
HAL Id: hal-04777174
https://hal.science/hal-04777174v1

Submitted on 15 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

TIMBRE: Efficient Job Recommendation On
Heterogeneous Graphs For Professional Recruiters
Behar Éric, Julien Romero, Amel Bouzeghoub, Katarzyna Wegrzyn

To cite this version:
Behar Éric, Julien Romero, Amel Bouzeghoub, Katarzyna Wegrzyn. TIMBRE: Efficient Job Rec-
ommendation On Heterogeneous Graphs For Professional Recruiters. 23rd IEEE/WIC International
Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT) - 23e Conférence
internationale IEEE/WIC sur l’intelligence Web et la technologie des agents intelligents, 2024, 2024.
�hal-04777174�

https://hal.science/hal-04777174v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

TIMBRE: Efficient Job Recommendation On
Heterogeneous Graphs For Professional Recruiters

Éric Behar
SAMOVAR, Télécom SudParis

Institut Polytechnique de Paris
91120 Palaiseau, France

eric.behar@telecom-sudparis.eu

Julien Romero
SAMOVAR, Télécom SudParis

Institut Polytechnique de Paris
91120 Palaiseau, France

julien.romero@telecom-sudparis.eu

Amel Bouzeghoub
SAMOVAR, Télécom SudParis

Institut Polytechnique de Paris
91120 Palaiseau, France

amel.bouzeghoub@telecom-sudparis.eu

Katarzyna Wegrzyn-Wolska
EFREI, 75000 Paris, France
katarzyna.wegrzyn@efrei.fr

Abstract—Job recommendation gathers many challenges well-
known in recommender systems. First, it suffers from the cold
start problem, with the user (the candidate) and the item (the
job) having a very limited lifespan. It makes the learning of good
user and item representations hard. Second, the temporal aspect
is crucial: We cannot recommend an item in the future or too
much in the past. Therefore, using solely collaborative filtering
barely works. Finally, it is essential to integrate information about
the users and the items, as we cannot rely only on previous in-
teractions. This paper proposes a temporal graph-based method
for job recommendation: TIMBRE (Temporal Integrated Model
for Better REcommendations). TIMBRE integrates user and item
information into a heterogeneous graph. This graph is adapted to
allow efficient temporal recommendation and evaluation, which is
later done using a graph neural network. Finally, we evaluate our
approach with recommender system metrics, rarely computed on
graph-based recommender systems.

Index Terms—recommender systems, knowledge graph, job
recommendation, temporal.

I. INTRODUCTION

Today’s job market is extremely dynamic and competitive,
particularly in the IT sector. One consequence is the multipli-
cation of applicants for each position opening [1], leading to
a heavy workload for companies. Therefore, they often decide
to externalize the process to specialized recruiting firms that
can handle many candidates and a wide range of skills in the
market. Still, even in these firms, the recruiters have to filter
many applicants, leading to two behaviours. First, they resort
to automatic ATS (Applicant Tracking System) software that
parses the resumes and filters the candidates using simple rules
like keyword matching. Second, they often prefer to reverse
the process by directly head-hunting good candidates and
gathering relevant information about them. Then, when they
receive a new job opening, they first look in their database.

Many works propose building recommender systems to as-
sist with the recruiting process [2]–[7]. However, most of them
use direct applications from the candidates as training data,
leading to noisy input. Very few works were trained on real-
life data annotated by professional recruiters. Yet, this kind
of recruiter-oriented recommender system can greatly impact
the productivity of recruiting firms. Building recommender

systems for job openings encounters many challenges that are
also present in other kinds of recommendations but are often
emphasized in this case. First, the cold start problem is recur-
ring in almost all recommendations and is the focal point of
many work on recommender systems in the literature [8]–[12].
The candidates and the job openings have a short lifespan
of a few weeks. Therefore, we have few training points and
cannot rely on previous interactions. On the contrary, for more
mainstream recommendations like movie recommendations,
we generally assume that both the user and the item are here
to stay for quite some time.

Second, because of this limited lifespan, the temporal
dimension is crucial. Given a candidate (or a job), we
cannot recommend an item in the future (mainly a problem
during training) or too far in the past (as the position is
likely to be already filled). Therefore, we need to adapt our
representations to embrace the dynamicity of the data and
not bias the results, particularly during training. The temporal
component was often studied in the literature [13]–[16], but
often with an assumption that does not hold in our case:
User preferences evolve through time. This assumption makes
sense when recommending a book or a movie but not for job
applications because of the limited lifespan of the user and
the item. Therefore, there is no need to model the temporal
evolution of user and item representations, as it will only
lead to more noise. Finally, as we cannot rely enough on
previous interactions, we must strongly emphasize additional
information about the users and the items. This means that we
need to extract information from various sources and structure
them in a way that is exploitable by a recommender system.

To solve these challenges, we introduce TIMBRE (Tempo-
ral Integrated Model for Better REcommendations), a temporal
graph-based recommender system. TIMBRE first ingests data
from multiple sources (resumes, job descriptions, recruiter
notes, external knowledge bases) and structures them into
a unified heterogeneous graph. Then, it adapts this graph
to facilitate temporal recommendation. Next, it runs a graph
neural network (GNN) to generate a score for a user-item
pair. The particularity of this GNN is that it emphasizes the

Candidate
1,Tc1, [php, Javascript], Paris,...
2,Tc2, [Django, Python], Lyon,...
...

Job Matching History
1, Ts1, candidate 1, Job 2,...
2, Ts2, candidate 2, Job 3,...
...

Job
1, Tj1, [Flask, Django], Lyon,...
2, Tj2 , [php, Python], Paris,...
...

