
HAL Id: hal-04777325
https://hal.science/hal-04777325v1

Submitted on 12 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

SplitMS: Split Modulo-Scheduling for Accelerating
Loops Onto CGRAs

Christie Sajitha Sajan, Kevin J M Martin, Satyajit Das, Philippe Coussy

To cite this version:
Christie Sajitha Sajan, Kevin J M Martin, Satyajit Das, Philippe Coussy. SplitMS: Split Modulo-
Scheduling for Accelerating Loops Onto CGRAs. 2024 27th Euromicro Conference on Digital System
Design (DSD), Aug 2024, Paris, France. pp.242 - 249, �10.1109/dsd64264.2024.00040�. �hal-04777325�

https://hal.science/hal-04777325v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

SplitMS: Split Modulo-Scheduling for Accelerating
Loops onto CGRAs

Christie Sajitha Sajan∗†, Kevin J. M. Martin∗, Satyajit Das†, Philippe Coussy∗
∗Univ. Bretagne-Sud, CNRS UMR 6285, Lab-STICC, Lorient, France

†IIT Palakkad, India
christie.sajan@univ-ubs.fr, kevin.martin@univ-ubs.fr, satyajitdas@iitpkd.ac.in, philippe.coussy@univ-ubs.fr

Abstract—Coarse-Grained Reconfigurable Array (CGRA) ar-
chitectures are popular for accelerating loop kernels due to a
good balance between energy efficiency and flexibility. Modulo
scheduling (MS) is the preferred solution for efficiently mapping
loops onto CGRAs. Existing CGRA MS algorithms suffer from
low resource utilization if the number of operation nodes in the
Data Flow Graph (DFG) is less than the number of Processing
Elements (PEs) in the CGRA. To improve instruction level
parallelism (ILP), the common approaches unroll the loop before
applying MS. However, finding valid MS solutions for larger
DFGs becomes difficult for CGRAs with resource constraints.
This paper proposes a novel Split Modulo-Scheduling (SplitMS)
technique to improve the ILP by segmenting the target CGRA
into clusters and mapping loop chunks. We also present a
lightweight hardware approach to support the cluster execution.
Experiments show that SplitMS for a 4×[2×2] CGRA cluster
achieves an average speedup of 2.8× over MS for a 4×4 target
CGRA with 8 Load-Store Units (LSUs). SplitMS increases an
average of 2.9× the PE utilization and 3× the energy efficiency
over the conventional MS approach.

Index Terms—CGRA, Loop Splitting, Loop Unrolling, Modulo
Scheduling

This document is the author version of the paper
“SplitMS: Split Modulo-Scheduling for Accelerating
Loops onto CGRAs” by Christie Sajitha Sajan, Kevin J.
M. Martin, Satyajit Das, Philippe Coussy, accepted for
publication in DSD2024. The IEEE Copyright Notice
is:
2024 27th Euromicro Conference on Digital System Design
(DSD)
Electronic ISBN: 979-8-3503-8038-5
Print on Demand(PoD) ISBN:979-8-3503-8039-2
Digital Object Identifier: 10.1109/DSD64264.2024.00040
The original paper is available in IEEE Xplore:

https://ieeexplore.ieee.org/document/10741678

Author version

I. INTRODUCTION

CGRAs serve as accelerators that offer high performance,
flexibility, and energy efficiency [1], [2]. CGRAs comprise
a set of interconnected processing elements (PEs). Fig. 1
shows the PEs interconnected following a mesh torus topology,
integrated into a System on Chip (SoC) that includes also
a host CPU, with data sharing facilitated through Tightly
Coupled Data Memory (TCDM). Each PE consists of an

CGRA
PEs

RISC
Core

LOW LATENCY INTERCONNECT

Tightly Coupled Data Memory
(TCDM) Banks

C
L
U
S
T
E
R

B
U
S

L2
Memory

Peripherals

INSTRUCTION BUS

DMA

IPAC

GCM

S
Y
S
T
E
M

B
U
S

DMA
IPA

IPA
SUBSYSTEM

PULP SYSTEM

1x[4x4] cluster

2x[2x4] cluster

4x[2x2] cluster

PE

PE PE

PE PE PE PE

PE PE PE

PE PE PE PE

PEPE

OPR

IN_1

RRF

IRF

IN_0

LSU

ALU

PMU

Controller

ALU – Arithmetic
Logic Unit

IRF – Instruction
Register File

RRF – Regular
Register File

LSU – Load-Store Unit

PMU – Power
Management Unit

OPR – Output
Register

Input from
nearby PEs

Output to
nearby PEs

Stall to
other PEs

Stalls from
other PEs

clkgate_en IPA – Integrated
Programmable Array

GCM – Global Context
Memory

IPAC – IPA Controller

Fig. 1. IPA Cluster configuration in PULP SoC

Arithmetic Logic Unit (ALU), an Instruction Register File
(IRF), a Regular Register File (RRF), and an optional Load
Store Unit (LSU). The regular structure of the CGRA offers
a very high Instruction Level Parallelism (ILP), particularly
interesting in accelerating the loop kernels.

