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ABSTRACT

One of the main challenges in the field of deep learning and embedded systems is the mis-
match between the memory, computational and energy resources required by the former
for good performance and the resource capabilities offered by the latter. It is therefore im-
portant to find a good trade-off between performance and computational resources used.
In this study, we propose a novel ternarization heuristic based on the statistics of the
weights, in addition to asymmetric pruning. Our approach involves the computation of
two asymmetric thresholds based on the mean and standard deviation of the weights. This
allows us to distinguish between positive and negative values prior to ternarization. Two
hyperparameters are introduced into these thresholds, which permit the user to control the
trade-off between compression and classification performance. Following thresholding,
ternarization is carried out in accordance with the methodology of trained ternary quanti-
sation (TTQ). The efficacy of the method is evaluated on three datasets, two of which are
medical: a cerebral emboli (HITS) dataset, an epileptic seizure recognition (ESR) dataset,
and the MNIST dataset. Two types of deep learning models were tested: 2D convolu-
tional neural networks (CNNs) and 1D CNN-transformers. The results demonstrate that
our approach, aTTQ, achieves a superior trade-off between classification performance and
compression rate compared with TTQ, for all the models and datasets. In fact, our method
is capable of reducing the memory requirements of a 1D CNN-transformer model for the
ESR dataset by over 21% compared to TTQ, while maintaining a Matthews correlation
coefficient of 95%. The code is available at: https://github.com/attq-submission/aTTQ.

© 2024 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, deep neural networks, such as convolutional neural
networks (CNNs) or transformers, have achieved state-of-the-art per-
formance in a number of tasks, including computer vision [1, 2], natu-
ral language processing [3], and signal processing (e.g., [4, 5]). How-
ever, these models are often characterised by high energy consumption,
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with thousands or millions of parameters, and they frequently necessi-
tate significant computational resources, including memory and GPU,
which prevent their common use in embedded systems.

This last point is of particular interest, given that in recent years
deep learning has begun to be increasingly utilised in the medical field
[6]. However, the computational and memory capabilities of medical
devices, particularly those designed for portability, are often limited,
making the use of large models challenging. This study focuses on
the classification of medical signals, specifically transcranial Doppler
(TCD) ultrasound for the classification of cerebral emboli (CE) and
electroencephalograms (EEG) for the recognition of epileptic seizures
(ESR). These two tasks are of particular relevance to public health, as
the former can assist in the prevention of stroke, and both stroke and
epilepsy are among the most common neurological disorders leading

https://github.com/attq-submission/aTTQ
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to disability or death worldwide [7, 8].
Moreover, recent works have used deep learning models to perform

medical signal classification based on CNN and transformer models
[9, 4, 10, 11]. However, although these models have achieved great
performance, they often have hundreds of thousands or even millions
of parameters. To tackle this problem, several authors have proposed
to reduce the storage and memory requirements by using different
model compression techniques [12] such as model quantization [13]
and model pruning [14].

To take advantage of both techniques (quantization and pruning)
some authors have suggested using them sequentially as they are com-
patible and independent [15]. This allows one to further increase the
compression rate and reduce latency. Other techniques, such as trained
ternary quantization (TTQ) [16], offer implicit pruning thanks to their
quantization heuristic. However, to our knowledge, few works have
attempted to directly incorporate pruning into the quantization mecha-
nism.

In this paper, we propose a new ternarization heuristic based on
asymmetric pruning and on the statistics of the weights, which in-
creases the sparsity of the parameters of the weights while keeping
the rest of the quantized weights at a reduced precision, without signif-
icantly degrading the classification performance. The rationale behind
our approach is that asymmetric pruning enlarges the family of neu-
ral networks that can be explored during training, making it possible to
obtain models with a better trade-off between compression, energy and
classification performance. Moreover, a ternarization heuristic based
on the statistics of the weights allows a better adaptation of the method
to new datasets. Furthermore, our approach is parameterized by two
hyperparameters, tmin and tmax, which allow us to control the sparsity
rate of the quantized weights and thus the trade-off between compres-
sion and classification performance. Our main contributions can be
summarized as follows:

• A new heuristic for trained ternary quantization, based on the
statistics of the model weights.