Python

Paris

3.
Temporal nodes

4.
Temporal Sampling

5.
GCN

Prediction

score

Data Extraction 1.
Graph building

Job Posting

Candidate Profil + Resume

Python

Paris

2.
Shortlist nodes

3.
Temporal nodes

...

...
Python

Paris

Python

Paris

Fig. 1. Our complete job recommender system pipeline. 1. We turn our input data into a heterogeneous graph. 2. We replace relations between candidates
and jobs with a shortlist node. 3. We add temporal nodes. 4; We apply our temporal sampling algorithm. 5. We apply a graph convolution network and make
a prediction based on the representations of the shortlist node and the job node.

graph’s structural aspect rather than the node’s representation
to counter the effect of the cold start. The GNN is trained
by considering the temporal dimension to avoid training bias
(mainly from the recruiters [17]).

In the end, we propose to evaluate our approach using
traditional recommender system metrics. Although this should
be automatic, most of the literature on graph-based recommen-
dations ignores them as they are difficult to compute. Instead,
they prefer metrics based on negative sampling, which are
far from reliable. We implemented our evaluation on several
baselines and compared them with TIMBRE, showing a clear
advantage for our approach in the case of job recommendation.

To summarize, our contributions are the following:
1) Extraction and representation of information into a uni-

fied temporal heterogeneous graph.
2) Graph adaptation for a temporal recommendation

through reifying the temporal interaction and introducing
temporal nodes.

3) Time-dependent training and evaluation of our GNN
using a sampling method boosting collaborative filtering.

4) Evaluation of a graph-based solution with recommender
system metrics.

II. PREVIOUS WORK

a) Job Recommendation: Many works in the literature
tackle job recommendation as a user-item recommendation
scenario and thus use a collaborative filtering approach where
a user gets recommended the jobs of similar users [18]–
[21]. Even though more and more data are produced, they
remain primarily inaccessible to private research due to ethical
concerns, privacy laws, and strategic concerns. Some effort has
been made to provide an anonymized dataset, such as the Xing

dataset [22], but it is now unavailable. Some works [23], [24]
include additional features during the recommendation; how-
ever, they often require a lot of engineering. Some approaches
emphasize helping the human recruiter review the candidate’s
profile by performing resume screening using natural lan-
guage processing [25]–[27] or develop resume parsing frame-
work [28]–[30]. These methods have two limitations. First,
they only work if you have a specific job with a pre-selected
pool of candidates. This does not work for proactive job
recommendations such as headhunting. Secondly, it implies
that the information in the resume is accurate. In our context,
candidates’ profiles are composed of a resume and information
collected by an expert recruiter during an interview with the
candidate. We must also mention some recent work shows
promising results to either improve part of a recommender
system or let a large language model (LLM) decide on job-
candidate match [31]–[33]. The results are, however, limited
to small-scale scenarios, as properly ingesting thousands of
resumes is a challenging task for the current LLM frameworks.

b) Graph-Based Recommendation: Graph-based ap-
proaches to recommendations are equivalent to the link pre-
diction task: Given a graph, we want to predict whether
there will be a connection between a user and an item. The
advantage of homogeneous and heterogeneous graphs is that
they can represent connected data and semantic information
that can be used to make recommendations [34]–[37] using
graph neural networks (GNN), even in the case of jobs [38].
However, the construction of the graph can be problematic due
to the absence or few numbers of features [39], [40], which
sometimes leads to using an external knowledge base like
DBpedia for famous entities [41]. Concerning the architecture,
we find variations on top of graph convolutional networks [17],

[35], [37] and graph attention networks [39], [40].
c) Temporal Recommendation: In many applications, it

is crucial to model the change in user preferences for long-
term and short-term modifications [42], [43]. In the literature,
several techniques are used to model the user representation
change through time. We can cite those using latent Dirichlet
allocation [44], deep learning techniques [45], reinforce-
ment learning [46], matrix factorization [47], recurrent neu-
ral networks (RNN) [48], or Markov chains [49]. We find
similar techniques for temporal graph recommendations. The
Neighborhood-Aware Temporal network [50] (NAT) stores
the temporal modifications of the neighbor of a node in a
dictionary and then uses an RNN to make the representation
of a node evolve. Temporal Graph Network (TGNs) [14]
makes the embeddings of each node evolve through time
using a graph attention network and an indication of the time
delta since the previous interaction. A variant of the temporal
recommendation is the sequential recommendation, where the
goal is to predict the next interaction [51]–[53]. However, this
setup mostly disregards the time of the interactions and can
only make predictions with enough previous interactions (often
at least three), which avoids the problem of the cold start.

d) Temporal Graph Neural Networks: Many applications
consider the temporal dimension in a graph, mainly through
the representation of an event stream as a graph. For spatio-
temporal events, the temporal dimension is either used to ad-
just a distance function defining the neighbors of a node [54],
[55] and to create graph snapshots that contain all the events
in a time window [56].

e) Datasets for temporal recommendation with side infor-
mation: Some public datasets exist for temporal recommenda-
tion [57]–[59]. However, due to privacy limitations, they often
come with very limited side information, especially for the
users. Besides, they often supposed that most users and items
have enough recommendations to make relevant recommenda-
tions. However, this is not the case for job recommendations,
which makes it necessary to develop new techniques that can
better balance external information and interactions.

