theory of arithmetic RΣb

1-NIA, and a Cobham-style
function algebra for polytime oracle recursive functions, called POR.

Recursive Functions and Arithmetical Formulas. The study of so-called bounded theories of
arithmetic, i.e. subsystems of PA in which only bounded quantifications are admitted, initiated
by Parikh and Buss, has led to characterize several complexity classes [51, 14, 7, 8, 24, 43].
At the core of these characterizations lies the well-known fact (dating back to Gödel’s [33])
that recursive functions can be represented in PA by means of Σ0

1-formulas, i.e. formulas of
the form ∃x1.∃xn.A, where A is a bounded formula. For example, the formula

A(x1, x2, y) := ∃x3.x1 × x2 = x3 ∧ y = succ(x3)

represents the function f(x1, x2) = (x1 × x2) + 1. Indeed, in PA one can prove that
∀x1.∀x2.∃!y.A(x1, x2, y), namely that A expresses a functional relation, and check that for all
n1, n2, m ∈ N, A(n1, n2, m) holds (in the standard model N) precisely when m = f(n1, n2).
Buss’ intuition was then that, by considering theories weaker than PA, it becomes possible
to capture functions computable within given resource bounds [7, 8].

In order to extend this approach to classes of random computable functions, we rely on
a simple correspondence between first-order predicates over natural numbers and oracles
from the Cantor space {0, 1}N, following [2]. Indeed, suppose the aforementioned recursive
function f has now the ability to observe (part of) an infinite sequence of bits. For instance,
f might observe the first bit and return (x1 × x2) + 1 if this is 0, and return 0 otherwise. Our
idea is that we can capture the call by f to the oracle by adding to the standard language
of PA a new unary predicate Flip(x), to be interpreted as a stream of (random) bits. Our
function f can then be represented by the following formula:

CSL 2024

10:6 Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

B(x1, x2, y) :=
(
Flip(0) ∧ ∃x3.x1 × x2 = x3 ∧ y = succ(x3)

)
∨

(
¬Flip(0) ∧ y = 0

)
.

As in the case above, it is possible to prove that B(x1, x2, y) is functional, that is, that
∀x1.∀x2.∃!y.B(x1, x2, y). However, since B now contains the unary predicate symbol Flip(x),
the actual numerical function that B represents depends on the choice of an interpretation
for Flip(x), i.e. on the choice of an oracle for f .

In the rest of this section we develop this idea in detail, establishing a correspondence
between polytime random functions and a class of oracle-recursive functions which are
provably total in a suitable bounded theory relying on the predicate Flip.

The Language RL. We let B := {0, 1}, S := B∗ indicate the set of finite words from B, and
O := BS. We introduce a language for first-order arithmetic incorporating the new predicate
symbol Flip(x) and its interpretation in the standard model. Following [26], we consider a
first-order signature for natural numbers in binary notation. Consistently, formulas will be
interpreted over S rather than N. Working with strings is not essential and all results below
could be spelled out in a language for natural numbers. Indeed, bounded theories may be
formulated in both ways equivalently, e.g. Ferreira’s Σb

1-NIA and Buss’ S1
2 [26].

▶ Definition 1. The terms and formulas of RL are defined by the grammars below:

t, s ::= x | ϵ | 0 | 1 | t ⌢ s | t × s

F, G ::= Flip(t) | t = s | t ⊆ s | ¬F | F ∧ G | F ∨ G | ∃x.F | ∀x.F.

The function symbol ⌢ stands for string concatenation, while t×u indicates the concatenation
of t with itself a number of times corresponding to the length of u. The binary predicate ⊆
stands for the initial substring relation. As usual, we let A → B := ¬A ∨ B.

We adopt the following abbreviations: ts for t ⌢ s; 1t for 1 × t; t ⪯ s for 1t ⊆ 1s, i.e. the
length of t is smaller than that of s; t|r = s for (1r ⊆ 1t ∧ s ⊆ t ∧ 1r = 1s) ∨ (1t ⊆ 1r ∧ s = t),
i.e s is the truncation of t at the length of r. For each string σ ∈ S, we let σ be the term of
RL representing it (e.g. ϵ = ϵ, σ0 = σ0 and σ1 = σ1).

As for standard bounded arithmetics [7, 23], a defining feature of our theory is the focus
on so-called bounded quantification. In RL, bounded quantifications are of the forms ∀x.1x ⊆
1t → F and ∃x.1x ⊆ 1t ∧ F , abbreviated as ∀x ⪯ t.F and ∃x ⪯ t.F . Following [23], we
adopt subword quantifications as those quantifications of the forms ∀x.(∃w ⊆ t.wx ⊆ t) → F

and ∃x.∃w ⊆ t.wx ⊆ t ∧ F , abbreviated as ∀x ⊆∗ t.F and ∃x ⊆∗ t.F . An RL-formula F

is said to be a Σb
1-formula if it is of the form ∃x1 ⪯ t1.∃xn ⪯ tn.G, where the only

quantifications in G are subword ones. The distinction between bounded and subword
quantifications is relevant for complexity reasons: if σ ∈ S is a string of length k, the witness
of a subword existentially quantified formula ∃y.y ⊆∗ σ ∧ H is to be looked for among all
possible sub-strings of σ, i.e. within a space of size O(k2), while the witness of a bounded
formula ∃y ⪯ σ.H is to be looked for among all possible strings of length k, i.e. within a
space of size O(2k).

The Borel Semantics of RL. We introduce a quantitative semantics for formulas of RL,
inspired by the one introduced in [2]. While the function symbols of RL, as well as the
predicate symbols “=” and “⊆”, have a standard interpretation as relations over S, the
idea is that the predicate symbol Flip may stand for an arbitrary subset of S, that is, an
arbitrarily chosen ω ∈ O. For this reason, we take as the interpretation of a RL-formula

M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone 10:7

F the set JF K ⊆ O of all possible interpretations of Flip satisfying F . Importantly, such
sets JF K can be proved to be measurable, a fact that will turn out essential in Section 4.
Indeed, the canonical first-order model of RL over S can be extended to a probability space
(O, σ(C), µ) defined in a standard way: here σ(C) ⊆ ℘(O) is the Borel σ-algebra generated
by cylinders Cb

σ = {ω | ω(σ) = b}, with b ∈ {0, 1}, and µ is the unique measure such that
µ(Cb

σ) = 1
2 (see [5]). While the interpretation of terms is standard, the interpretation of

formulas is defined below.