• Asymmetric pruning before ternarization, allowing a better trade-
off between compression and classification performance.

• Asymmetric parameterization of the sparsity rate (two hyperpa-
rameters), which allows us to control the trade-off between com-
pression and classification performance.

The rest of the paper is structured as follows. In Section 2 we present
some related work. In Section 3 we explain the proposed method. In
Section 4 we present the experimental setup and discuss the different
results. Finally, in Section 5 we conclude and give some perspectives
for future work.

2. Related work

In this section, we present the main works related to our research
problem, model quantization and model pruning. For a more general
survey of model compression methods, we invite the reader to see [12].

2.1. Model quantization

Quantization [13] consists of reducing the precision of the weights
of a model from 32 or 64 bits to a lower precision. This can
be beneficial for memory resources and inference, especially when
using aggressive quantization where one can benefit from efficient
logic/arithmetic operations [17] or strategies [16, 18]. Early ap-
proaches were based on matrix factorisation and vector quantization
[19, 20], but were mainly designed for dense layers. More recent works
have quantized convolutional layers using extreme quantization with

ternary [16] or binary [21] weights in {−1, 0, 1} or {−1, 1}multiplied by
32-bit scaling factors, or using weight sharing, which can be achieved
by applying weight clustering [15] or Gaussian mixture models [22].
Due to compression, these methods often reduce the classification per-
formance of the models. Some works have proposed techniques based
on knowledge distillation [23] to guide the training of quantized mod-
els to achieve similar performance to their full-precision (FP) coun-
terparts. The main idea is to train a quantized model with the same
architecture as the FP model, but with quantized weights, and guide it
to match the soft output probabilities of the FP model.

Finally, performance degradation can be reduced by combining dif-
ferent quantization methods to have different precision in each part of
the model [13, 24]. The main difficulty with these mixed quantization
methods is the choice of the layers of the model to be quantized and
their quantization precision. To address this, some metrics have been
proposed to evaluate the impact of quantization on the performance of
the model. In fact, [24] used Hessian-based metrics that allowed them
to evaluate the flatness of the loss landscape, thus avoiding the extreme
quantization of layers with irregular landscapes.

For a more complete review of recent model quantization methods,
we refer the reader to [13].

2.2. Model pruning
Pruning consists of removing the redundant parameters of a model

by setting them to zero. This is interesting for neural network models,
as they are typically over-parameterized, and thus pruning can act as
a regularizer [14]. This family of methods can also improve memory
and latency, as the resulting parameter tensors are sparse [25]. Fur-
thermore, different approaches can be used to prune the parameters of
a model. In some works, the weights with minimal norm (L1 or L2
norm) are removed, using a predefined threshold or number of weights
to prune [15]. In more complex methods, the weights to be removed
are chosen by calculating their importance based on the statistics of the
parameters of the following layer [26], or by creating subsets of neu-
rons to be merged based on determinantal point processes. Conversely,
other approaches have tried to overcome the non-differentiability of
threshold operators during pruning by using reinforcement learning
[27], genetic algorithms [28], or differentiable threshold functions [29].

Finally, even if the above-mentioned methods make it possible to
remove an important percentage of the network parameters by setting
them to zero, the rest of the parameters remain in full precision (32 or
64 bits), which prevents the use of efficient operations and increases
the memory requirements with respect to the quantized parameters. To
overcome this, some authors have tried to combine pruning and quan-
tization with different approaches. [15, 30] tried a sequential combi-
nation of pruning and quantization (combined with other techniques),
while [31] used Bayesian optimization techniques and [22] used soft
weight sharing to achieve both pruning and quantization.

For a more thorough review of model pruning techniques, the reader
is referred to [14].

3. Methods

In this section, we present a new quantization heuristic for trained
ternary quantization (TTQ), called asymmetric TTQ (aTTQ) (see fig-
ure 1). Our method is based on two assumptions: (1) asymmetric prun-
ing can improve the trade-off between compression and classification
performance, and (2) pruning and quantization based on the statistics
of the weights allow a better adaptation to new datasets and models.
The first assumption can be justified by the fact that asymmetric prun-
ing increases the model search space during training. The second as-
sumption is plausible because the thresholds used for pruning depend
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on the statistics of the weights, which change during the training/fine-
tuning step.