III. PROBLEM

a) Background: In this paper, we will consider heteroge-
neous graphs. A heterogeneous graph G is defined by a tuple
(V,R,D,E,Ω) where V is a finite set of nodes, R is a finite
set of relationships, D is a set of types, E ⊂ V × R × V
is the set of edges, and Ω ⊂ V × D is the set of types
associated to a node. We can associate properties with the
nodes or edges of a heterogeneous graph using a function
P (v1) or P (v1, r, v2) where v1 ∈ V , v2 ∈ V , and r ∈ R.
In this paper, we only consider properties for nodes. We talk
about a temporal heterogeneous graph when the property
represents temporal information. This information generally
represents the date of a node or edge creation.

b) Our Problem: This paper uses a dataset of users
(candidates) U and items (job postings) I . We suppose we can
access a textual document for each user and item. In practice,
the document will be a resume, information from recruiters for

the candidates, and a job description for a job posting. Then,
the dataset contains a set of N interactions (u, i, t) ∈ U×I×T
where T represents the timestamps of the interactions (e.g., a
POSIX time). In the real world, an interaction means that a
user u was selected for a job i by a recruiter at time t. We
call the selection of a candidate shortlisting.

The problem we tackle is the following: Given a user u ∈ U
and a time t ∈ T , we rank all the items i ∈ I such that the
higher the rank, the better the recommendation at time t.

In our case, as we will explain in Section IV-A, we represent
a user u ∈ U and a time t ∈ T by a new entity called a
shortlist s. Our problem becomes to rank all the items i ∈ I
for a given shortlist s. We kept we original problem for the
baselines without this shortlist entity.

This problem slightly differs from previous works in several
aspects. First, it is widespread to focus on predicting the
next interaction (sequential recommendation), ignoring the
current time. However, the formulation of our problem makes
the training phase easier, as we will see later. Besides, in
practice, we are concerned about recommending when the
recommendation is required. In our case, a job has a limited
lifespan. Second, many works on temporal recommendation
on graphs only focus on classifying a random negative sample
and a true example. As we will notice later, this evaluation’s
results are unsuitable for recommender systems.

IV. METHODOLOGY

Figure 1 gives an overview of TIMBRE.

A. Graph Construction

a) Basic Structure: As input to our algorithm consists
of candidate resumes, job postings, and information prefilled
by the candidate or the recruiter. After discussing with profes-
sional recruiters, we selected features and represented them
as a heterogeneous temporal graph (similar to [17]). More
specifically, we have eleven kinds of nodes: candidates, jobs,
companies, salaries, number of years of experience, skills, skill
concepts (high-level skills), types of contract (permanent, tem-
porary, freelance), location (through a zip code), job category,
and candidate origins (recruiting platform, like Linkedin). All
these fields are completed manually as part of the recruitment
process of a company (either by the candidate when they apply
for a position or by a recruiter when they enter a new position
or candidate in the database), except for the skills, which
are augmented automatically by searching for keywords in
the resumes and job descriptions. These keywords come from
two external knowledge bases: the European classification
of Skills, Competencies, Qualifications, and Occupations [60]
and Wikidata [61]. They also enrich the information about
the skills by introducing a hierarchy of skills. The nodes of
our graph are connected with named relations like hasSkill
or atLocation. For nodes with temporal information (date of
creation for the candidates and the jobs), we encode it as a
timestamp in a property of the node. We set the timestamp
to 0 for others to make temporal sampling easier. We also
have a resume and a job posting as text, so we turned them

into embeddings using a sentence transformer model [62] and
attached them to the nodes. In the end, our graph contains 44
different edge types (half are, in fact, reverse edge types).

b) Shortlist Nodes: Most works represent a recommen-
dation between a user and an item by an edge. However, it
might cause problems for a temporal recommendation. First,
encoding the interaction time directly on an edge is hard,
and we cannot use the candidate and job nodes as they already
have timestamps. Second, generating a negative sample
becomes harder. What is the timestamp of the negative
interaction, and where do we encode it, as the fake interaction
is not part of the graph? To solve these problems, we created
a new kind of node inspired by reification principles used in
RDF (Resource Description Framework). For each interaction,
(u, i, t), we create a new node Su,i,t called a shortlist node
that is connected to u and i, has t as a timestamp and is
linked to the corresponding temporal node. We do not have a
direct connection between u and i. Now, if we want to create a
negative sample for an interaction (u, i, t), we pick a random
item i′ and connect it to Su,i,t. The time of the negative
sample is automatically managed. Our final graph has no
edge between a candidate and a job. The interaction goes
through a shortlist node.

c) Temporal Nodes: In most works, the temporal infor-
mation is encoded by the nodes’ embeddings depending on
time. This article chose a simpler yet effective approach. The
timestamp property of the nodes will be used for sampling (see
later). Besides, time is crucial when recommending a job, as
the job might be too old. Therefore, we introduced a new
type of node representing the number of months since the
first shortlist. This node has a feature composed of a single
number, the number of months, and a timestamp corresponding
to the time at the beginning of the month. Temporal nodes
are connected to candidates, jobs, and shortlist nodes.

B. Job Prediction

We train our network using the link prediction task. The
goal of this task is to predict whether there is a link or not
between two nodes in the graph. In our case, we want to
predict whether there is a link between a shortlist node and
a job node, equivalent to recommending a job for a candidate
at a given timestamp. To recommend a candidate for a job,
we can predict a link between a shortlist node and a candidate
node. For the training part, we need to have positive samples
(coming from the dataset) and negative samples (generated
randomly as explained in Section IV-A).

Because of the size of the graph, using the entire graph
to make the recommendation is too expensive. Therefore,
following previous works [15], we decided to sample a sub-
graph around the shortlist node and the job node we consider.
During this sampling, it is crucial to ignore the nodes that do
not exist at the moment of the recommendation, i.e., we can
only keep the candidates, job postings, and shortlisting events
anterior to the current shortlist node we consider. This kind of
filtering is not necessarily done in the literature, and it causes
problems in the case of data annotated by recruiters as they

SLC J

SL SL

SLJ C

1

2

1

2

3

4 3

?