▶ Definition 2 (Borel Semantics of RL). Given a term t, a formula F and an environment
ξ : G → S, where G is the set of term variables, the interpretation of F under ξ is the
measurable set JF Kξ ∈ σ(C) inductively defined as follows:

Jt = sKξ :=
{
O if JtKξ = JsKξ

∅ otherwise

Jt ⊆ sKξ :=
{
O if JtKξ⊆JsKξ

∅ otherwise

JFlip(t)Kξ := {ω | ω(JtKξ) = 1}
J¬GKξ := O − JGKξ

JG ∨ HKξ := JGKξ ∪ JHKξ

JG ∧ HKξ := JGKξ ∩ JHKξ

J∃x.GKξ :=
⋃
i∈S

JGKξ{x←i}

J∀x.GKξ :=
⋂
i∈S

JGKξ{x←i}.

This semantics is well-defined as the sets JFlip(t)Kξ, Jt = sKξ and Jt ⊆ sKξ are measurable
and measurability is preserved by all the logical operators.

Observe that an interpretation of the language RL, in the usual first-order sense, requires
some ξ as above as well as an interpretation ω for Flip(x). One can easily check by induction
that, for any formula F and interpretation ξ, ω ∈ JF Kξ precisely when F is satisfied in the
first-order environment formed by ξ and ω.

The Bounded Theory RΣb
1-NIA. We now introduce a bounded theory in the language

RL, called RΣb
1-NIA, which can be seen as a probabilistic counterpart to Ferreira’s Σb

1-NIA
[25]. The theory RΣb

1-NIA is defined by axioms belonging to two classes:
Basic axioms (where b ∈ {0, 1}):

xϵ = x

x(yb) = (xy)b
x × ϵ = ϵ

x × yb = (x × y)x
x ⊆ ϵ ↔ x = ϵ

x ⊆ yb ↔ x ⊆ y ∨ x = yb

xb = yb → x = y

x0 ̸= y1 xb ̸= ϵ.

Axiom schema for induction on notation: B(ϵ)∧∀x.
(
B(x) → B(x0)∧B(x1)

)
→ ∀x.B(x),

where B is a Σb
1-formula in RL.

The axiom schema for induction on notation adapts the usual induction schema of PA to
the binary representation. As standard in bound arithmetic, restriction to Σb

1-formulas, is
essential to characterize algorithms with bounded resources. Indeed, more general instances
of this schema would lead to represent functions which are not polytime computable.

An Algebra of Polytime Oracle Recursive Functions. We now introduce a Cobham-style
function algebra, called POR, for polytime oracle recursive functions, and show that it is
captured by a class of bounded formulas provably representable in the theory RΣb

1-NIA. This
algebra is inspired by Ferreira’s PTCA [23, 25]. Yet, a fundamental difference is that the
functions we define are of the form f : Sk × O → S, i.e. they carry an additional argument
ω : S → B, to be interpreted as the underlying stream of random bits. Furthermore, our
class includes the basic query function, which can be used to observe any bit from ω.

The class POR is the smallest class of functions from Sk × O to S, containing the empty
function E(x, ω) = ϵ, the projection functions P n

i (x1, . . . , xn, ω) = xi, the word-successor
function Sb(x, ω) = xb, the conditional function C(ϵ, y, z0, z1, ω) = y and C(xb, y, z0, z1, ω) =
zb, where b ∈ B (corresponding to b ∈ {0, 1}), the query function Q(x, ω) = ω(x), and closed
under the following schemata:

CSL 2024

10:8 Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

Composition, where f is defined from g, h1, . . . , hk as f(x⃗, ω) = g(h1(x⃗, ω), . . . ,

hk(x⃗, ω), ω).
Bounded recursion on notation, where f is defined from g, h0, h1 as

f(x⃗, ϵ, ω) = g(x⃗, ω)
f(x⃗, y0, ω) = h0

(
x⃗, y, f(x⃗, y, ω), ω

)
|t(x⃗,y)

f(x⃗, y1, ω) = h1
(
x⃗, y, f(x⃗, y, ω), ω

)
|t(x⃗,y),

with t obtained from ϵ, 0, 1, ⌢, × by explicit definition, i.e. by applying ⌢ and × on
constants ϵ, 0, 1, and variables x⃗ and y.

We now show that functions of POR are precisely those which are Σb
1-representable

in RΣb
1-NIA. To do so, we slightly modify Buss’ representability conditions by adding a

constraint relating the quantitative semantics of formulas in RL and the additional functional
parameter ω of oracle recursive functions.

▶ Definition 3. A function f : Sk × O → S is Σb
1-representable in RΣb

1-NIA if there exists a
Σb

1-formula G(x⃗, y) of RL such that:
1. RΣb

1-NIA ⊢ ∀x⃗.∃!y.G(x⃗, y),
2. for all σ1, . . . , σk, τ ∈ S and ω ∈ O, f(σ1, . . . , σk, ω) = τ iff ω ∈ JG(σ1, . . . σk, τ)K.

Condition 1. above does not say that the unique value y is obtained as a function of
x⃗ only. Indeed, the truth-value of a formula depends both on the value of its first-order
variables and on the value assigned to the random predicate Flip. Hence this condition says
that y is uniquely determined as a function both of its first-order inputs and of an oracle
from O, precisely as functions of POR.

▶ Theorem 4. For any f : Sk × O → S, f is Σb
1-representable in RΣb

1-NIA iff f ∈ POR.

Proof sketch. (⇐) The desired Σb
1-formula is constructed by induction on the structure of

oracle recursive functions. Observe that the formula ∀x⃗.∃!y.G(x⃗, y) occurring in Condition
1. of Definition 3 is not Σb

1, since it is universally quantified while the existential quantifier is
not bounded. Hence, in order to apply the inductive steps (corresponding to functions defined
by composition and bounded recursion on notation), we need to adapt Parikh’s theorem [51]
(which holds for S1

2 and Σb
1-NIA) to RΣb

1-NIA, to state that if RΣb
1-NIA ⊢ ∀x⃗.∃y.G(x⃗, y),

where G(x⃗, y) is a Σb
1-formula, then we can find a term t such that RΣb

1-NIA ⊢ ∀x⃗.∃y ⪯
t.G(x⃗, y). (⇒) The proof consists in adapting Cook and Urquhart’s argument for system
IPVω [13], and this goes through a realizability interpretation of the intuitionistic version of
RΣb

1-NIA, called IRΣb
1-NIA. Further details can be found in the extended version of this

paper [1]. ◀

3.2 Characterizing Polytime Random Functions
Theorem 4 shows that it is possible to characterize POR by means of a system of bounded
arithmetic. Yet, this is not enough to deal with classes, like BPP or RP, which are defined
in terms of functions computed by PTMs. Observe that there is a crucial difference in the
way in which probabilistic machines and oracle recursive functions access randomness, so our
next goal is to fill the gap, by relating these classes of functions.