3.1. Pruning based on weights statistics

We propose a novel asymmetric ternarization heuristic where the
quantization threshold does not depend on the maximum absolute
value of the weights’ tensor (as in [16]), but depends on the weights’
statistics:

wt =


Wl if w < ∆min

0 if w ∈ [∆min,∆max]
Wr if w > ∆max

(1)

where w and wt are the FP and ternarized weights, Wl,Wr ∈ R are
learnable scaling parameters, ∆min = µw+tmin×σw and∆max = µw+tmax×

σw are pruning thresholds, and tmin and tmax are two hyperparameters
controlling the sparsity rate, with the constraint tmin ≤ tmax. Indeed, if
tmin > tmax then ∆min > ∆max and therefore ∀w ∈ R,wt , 0; thus, no
pruning would be performed.

The gradients of L, the loss to be optimized, can be computed using
the straightforward estimator as in TTQ, with the only difference being
that the threshold ∆L used is replaced by the thresholds ∆min and ∆max:

∂L

∂w
=


Wl ×

∂L
∂wt

if w < ∆min

0 if w ∈ [∆min,∆max]
Wr ×

∂L
∂wt

if w > ∆max

(2)

3.2. Evaluation metrics

To compare the sparsity and compression of the obtained models,
we introduce different metrics defined in the following paragraphs. We
denote byMFP the FP model and byMQ a quantized model obtained
fromMFP. Similarly, we denote by nbits a function that allows us to
count the number of bits needed to store the (non-zero) weights of a
model, and nqw/nzqw two functions that allow us to count the number
of weights/zero weights of a model among the weights selected for
quantization using the Hessian-based metric of [24].

Sparsity. To quantify the sparsity achieved during the quantization of
the different models, we introduce the sparsity rate over the quantized
weights, denoted SRQW and defined as

S RQW(MFP,MQ) =
nzqw(MQ)
nqw(MFP)

where higher values of S RQW indicate sparser models.

Compression. We want to quantify the compression achieved by
ternarization and pruning (simultaneously). To do this, we introduce
the compression rate, CR, defined as follows:

CR(MFP,MQ) =
nbits(MQ)
nbits(MFP)

To facilitate the comparison between methods, we work with the com-
pression rate gain CRG, defined as:

CRG(MFP,MQ) = 1 −CR(MFP,MQ)

We denote as CRT
G and CRQ

G the compression rate gains of the whole
model and the layers selected for quantization, respectively.

Energy consumption. We estimate the energy consumption of the dif-
ferent models based on the number of multiplications and additions
(mult-adds) and the number of data transfers to RAM. To do this, we
make three assumptions: (1) only non-zero weights are considered for
the mult-adds and data transfers; (2) multiplications and additions have
the same energy cost, which is the cost of a multiplication (the most
expensive one) [32]; and (3) the transfers of weights to RAM memory
are done in chunks of 32 bits. The proposed metric for the total energy
consumption in Joule of a modelM composed of p layers L1, ..., Lp is
then defined as follows

ECT (M) = NMA×3.7×10−12+10−9×

p∑
i=1

(⌈
nnzw(Li) × Bi

32
⌉+N i

S F) (3)

where the factors 3.7× 10−12 and 10−9 are taken from [32] and [33],
respectively, NMA is the number of (non-zero) mult-adds, N i

S F is the
number of quantization scaling factors used for the ith layer (0 for an
FP layer, 2 for a ternarized layer), and Bi is the number of bits needed to
encode a weight of that layer (32 for an FP layer, and 2 for a ternarized
layer). Moreover, the first term corresponds to the energy consumed by
mult-adds, and the second term corresponds to the energy consumed by
data transfers.

Finally, we measure the energy consumption gain, ECT
G, of a quan-

tized and sparse modelMC with respect to its FP counterpart,MFP, as
follows:

ECT
G(MFP,MC) =

|ECT (MFP) − ECT (MC)|
ECT (MFP)

(4)

where higher values of ECT
G indicate lower global energy consump-

tion compared to the FP model.