Fig. 2. Sampling Distance For CF. C=Candidate, J=Job, SL=Shortlist.

tend to create groups of candidates and submit them to the
same jobs [17]. Therefore, the component of our sampling
strategy includes a temporal filtering of future events.

In most cases, sampling a sub-graph containing the nodes
at a distance two or less from the original nodes gives good
results. However, in our case, given the diversity of edge
types and the presence of the shortlist node, we need to pay
close attention. Particularly, if we want to have a form of
collaborative filtering (CF), we need to sample candidates
who applied for similar jobs. In our case, we need to have
a sampling depth of four (see Figure 2), but we need to
be careful not to sample certain edge types. Indeed, if we
follow the edges going from a skill to a candidate, we will
sample too many nodes (all the candidates with that skill).
Therefore, we used a selective sampling by only sampling
edges going from a candidate, shortlist, or job node to another
node (23 edge types over 44 in total. E.g., the edges (shortlist,
has application, job), (candidate, has skill, skill), or (job,
has experience, experience)). Besides, we decided to take all
the edges at a certain depth and not a sample. Although it
makes the computation longer, it introduces less noise in the
results and makes the sampling deterministic.

C. Graph Architecture

This paper uses a graph neural network (GNN), more
precisely a graph convolutional network (GCN), to make
the predictions. Each node in our graph is associated with
an embedding that does not depend on time. For nodes with
features (candidates, jobs, time nodes), the final embedding
is a linear combination of a learned embedding and the
feature vector. Then, we have several layers of SAGE con-
volutions [15], where each of them is normalized using a
layer normalization [63]. The non-linearity function is a GELU
(Gaussian Error Linear Unit) [64]. After the convolutions, we
get a vector for the shortlist node and the job we consider, and
we compare them using cosine similarity. Finally, we apply the
binary cross entropy loss. As we have a heterogeneous graph,
we used the transformation from [65] to adapt our network.

D. Evaluation

Most graph-based approaches from the literature [14], [16],
[50], [66] only report metrics like precision, recall, and area
under the curve (AUC) on the task of link prediction. This
biased evaluation gives minimal insight into the model’s per-
formance. Indeed, these metrics only evaluate the capability

to separate negative samples from positive samples. The
negative samples are often drawn randomly, and these random
items are effortless to differentiate from positive examples.
Therefore, the metrics reported in previous works are very
high but without much interest.

Instead, we evaluate the capability of the models to rank
the items for a given user. With a matrix-based approach
with fixed precomputed embeddings of each user and item,
the ranking is easy and fast to compute: We perform a matrix
multiplication and sort the results. However, this is impossible
for graph-based approaches trained for link prediction. Instead,
we must run the link prediction task for each user-item pair
many times and sort the results. This process can be very
long compared to the training, explaining partially why the
literature abandoned the ranking evaluation. Another reason
is that, for temporal graphs, when predicting a user-item
interaction, we need to decide when this interaction happens,
and we go back to the problem raised in Section IV-A. We
need to use the timestamp of real interactions, but it is unclear
what to pick for false interactions. Using our shortlist node
solves the problem. We focus on predicting a user-item
interaction at a given time that is directly encoded in the node.
Therefore, we do not have to care about the time, and we do
as if the task was to rank all the jobs for a shortlist node.

V. EXPERIMENT SETUP

a) Dataset: We used the JTH (Job Tracking History)
dataset introduced in [17]. This dataset comprises 67k real
candidate-job associations manually annotated by professional
recruiters. We can access 67k candidates (only 26k have at
least an associated job) and 4k jobs (most have a recommen-
dation). Candidates have a resume, and jobs have a description.
Besides, recruiters might add additional information like rele-
vant skills or wanted salaries. We divided our dataset into train,
validation, and test sets using a temporal order to prevent
data leakage, with a proportion of 80/10/10. Due to the nature
of the data, the testing dataset mostly contains unseen users,
making the cold start problem central.

b) Baselines: We compared our approach with the
following state-of-the-art approaches: Temporal Graph Net-
work [14] (TGN), Neighbour Aware Temporal Network [50]
(NAT), JODIE [66], DYREP [13], TGSRec [67]. Besides, we
have two approaches based on large language models (LLM)
that compute an embedding for each user and item and then
rank the item using the cosine similarity in a deterministic way
(therefore, no standard deviation). We used text-embedding-3
from OpenAI [68] and BGE-M3 [69].

c) Evaluation Setup: We focused on predicting a job for
a given candidate, but the opposite would work the same. Note
that for our approach, we actually want to predict a job for
a shortlist node, i.e., a job for a candidate at a given time,
making our problem harder than the one for the baselines.
For simplicity, in what follows, we call “user” a normal user
for the baselines but a shortlist node in our approach. During
the training, all the baselines have access to the training and
validation sets. Then, for the final evaluation of the test set,

we proceed as follows. For each interaction between a user
u and an item i, we first start by drawing a random negative
sample ineg , and we compute the scores for both i and ineg .
That allows us to get the classification metrics (see below).
Then, for each item i′ (not necessary in the test set), we
compute the score between u and i′ to produce a ranking
of all the items for the user u. This ranking is used to
compute the recommendation metrics (see below). Note that
for each interaction, the model can have access to all previous
interactions but not to future interactions.

d) Metrics: We will report two kinds of metrics: Metrics
related to the classification task with negative samples (as
used in [14], [16], [50], [66]) and metrics traditionally used
for recommendation. We use the area-under-the-curve (AUC)
and the precision for the classification metrics. Then, we
use the mean reciprocal rank (MRR) and Recall@10 for the
recommendation metrics. For most experiments, we ran them
over 10 different seeds and reported the mean score and the
standard deviation (SD). In details, we have:

MRR =
1

|D|

|D|∑
i=1

1

ranki
(1)