Let D(S) indicate the set of distributions over S, that is, those functions λ : S → [0, 1] such
that

∑
σ∈S λ(σ) = 1. By a random function we mean a function of the form f : Sk → D(S).

Observe that any (polytime) PTM M computes a random function fM, where, for every
σ1, . . . , σk, τ ∈ S, fM(σ1, . . . , σk)(τ) coincides with the probability that M(σ1♯ . . . ♯σk) ⇓ τ .
However, a random function needs not be computed by a PTM in general. We define the
following class of polytime random functions:

M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone 10:9

▶ Definition 5 (Class RFP). The class RFP is made of all random functions f : Sk → D(S)
such that f = fM, for some PTM M running in polynomial time.

Functions of RFP are closed under monadic composition ⋄, where (g ⋄ f)(σ)(τ) =∑
ρ∈S g(ρ)(τ) · f(σ)(ρ) (one can check fN ⋄ fM = fN◦M, where ◦ indicates PTM composition).
Since functions of RFP have a different shape from those of POR, we must adapt the

notion of Σb
1-representability for them, relying on the fact that any closed RL-formula F

generates a measurable set JF K ⊆ BN.

▶ Definition 6. A function f : Sk → D(S) is Σb
1-representable in RΣb

1-NIA if there exists a
Σb

1-formula G(x⃗, y) of RL such that:
1. RΣb

1-NIA ⊢ ∀x⃗.∃!y.G(x⃗, y),
2. for all σ1, . . . , σk, τ ∈ S, f(σ1, . . . , σk, τ) = µ

(
JG(σ1, . . . , σk, τ)K

)
.

Notice that any Σb
1-formula G(x⃗, y) satisfying Condition 1. from Definition 6 actually

defines a random function ⟨G⟩ : S → D(S) given by ⟨G⟩(σ⃗)(τ) = µ(JG(σ⃗, τ)K), where ⟨G⟩ is
Σb

1-represented by G. Moreover, if G represents some f ∈ RFP, then f = ⟨G⟩. In analogy
with Theorem 4, we can now prove the following result:

▶ Theorem 7. For any f : Sk → D(S), f is Σb
1-representable in RΣb

1-NIA iff f ∈ RFP.

Thanks to Theorem 4, the proof of the result above simply consists in showing that POR
and RFP can be related as stated below.

▶ Lemma 8. For all functions f : Sk × O → S in POR there exists g : Sk → D(S) in RFP
such that for all σ1, . . . , σk, τ ∈ S, µ({ω | f(σ⃗, ω) = τ}) = g(σ1, . . . , σk, τ), and conversely.

Proof sketch. The first step of our proof consists in replacing the class RFP by an in-
termediate class SFP corresponding to functions computed by polytime stream Turing
machines (STM, for short). These are defined as deterministic TM with one extra read-
only tape: at the beginning of the computation the extra tape is sampled from BN, and
at each computation step the machine reads one new bit from this tape. Then we show
that for any function f : Sk → D(S) computed by some polytime PTM there is a function
g : Sk ×BN → S computed by a polytime STM such that for all σ1, . . . , σk, τ ∈ S, and η ∈ BN,
f(σ1, . . . , σk, τ) = µ({η | g(σ1, . . . , σk, η) = τ}), and conversely. To conclude, we prove the
correspondence between the classes POR and SFP:
(SFP ⇒ POR) The encoding relies on the remark that, given an input x ∈ S and an

extra-tape η ∈ BN, an STM S running in polynomial time can only access a finite portion
of η, bounded by some polynomial p(|x|). This way the behavior of S is encoded by a
POR-function h(x, y), where the second string y corresponds to ηp(|x|), and we can define
f ♯(x, ω) = h(x, e(x, ω)), where e : S × O → S is a function of POR which mimics the
prefix extractor η 7→ ηp(|x|), in the sense that its outputs have the same distributions of
all possible η’s prefixes (yet over O rather than BN).

(POR ⇒ SFP) Here we must consider that these two models not only invoke oracles of
different shape, but also that functions of POR can manipulate such oracles in a much
more liberal way than STMs. Notably, the STM accesses oracle bits in a linear way: each
bit is used exactly once and cannot be re-invoked. Moreover, at each step of computation
the STM queries a new oracle bit, while functions of POR can access the oracle, so to
say, on demand. The argument rests then on a chain of simulations, making use of a
class of imperative languages inspired by Winskell’s IMP [56], each one taking care of one
specific oracle access policy: first non-linear and on-demand (as for POR), then linear
but still on-demand, and finally linear and not on-demand (as for STMs). ◀

CSL 2024

10:10 Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

4 Semantic Characterizations of BPP

We now turn our attention to randomized complexity classes. This requires us to consider
how random functions (and thus PTMs) may correspond to languages, i.e. subsets of S. The
language computed by a random function can naturally be defined via a majority rule:

▶ Definition 9. Let f : S → D(S) be a random function. The language Lang(f) ⊆ S is
defined by σ ∈ Lang(f) iff f(σ)(ϵ) > 1

2 .

It is instructive to first take a look at the case of the class PP, recalled below:

▶ Definition 10 (PP). Given a language L ⊆ S, L ∈ PP iff there is a polynomial time
PTM M such that for any σ ∈ S, Pr[M(σ) = χL(σ)] > 1

2 , where, χL : S → {0, 1} is the
characteristic function of L.

At first glance, PP might be considered a semantic class, since its definition comprises both
a resource condition and a promise. However, PP is generally considered a syntactic class,
due to the fact that, when trying to capture the machines solving languages in PP, the
promise condition can actually be eliminated. Indeed, any PTM M running in polynomial
time recognizes some language in PP, namely the language L = Lang(f), where f is the
polytime random function computed by M. Furthermore, the class PP can be enumerated
(see e.g. [18]).

Using Theorem 7, the remarks above readily lead to a proof-theoretic characterization of
PP via RΣb

1-NIA.

▶ Proposition 11 (Syntactic Characterization of PP). For any language L ⊆ S, L ∈ PP iff
there is a Σb

1-formula G(x, y) such that:
1. RΣb

1-NIA ⊢ ∀x.∃!y.G(x, y),
2. L = Lang(⟨G⟩).

The characterization above provides an enumeration of PP (by enumerating the pairs
made of a formula G and a proof in RΣb

1-NIA of Condition 1). However, while a majority
rule is enough to capture the problems in PP, the definition of a semantic class like BPP
requires a different condition.

▶ Definition 12 (BPP). Given a language L ⊆ S, L ∈ BPP iff there is a polynomial time
PTM M such that for any σ ∈ S, Pr[M(σ) = χL(σ)] ≥ 2

3 .

The class BPP can be captured by “non-erratic” probabilistic algorithms, i.e. such that, for
a fixed input, one possible output is definitely more likely than the others.