4. Experiments

We perform two experiments to evaluate our approach. The first ex-
periment compares our proposed weight-statistic quantization heuris-
tic, aTTQ, with state-of-the-art quantization methods. We focus on
extreme ternarization methods (bit width less than 4 bits) as they allow
higher compression rates than higher bit width quantization methods
(8, 16 or 32 bits). The second experiment studies the influence of the
two hyperparameters of our approach, tmin and tmax.

4.1. Data
We train and evaluate our proposed method using repeated holdout

evaluation on three datasets:
• MNIST [34]: composed of 70 000 greyscale 28 × 28 images (60

000 for training and 10 000 for testing) distributed in 10 balanced
classes. To reduce computational resources, we used only 10%
of the training samples (sampled uniformly at random). In sum-
mary, we used 37.5% samples for training and 62.5% for testing.

• HITS dataset [9, 4]: consisting of 1541 Doppler signals with a
sampling frequency of 4.4 kHz distributed in three classes: 403
artefacts, 569 gaseous emboli, and 569 solid emboli. We used
63% of the samples for training and 37% for testing (subject-wise
fixed split).

• ESR [35]: composed of 11 500 pre-processed1 electroencephalo-
grams (EEGs). Like most authors using this dataset, we perform
binary classification between seizure activity (2300 samples) and
no seizure activity signals (9200 samples). Finally, we used 90%
of the samples for training and 10% for testing.

1We used the publicly available version found at https://www.kaggle.
com/datasets/harunshimanto/epileptic-seizure-recognition

https://www.kaggle.com/datasets/harunshimanto/epileptic-seizure-recognition
https://www.kaggle.com/datasets/harunshimanto/epileptic-seizure-recognition
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Fig. 1: Proposed asymmetric TTQ (aTTQ) method. The main difference with respect to TTQ lies in the pruning mechanism used before ternarization: We use two
asymmetric thresholds, ∆min and ∆max, instead of one symmetric threshold ∆min = −∆max = −∆L. The normalization step is optional in our approach.

Fig. 2: 2D CNN architecture used for the MNIST classification models. C is
the number of channels in the input image, W is the width and H is the height.

4.2. Architectures

We used three different models, depending on the dataset: one
vanilla 2D CNN for the MNIST dataset (Figure 2), and one 2D CNN
(Figure 3) and 1D CNN-transformer (Figure 4) for the medical signal
datasets [5].

The vanilla 2D CNN MNIST model is composed of two convolu-
tional layers, followed by 2D max pooling and ReLU activation applied
to both, and dropout after the second convolutional layer. A fully con-
nected (FC) classifier is then applied, consisting of two linear layers,
followed by dropout and ReLU activation for the first linear layer, and
logarithmic softmax for the second linear layer.

Moreover, we used the same single-feature architectures for the
HITS and ESR datasets as [5]2. For the HITS dataset, the hyperparam-
eters of the 1D CNN-transformers were the same as [5]. For the ESR
dataset, the following hyperparameters were used: The last 1D convo-
lutional layer is applied twice, four attention heads (per multi-head at-
tention) are used for the four transformer encoder layers, a transformer
intermediate hidden dimension of 8 is used, and a dimension of 4 for
the projected representation is used for the final classification. Finally,

2All architectures described are available in the associated GitHub reposi-
tory: https://github.com/attq-submission/aTTQ

for the 2D CNN, all hyperparameters were the same as [4], except for
the number of initial convolutional filters, which was set to 64.

4.3. Training parameters
Table 1 shows the training parameters used for the different models

on the different datasets. All models were trained with a cross-entropy
loss function, optimized using an Adamax optimizer for the 2D CNN
models and Noam for the 1D CNN-Transformer models, with β1 = 0.9,
β2 = 0.999 and 4000 warm-up steps for all models except the TTQ and
aTTQ quantized HITS models, which were trained with 700 warm-
up steps. To deal with class imbalance, class weights [36, 37] were
applied to all models. We used a weight decay of 10−7 for almost
all models, except for the 1D CNN-transformer models trained on the
ESR dataset, the 2D CNN trained on the MNIST dataset, which used
a weight decay of 0, and the full-precision ESR 2D CNN, which used
a weight decay of 10−5. In addition, we used a batch size of 32 for
all models except the ESR 1D CNN-transform models, which used a
batch size of 64.