Recall@K =
1

|D|

|D|∑
i=1

1(ranki ≤ K) (2)

D is the test dataset, and ranki is the rank of the first
positive answer. Note that these formulas work only in our
case, as we have exactly one positive example by shortlist
node (by construction). The formulas were adapted for the
baselines, which do not use the shortlist node.

e) Configuration: We wrote our code in Python, using
Torch and Pytorch-Geometric [70]. We ran our experiments
on an NVIDIA Tesla V100 GPU. A training and evaluation
cycle took between one day and two days to run (most of it is
the evaluation). The optimizer is Adam [71] with a learning
rate of 1e−5 and a weight decay of 1e−4. Our GCN has
three layers. Three is a tradeoff between computation time and
performance, as adding more layers makes the experiments
longer. We make our code available on https://github.com/
Aunsiels/job recommendation. For the baselines, we reused
the code provided by the original authors and adapted our
data to fit their input format. Besides, we created a feature
vector for each candidate and job to help the baselines.

VI. RESULTS

a) Main Results: Table I displays the comparison of our
approach (TIMBRE) with the different baselines. We observe
significant variations when looking at the metrics reported
originally with the baselines (AUC and precision). Two meth-
ods seem to have an edge: Jodie and TIMBRE. However, we
do not observe the same behavior when looking at the
recommendation metrics (MRR and Recall@10). TIMBRE
significantly outperforms all the other baselines, with a factor
of 5 for the MRR and Recall@10. Besides, looking solely
at the baselines that compute the AUC and the precision,

TGSRec got the best score, which was not true for the AUC
and precision. Again, it shows that these non-recommendation
metrics are helpful during training but do not fully indicate
the system’s final performance. Finally, we must note that the
scores underestimate the model’s performance in production.
In practice, we can filter many results using simple filters,
like checking if a position is still open. This also makes the
generation of the recommendation faster. However, we wanted
to test the capability to understand and model business rules
and temporal events. Besides, we did not necessarily have
access to all the data to write these filters.

The two main reasons for our approach’s success are its
capability to integrate external information in a unified
system and its possibility to leverage recent interactions
without retraining (not feasible in practice due to computa-
tion time), even in the test case. Therefore, we have much more
success in tackling the cold start problem, which is generalized
in the case of job recommendation, as discussed earlier.

b) Ablation Study: To understand which components
were helpful or not, we performed an ablation study that
we reported in Table II. The first thing to realize is that a
significant component of our system is the temporal nodes.
Although very simple (compared to the complex modeling
in the baselines), they allow the model to discard jobs that
are too old. Next, we observe that only one feature seems
useless: The number of years of experience. Looking more
closely at the data, we notice that most job postings (96%) do
not have this information filled. Therefore, this feature creates
noise. Removing the other feature harmed the results, which
was expected. The categories (a manual classification of the
domain of expertise made by the recruiter) seem to be the
most essential feature. The reason is that it is pretty clean
and has limited possible values. The zip code is also crucial,
as we mostly want to recruit people near the job posting. The
candidate’s origin plays a significant role, which indicates that
some sources of candidates are more reliable than others. As
we could have guessed, the type of contract is also essential
to know. However, knowing the recruiting company is not
that helpful. Surprisingly, the salary feature is not that central.
The reason is similar to the years of experience: Very few
candidates choose to provide that information that information.
Finally, removing the skills or the concepts seems to have
a similar impact. As the concepts represent the hierarchy of
skills, we also remove them by removing the skills. So, high-
level skills appear more critical when assigning a job than
fine-grain skills.

We continued the ablation study by analyzing several sce-
narios. First, we removed all the features (-all, including time
nodes). We observed that TIMBRE still outperforms several
baselines, which shows that it can leverage interactions as
well as previous approaches. To understand what we are
doing better, we tried to remove the features of the jobs and
candidates (-features) and our collaborative filtering sampling
(-collab.). For this last point, we sampled all the nodes at a
depth of two. From the results, we can conclude that removing
the features has a slightly negative impact, but changing the

sampling was the critical point. It shows that our analysis
was correct: We must pick the sampling correctly to ensure
we allow collaborative filtering.

c) Error Analysis: To better understand the results of
our experiments, we performed an error analysis. We took a
random sample of 100 users in the test set and associated
the most probable job position according to our model. Then,
we asked a human annotator in a recruiting company to
access the recommendations with the candidate profile and job
description and manually label them as correct or incorrect. If
the recommendation is wrong, the annotator must also give a
reason. We also asked the annotator only to use the information
in the resume and job description, making the evaluation
stricter than what we would expect in real life (we do not
account for job progression, for example). Our results are
presented in Table III. As we can see, the top recommendation
is often wrong. The most frequent cause is a mismatch of
skills, which is consistent with Table II where we saw that
removing skills was not that harmful. Interestingly, the job title
is often correct (e.g., Frontend developer), but the technologies
required do not match. A potential cause of why the skills
are not correctly used is how they are extracted. Recruiters
rarely fill them, but they are extracted automatically from
resumes, thus creating a lot of noise. Besides, the annotator
is not necessarily aware of similar libraries or skills that can
quickly be acquired in a new position, making the annotation
hard. Finally, the graph might not contain enough information
to understand a skill. A solution could be to develop a more
fine-grained ontology for skills. Another reason for error is a
time inconsistency between a candidate and a position (the
candidate was created too much in the past or future). A
possible way to solve this problem would be to hardcode a
time filtering or to adapt the negative sampling to learn the
time constraints better. Next, we observed issues related to a
mismatch in experience: A junior position is often assigned to
a senior or team leader person (the opposite is rarely true). As
we already mentioned, the experience of a candidate and a job
is seldom filled by the recruiter and, therefore, hard to exploit,
although it can be found or guessed from the resume. Finally,
we see very few errors due to a wrong location. This field is
complex to access as a candidate might be willing to move to
a new place. It is also an information that is time-dependent
as candidate addresses can become obsolete. To conclude, all
the problems reported here were also present in the baselines,
which shows that these recommender systems cannot be used
directly out of the box. In a practical case, our system could
be included in a broader system with a possible post-filtering
to refine the results.