▶ Definition 13. A random function f : S → D(S) is non-erratic if for all σ ∈ S, f(σ)(τ) ≥ 2
3

holds for some value τ ∈ S.

▶ Lemma 14. For any language L ⊆ S, L ∈ BPP iff L = Lang(f), for some non-erratic
random function f ∈ RFP.

Proof. For any non-erratic RFP-function f , let M be the PTM computing k ⋄ f , where
k(ϵ) = 1 and k(σ ̸= ϵ) = 0; then M computes χLang(f) with error ≤ 1

3 . Conversely, if
L ∈ BPP, let M be a PTM accepting L with error ≤ 1

3 ; then L = Lang(h ⋄ fM), where
h(1) = ϵ and h(σ ̸= 1) = 0. ◀

M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone 10:11

Lemma 14 suggests that, in order to characterize BPP in the spirit of Proposition 11, a
new condition has to be added, corresponding to the fact that G represents a non-erratic
random function. In the rest of this section we discuss two approaches to measure error
bounds for probabilistic algorithms, leading to two different characterizations of BPP: first
via measure quantifiers [2], then by purely arithmetical means. While both such methods
ultimately consist in showing that the truth of a formula in the standard model of RΣb

1-NIA,
they also suggest a more proof-theoretic approach, that we explore in Section 5.

BPP via Measure Quantifiers. As we have seen, any RL-formula F is associated with a
measurable set JF K ⊆ O. So, a natural idea, already explored in [2], consists in enriching RL
with measure-quantifiers [48, 46], that is, second-order quantifiers of the form CqF , where
q ∈ [0, 1] ∩ Q, intuitively expressing that the measure of JF K is greater than (or equal to)
q. Then, let RLMQ be the extension of RL with measure-quantified formulas Ct/sF , where
t, s are terms. The Borel semantics of RL naturally extends to RLMQ letting JCt/sF Kξ = O
when |JsKξ| > 0 and µ(JF Kξ) ≥ |JtKξ|

|JsKξ| both hold, and JCt/sF Kξ = ∅ otherwise. To improve
readability, for all n, m ∈ N, we abbreviate C1n/1m

F as Cn/mF .
Measure quantifiers can now be used to express that the formula representing a random

function is non-erratic, as shown below.

▶ Theorem 15 (First Characterization of BPP). For any language L ⊆ S, L ∈ BPP iff there
is a Σb

1-formula G(x, y) such that:
1. RΣb

1-NIA ⊢ ∀x∃!y.G(x, y),
2. ⊨ ∀x.∃y.C2/3G(x, y),
3. L = Lang(⟨G⟩).

Proof. Let L ∈ BPP and g : S → D(S) be a function of RFP computing L with uniform
error-bound (which, thanks to Lemma 14, we can suppose to be non-erratic). By Theorem 7,
there is a Σb

1-formula G(x, y) such that g = ⟨G⟩. So, for all σ ∈ S, µ(JG(σ, τ)K) = g(σ)(τ) ≥ 2
3

holds for some τ ∈ S, which shows that Condition 2. holds. Conversely, if Conditions 1.-3. hold,
then ⟨G⟩ computes L with the desired error bound, so L ∈ BPP. ◀

Arithmetizing Measure Quantifiers. Theorem 15 relies on the tight correspondence between
arithmetic and probabilistic computation; yet, Condition 2. involves formulas which are not
in the language of first-order arithmetic. Lemma 16 below shows that measure quantification
over bounded formulas of RL can be expressed arithmetically.

▶ Lemma 16 (De-Randomization of Bounded Formulas). For any Σb
1-formula F (x⃗) of

RL, there exists a Flip-free Π0
1-formula TwoThirds[F](x⃗) such that for any σ⃗ ∈ S,

⊨ TwoThirds[F](σ⃗) holds iff µ(JF (σ⃗)K) ≥ 2
3 .

Proof. First, observe that for any bounded RL-formula F (x⃗), strings σ⃗ and ω ∈ O, to check
whether ω ∈ JF (σ⃗)K only a finite portions of bits of ω has to be observed. More precisely, we
can construct a RL-term tF (x⃗) such that for any σ⃗ ∈ S and ω, ω′ ∈ O, if ω and ω′ agree on all
strings shorter than tF (σ⃗), then ω ∈ JF (σ)K iff ω′ ∈ JF (σ)K. Now, all finitely many relevant
bits ω(τ), for |τ | ≤ tF (σ⃗) can be encoded as a unique string w of length ≤ 2|tF (σ⃗)| where the
bit wi corresponds to the value ω(τ), where τ is obtained by stripping the right-most bit
from the binary representation of i. We obtain in this way a Flip-free formula F ∗(x⃗, y) such
that measuring JF (σ)K corresponds to counting the strings y of length ≤ 2|tF (σ⃗)| making
F ∗(x⃗, y) true, i.e. to showing∣∣∣ {

τ ⪯ 2|tF (σ⃗)|
∣∣∣ F ∗(σ⃗, τ)

} ∣∣∣ ≥ 2
3 · N, (⋆)

CSL 2024

10:12 Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

where 2ϵ = 1 and 2σb = 2σ2σ is an exponential function on strings and N = 2(2|tF (σ)|)
is the total amount of the strings to be counted. (⋆) can be encoded in a standard way
yielding a bounded formula F ♯(x⃗) in the language of arithmetic extended with the function
symbol 2x. Finally, the function symbol 2x can be eliminated using a ∆0

0-formula exp(x, y)
defining the exponential function (see [28]), yielding a Flip-free Π0

1-formula of RL of the
form ∀z1.∀zk.exp(t1, z1) ∧ · · · ∧ exp(tk, zk) → F ♯(x⃗, z1, . . . , zk). ◀

▶ Remark 17. It is important to observe at this point that the elimination of Flip via
counting takes us beyond the usual machinery of bounded arithmetic, since we employ some
operation which is not polytime. This is indeed not surprising, since the counting problems
associated with polytime problems (generating the class ♯P) are not even known to belong to
the polynomial hierarchy PH (while, by Toda’s theorem, we know that PH ⊆ P♯P).
Theorem 15 and Lemma 16 together yield a purely arithmetical characterization of BPP.
Let NotErratic[G] indicate the arithmetical formula ∀x.∃y ⪯ 0.TwoThirds[G](x, y).

▶ Theorem 18 (Second Characterization of BPP). For any language L ⊆ S, L ∈ BPP when
there is a Σb

1-formula G(x, y) such that:
1. RΣb

1-NIA ⊢ ∀x.∃!y.G(x, y),
2. ⊨ NotErratic[G],
3. L = Lang(⟨G⟩).