Over the last two decades, several loop optimization tech-
niques have been used to improve Instruction Level Parallelism
(ILP) for CGRAs. Loop unrolling is one of the common
choices that involves expanding the loop fostering iteration
overlaps while maintaining a scheduling barrier at the loop’s
end. Increasing the unrolling factor improves ILP with a cost
of increased code size, and mapping complexity. Modulo
Scheduling (MS) is a widely recognized technique to improve
ILP over different iterations of the innermost loop of kernels
for CGRAs. Modulo Scheduling (MS) creates a schedule
for operations from multiple innermost loop iterations that
repeat at fixed intervals while respecting dependencies within
and between iterations. The interval between the initiation of
successive iterations is called the Initiation Interval (II). Unlike
unrolling, the increase in code size is minimal with modulo
scheduling. A minimum initiation interval (MII) serves as a
lower bound for the II for which a modulo scheduling exits for

https://ieeexplore.ieee.org/document/10741678

the target architecture. The MII is determined by either one of
the two key factors: available resources and loop recurrence,
MII = max(ResMII, RecMII) [3], where ResMII represents the
resource-constrained MII, determined by the ratio of operation
nodes in the loop’s Data Flow Graph (DFG) to the number of
resources (usually in terms of number of Processing Elements
(PEs)) in the CGRA, and RecMII, the recurrence-constrained
MII, relies on the loop’s existing recurrence dependencies. A
recurrence in a loop occurs if an operation in one iteration
directly or indirectly depends on the same operation from the
previous iteration. For a loop with embarrassingly parallel
workloads, the MII solely depends on ResMII as RecMII
becomes unity.

The ResMII, defined as the ratio of operations to processing
elements (PEs), denoted as Equation (1) reaches unity when
the number of resources matches the number of operations in
the Data Flow Graph (DFG).

ResMII = ⌈#operations/#PEs⌉ (1)

This serves as a simplified illustration highlighting the
necessity of split modulo scheduling. In scenarios where the
operations are fewer than the available PEs in the CGRA,
ResMII does not impact the Minimum Initiation Interval
(MII), leading to suboptimal resource utilization and room
for performance enhancement. To enhance resource utilization,
one approach involves loop unrolling before applying modulo
scheduling [4]–[7]. In the rest of the paper, this is termed as
”unroll then modulo schedule (UMS)” approach.

Increasing the number of operations in the formula for
ResMII ideally boosts resource utilization, resulting in an MII
of 1 in Equation (1). However, loop unrolling complicates
the mapping problem by exposing complex data dependencies
across the iterations, potentially leading to workload imbalance
in the PEs. In addition, the presence of resource constraints
(e.g. heterogeneous PEs in CGRA, limited load/store units)
further degrades the mapping performance. Moreover, the
UMS approach suffers from unintended pipeline stalls due
to the increased code size and mapping constraints. The PEs
in a CGRA are directly connected allowing data to flow
between them, forming a pipeline of concurrent computations.
If one of the instructions stalls, the entire pipeline gets stalled
due to synchronized execution. In this paper, we propose
an alternative to optimize ResMII without loop unrolling
that entails reducing the denominator of Equation (1) by
decreasing the resource count. This concept underpins split
modulo scheduling (SplitMS), where the target architecture’s
resources are reduced through architectural segmentation or
clustering, allowing modulo scheduling with fewer resources
while replicating the schedule for similar architecture seg-
ments. The loop splits or chunks get thus executed in parallel.
This achieves higher PE utilization like UMS without suffering
from unintended pipeline stalls. If one or more splits get
stalled, the other chunks can continue the execution.

Experiments demonstrate that for a 4×4 CGRA, SplitMS
achieves 75% PE utilization, compared to 28% with state-of-

the-art Conventional Modulo Scheduling (CMS). Additionally,
SplitMS provides an average speedup of 2.8× over CMS,
where UMS often fails to find valid solutions.

The contributions of the paper are:
1) a novel scheduling algorithm referred to as split modulo

scheduling for better utilization of CGRA resources with
improved performance; the approach iteratively explores
theoretical speed-up by splitting the target CGRA into
clusters and finds the best split;

2) a compilation flow and lightweight architecture support
for the split modulo scheduling;

3) performance evaluation of the proposed method with
comparison to conventional modulo scheduling (CMS)
and unroll then modulo scheduling (UMS) techniques
for a wide set of edge computing kernels.

The rest of the paper is organized as follows. Section II
outlines the state-of-the-art works in the MS for CGRA
targeted to improve ILP. The proposed approach is detailed
in section III with a motivating example and execution model.
The experiments are presented in section IV with a detailed
discussion. Finally, the paper concludes in section V.

II. RELATED WORK

Modulo scheduling is an early technique used to improve
loop execution times on CGRA, by exposing more ILP. As
the number of computing resources increases in CGRAs,
unrolling (partially or completely) the loops further exposes
more ILP. However, at the same time, it increases the mapping
complexity. Some approaches have been proposed to deal with
this complexity, like the work presented in [5], able to manage
up to several hundreds of nodes, by clustering the large DFG
obtained after unrolling, and then mapping smaller DFGs. In
this paper, the technique proposed is the opposite: we first find
the mapping for the DFG of the loop, and then we replicate
this mapping.

Another group of related works concerns kernel partitioning
techniques. The first subgroup performs kernel partitioning
from the kernel point of view, where the issue is that the
instruction memory is not large enough to accommodate the
program of the full kernel [8], [9]. These techniques are
orthogonal to the proposed approach in this paper. The second
subgroup performs kernel partitioning from the data point
view, where the issue is that the data does not fit the local
(scratchpad) data memory [10]. The authors propose to first
map the data in the memory, and then find the subtask mapping
that uses the data. In this paper, we assume that the data fits
in the local data memory similarly to [4]–[7], [11].

Finally, other loop transformation techniques were studied
in [12]. The technique applies to perfectly nested loops, where
loop interchange and loop skewing are the considered trans-
formations in the frame of the polyhedral model. Surprisingly,
the simple loop-splitting technique, as used in OpenMP, has
not been studied for CGRAs. In this paper, we explore this
transformation to make use of data level parallelism (DLP)
present in embarrassingly parallel loops.