VII. CONCLUSION

This paper introduces TIMBRE, a temporal job recom-
mender system based on graphs. TIMBRE first integrates
all the available information into a temporal heterogeneous
graph. Then, it uses three components to facilitate the tem-
poral recommendation and improve performance: The inclu-
sion of a reification node (the shortlist node) that represents

Metrics NAT TGN Jodie DYREP TGSRec OpenAI BGE-M3 TIMBRE
AUC 0.7893 (SD 0.0091) 0.4283 (SD 0.0607) 0.9356 (SD 0.0041) 0.7489 (SD 0.0052) 0.7175 (SD 0.1007) - - 0.9479 (SD 0.0089)
Precision 0.7938 (SD 0.0097) 0.4579 (SD 0.0116) 0.9142 (SD 0.0008) 0.7375 (SD 0.0046) 0.8605 (SD 0.0457) - - 0.8640 (SD 0.0112)
MRR 0.0048 (SD 0.0018) 0.0004 (SD 0.0001) 0.0049 (SD 0.0026) 0.0022 (SD 0.0026) 0.0106 (SD 0.0051) 0.0117 (SD 0) 0.0173 (SD 0) 0.0909 (SD 0.0270)
Recall@10 0.0037 (SD 0.0012) 0.0005 (SD 0.0000) 0.0029 (SD 0.0014) 0.0018 (SD 0.0011) 0.0200 (SD 0.0115) 0.0200 (SD 0) 0.0353 (SD 0) 0.1965 (SD 0.0501)

TABLE I
COMPARISON WITH THE BASELINES. SD = STANDARD DEVIATION.

Setup AUC Precision MRR Recall@10
All 0.9509 0.8717 0.0763 0.1651

-experience 0.9479 0.8640 0.0909 0.1965
-company 0.9531 0.8665 0.0652 0.1476

-salary 0.9486 0.8794 0.0593 0.1258
-skill 0.9470 0.8723 0.0577 0.1245

-concept 0.9515 0.8551 0.0575 0.1305
-contract 0.9486 0.8731 0.0547 0.1302
-origin 0.9424 0.8650 0.0529 0.1133

-zip 0.9441 0.8697 0.0438 0.0945
-categories 0.9439 0.8731 0.0413 0.0868

-temporal nodes 0.6533 0.7005 0.0058 0.0058
-all 0.6920 0.6678 0.0095 0.0153

-all -features 0.7236 0.6651 0.0070 0.0118
-all -collab. 0.7050 0.6448 0.0066 0.0094

-features 0.9558 0.8668 0.0692 0.1549
-collab. 0.8877 0.7606 0.0397 0.0745

TABLE II
ABLATION STUDY

Percentage
Correct 21 %
Incorrect 79 %
Incorrect - Mismatch skills 60 %
Incorrect - Incorrect temporality 14 %
Incorrect - Lack of experience 11 %
Incorrect - Wrong Location 4 %
Incorrect - Overqualified 1 %

TABLE III
ERROR ANALYSIS

an interaction at a given time, the addition of a temporal
node that encodes a point in time, and smart sampling that
enables collaborative filtering. Our experiments showed that
our methodology outperforms state-of-the-art temporal graph
recommendation methods, particularly using recommendation
metrics that were rarely used before with graphs.

a) Limitations and Future Works: In this paper, we
discuss job recommendations, which are often discrimination-
prone. We did our best to remove any feature related to gender
or ethnicity. Our solution can also have a societal impact as it
automatizes part of the recruitment process. However, we want
to stress that it should be used to assist recruiters in finding
the best position for a given person, as we do not provide any
strong guarantee of the results.

Due to the nature of the data we manipulated, we used a
private dataset in our experiment. As there is no equivalent
public dataset, applying our approach to another real-life
dataset on job recommendation is hard, limiting our evalu-
ation’s scope. However, our study gives valuable insights into
how recruiting works and how it can be improved and assisted.
In particular, although our data is of relatively high quality due
to the annotation by professional recruiters, it is still subject
to noise from the annotation process, mainly introduced by
junior recruiters. In future work, we would like to introduce
the full result of the recruiting process (until the contract is
signed) to analyze the candidates better and provide ways to
improve the recruiting process by giving feedback.

As our ablation study shows, including features in the graph

is not necessarily trivial and might require further consider-
ation. For example, although the company is irrelevant, its
sector may be interesting. That would allow the inclusion
of previous positions occupied by a candidate in the graph.
For the sparse features, it might be worth finding a way to
fill them. However, it would require significant human labor.
A possible future work would be to have a human-in-the-
loop system in which we suggest candidates and ask for
further information. Concerning the graph sampling strategy,
we observed that sampling all the nodes at a given depth
(four in our case) and following only certain edge types gave
the best results while still keeping reasonable computation
times. If execution time is critical or computation resources
are limited, we could use more advanced sampling strategies
like PASS [72] that sample the most important nodes for our
task. It will raise the question of adapting such a sampling
for temporal heterogeneous graphs. Finally, we assumed that
a candidate’s preference does not change, impacting how we
model time. Although it is true in most cases, future work
could try to include the previous experiences of a candidate
to model their career path better.

REFERENCES

[1] TalentWorks, “Science of the job search,” https://web.archive.
org/web/20190322214104/http://talent.works/blog/category/
science-of-the-job-search, 2019.