5 Provably BPP Problems

The characterization provided by Theorem 18 is still semantic in nature, as it provides no
way to effectively enumerate BPP: the crucial Condition 2 is not checked within a formal
system, but over the standard model of RL. Yet, since the condition is now expressed in
purely arithmetical terms, it makes sense to consider syntactic variants of Condition 2, where
the model-theoretic check is replaced by provability in some sufficiently expressive theory.

We will work in extensions of RΣb
1-NIA+Exp, where Exp = ∀x.∃y.exp(x, y) is the formula

expressing the totality of the exponential function (which is used in the de-randomization of
Lemma 16). This naturally leads to the following definition:

▶ Definition 19 (Class BPPT). Let T ⊇ RΣb
1-NIA + Exp be a theory in the language RL.

The class BPP relative to T, denoted BPPT, contains all languages L ⊆ S such that for
some Σb

1-formula G(x, y) the following hold:
1. RΣb

1-NIA ⊢ ∀x.∃!y.G(x, y),
2. T ⊢ NotErratic[G],
3. L = Lang(⟨G⟩).

Whenever T is sound (i.e. T ⊢ F implies that F is true in the standard model), it is clear that
BPPT ⊆ BPP. However, a crucial difference between the syntactic class BPPT and the
semantic class BPP is that, when T is recursively enumerable, BPPT can be enumerated
(by enumerating the proofs of Condition 1. and 2. in T). Hence, the enumerability problem
for BPP translates into the question whether one can find a sound r.e. theory T such that
BPPT = BPP. Let us first observe that the relevance of this problem is tightly related to
the question BPP = P:

▶ Proposition 20. If BPP = P, then there exists a r.e. theory T such that BPP = BPPT.

Proof. If BPP = P, and L ∈ BPP, then there is a polytime deterministic TM µ accepting
it. µ yields then a PTM µ∗ in a trivial way. Since the corresponding formula G of RL does
not contain Flip, NotErratic[G] can be proved in e.g. RΣb

1-NIA + Exp. ◀

M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone 10:13

The counter-positive of the result above is even more interesting, as it says that establishing
that no r.e. theory T is such that BPPT = BPP is at least as hard as establishing that
BPP ̸= P. Yet, without knowing whether BPP = P, how hard may it be to find a theory
T such that BPP = BPPT?

Observe that, when G is Σb
1, NotErratic[G] is expressed by a Π0

1-formula: as
TwoThirds[G](x⃗) is of the form ∀z⃗. ∧i exp(ti, zi) → F ♯(x⃗, z⃗), the condition is expressed
by the Π0

1-formula ∀x.∀z⃗. ∧i exp(ti, zi) → ∃y ⪯ 0.F ♯(x⃗, z⃗). Hence, if we us fix some re-
cursive enumeration (Mn)n∈N of polytime PTM as well as a recursive coding ♯M of such
machines as natural numbers, the fact that M is non-erratic is expressed by some Π0

1-formula
φNotErratic(♯M). The Π0

1-set NotErratic = {e | φNotErratic(e)} indicates then the sets of codes
corresponding to non-erratic machines.

The possibility of finding a theory strong enough to prove all positive instances of
Condition 2 is then ruled out by the following result.

▶ Proposition 21. NotErratic is Π0
1-complete.

Proof. We reduce to NotErratic the Π0
1-complete problem HALTn2 consisting of codes of TM

halting in time at most n2 (see [29]). With any TM µ associate a polytime PTM µ∗ that,
on input x, yields TRUE with prob. 1

2 , and otherwise simulates µ(x) on |x|2 steps, yielding
TRUE if the computation of µ(x) terminated, and FALSE otherwise. Then it is easily seen
that µ ∈ HALTn2 iff µ∗ ∈ NotErratic. ◀

▶ Corollary 22. Codes of poly-time and non-erratic PTMs form a Σ0
2-complete set.

Proof. As we say, for a PTM, solving some BPP-problem is equivalent to being polytime
and non-erratic. Being the code of a polytime (P)TM is a Σ0

2-complete property [34]. By
Proposition 21, checking non-erraticity does not increase the logical complexity. ◀

Proposition 21 implies that for any consistent theory T one can always find some non-
erratic polytime PTM whose non-erraticity is not provable in T. Indeed, since NotErratic is
Π0

1-complete, we can reduce to it the Π0
1-set of codes of consistent r.e. theories. Hence, if T

is some consistent theory such that for any code e ∈ NotErratic, T proves φNotErratic(e), then
T can prove all Π0

1-statement expressing the consistency of some consistent r.e. theory, and
thus, in particular, the one expressing its own consistency, contradicting (Rosser’s variant of)
Gödel’s second incompleteness theorem.

Observe that Corollary 22 suggests that the enumerability problem might be very difficult,
but it does not provide a negative answer to it. Indeed, recall that what we are interested
in is not an enumeration of all non-erratic polytime PTM, but an enumeration containing
at least one machine for each problem in BPP. In other words, the question remains open
whether, for any non-erratic polytime PTM, it is possible to find a machine solving the same
problem but whose non-erratic behavior can be proved in some fixed theory T. While we do
not know the answer to this question, we can still show that a relatively weak arithmetical
theory is capable of proving the non-erraticity of a machine solving one of the (very few)
problems in BPP which are currently not known to be in P.

6 Polynomial Zero Testing is Provably BPP

In this section we establish that PIT is in BPP(I∆0+Exp). We recall that I∆0 + Exp is the
fragment of Peano Arithmetics with induction restricted to bounded formulas, together with
the totality of the exponential function.

CSL 2024

10:14 Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

▶ Remark 23. While I∆0 + Exp is a theory in the usual language of PA, here we work
in a language for binary strings. Indeed, what we here call I∆0 + Exp is actually the
corresponding theory ∆0-NIA + Exp, formulated for the language RL without Flip, and
defined as Σb

1-NIA + Exp with induction extended to all bounded formulas, plus the axiom
Exp. Based on [26] ∆0-NIA corresponds to Buss’ theory S2, which, in turn, is known to
correspond to I∆0 + Ω1, indeed a sub-theory of I∆0 + Exp.

The PIT problem asks to decide the identity of the polynomial computed by two arith-
metical circuits. These are basically DAGs whose nodes can be labeled so as to denote an
input, an output, the constants 0, 1 or an arithmetic operation. These structures can easily
be encoded, e.g. using lists, as terms of RL.

▶ Definition 24 (cf. [3]). The problem PIT asks to decide whether two arithmetical circuits
p, q encoded as lists of nodes describe the same polynomial, i.e. Z |= p = q.