III. SPLIT MODULO-SCHEDULING

A. Motivation
Modulo-scheduling is a widely used software pipelining

technique that overlaps different iterations of a kernel loop to
find a repeating schedule. The DFG formed by this repeating
schedule is referred to as Modulo Data Flow Graph (MDFG).
The operations executed before and after the MDFG are
called prologue and epilogue respectively. In signal processing
kernels, the degree of parallelism achieved through MS is
often low compared to the available Processing Elements
(PEs) in target CGRA, resulting in low PE utilization. PE
Utilization is the number of CGRA PEs used for executing the
entire kernel. An established method to enhance parallelism is
(partial or complete) loop unrolling before modulo-scheduling
named hereafter Unroll then Modulo Schedule or UMS.
However, this approach introduces an additional overhead
to the compilation flow due to increased operations while
mapping the MDFG to the CGRA. Higher unrolling factors
further increase this challenge. Fig. 2(a) illustrates a sample
loop modulo-scheduled on a 2×2 CGRA using conventional
modulo-scheduling, where the upper-right PE is unused in both
the cycles i and i+1, therefore the number of used PEs is 3 and
unused PE is 1, reaching thus 75% PE utilization. The same
loop is then unrolled by a factor of 2 and modulo-scheduled
for the same CGRA, as shown in Fig. 2(b), resulting in a loop
execution cycle improvement from 25 cycles in conventional
modulo-scheduling to 20 cycles in UMS, and achieving 100%
PE utilization. However, the number of operations in UMS
increases from 4 to 9. We present an alternative method
to effectively boost PE utilization by dividing loops into
chunks and distributing these chunks onto smaller, similar
segments/clusters of the CGRA. As depicted in Fig. 2(c), the
loop example from the previous scenario is split into two
chunks and modulo-scheduled across two segments of the
CGRA. Our approach achieves 100% utilization, akin to UMS
while reducing the execution cycle down to 14 cycles.

B. Proposed Approach
Split Modulo Scheduling enhances PE utilization by repli-

cating modulo schedules across multiple clusters of PEs in a
target CGRA. In this paper, we consider clusters as equivalent
segments. As illustrated in Fig. 1, a 4 × 4 CGRA can
be configured as 1×[4×4], 2×[2×4], or 4×[2×2] clusters.
SplitMS greedily searches over the list of configurations for
the best split. It initially maps the loop onto the largest cluster
of the target CGRA and determines the II . In subsequent
iterations, it maps the loop onto progressively smaller clusters,
calculating the theoretical speedup compared to the initial
configuration. This process identifies the optimal split for
maximum performance. Each loop chunk is executed on a
CGRA cluster. Given the similar configurations of all CGRA
clusters, the mapping solution for one cluster can be replicated
across all clusters. The detailed methodology and the algorithm
are discussed below.

The proposed methodology is depicted in Fig. 3. The
compiler takes the application code and the CGRA model

Algorithm 1 Split Modulo Scheduling (SplitMS) Algorithm
Require: CGRA dimensions p × q, DFG (Data Flow Graph) represented as D =

(N,E) where N is the set of operation nodes and E is the set of edges connecting
the nodes, and s update

Ensure: Split modulo scheduling solution
1: IIcms = CMS(CGRAp×q, D)
2: Tspeedup = Tspeedup max = 1
3: Csize = max Csize = p × q
4: s = s best = 1
5: while Csize > 1 do
6: if !initial iteration then
7: Csize = Csize/s update
8: s = max Csize/Csize
9: end if

10: CGRAm×n = clusterCGRA(CGRAp×q, s)
11: if CGRAm×n = NULL then
12: continue
13: end if
14: IISplitMS = CMS(CGRA1

m×n, D)
15: if IISplitMS = −1 then
16: continue
17: end if
18: Tspeedup =

(IIcms+loop overheadcms)×s
(IISplitMS+loop overheadSplitMS)

19: if Tspeedup ≥ Tspeedup max then
20: Tspeedup max = Tspeedup

21: s best = s
22: end if
23: end while
24: if Tspeedup max = 1 then
25: IISplitMS = IIcms

26: CGRA1
m×n = CGRAp×q

27: end if
28: M = genMapping(CGRA1

m×n, D, IISplitMS)
29: return M , s best

as inputs. The CGRA model includes information about the
hardware (number of PEs, Load/Store units), and the clusters,
called splitting parameter. CGRA Clustering is performed
where the CGRA is divided into different clusters using the
splitting parameter. Initially, the whole CGRA is considered a
single CGRA cluster and MS is performed to find a mapping
solution. The CGRA is then split into equal clusters using the
splitting parameter. The number of clusters is computed and
a mapping solution is found for one PE cluster. Theoretical
speedup is calculated between the clustered and unclustered
CGRA to determine the optimal speedup. The split factor
obtained to get the optimal speedup is used for splitting the
loops into loop chunks and the mapping solution of one cluster
is replicated to other PE clusters. The assembler converts the
assembly code (mapping solution) into instructions for each
PE and generates the context (binary code). The hardware sim-
ulator validates the execution on the target CGRA and various
execution parameters are monitored, including memory stalls.
In the simulator, the data is loaded into the data memory, and
the context is loaded into the context memory of the CGRA.
From the context memory, the instructions are loaded into the
instruction memory of the CGRA and are executed.