Furthermore, we used the Hessian-based metric of [24] to select the
different layers to be quantized, and we quantized only their weights
and not the biases. For the MNIST 2D CNN, all convolutional lay-
ers were quantized; for the 2D CNN used for the medical datasets, we
quantized all convolutional layers except the first one; for the 1D CNN-
transformer, we quantized the second convolutional layer plus the sec-
ond linear layer of all encoder layers of the transformer encoder. The
percentage of selected weights to be quantized (for the whole model)
can be found in the last column of Table 1.

4.4. Baseline
We compare our aTTQ approach against three different baselines:

FP model, TTQ [16], and DoReFa [21]. For the last one, we use the
extreme binary quantization approach, where the quantized weights of
the model can take the values −1 or 1 multiplied by a single scaling
factor corresponding to the mean of the weights of a given layer or
convolutional filter.

4.5. Evaluation metrics
We used the Matthew correlation coefficient (MCC) to measure the

classification performance of the models (well suited for imbalanced

https://github.com/attq-submission/aTTQ
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Fig. 3: 2D CNN TFR architecture used for the HITS and ESR classification models. CTRF is the number of channels in the time-frequency representation, F is the
number of frequency bins, and M is the number of time bins.

Fig. 4: 1D CNN-transformer architecture used for the HITS and ESR datasets. C is the number of channels of the input signal and N is its number of samples.

datasets) and S RQW, CRT
G, CRQ

G and ECT
G to measure the compression

and energy performance. Finally, for statistical purposes, Experiment
1 was repeated 10 times and Experiment 2 five times; the metrics re-
ported correspond to the mean and standard deviation computed on the
test sets.

4.6. Experiment 1: Comparison with the state-of-the-art
The aim of this experiment is to compare the performance of the

proposed quantization heuristic, aTTQ, with that of TTQ and DoReFa.
This comparison is made in terms of three main aspects: compression,
energy and classification performance. The results are presented in
Table 2.

First, we can see that aTTQ outperforms the other quantization
methods in terms of energy consumption by a wide margin. In fact,
aTTQ improves the energy gain ECT

G by up to 54.59%. This is partic-
ularly notable for the 2D CNN models, which have the higher percent-
age of weights that are quantized. The main reason for the good energy
performance of aTTQ compared to the other methods is that aTTQ of-
fers higher sparsity rates than TTQ and DoReFa (in fact, due to the
nature of DoReFa, the quantized weights are not sparse). Since energy
can be saved by ignoring zero mult-adds and data transfers (with spe-
cialized hardware), aTTQ and TTQ tend to give higher energy gains.

Second, we find that DoReFa outperforms aTTQ and TTQ in terms
of compression and sparsity metrics by at least 0.56% CRT

G. This is
normal behavior, since DoReFa performs a more extreme binary quan-
tization, which allows higher compression by using one bit less to
encode the quantized weights with respect to TTQ and aTTQ. How-
ever, among the ternarization methods, aTTQ outperforms TTQ by a
wide margin. Indeed, aTTQ improves the sparsity rate of the quan-
tized weights (S RQW) by at least 2.7% (and up to 86.8%) compared

to TTQ. With respect to DoReFa, aTTQ is able to achieve similar com-
pression performance. This is due to the high sparsity offered by aTTQ,
which makes it possible to partially compensate for the extra bit used
to encode the ternary weights compared to DoReFa. Furthermore, sim-
ilar results are observed for the compression rate gain of the quantized
layers, CRQ

G . However, although a similar behavior is observed for
the compression rate gain of the whole model, the increase of aTTQ is
smaller compared to that of TTQ. This can be explained by the fact that
the quantized layers do not always contain the majority of the model’s
parameters. Therefore, even if all the parameters of these layers were
removed, the compression would not be significant.