Usually, PIT is reduced to another problem: the so-called Polynomial Zero Testing (PZT)
problem, which asks to decide whether a polynomial computing a circuit over Z is zero, i.e.
to check whether Z |= p = 0. Indeed, Z |= p = q if and only if Z |= p − q = 0. Our proof of
the fact that the language PZT is in BPP(I∆0+Exp) is structured as follows:

We identify a Σb
1-formula G(x, y) of RL characterizing the polytime algorithm PZT from [3],

and we turn it into a Flip-free formula G∗(x, y, z) as in Lemma 16, where the variable z

stands for the source of randomness;
We identify a Flip-free ∆0

0-formula H(x, y) which represents the naïve deterministic
algorithm for PZT.
We show that I∆0 + Exp proves a statement showing that the formulas G∗ and H are
equivalent in at least 2

3 of all (finitely many) relevant values of z. In other words, we
establish I∆0 + Exp ⊢ ∀x.∀y.TwoThirds[G(x, y) ↔ H(x, y)].

From the last step, since the totality of H is provable in I∆0+Exp, we can deduce I∆0+Exp ⊢
∀x.∃y.TwoThirds[G](x, y), as required in Definition 19.

Each of the aforementioned steps will be described in one of the forthcoming paragraphs,
although the details are discussed in the extended version of this paper [1].

The Randomized Algorithm. Our algorithm for PZT takes an input x, which encodes a
circuit p of size m on the variables v1, . . . , vn, it draws r1, . . . , rn uniformly at random from
{0, . . . , 2m+3 −1} and k from {1, . . . , 22m}, then it computes the value of p(r1, . . . , rn) mod k,
so to ensure that during the evaluation no overflow can take place. This is done linearly
many times in |x| (we call this value s), as to ensure that, if the polynomial is not identically
zero, the probability to evaluate p on values witnessing this property at least once grows
over 2

3 . Finally, if all the evaluations returned 0 as output the input is accepted; otherwise,
it is rejected.

The procedure described above is correct only when the size of the input circuit x is
greater than some constant ϱ. If this is not the case, our algorithm queries a table T

storing all the pairs (xi, χPZT(xi)) for |xi| < ϱ, to obtain χPZT(xi). The table T can be
pre-computed, having just a constant number of entries. This algorithm, which we call PZT,
is inspired by [3] and described in detail in the extended version of this paper [1].

As the input circuit is evaluated modulo some k ∈ Z, the algorithm works in time
polynomial with respect to |x|. Therefore, as a consequence of Theorem 4 and Lemma 8,
there is a Σb

1-formula G(x, y) of RL that represents it. The extended version of this paper [1]
also contains a lower-level description of this formula G.

M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone 10:15

The Underlying Language. We show that there is a predicate H of RL such that H(x, ϵ)
holds if and only if x is the encoding of a circuit in PZT; otherwise, H(x, 0) holds. This
predicate realizes the function h described by the following algorithm:
1. Take in input x, and check whether it is a polynomial circuit with one output; if it is not,

reject it. Otherwise:
2. Compute the polynomial term p represented by x, and reduce it to a normal form p.
3. Check whether all the coefficients of the terms are null. If this is true, output ϵ, otherwise

output 1 and terminate.
For reasonable encodings of polynomial circuits and expressions, h is elementary recursive
and therefore there is a predicate H which characterizes it, and I∆0 + Exp proves the
totality of h. Moreover, we have h = χPZT, as for every polynomial p with coefficients in Z,
Z |= ∀x⃗.p(x⃗) = 0 iff all the monomials in the normal form of p have zero as coefficient.

Proving the Error Bound. We now show that the formula G is not-erratic and that it
decides Lang(⟨G⟩). With the notations G∗ and tG from the the proof of Lemma 16, this can
be reduced to proving in I∆0 + Exp the following two claims:

⊢ ∀z. (|z| = tG(x) ∧ G∗(x, 0, z)) → H(x, 0), (†)

⊢ ∀x.
∣∣∣ {

z ⪯ 2tG(x))
∣∣∣ G∗(x, ϵ, z) → H(x, ϵ))

} ∣∣∣ ≥ 2
3 · 2|2

tG(x)|. (‡)

(†) states that whenever the randomized algorithm rejects an input, then so does the
deterministic one, while (‡), which is reminiscent of (⋆), states that in at least 2

3 of all
possible cases, if the randomized algorithm accepts the circuit, the deterministic one accepts
it too. Jointly, (†) and (‡) imply that the equivalence G∗(x, y, z) ↔ H(x, y) holds in at least
2/3 of all possible cases.

While Claim (†) is a consequence of the compatibility of the mod k function with addition
and multiplication, which are easily proved in I∆0 + Exp, the proof of Claim (‡) is more
articulated and relies on the Schwartz-Zippel Lemma, providing a lower bound to the
probability of evaluating the polynomial on values witnessing that it is not identically zero,
and the Prime Number Theorem (whose provability in I∆0 + Exp is known [16]) which
bounds the probability to choose a bad value for k, i.e. one of those values causing PZT to
return the wrong value. Detailed arguments are provided in the extended version of this
paper [1].

Closure under Polytime Reduction. Only assessing that a problem belongs to BPPT does
not tell us anything about other languages of this class; for this reason, we are interested
in showing that BPPT is closed under polytime reduction. This allows us to start from
PZT ∈ BPP(I∆0+Exp) to conclude that all problems which can be reduced to PZT in
polynomial time belong to this class, and in particular that PIT ∈ BPP(I∆0+Exp). This is
assessed by the following proposition, proved in the the extended version of this paper:

▶ Proposition 25. For any theory T ⊇ RΣb
1-NIA + Exp, language L ∈ BPPT and language

M ⊆ S, if there is a polytime reduction from M to L, then M ∈ BPPT.

▶ Corollary 26. PIT is in BPP(I∆0+Exp).

CSL 2024

10:16 Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

7 On Jeřábek’s Characterization of BPP

As mentioned in Section 1, a semantic characterization of BPP based on bounded arithmetic
was already provided by Jeřábek in [41]. This approach relies on checking, against the
standard model, the truth of a formula which, rather than expressing that some machine is
non-erratic, expresses what can be seen as a second totality condition (beyond the formula
expressing the totality of the algorithm). Hence, also within this approach we think it makes
sense to investigate which problems can be proved to be in BPP within some given theory.

In this section, we relate the two approaches by showing that the problems in BPPT are
provably definable BPP problems, in the sense of [41], within some suitable extension of the
bounded theory PV1[13].