The algorithm that determines the optimum split factor and
generates the mapping for a single cluster is presented in
Algorithm 1. It takes p× q CGRA model (the largest cluster)
and the loop DFG as inputs. Additionally, a parameter supdate
(user sets the value based on the configurations available)
is provided to compute the splitting factor in each iteration.
SplitMS first computes IIcms by applying any conventional
modulo scheduling (CMS) technique on the CGRAp×q . Vari-

II 2

Latency 3

Total Cycles 25

Utilization (%) 75%

II 3

Latency 5

Total Cycles 20

Utilization (%) 100%

II 2

Latency 4

Total Cycles 14

Utilization (%) 100%

(a) (b) (c)

for(i=0;i<12;i=i+1)

 x[i] = x[i]+(a*i);
for(i=0;i<6;i=i+1)

 x[i] = x[i]+(a*i);

for(i=6;i<12;i=i+1)

 x[i] = x[i]+(a*i);

Loop kernel:
Chunk 1 Chunk 2

LD

MUL

ADD

STR

LD

MUL

ADD

STR

LD

MUL

ADD

STR

LD

MUL

ADD

STR

ADD

LD

MUL

ADD

STR

LD

MUL

ADD

STR

Cycle 1:

Cycle i:

Cycle i+1:

Cycle M-1:

Cycle M:

for(i=0;i<12;i=i+2)

 x[i] = x[i]+(a*i);

 x[i+1] = x[i+1]+(a*(i+1));

Cycle 1:

Cycle 2:

Cycle i:

Cycle i+1:

Cycle i+2:

Cycle M-2:

Cycle M-1:

Cycle M:

Cycle 1:

Cycle 2:

Cycle i:

Cycle i+1:

Cycle M-1:

Cycle M:

Cycle i:

Cycle i+1:

Loop Schedule: CMS

MDFG Mapping: CMS

Cycle i:

Cycle i+1:

Cycle i+2:

MDFG Mapping: UMS MDFG Mapping: SplitMS

Loop Schedule: UMS Loop Schedule: SplitMS

Unroll by 2: Split by 2:

Cycle i:

Cycle i+1:

ADD

MUL

LD

STR

ADD

STR

ADD

LD
MUL

ADD LD

ADD LD

MUL STR

STRMUL

Cluster 2

Cluster 1

Chunk 1 Chunk 2

LD

MUL

ADD

STR

LD

MUL

ADD

STR

ADD

[Prologue] [Prologue] [Prologue]

[Epilogue]

[Epilogue]

[Epilogue]

[MDFG] [MDFG] [MDFG]

Performance Metrics Performance Metrics Performance Metrics

LDMUL

ADD

STR

LD MUL

ADD

STR LD MUL

ADD

STR

Computational InstructionsMemory Access Instructions

Repeat 11

Repeat 5

Repeat 5

Fig. 2. Comparison between (a) Conventional Modulo-Scheduling (CMS), (b) Unroll then Modulo Schedule (UMS) and (c) Split and Modulo-Schedule
(SplitMS)

Loop Splitting &
Replicating
Mapping
Solutions

Generating
Context [CGRA]

CGRA Context

Data Loading
&

Context Loading

Instruction
Loading in PEs

Instruction
Execution on

CGRA

Compiler Assembler
Hardware
Simulator

Splits

Generating PE
Specific

Instructions

SplitMS

Monitoring
➢ Execution

Cycles
➢ Context

Loading Cycles
➢Memory Stalls

Mapping
Solution

Appl.
Code

CGRA
Model

Fig. 3. Methodology of Cluster-Based CGRA with SplitMS

ables Tspeedup and Tspeedup max are initialized to 1. The letter
T here represents theoretical values. The splitting factor s
and the best splitting factor sbest are initialized to 1. The
cluster size Csize and the maximum cluster size max Csize
are initialized to p × q. The algorithm iterates while the
cluster size Csize is greater than 1. s is updated based
on whether it is the initial iteration or not. The CGRA is
clustered into s similar segments of dimension m×n, denoted
by CGRAm×n (progressively smaller clusters returned by
clusterCGRA function). The clusterCGRA function is statically
initialized with all the different cluster configurations available

for the target CGRA. Initiation interval IISplitMS is calculated
by CMS on the first cluster (CGRA1

m×n) among the list of
clusters returned by the clusterCGRA function. If CMS on the
clustered CGRA is unsuccessful, the algorithm proceeds to the
next iteration to find a valid solution for the next split. Speedup
is computed by comparing initiation intervals between the
original and clustered CGRA configurations. If the Tspeedup

exceeds Tspeedup max, Tspeedup max and sbest are updated.
If the maximum speedup (Tspeedup max) remains 1, indi-

cating no improvement, IISplitMS and CGRA1
m×n are set

to the values obtained from the CMS on the original CGRA.
The mapping M is generated using CGRA1

m×n, DFG, and
IISplitMS . The algorithm returns the mapping M and the
best splitting factor sbest. This iterative approach optimizes
CGRA utilization and performance in mapping operations
onto the architecture. The algorithm systematically explores
configurations to achieve the best splitting factor and mapping
for the best split.

Fig. 4 illustrates the proposed SplitMS technique with an
example. Consider a loop kernel of eight iterations with two
computation operations (MUL, ADD) and two memory access
operations (LD, STR). The loop body has an array (x) that
accesses eight memory locations in memory. The memory
has four memory banks where the data elements of the array
are arranged in row-major order across the memory banks.

Cycle: 10

Modulo Schedule of the DFG

TCDM

CGRA Mapping of the Modulo Schedule

Computational
Instructions

Chunk 1 Chunk 2

Cycle: 9

Cycle: 1

Cycle: 2

Cycles:
3,5,7

Cycles:
4,6,8

[Prologue]

[MDFG]

[Epilogue]

BK 0 BK 1 BK 2 BK 3

[0] [1] [2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11]
for(i=0;i<8;i=i+1)

 x[i] = x[i]+(a*i);

for(i=0;i<4;i=i+1)

 x[i] = x[i]+(a*i);

for(i=4;i<8;i=i+1)

 x[i] = x[i]+(a*i);