[2] C. Qin, H. Zhu, T. Xu, C. Zhu, C. Ma, E. Chen, and H. Xiong,
“An enhanced neural network approach to person-job fit in talent
recruitment,” TOIS, 2020.

[3] P. K. Roy, S. S. Chowdhary, and R. Bhatia, “A machine learning
approach for automation of resume recommendation system,” Procedia
Computer Science, 2020.

[4] M. N. Freire and L. N. de Castro, “e-recruitment recommender systems:
a systematic review,” Knowledge and Information Systems, 2021.

[5] A. Giabelli, L. Malandri, F. Mercorio, M. Mezzanzanica, and A. Seveso,
“Skills2job: A recommender system that encodes job offer embeddings
on graph databases,” Applied Soft Computing, 2021.

[6] C. Yang, Y. Hou, Y. Song, T. Zhang, J.-R. Wen, and W. X. Zhao,
“Modeling two-way selection preference for person-job fit,” in RecSys,
2022.

[7] L. Wu, Z. Qiu, Z. Zheng, H. Zhu, and E. Chen, “Exploring large
language model for graph data understanding in online job recommen-
dations,” 2023.

[8] M. Dong, F. Yuan, L. Yao, X. Xu, and L. Zhu, “Mamo: Memory-
augmented meta-optimization for cold-start recommendation,” 2020.

[9] Y. Lu, Y. Fang, and C. Shi, “Meta-learning on heterogeneous information
networks for cold-start recommendation,” in SIGKDD, 2020.

[10] Y. Zhu, R. Xie, F. Zhuang, K. Ge, Y. Sun, X. Zhang, L. Lin, and
J. Cao, “Learning to warm up cold item embeddings for cold-start
recommendation with meta scaling and shifting networks,” in SIGIR,
2021.

[11] Y. Wei, X. Wang, Q. Li, L. Nie, Y. Li, X. Li, and T.-S. Chua, “Contrastive
learning for cold-start recommendation,” 2021.

[12] D. Cai, S. Qian, Q. Fang, J. Hu, and C. Xu, “User cold-start recom-
mendation via inductive heterogeneous graph neural network,” TOIS,
2023.

[13] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, “Dyrep: Learning
representations over dynamic graphs,” 2019.

[14] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bron-
stein, “Temporal graph networks for deep learning on dynamic graphs,”
2020.

[15] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, “Inductive
representation learning on temporal graphs,” 2020.

[16] ——, “A temporal kernel approach for deep learning with continuous-
time information,” 2021.

[17] E. Behar, J. Romero, A. Bouzeghoub, and K. Wegrzyn-Wolska, “Tack-
ling cold start for Job recommendation with heterogeneous graphs,”
CEUR Workshop Proceedings, 2023.

[18] S. Yang, M. Korayem, K. AlJadda, T. Grainger, and S. Natarajan,
“Combining content-based and collaborative filtering for job recommen-
dation system: A cost-sensitive statistical relational learning approach,”
Knowledge-Based Systems, 2017.

[19] R. Mishra and S. Rathi, “Efficient and scalable job recommender system
using collaborative filtering,” in ICDSMLA, 2020.

[20] J. Dhameliya and N. Desai, “Job recommendation system using content
and collaborative filtering based techniques,” Int J Soft Comput Eng,
2019.

[21] D. Prince, K. Madhan, K. Vishwa, and D. Yamunathangam, “Job and
course recommendation system using collaborative filtering and naive
bayes algorithms,” in ICAECA, 2023.

[22] F. Abel, A. Benczúr, D. Kohlsdorf, M. Larson, and R. Pálovics, “Recsys
challenge 2016: Job recommendations,” in RecSys, 2016.

[23] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
youtube recommendations,” in RecSys, 2016.

[24] O. Barkan and N. Koenigstein, “Item2vec: neural item embedding for
collaborative filtering,” in MLSP, 2016.

[25] C. Daryani, G. S. Chhabra, H. Patel, I. K. Chhabra, and R. Patel, “An
automated resume screening system using natural language processing
and similarity,” ETHICS AND INFORMATION TECHNOLOGY, 2020.

[26] A. K. Sinha, M. Amir Khusru Akhtar, and A. Kumar, “Resume screening
using natural language processing and machine learning: A systematic
review,” ICMLIP, 2021.

[27] S. Bharadwaj, R. Varun, P. S. Aditya, M. Nikhil, and G. C. Babu,
“Resume screening using nlp and lstm,” in ICICT, 2022.

[28] H. Sajid, J. Kanwal, S. U. R. Bhatti, S. A. Qureshi, A. Basharat,
S. Hussain, and K. U. Khan, “Resume parsing framework for e-
recruitment,” in IMCOM, 2022.

[29] S. Mohanty, A. Behera, S. Mishra, A. Alkhayyat, D. Gupta, and
V. Sharma, “Resumate: A prototype to enhance recruitment process with
nlp based resume parsing,” in ICIEM, 2023.

[30] V. S. Tallapragada, V. S. Raj, U. Deepak, P. D. Sai, and T. Mallikarjuna,
“Improved resume parsing based on contextual meaning extraction using
bert,” in ICICCS, 2023.

[31] Y. Li, Y. Zhang, and L. Sun, “Metaagents: Simulating interactions of hu-
man behaviors for llm-based task-oriented coordination via collaborative
generative agents,” 2023.

[32] P. Ghosh and V. Sadaphal, “Jobrecogpt–explainable job recommenda-
tions using llms,” arXiv preprint arXiv:2309.11805, 2023.

[33] L. Wu, Z. Qiu, Z. Zheng, H. Zhu, and E. Chen, “Exploring large
language model for graph data understanding in online job recommen-
dations,” in AAAI, 2024.