Thirdly, TTQ and aTTQ achieve a similar classification perfor-
mance compared to the FP model. Indeed, for the HITS dataset, we ob-
serve a maximum MCC decrease compared to the FP model of 3.70%
and 3.02% for aTTQ and TTQ, respectively. On the contrary, for the
1D CNN-transformer models on the ESR dataset, we observe an in-
crease in MCC of 1.01% and 1.92% for aTTQ and TTQ, respectively.
This can be explained by three factors. The first factor is that sparsity
can act as a regularization, as several papers have shown [14]. The
second factor is that quantization can also help regularization, since
deep neural networks are highly over-parametrized. Finally, the quan-
tized models are obtained from pre-trained FP models, and the choice
of layers to be quantized is based on a Hessian-based quantization sen-
sitivity metric. Therefore, the fine-tuning quantization step could help
the models to get closer to a local minimum, as the loss landscape
should be relatively flat for the chosen layers to be quantized.

Thirdly, we can observe that the improvement of the compression
rate with aTTQ comes at the cost of a drop in classification perfor-
mance. However, for most datasets and models, this performance loss
is of the same order as that of TTQ. Globally, TTQ slightly outperforms
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Table 1: Training parameters for the different models based on the dataset and the ternarization method used. In the last column, we indicate the percentage of
weights of the model that will be quantized, selected using the Hessian-based metric introduced in [24].

Dataset Model Quant. tmin tmax
Learning Epochs No. % weights

method rate params. to quantize

HITS

2D CNN
FP - - 10−3 50

1 681 923
-

TTQ [16]/DoReFa [21] - - 3 × 10−3 50 92.05aTTQ −4 0 10−4 150

1D CNN-trans.
FP - - 7 × 10−2 150

766 271
-

TTQ [16]/DoReFa [21] - - 10−4 50 14.97
aTTQ −2 1.5 5 × 10−5 100

ESR

2D CNN
FP - - 10−3 100

1 555 842
-

TTQ [16]/DoReFa [21] - - 10−3 50
99.51aTTQ −3 1 10−3 200

1D CNN-trans.
FP - - 3 × 10−1 100

109 942
-

TTQ [16]/DoReFa [21] - - 10−3 100
24.22aTTQ −2 1 5 × 10−4 100

MNIST 2D MNIST CNN
FP - - 10−3 70

9 840
-

TTQ [16]/DoReFa [21] - - 10−4 200 53.35aTTQ −1 0.5 10−3 200

aTTQ in terms of classification performance on almost all datasets and
for almost all models, with an MCC margin increasing from 0.68% to
2.77%. This is not the case for the 2D CNN in the MNIST dataset,
where aTTQ outperforms TTQ by an MCC margin of 1.53%. There-
fore, aTTQ offers a better trade-off between classification and com-
pression performance. Indeed, in our approach we carefully remove
weights that are far from the mean for each layer, and this is done in
an asymmetric way for weights on either side of the mean. On the
contrary, TTQ removes weights by keeping values relatively close to
the maximum of the absolute value (up to a scaling factor), and this
is done in a symmetric way. However, in some cases, the maximum
absolute value may be an outlier in the distribution of weights. In ad-
dition, positive and negative weights are treated equally, although there
is no reason for them to have the same importance for the final classifi-
cation, and this may penalize the sparsity of the quantized weights. On
the other hand, in some cases a slight reduction in classification perfor-
mance may be justified by lighter models. Good examples are (med-
ical) embedded applications, where if the best model does not fit the
device, the good (not the best) classification performance is appropri-
ate. Our extreme quantization method allows us to achieve trade-offs
that are compatible with real (clinical) applications, compared to other
methods such as TTQ or higher bit-width quantization methods such
as 8, 16 or 32-bit (full precision) quantization. In addition, compared
to more aggressive pruning strategies such as binarization, ternariza-
tion makes it possible to reduce the drop in classification performance
while maintaining good compression rates, as shown in [16]. This is
an important point, because with the compression comes an accelera-
tion of the inference (similar to the sparsity rate if we ignore the zero
operations with specific hardware), and in our application of interest
(HITS classification) the recordings can last from 30 to 180 minutes,
generating thousands of HITS (on average 14 per minute) that must be
analyzed quickly to be compatible with clinical practice.