BK 0 BK 1 BK 2 BK 3

Memory Access
Instructions

CGRA

Loop Kernel

Cluster 1 Cluster 2

TCDM Access

Chunk 1

Chunk 2

[x]
Data Locations for
array x in cluster 1

[x]
Data Locations for
array x in cluster 2

LD

MUL

ADD

STR

PE1 PE2

PE5 PE6

PE3 PE4

PE7 PE8

[0] [1] [2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11]

[0] [1] [2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11]

[0] [1] [2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11]

[0] [1] [2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11]

[0] [1] [2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11]

[0] [1] [2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11]

PE with LSU

PE without LSU

Memory Access Locations
in cycles 7,8

Memory Access Locations
in cycles 5,6

Memory Access Locations
in cycles 1,2,3,,4,10

LD

MUL
MUL

LD
ADD

ADD

STR
STR

MUL

ADD
ADD

STR
STR

MUL

LD

LDLD

MUL

ADD

STR

LD

MUL

ADD

STR

LD

MUL

ADD

STR

Fig. 4. Illustration of SplitMS

(a) (b)

PE 1

PE 0

PE 2

PE 3

PE 4

PE 5

PE 6

PE 7

Stalls
from
PEs

Stall to
the PE

PE 1

PE 0

PE 2

PE 3

Stalls
from
PEs

Stall to
the PEs
0, 1, 2, 3

PE 5

PE 4

PE 6

PE 7

Stalls
from
PEs

Stall to
the PEs
4, 5, 6, 7

Cluster Select

Fig. 5. (a) GFM for 2×4 CGRA (b) CFM for 2×[2×2] CGRA

Consider a CGRA of size 2×4 with four LSUs distributed
on the CGRA alternately as shown in the Fig. 4. Let the
split factor be 2, therefore the CGRA is divided into two
clusters of size [2×2]. The loop is split into two chunks
(chunk 1 & chunk 2) with four iterations each. This idea of
modulo scheduling with minimum DFG nodes and minimum
CGRA PEs simplifies the mapping process while improving
performance and PE utilization.

C. Cluster-based CGRA

The PEs of the target CGRA presented in Fig. 1 are
organized into clusters to facilitate parallel execution of loop
chunks. The CGRA ensures the synchronized execution of
the instructions. When one PE is stalled due to events such
as memory access contention, all PEs halt execution. PEs
resume execution once the stall is resolved. As illustrated in

Fig. 1, the Power Management Unit (PMU) employs a Global
Freeze Mechanism (GFM) to manage stalls, clock-gating all
PEs during these events. However, in a clustered execution
model, stalls in one cluster should not impact the execution of
other clusters. Hence, we introduce the Cluster-Level Freeze
Mechanism (CFM), allowing clusters to operate independently.
Fig. 5 depicts the system-level diagram of both GFM and
CFM. A PE typically generates a stall due to memory bank
conflicts, which adds extra cycles for instruction execution.
When a PE generates a stall signal, it informs all other PEs
to prevent them from starting the next scheduled instruction.
The GFM aggregates stall signals from all PEs using an OR
operation to determine whether to proceed with execution. If
any PE generates a stall, all other PEs suspend execution.

In a clustered system, a stall from one PE should only
affect the PEs within its cluster rather than the entire CGRA.
Thus, the GFM must be decoupled between clusters. The
OR operation is performed only on stall signals from PEs
within the same cluster. Consequently, each cluster’s PEs make
execution decisions based solely on their cluster’s stall signals,
not those of the entire CGRA.

Consider a 2×4 CGRA, configurable as 1×[2×4] or
2×[2×2]. In Fig. 5(a), the GFM is illustrated, where the OR
operation integrates the stalls from all the PEs, with the output
distributed back to all PEs for execution halt. Conversely,
Fig. 5(b) depicts the CFM, where the OR operation is limited
to stalls within each cluster, affecting only the PEs within that
cluster. The cluster select determines the number of clusters
in the CGRA, decoupling the GFM. In a 2×4 CGRA, the

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

Iteration 7

Iteration 8

Cycles 1 2 3 4 5 6 7 8 9 10 11

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

Iteration 7

Iteration 8

Memory Stalls

(a) (b)

Cluster 1 Iterations Cluster 2 Iterations Instruction Execution

Fig. 6. Illustration of loop execution by SplitMS for the example in Fig. 4 with (a) GFM (a) CFM

LD

MUL

ADD

STR

MUL

ADD

STR

(a) (b)

LD

MUL

ADD

STR

LD

MUL

ADD

STR

LD

MUL

ADD

STR

LD

MUL

ADD

STR

LD

MUL

ADD

STR

LD

MUL

ADD

STR LD

MUL

ADD

STR

LD

MUL

ADD

STR

Chunk 1 Chunk 2 Chunk 1 Chunk 2

Instructions that caused memory conflictInstructions causing memory conflicts

Computational
Instructions

Memory Access
Instructions

Rescheduled Memory
Access Instructions

Rescheduled Computational
Instructions

Fig. 7. Schedule for the example in Fig. 4 that (a) represents the memory
conflicts (b) represents automatic rescheduling after a memory conflict

maximum number of clusters is 2. Thus, the cluster select
requires 1 configuration bit for the freezing mechanism.