A PTM is represented in this setting by two provably total functions (A, r), where the
machine accepts on input x with probability less than p/q when Prw<r(x)(A(x, w)) ≤ p/q.
Jeřábek focuses on the theory PV1, extended with an axiom schema dWPHP (PV1)called the
dual weak pigeonhole principle (cf. [41, pp. 962ff.]) for PV1 (i.e. the axiom stating that for
every PV1-definable function f , f is not a surjection from x to x2). The reason is that this
theory is capable of proving approximate counting formulas of the form Prw<r(x)(A(x, w)) ⪯0
p/q, where “⪯0” is a relation equivalent to “≤” up to some polynomially small error
(recall that, in order to establish exact counting results, we were forced to use non-polytime
operations, cf. Remark 17). The representation of BPP problems hinges on the definition, for
any probabilistic algorithm (A, r), of L+

A,r(x) := Prw<r(x)(¬A(x, w)) ≤ 1/3 and L−A,r(x) :=
Prw<r(x)(A(x, w)) ≤ 1/3. Checking if the algorithm (A, r) solves some problem in BPP
reduces then to checking the “totality” formula ⊨ ∀x.L+

A,r(x) ∨ L−A,r(x).
Now, first observe that, modulo an encoding of strings via numbers, everything which is

provable in RΣb
1-NIA without the predicate Flip can be proved in the theory S1

2(PV) [13],
which extends both PV1 and Buss’ S1

2 . Moreover, by arguing as in the proof of Lemma
14, in our characterization of BPP we can w.l.o.g. suppose that the formula G satisfies
EpsZero[G] := ∀x.∀y.G(x, y) → y = ϵ ∨ y = 0. Under this assumption, the de-randomization
procedure described in the proof of Lemma 16 turns G into a pair (A, r), where A = G∗ is
Flip-free and r(x) = tG(x), and the languages L+

A,r(x) and L−A,r(x) correspond then to the
formulas L+

G(x) := TwoThirds[G(−, ϵ)](x), and L−G(x) := TwoThirds[G(−, 0)](x).
Now, since from T ⊢ ∀x.∃y.TwoThirds[G](x, y) and EpsZero[G] one can deduce T ⊢

∀x.L+
G(x) ∨ L−G(x), we arrive at the following:

▶ Proposition 27. Let L be a language with L = Lang(⟨G⟩). If L ∈ BPPT, then
∀x.L+

G(x) ∨ L−G(x) is provable in some recursively enumerable extension of PV1. Conversely,
if PV1+dWPHP(PV1) ⊢ ∀x.L+

G(x) ∨ L−G(x), then L ∈ BPPRΣb
1-NIA+Exp.

The second statement above relies on the fact that approximate counting can be replaced by
exact counting in RΣb

1-NIA + Exp (i.e. “⪯0” can be replaced by “≤”).

8 Future Work

The authors see this work as a starting point for a long-term study on the logical nature of
semantic classes. From this point of view, many ideas for further work naturally arise.

An exciting direction is the study of the expressiveness of the new syntactic classes BPPT,
that is, an investigation on the kinds of error bounds which can be proved in the arithmetical
theories lying between standard bounded theories like S1

2 , PV and PA, but also in theories
which are more expressive than PA (like e.g. second-order theories). Surely, classes of the
form BPPT could be analyzed also as for the existence of complete problems and hierarchy
theorems for them, since such results are not known to hold for BPP itself [27].

M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone 10:17

Our approach to BPP suggests that extensions to other complexity classes of randomized
algorithms like ZPP, RP and coRP could make sense. Notice that this requires to deal
not only with error-bounds, but also with either average class complexity or with failure in
decision procedures.

Finally, given the tight connections between bounded arithmetics and proof complexity,
another natural direction is the study of applications of our work to randomized variations
on the theme, for example recent investigations on random resolution refutations [41, 6, 52],
i.e. resolution systems where proofs may make errors but are correct most of the time.

9 Conclusion

The logical characterization of randomized complexity classes, in particular those having
a semantic nature, is a great challenge. This paper contributes to the understanding of
this problem by showing not only how resource bounded randomized computation can be
captured within the language of arithmetic, but also that the latter offers convenient tools to
control error bounds, the essential ingredient in the definition of classes like BPP and ZPP.

We believe that the main contribution of this work is a first example of a sort of reverse
computational complexity for probabilistic algorithms. As we discussed in Section 5, while
the restriction to bounded theories is crucial in order to capture polytime algorithms via a
totality condition, it is not necessary to prove error bounds for probabilistic (even polynomial
time) algorithms. In particular, the (difficult) challenge of enumerating BPP translates into
the challenge of proving BPP = BPPT for some strong enough r.e. theory T. So, it is worth
exploring how much can be proved within expressive arithmetical theories. For this reason
we focused here on a well-known problem, PIT, which is known to be in BPP, but not in P,
showing that the whole argument for PIT ∈ BPP can be formalized in a fragment of PA,
namely I∆0 + Exp.

References
1 M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone. Enumerating error bounded

polytime algorithms through arithmetical theories, 2023. arXiv:2311.15003.
2 M. Antonelli, U. Dal Lago, and P. Pistone. On measure quantifiers in first-order arithmetic.

In Proc. of CiE 2021, pages 12–24. Springer-Verlag, 2021.
3 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University

Press, 2009.
4 S. Bellantoni and S. Cook. A New Recursion-Theoretic Characterization of the Polytime

Functions. Computational Complexity, 2:97–110, 1992.
5 P. Billingsley. Probability and Measure. Wiley, 1995.
6 S. Buss, A.L. Kolodziejczyk, and N. Thapen. Fragments of Approximate Counting. Journal

of Symbolic Logic, 79(2):496–525, 2014.
7 S.R. Buss. Bounded Arithmetic. PhD thesis, Princeton University, 1986.
8 S.R. Buss. First-Order Proof Theory of Arithmetic. In S.R: Buss, editor, Handbook of Proof

Theory. Elsavier, 1998.
9 A. Church. An Unsolvable Problem of Elementary Number Theory. American J. of Mathe-

matics, 58(2):345–363, 1992.
10 A. Cobham. The intrinsic computational difficulty of functions. In Proc. of the 1964 Interna-

tional Congress on Logics, Methodology and Philosophy of Science, pages 24–30. North-Holland
Publishing, 1965.

11 E.F. Codd. Relational Completeness of Data Base Sublanguages. In Proc. of 6th Courant
Computer Science Symposium., pages 65–98, 1972.

CSL 2024

https://arxiv.org/abs/2311.15003

10:18 Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

12 S. Cook. The Complexity of Theorem Proving Procedures. In Proc. of STOC 1971, pages
151–158, 1971.

13 S. Cook and A. Urquhart. Functional Interpretations of Feasibly Constructive Arithmetic.
Annals of Pure and Applied Logic, 63(2):103–200, 1993.

14 S.A. Cook. Feasibly constructive proofs and the propositional calculus. In ACM Press, editor,
Proc. of STOC 1975, pages 83–97, 1975.