4.7. Experiment 2: Influence of tmin and tmax
The objective of this experiment is twofold: (1) to show the in-

terest of using asymmetric thresholds, and (2) to study the influ-
ence of tmin and tmax on the performance of the models. To do
this, we trained the 1D CNN-transformer model from the same ex-
periment on the ESR dataset, varying the values of x and y in

(c)

(d)

Fig. 5: Results of Experiment 2. (a) MCC for 1D CNN-transformer model
trained on the ESR dataset. (b) SRQW for the 1D CNN-transformer model
trained on the ESR dataset. The x-axis corresponds to the different tested values
of tmin and the y-axis corresponds to the different values of tmax. All the values
are given in %.

{−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2}. The results are shown in Figure 5.
The results are displayed in Figure 5.

First, we can observe that the best classification performance is not
obtained for symmetric values of tmin and tmax. In fact, the best results
are obtained when tmin ≤ 0 and tmax ≥ 0, where 95.09% MCC is ob-
tained for the 1D CNN-transformer on the ESR dataset. Furthermore,
the best SRQW values are also obtained for the same ranges of (asym-



7

Table 2: Results of experiment 1, in %. FP corresponds to the full-precision model where no quantization was performed. ∆MCC corresponds to the difference
between the MCC of the full-precision model and the MCC of the quantized model. CRT

G , CRQ
G , S RQW, and ECT

G evaluate the compression and energy performance
of each quantization method, and were introduced in 3.2.

Dataset Model Quant. method CRT
G ↑ CRQ

G ↑ S RQW ↑ ECT
G ↑ MCC ↑ ∆MCC ↑

HITS

2D CNN

FP - - - - 89.84 ± 3.09 -
DoReFa [21] 89.18 ± 0 96.87 ± 0 - 3.54 ± 0 85.05 ± 5.96 −4.79

TTQ [16] 24.96 ± 2.25 27.12 ± 2.44 28.96 ± 2.12 23.42 ± 1.30 86.82 ± 2.29 −3.02
aTTQ 42.98 ± 0.23 46.69 ± 0.25 45.95 ± 0.21 44.04 ± 0.19 86.14 ± 3.37 −3.70

1D CNN-trans.

FP - - - - 82.64 ± 1.77 -
DoReFa [21] 14.50 ± 0 96.87 ± 0 - 0.37 ± 0.03 84.07 ± 3.11 +1.43

TTQ [16] 0.14 ± 0.04 0.91 ± 0.27 6.75 ± 0.26 1.88 ± 0.03 83.22 ± 2.36 +0.58
aTTQ 13.94 ± 0.02 93.17 ± 0.16 93.53 ± 0.15 7.64 ± 0.11 81.66 ± 4.17 −0.98

ESR

2D CNN

FP - - - - 92.81 ± 3.53 -
DoReFa [21] 96.40 ± 0 96.87 ± 0 - 29.90 ± 0 94.12 ± 0.87 +1.31

TTQ [16] 85.61 ± 1.37 86.03 ± 1.37 86.59 ± 1.29 76.45 ± 1.13 95.00 ± 1.11 +2.19
aTTQ 88.48 ± 0.44 88.91 ± 0.45 89.30 ± 0.42 84.49 ± 0.33 92.41 ± 2.22 −0.40

1D CNN-trans.

FP - - - - 94.33 ± 1.51 -
DoReFa [21] 23.46 ± 0 96.86 ± 0 - 0.90 ± 0 96.79 ± 0.55 +2.46

TTQ [16] 11.40 ± 2.61 47.07 ± 10.79 50.22 ± 10.16 3.21 ± 0.66 96.25 ± 0.79 +1.92
aTTQ 21.02 ± 0.15 86.78 ± 0.63 87.59 ± 0.59 5.37 ± 0.04 95.34 ± 0.79 +1.01

MNIST 2D MNIST CNN

FP - - - - 94.39 ± 0.46 -
DoReFa [21] 51.67 ± 0 96.84 ± 0 - 3.28 ± 0 87.03 ± 7.14 −7.36

TTQ [16] 13.86 ± 2.33 25.97 ± 4.37 30.40 ± 4.12 2.58 ± 0.35 92.09 ± 0.89 −2.30
aTTQ 28.98 ± 1.26 54.32 ± 2.36 57.08 ± 2.22 4.97 ± 0.22 93.62 ± 0.96 −0.77

metric) values of tmin and tmax. This can be explained by the fact that
within a neural network, positive and negative values of the weights do
not necessarily have the same impact on the final classification perfor-
mance.