D. Cluster-based Execution

Several parallel memory accesses to the same memory bank
cause delay/stall in the execution of instructions. This reduces
the overall performance. Thanks to CFM, the clusters can
reschedule among themselves avoiding future memory bank
conflict when memory conflict occurs among clusters. This
also eliminates the need for complex static data mapping tech-
niques between clusters to avoid memory bank conflicts across
clusters. For example, consider the same example from Fig. 4
which executes eight iterations, and the data is stored across
four memory banks. We can see that the concurrent accesses
across clusters compete for the same memory bank leading
to conflicts. Parallel memory access techniques to reduce
the conflicts are already explored in the literature [13]–[15].
These static techniques are complementary to our solution.
The example from Fig. 4 is one of the worst cases consid-
ering the memory access pattern for this kernel. This worst
case is handled at run-time by the CFM. Fig. 7(a) shows
the MS for the two clusters without the CFM where the
red double-headed dotted arrows indicate the memory bank
conflicting instructions between the clusters. By decoupling
the global-freeze system, the MS becomes rescheduled as
shown in Fig. 7(b) which avoids the memory stalls after the
initial memory banking conflict. The red double-headed arrows

show the presence of memory banking conflict between the
corresponding memory access instructions. The blue arrows
indicate the memory access that had created conflicts that
are rescheduled by moving the instructions to the successive
cycles thereby avoiding the memory banking conflict in future
iterations. Fig. 6 shows the execution of a loop with 8 iterations
by having GFM and CFM in clustered execution of CGRA.

IV. EXPERIMENTS

A. Experimental setup

The Integrated Programmable Array (IPA) [11] CGRA is
the target CGRA architecture used to perform experiments
for the proposed approach. The IPA CGRA is integrated
into the PULP [16] cluster as shown in Fig. 1. The IPA
compiler written in Java provides the mapping solution in
IPA assembly code and the IPA assembler written in C++
generates the context code for simulation. Energy results are
gathered based on the switching activity in the placed-and-
routed netlist design. The SystemVerilog description of the
CGRA is synthesized using the Cadence Genus with 90 nm
CMOS technology libraries. Placement and routing is executed
using Cadence Innovus, and power analysis is conducted using
Cadence Voltus at a supply voltage of 0.9 V under typical
process conditions.

We chose several compute-intensive loop kernels from
the polybench benchmark suite. The loops possess no inter-
iteration dependency (if non-nested loop) or with no inter-
iteration dependency on the outermost loop (if nested loop).
For the experiments, the loops were split into 2 and 4 chunks.
CRIMSON [4] MS is used to map the loops onto CGRA.
We considered a 4×4 CGRA with 8 LSUs connected to the
shared TCDM with 16 memory banks for the baseline. Fig. 1
also shows the clustering of the baseline CGRA to run the
proposed SplitMS. The PEs are clustered as 1×[4×4] PEs,
2×[2×4] PEs, and 4×[2×2] PEs. The placement of the LSUs
is shown in dark blue color.

Experiments were performed for the following scenarios:
• Conventional Modulo-Scheduling (CMS): CRIMSON

MS is applied on a loop kernel for a 1×[4×4] CGRA;
• Unroll by a factor of 2 then MS (UMS2): CRIMSON is

applied on a loop unroll by 2 on a 1×[4×4] CGRA;
• Unroll by a factor of 4 then MS (UMS4): CRIMSON is

applied on a loop unroll by 4 on a 1×[4×4] CGRA;

• Split by 2 MS (SplitMS2): CRIMSON is applied on a
loop kernel for a 2×[2×4] CGRA;

• Split by 4 MS (SplitMS4): CRIMSON is applied on a
loop kernel for a 4×[2×2] CGRA.

B. Results

This section evaluates the proposed approach using the
following metrics: execution time, PE utilization, energy con-
sumption, area overhead, and compilation time.

1) Execution Time: Table I displays the mapping II and the
execution cycles achieved by CMS, UMS, and SplitMS. The
UMS and SplitMS results are categorized into UMS2, UMS4,
and SplitMS2, SplitMS4, corresponding to unroll and split
factors of 2 and 4, respectively. Additionally, the theoretical
speedup (Tspeedup) discussed in Algorithm 1 is presented
for various split factors. It is evident that during kernel
execution, the actual speedup closely approaches Tspeedup. In
SplitMS4, the actual speedup is more for kernels like gemver,
gemsummv, fir, backprop, thanks to the automatic rescheduling
in clustered execution using CFM. In these cases, memory
stalls are less as presented in Fig. 8. UMS2 and UMS4 often
failed to find solutions due to architectural constraints, shown
by the blank spaces in Table I.

Fig. 8 illustrates the execution latency breakdown, including
context-loading, kernel execution, and memory stalls. In UMS,
loop control instructions occupy less space in the context
memory than in SplitMS, as every chunk in SplitMS contains
loop control instructions. Thus, UMS has fewer context-
loading cycles compared to SplitMS. However, SplitMS expe-
riences fewer memory stalls due to the scheduling of a DFG
mapped to a small-sized cluster and automatic rescheduling
phenomena. SplitMS4 achieves the best performance, with an
average speedup of 2.8× compared to CMS.

2) PE Utilization: Fig. 9 depicts the PE utilization for
various cases, with the highest utilization of 75% achieved
by SplitMS4. PE utilization is calculated as the ratio of the
number of PEs used for mapping to the total number of PEs
available in the CGRA. In CMS, many PEs remain unused,
representing an opportunity for performance improvement by
leveraging these idle PEs. High utilization is attainable through
small cluster sizes (as in SplitMS) and by increasing the num-
ber of operations (as in UMS). Both loop splitting and loop
unrolling enhance utilization and performance. Specifically,
SplitMS4 shows 2.9× and SplitMS2 shows 1.9× better PE
utilization compared to CMS.

3) Energy: Table II shows the energy consumption for
different methods. Energy is the time taken to execute the
loop on CGRA times the power. The average energy gain
for SplitMS4 is 3× compared to CMS. SplitMS2 provides
energy efficiency similar to UMS2 with an average gain of
1.8× compared to CMS (for 50% kernels with the mapping
solution).

4) Area: Table III shows the area occupied by the different
modules of the PE for the baseline IPA and IPA with clus-
ters. With only 0.12% area overhead, the proposed SplitMS
achieves almost 3× better utilization.