15 S.A. Cook and R.A. Reckhow. Efficiency of Propositional Proof Systems. Journal of Symbolic
Logic, 44(1):36–50, 1979.

16 C. Cornaros and C. Dimitracopoulos. The Prime Number Theorem and Fragments of PA.
Archive for Mathematical Logic, 33:265–281, August 1994.

17 H. B. Curry. Functionality in Combinatory Logic. Proceedings of the National Academy of
Sciences, 20(11):584–590, 1934.

18 U. Dal Lago, R. Kahle, and I. Oitavem. A Recursion-Theoretic Characterization of the
probabilistic Class PP. In Proc. of MFCS 2021, pages 1–12. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021.

19 U. Dal Lago, R. Kahle, and I. Oitavem. Implicit Recursion-Theoretic Characterizations of
Counting Classes. Archive for Mathematical Logic, May 2022.

20 U. Dal Lago and P. Parisen Toldin. A Higher-Order Characterization of Probabilistic Polyno-
mial Time. Information and Computation, 241:114–141, 2015.

21 K. Eickmeyer and M. Grohe. Randomisation and Derandomisation in Descriptive Complexity
Theory. In Proc. of CSL 2010. Springer, 2010.

22 R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. Complexity
of computation, 7:43–73, 1974.

23 F. Ferreira. Polynomial-Time Computable Arithmetic and Conservative Extesions. Ph.D.
Dissertation, December 1988.

24 F. Ferreira. Polynomial-Time Computable Arithmetic. In W. Sieg, editor, Logic and Compu-
tation, volume 106 of Contemporary Mathematics, pages 137–156. AMS, 1990.

25 F. Ferreira. Stockmeyer induction, pages 161–180. Birkhäuser Boston, Boston, MA, 1990.
doi:10.1007/978-1-4612-3466-1_9.

26 G. Ferreira and I. Oitavem. An Interpretation of S1
2 in Σb

1-NIA. Portugaliae Mathematica,
63:137–156, 2006.

27 L. Fortnow. Comparing notions of full derandomization. In Proceedings of the 16th Annual
IEEE Conference on Computational Complexity, pages 28–34, Chicago, IL, USA, 2001. IEEE
Computer Society.

28 H. Gaifman and C. Dimitracopoulos. Fragments of Peano’s arithmetic and the MRDP theorem.
Logic and Algorithmic, Monograph. Enseign. Math., 30:187–206, 1982.

29 D. Gajser. Verifying Time Complexity of Turing Machines. Informatica, 40:369–370, 2016.
30 J.-Y. Girard. Light Linear Logic. Information and Computation, 2(143):175–204, 1998.
31 J.-Y. Girard and Y. Lafont. Advances in Linear Logic. Cambridge University Press, 1995.
32 J.-Y. Girard, A. Scedrov, and P. Scott. Bounded Linear Logic: A Modular Approach to

Polynomial-Time Computability. Theoretical Computer Science, 97(1):1–66, 1992.
33 K. Gödel. Über Formal Unentscheidbare Sätze der Principia Mathematica and Verwandter

Systeme. Monatshefte für Mathematik und Physik, 38:173–198, 1931.
34 P. Hájek. Arithmetical Hierarchy and Complexity of Computation. Theoretical Computer

Science, 8(2):227–237, 1979.
35 P. Hájek and P. Pudlák. Metamathematics of First-Order Arithmetic. Springer, Berlin-

Heidelberg, 1998.
36 J. Hartmanis and R.E. Stearns. On the Computational Complexity of Algorithms. Transactions

of the AMS, 117:285–306, 1965.
37 M. Hofmann. Programming Languages Capturing Complexity Classes. SIGACT News,

31(1):31–42, March 2000.

https://doi.org/10.1007/978-1-4612-3466-1_9

M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone 10:19

38 H. A. Howard. The Formulae-as-Types Notion of Construction. In To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus, and Formalism. Academic Press, 1980.

39 N. Immerman. Descriptive Complexity. Springer, 1999.
40 E. Jeřábek. Dual Weak Pigeonhole Principle, Boolean Complexity, and Derandomization.

Annals of Pure and Applied Logic, 129(1):1–37, 2004.
41 E. Jeřábek. Approximate Counting in Bounded Arithmetic. Journal of Symbolic Logic,

72(3):959–993, 2007.
42 J. Krajíček and P. Pudlák. Propositional Proof Systems, the Consistency of First-Order

Theories and the Complexity of Computations. Journal of Symboic Logic, 54(3):1063–1079,
1989.

43 J. Krajíček, P. Pudlák, and G. Takeuti. Bounded Arithmetic and the Polynomial Hierarchy.
Annals of Pure and Applied Logic, 52:143–153, 1991.

44 Y. Lafont. Soft Linear Logic and Polynomial Time. Theoretical Computer Science, 1/2(318):163–
180, 2004.

45 D. Leivant. Ramified Recurrence and Computational Complexity I: Word Recurrence and
Polytime. In P. Clote and J. Remmel, editors, Feasible Mathematics II, pages 320–343. Springer,
1995.

46 H. Michalewski and M. Mio. Measure Quantifiers in Monadic Second Order Logic. In Proc. of
LFCS, pages 267–282, Cham, 2016. Springer.

47 J. Mitchell, M. Mitchell, and A. Scedrov. A Linguistic Characterization of Bounded Oracle
Computation and Probabilistic Polynomial Time. In Proc. of FOCS 1998, pages 725–733.
IEEE Computer Society, 1998.

48 C. Morgenstern. The Measure Quantifier. Journal of Symbolic Logic, 44(1):103–108, 1979.
49 R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, Cambridge;

NY, 1995.
50 C.H. Papadimitriou. Computational Complexity. Pearson Education, 1993.
51 R. Parikh. Existence and Feasibility in Arithmetic. Journal of Symbolic Logic, 36:494–508,

1971.
52 P. Pudlák and N. Thapen. Random Resolution Refutations. Computational Complexity,

28:185–239, 2019.
53 E.S. Santos. Probabilistic Turing Machines and Computability. AMS, 22(3):704–710, 1969.
54 M.H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism. Elsevier, 2006.
55 A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. Proc.

London Mathematical Society, pages 2–42, 230–265, 1936-37.
56 G. Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT press,

1993.

CSL 2024

	1 Introduction
	2 On the Enumeration of Complexity Classes
	3 Bounded Arithmetic and Polytime Random Functions
	3.1 From Arithmetic to Randomized Computation, Subrecursively
	3.2 Characterizing Polytime Random Functions

	4 Semantic Characterizations of BPP
	5 Provably BPP Problems
	6 Polynomial Zero Testing is Provably BPP
	7 On Jeřábek's Characterization of BPP
	8 Future Work
	9 Conclusion