Moreover, we observe a trade-off between compression and classi-
fication performance, as the best performing models in terms of MCC
are not the ones with the higher SRQW (and thus the higher compres-
sion rate). In terms of sparsity, the higher the gap between tmin and
tmax, the higher the sparsity (larger range of values of weights mapped
to zero). If this gap is large enough, the classification performance is
often worse than with smaller gaps (which translates into lower spar-
sity rates). In fact, very high sparsity rates tend to decrease classifi-
cation performance. However, this decrease is not always significant,
whereas the gain in sparsity rate of the quantized layers is. Therefore,
depending on the application, if memory requirements are an impor-
tant factor, higher sparsity rates could be chosen despite the decrease
in classification performance. In our case, we decided to choose the
models that gave the higher classification performance without con-
sidering the sparsity rates. This is an advantage of our method, since
the two hyperparameters tmin and tmax allow us to control this trade-off
between compression and classification performance.

Similarly, tuning tmin and tmax can help to better adapt to new do-
mains and tasks. Indeed, our method offers great flexibility thanks to
the parameterization of the ternarization heuristic based on the statis-
tics of the weights. The results show that for different datasets and
models, the behavior of tmin and tmax is similar, but the values that allow
to maximize the classification performance are not the same. This can
be explained by the fact that, based on the model and the dataset, the
important weights with respect to the mean are not the same; in some
cases a larger dispersion is required (e.g. HITS 2D CNN), and in oth-
ers a smaller dispersion is required (e.g. MNIST 2D CNN). Therefore,
we recommend tuning tmin and tmax according to the desired objective:
For higher compression rates3 the user should choose tmin and tmax with

3This is often associated with reduced energy consumption and inference

a large gap, while for better classification performance the user should
reduce this gap.

Finally, it is interesting to note that small sparsity rates (small gap
between tmin and tmax) do not always yield models with the highest clas-
sification performance. In fact, we observe that a sparsity rate close to
0% tends to yield models with worse classification performance than
higher sparsity rates. This highlights the regularization effect of prun-
ing: as the sparsity rate of the quantized weights increases, the classi-
fication performance tends to increase up to a certain point.

4.8. Limitations

Although our approach strikes a good balance between compres-
sion, energy consumption and classification performance, we acknowl-
edge certain limitations.

First, in this work, certain layers and parameters were not quantized,
leaving room for further compression. However, full quantization may
significantly reduce classification performance. Mixed quantization
approaches, like those in [38, 24, 39], can mitigate this issue.

Second, although we tested our approach with multiple datasets and
models, further experiments on additional models, compression meth-
ods, and datasets are needed to highlight the generalizability and sig-
nificance of our approach.

Third, in our approach, the hyperparameters tmin and tmax which
control the sparsity rate, have to be carefully chosen based on the appli-
cation. This could be avoided by learning them, e.g. using for instance
a differentiable threshold function as in [29].

Lastly, although our quantization approach offers compelling com-
pression, energy, and computational properties, highlighting them in
practice is not straightforward. To fully leverage our method, special-
ized hardware must be developed to exploit sparse operations and low
bit-width operations, in conjunction with high bit-width (32 or 64 bits)
operations.

time.
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5. Conclusion

In this paper, we proposed to modify the quantization heuristic of
trained ternary quantization (TTQ) in order to improve the trade-off
between compression and classification performance. In fact, instead
of using symmetric thresholds for the positive and negative weights
to quantize, we proposed the use of asymmetric thresholds computed
with the statistics of the weights (mean and standard deviation) and two
hyperparameters, tmin and tmax, which control the sparsity rate of the
quantized weights. Extensive experiments on three datasets and two
types of models demonstrate the effectiveness of our method, which is
able to improve the compression and energy performance while main-
taining similar classification results to TTQ.

In future work, we plan to develop specialized hardware to effi-
ciently perform the operations required by our quantized models, al-
lowing us to accelerate inference and reduce energy consumption in
practice.
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