Context Loading Execu�on Cycles Memory Stalls

8678

0 0

4584

2622

0

2

4

6

8

10

CMS UMS2 UMS4 SplitMS2SplitMS4

Ex
ec

. c
yc

le
s

(k
cy

cl
es

) morlet

8422

4398

0

4532

2762

0

2

4

6

8

10

CMS UMS2 UMS4 SplitMS2SplitMS4

Ex
ec

. c
yc

le
s

(k
cy

cl
es

) matmul

8597

0 0

4571
3424

0

2

4

6

8

10

CMS UMS2 UMS4 SplitMS2SplitMS4

Ex
ec

. c
yc

le
s

(k
cy

cl
es

) backprop
4439

0 0

2618

1580

0

1

2

3

4

5

CMS UMS2 UMS4 SplitMS2 SplitMS4

Ex
ec

. c
yc

le
s

(k
cy

cl
es

) mvt

8580

4552

0

4552

2879

0

2

4

6

8

10

CMS UMS2 UMS4 SplitMS2SplitMS4

Ex
ec

. c
yc

le
s

(k
cy

cl
es

) fir

6549

3545
3075

3562
2606

0

2

4

6

8

CMS UMS2 UMS4 SplitMS2 SplitMS4

Ex
ec

. c
yc

le
s

(k
cy

cl
es

) gemver

8614

0 0

4586

2879

0

2

4

6

8

10

CMS UMS2 UMS4 SplitMS2SplitMS4

Ex
ec

. c
yc

le
s

(k
cy

cl
es

) gemsummv

5508

2999
2282

3016
2324

0

1

2

3

4

5

6

CMS UMS2 UMS4 SplitMS2 SplitMS4

Ex
ec

. c
yc

le
s

(k
cy

cl
es

) 2mm

6839

0 0

3758
2763

0

2

4

6

8

CMS UMS2 UMS4 SplitMS2 SplitMS4

Ex
ec

. c
yc

le
s

(k
cy

cl
es

) matadd

5551

3562

0

3545

2210

0

1

2

3

4

5

6

CMS UMS2 UMS4 SplitMS2 SplitMS4

Ex
ec

. c
yc

le
s

(k
cy

cl
es

) hist

Fig. 8. Execution time breakup with configuration, execution, and memory
stalls for the methods

0

20

40

60

80

100

P
E

U
ti

liz
at

io
n

 (
%

) CMS UMS2 UMS4 SplitMS2 SplitMS4

Fig. 9. PE Utilization Comparison

5) Compilation Time: Fig. 10 illustrates the compilation
time (mapping process) in seconds for different methods.
Increasing the number of operations and resources for modulo
scheduling raises the mapping complexity. Unrolling increases
the number of operations, while clustering reduces the re-
sources needed for modulo scheduling. The figure clearly
shows that SplitMS has lower mapping complexity compared
to UMS. Additionally, mapping solutions could not be found
for 50% of the kernels in UMS2, increasing to 80% in UMS4.
In contrast, SplitMS successfully found mapping solutions for
all kernels.

TABLE I
EXECUTION TIME COMPARISON BETWEEN DIFFERENT METHODS (CYCLES)

Kernel CMS UMS SplitMS Speedup over CMS

UMS2 UMS4 SplitMS2 SplitMS4 UMS SplitMS2 SplitMS4

II Exec II Exec II Exec II Exec II Exec UMS2 UMS4 Theo. Actual Theo. Actual

2mm 1 5508 1 2999 2 2282 1 3016 2 2324 1.84× 2.41× 2× 1.83× 3× 2.37×
gemver 1 6549 1 3545 3 3075 1 3562 3 2606 1.85× 2.13× 2× 1.84× 2.4× 2.51×
gemsummv 2 8614 - - - - 2 4586 4 2879 - - 2× 1.88× 2.67× 2.99×
fir 2 8580 2 4552 - - 2 4552 4 2879 1.88× - 2× 1.88× 2.67× 2.98×
mvt 2 4439 - - - - 2 2618 2 1580 - - 2× 1.7× 4× 2.81×
backprop 2 8597 - - - - 2 4571 5 3424 - - 2× 1.88× 2.29× 2.51×
matadd 1 6839 - - - - 1 3758 3 2763 - - 2× 1.82× 2.4× 2.48×
matmul 2 8422 2 4398 - - 2 4532 2 2762 1.91× - 2× 1.86× 4× 3.05×
hist 1 5551 2 3562 - - 2 3545 3 2210 1.56× - 1.5× 1.57× 2.4× 2.51×
morlet 3 8678 - - - - 3 4584 3 2622 - - 2× 1.89× 4× 3.31×

TABLE II
ENERGY CONSUMPTION (NJ) COMPARISON BETWEEN DIFFERENT

METHODS

Kernel CMS UMS SplitMS Gain over CMS

UMS2 UMS4 SplitMS2 SplitMS4 UMS2 UMS4 SplitMS2 SplitMS4

2mm 50.6 26.3 19.2 26.4 19.4 1.9× 2.6× 1.9× 2.6×
gemver 60.5 31.4 26.7 31.4 21.9 1.9× 2.3× 1.9× 2.8×
gemsu
mmv 80.2 - - 41.2 24.4 - - 1.9× 3.3×
fir 80.2 41.1 - 41.1 24.4 2× - 2× 3.3×
mvt 40.2 - - 22.5 11.6 - - 1.8× 3.5×
back
prop 80.1 - - 41.1 29.6 - - 1.9× 2.7×
matadd 63.2 - - 33 23 - - 1.9× 2.7×
matmul 78.5 39.1 - 40.7 22.4 2× - 1.9× 3.5×
hist 50.7 31.4 - 31.4 18.9 1.6× - 1.6× 2.7×
morlet 81 - - 41.5 22.1 - - 2× 3.7×