[34] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural networks
in recommender systems: a survey,” ACM Computing Surveys, 2022.

[35] Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong, and Q. He, “A
survey on knowledge graph-based recommender systems,” TKDE, 2022.

[36] S. Wang, L. Hu, Y. Wang, X. He, Q. Z. Sheng, M. A. Orgun, L. Cao,
F. Ricci, and P. S. Yu, “Graph learning based recommender systems: A
review,” 2021.

[37] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural networks
in recommender systems: A survey,” ACM Comput. Surv., 2022.

[38] W. Shalaby, B. AlAila, M. Korayem, L. Pournajaf, K. AlJadda, S. Quinn,
and W. Zadrozny, “Help me find a job: A graph-based approach for job
recommendation at scale,” in BigData, 2017.

[39] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, “Kgat: Knowledge
graph attention network for recommendation,” in SIGKDD, 2019.

[40] Z. Yang and S. Dong, “Hagerec: Hierarchical attention graph convolu-
tional network incorporating knowledge graph for explainable recom-
mendation,” Knowledge-Based Systems, 2020.

[41] E. Palumbo, G. Rizzo, and R. Troncy, “Entity2rec: Learning user-item
relatedness from knowledge graphs for top-n item recommendation,” in
RecSys, 2017.

[42] E. Rich, “Users are individuals: individualizing user models,” Interna-
tional journal of man-machine studies, 1983.

[43] V. Bogina, T. Kuflik, D. Jannach, M. Bielikova, M. Kompan, and
C. Trattner, “Considering temporal aspects in recommender systems:
a survey,” User Modeling and User-Adapted Interaction, 2023.

[44] D. Kowald, S. Kopeinik, P. Seitlinger, T. Ley, D. Albert, and C. Trattner,
“Refining frequency-based tag reuse predictions by means of time and
semantic context,” in Workshop at MUSE, 2015.

[45] Y. Song, A. M. Elkahky, and X. He, “Multi-rate deep learning for
temporal recommendation,” in SIGIR, 2016.

[46] X. Wang, Y. Wang, D. Hsu, and Y. Wang, “Exploration in interactive per-
sonalized music recommendation: a reinforcement learning approach,”
TOMM, 2014.

[47] R. W. White, A. Kapoor, and S. T. Dumais, “Modeling long-term search
engine usage,” in UMAP, 2010.

[48] F. Yu, Q. Liu, S. Wu, L. Wang, and T. Tan, “A dynamic recurrent model
for next basket recommendation,” in SIGIR, 2016.

[49] R. He, C. Fang, Z. Wang, and J. McAuley, “Vista: A visually, socially,
and temporally-aware model for artistic recommendation,” in RecSys,
2016.

[50] Y. Luo and P. Li, “Neighborhood-aware scalable temporal network
representation learning,” 2022.

[51] L. Wu, S. Li, C.-J. Hsieh, and J. Sharpnack, “Sse-pt: Sequential
recommendation via personalized transformer,” in RecSys, 2020.

[52] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, “Bert4rec:
Sequential recommendation with bidirectional encoder representations
from transformer,” in CIKM, 2019.

[53] W.-C. Kang and J. McAuley, “Self-attentive sequential recommenda-
tion,” in ICDM, 2018.

[54] Y. Yang, A. Kneip, and C. Frenkel, “Evgnn: An event-driven graph
neural network accelerator for edge vision,” arXiv:2404.19489, 2024.

[55] S. Schaefer, D. Gehrig, and D. Scaramuzza, “Aegnn: Asynchronous
event-based graph neural networks,” in CVPR, 2022.

[56] Y. Bi, A. Chadha, A. Abbas, E. Bourtsoulatze, and Y. Andreopoulos,
“Graph-based spatio-temporal feature learning for neuromorphic vision
sensing,” IEEE Transactions on Image Processing, 2020.

[57] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” TIIS, 2015.

[58] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: user
movement in location-based social networks,” in SIGKDD, 2011.

[59] N. Asghar, “Yelp dataset challenge: Review rating prediction,”
arXiv:1605.05362, 2016.

[60] J. D. Smedt, M. le Vrang, and A. Papantoniou, “Esco: Towards a
semantic web for the european labor market,” in LDOW@WWW, 2015.

[61] D. Vrandečić and M. Krötzsch, “Wikidata: a free collaborative knowl-
edgebase,” Commun. ACM, 2014.

[62] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, “Minilm:
Deep self-attention distillation for task-agnostic compression of pre-
trained transformers,” NeurIPS, 2020.

[63] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,”
arXiv:1607.06450, 2016.

[64] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),”
arXiv:1606.08415, 2016.

[65] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in ESWC, 2018.

[66] S. Kumar, X. Zhang, and J. Leskovec, “Predicting dynamic embedding
trajectory in temporal interaction networks,” in SIGKDD, 2019.

[67] Z. Fan, Z. Liu, J. Zhang, Y. Xiong, L. Zheng, and P. S. Yu, “Continuous-
time sequential recommendation with temporal graph collaborative
transformer,” in CIKM. ACM, 2021.

[68] OpenAI, “New embedding models and api updates,” https://openai.com/
index/new-embedding-models-and-api-updates/, 2024.

[69] J. Chen, S. Xiao, P. Zhang, K. Luo, D. Lian, and Z. Liu, “Bge
m3-embedding: Multi-lingual, multi-functionality, multi-granularity text
embeddings through self-knowledge distillation,” 2024.

[70] M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” arXiv:1903.02428, 2019.

[71] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980, 2014.

[72] M. Yoon, T. Gervet, B. Shi, S. Niu, Q. He, and J. Yang, “Performance-
adaptive sampling strategy towards fast and accurate graph neural
networks,” in SIGKDD, 2021.