TABLE III
AREA (µm2) BREAKDOWN OF THE COMPONENTS OF A PE

PE Modules Baseline IPA Cluster-based IPA

LSU 55 469.42 55 474.72
IRF 47 394.05 47 305.49
ALU 14 044.28 14 003.41
RRF 8 463.66 8 465.17
Controller 5 130.27 5 241.53

PMU
GFM 29.52 −
CFM − 126.4
Counter 18.92 18.92

Total PE Area 130 550.11 130 635.64

V. CONCLUSION

In this paper, we introduced SplitMS to enhance PE uti-
lization, instruction-level parallelism, and a lightweight hard-
ware approach to support SplitMS. While previous techniques
relied on the UMS approach to achieve similar goals, we

0
2000
4000
6000
8000

10000
12000
14000

C
o

m
p

ila
ti

o
n

 T
im

e
(m

s) CMS UMS2 UMS4 SplitMS2 SplitMS4

Fig. 10. Compilation Time (ms) comparison

demonstrated that this method lacks scalability. With SplitMS,
we achieved an average of 75% utilization for a resource-
constrained CGRA, where UMS often fails to find valid
solutions. Compared to CMS, our approach delivers an average
of 2.8× better performance and a 3× better energy profile,
with only a 0.12% area overhead. In this paper, we focused on
kernel loops without inter-iteration dependencies. Loops with
inter-iteration dependencies will be addressed in our future
work.

REFERENCES

[1] A. Podobas, K. Sano, and S. Matsuoka, “A Survey on Coarse-Grained
Reconfigurable Architectures From a Performance Perspective,” IEEE
Access, vol. 8, 2020.

[2] L. Liu, J. Zhu, Z. Li, Y. Lu, Y. Deng, J. Han, S. Yin, and S. Wei,
“A survey of coarse-grained reconfigurable architecture and design:
Taxonomy, challenges, and applications,” ACM Computing Surveys
(CSUR), vol. 52, no. 6, pp. 1–39, 2019.

[3] B. R. Rau, “Iterative modulo scheduling: an algorithm for software
pipelining loops,” in MICRO 27, San Jose, California, United States,
1994.

[4] M. Balasubramanian and A. Shrivastava, “CRIMSON: Compute-
Intensive Loop Acceleration by Randomized Iterative Modulo Schedul-
ing and Optimized Mapping on CGRAs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 11, Nov. 2020.

[5] D. Wijerathne, Z. Li, T. K. Bandara, and T. Mitra, “Panorama:
divide-and-conquer approach for mapping complex loop kernels on
cgra,” in Proceedings of the 59th ACM/IEEE Design Automation
Conference, ser. DAC ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 127–132. [Online]. Available:
https://doi.org/10.1145/3489517.3530429

[6] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Regimap: Register-
aware application mapping on coarse-grained reconfigurable architec-
tures (cgras),” in Proceedings of the 50th Annual Design Automation
Conference, 2013, pp. 1–10.

[7] J. Pager, R. Jeyapaul, and A. Shrivastava, “A software scheme for
multithreading on cgras,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 14, no. 1, pp. 1–26, 2015.

[8] G. Ansaloni, K. Tanimura, L. Pozzi, and N. Dutt, “Integrated kernel
partitioning and scheduling for coarse-grained reconfigurable arrays,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 31, no. 12, pp. 1803–1816, 2012.

[9] T. Kojima, A. Ohwada, and H. Amano, “Mapping-aware kernel parti-
tioning method for cgras assisted by deep learning,” IEEE Transactions
on Parallel and Distributed Systems, vol. 33, no. 5, pp. 1213–1230,
2022.

[10] C. Li, J. Gu, S. Yin, L. Liu, and S. Wei, “Combining memory
partitioning and subtask generation for parallel data access on
cgras,” in 2021 26th Asia and South Pacific Design Automation

https://doi.org/10.1145/3489517.3530429

Conference (ASP-DAC), 2021, pp. 204–209. [Online]. Available:
https://doi.org/10.1145/3394885.3431414

[11] S. Das, K. J. Martin, D. Rossi, P. Coussy, and L. Benini, “An energy-
efficient integrated programmable array accelerator and compilation
flow for near-sensor ultralow power processing,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 6, pp. 1095–1108, 2018.

[12] S. Yin, D. Liu, L. Liu, S. Wei, and Y. Guo, “Joint affine transformation
and loop pipelining for mapping nested loop on CGRAs,” in DATE, Mar.
2015, pp. 115–120.

[13] D. T. Harper III, “Increased memory performance during vector accesses
through the use of linear address transformations,” IEEE transactions on
computers, vol. 41, no. 02, pp. 227–230, 1992.

[14] J. Takala and T. Järvinen, Stride Permutation Access in Interleaved
Memory Systems. United States: Marcel Dekker Inc., 2003, pp. 63–84.

[15] C. J. Colbourn and K. Heinrich, “Conflict-free access to parallel mem-
ories,” Journal of Parallel and Distributed Computing, vol. 14, no. 2,
pp. 193–200, 1992.

[16] A. Pullini, D. Rossi, I. Loi, G. Tagliavini, and L. Benini, “Mr.wolf:
An energy-precision scalable parallel ultra low power soc for iot edge
processing,” IEEE Journal of Solid-State Circuits, vol. 54, no. 7, pp.
1970–1981, 2019.

https://doi.org/10.1145/3394885.3431414

	Introduction
	Related Work
	Split modulo-scheduling
	Motivation
	Proposed Approach
	Cluster-based CGRA
	Cluster-based Execution

	Experiments
	Experimental setup
	Results
	Execution Time
	PE Utilization
	Energy
	Area
	Compilation Time

	Conclusion
	References

