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Predictor-Based Prescribed-Time Output Feedback for a Parabolic PDE

Salim Zekraoui1, Nicolas Espitia2, Wilfrid Perruquetti3, and Miroslav Krstic4

Abstract— In this paper, we consider a 1D reaction-diffusion
system with boundary input delay and propose a general
method for studying the problem of prescribed-time output
boundary stabilization. We first reformulate the system as a
PDE-PDE cascade system (i.e., a cascade of a linear transport
partial differential equation (PDE) with a linear reaction-
diffusion PDE), where the transport equation represents the
effect of the input delay. We then apply a time-varying
infinite-dimensional backstepping transformation to convert
the cascade system and the proposed observer system into
two prescribed-time stable (PTS) target systems. The stability
analysis is conducted on the target systems, and the desired
stability property is transferred back to the closed-loop system
and the error system using the inverse transformation. The
effectiveness of the proposed approach is demonstrated through
numerical simulations.

I. INTRODUCTION

The stabilization of parabolic partial differential equations
(PDEs), in particular reaction-diffusion PDEs, with arbitrary
levels of instability and arbitrarily long input delay is a
challenging problem that was introduced and solved using
the so-called Backstepping method for PDEs in [8] and
generalized for other classes of parabolic PDEs (e.g. [15],
[2], [3], [14], [7], [20]). Most of these works provide only
asymptotic or exponential convergences, though in several
applications (e.g., chemical, biological, or population (epi-
demiological) processes, etc), where the transient process
must occur within a finite given time, and delays need to be
perfectly compensated, Non-asymptotic convergences (finite-
time, fixed-time, or prescribed-time) are strongly desired.

Contributions on Non-asymptotic stabilization for time-
delay systems, and finite-dimensional systems with input
delay can be found in e.g. [6], [11], [10], [4], [24], [22].
Prescribed-time stabilization - initially introduced in [16],
then extended to 1D Reaction-Diffusion PDEs in [5], [18]
[1], [21] - and predictor feedback for compensation of
input delay [9] are a perfect match because both techniques
deal with finite-time converging dynamics. Intuitively, by
applying predictor feedback to a prescribed-time feedback
(for either an ODE or PDE plant), the former feedback being
time-varying and the latter infinite-dimensional, one should
be able to obtain convergence in a time that is the sum of the
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prescribed time and the input delay. Combining prescribed-
time feedback with predictors is possible as shown in [12],
where an ODE-PDE cascade representation of a class of LTI
systems with input delay is provided and a time-varying
backstepping-based approach is used to design a predictor
feedback that ensures delay compensation in prescribed time.

In this paper, we address the problem of achieving
prescribed-time boundary output-feedback stabilization for a
class of 1D linear reaction-diffusion PDEs with input delay.
We propose a novel approach, inspired by the employment
of state predictions, as represented by [9, Chapter 11], rather
than classical PDE backstepping, to solve this problem. This
approach is an advantageous alternative, even in the case of
exponential stabilization, but requires radical advancements
to be adjusted from nonlinear ODEs to linear PDEs. Our con-
tribution builds upon the results of [5] and [18] for the case
of delayed input and extends the results of [17] to output-
feedback stabilization. Unlike [17], our resulting predictor-
based controller does not depend on a spatial derivative of
the state and also overcomes the issue of incompatibility of
boundary conditions of kernel equations (which arises when
considering point-wise damping term in the design).

The main idea of our approach is to transform the original
PDE system and the proposed observer into PDE-PDE
cascade systems and then apply a time-varying backstepping
transformation - depending on a predictor variable - to
transform only the hyperbolic PDE states. This transforma-
tion leads to stable target systems that ensure the desired
prescribed-time convergence. Finally, by inverse transfor-
mation, we transfer the stability property and the desired
non-asymptotic convergence back to the original closed-loop
system and to the error system.

This conference paper is a tutorial version of our journal
manuscript submitted 5 months ago to IEEE Transactions on
Automatic Control [23]; and it is organized as follows: In
Section II, we introduce the unstable 1D reaction-diffusion
system with boundary input delay and recall briefly some
results related to prescribed-time output boundary feedback
stabilization for the delay-free 1D reaction-diffusion system.
In Section III, we focus on the problem of prescribed-time
output-feedback stabilization of the original delayed system,
where we start by reformulating the PDE system as a PDE-
PDE cascade system and introducing the used prescribed-
time observer; We use an invertible transformation to link
the cascade systems to some well-chosen prescribed-time
stable target systems (see Figure 1). We perform a stability
analysis on the target original and observer system. Then, by
inverse transformation, we establish the boundedness of the
states of the original system and the error system and their



convergence to the origin in a prescribed time using a suitable
norm equivalence. In Section IV, we consider a numerical
example to illustrate the main results. Finally, conclusions
and perspectives are given in Section V.

Notation:

R+ denotes the set of non negative real numbers. N∗

denotes the set of natural numbers excluding zero. For all
a,b ∈R with a ≤ b, L2(a,b) denotes the set { f : [a,b]→R :∫ b

a | f (x)|2dx <∞} with the scalar product ⟨ f , g⟩L2(a,b) :=∫ b
a f (x)g(x)dx, and the norm ∥ f∥L2(a,b) := (

∫ b
a f (x)2dx)

1
2 .

II. PROBLEM STATEMENT AND PRELIMINARIES

Let us consider the following reaction-diffusion PDE with
a constant reaction term and a known constant boundary
input delay D > 0:

zt(t,x) = zxx(t,x)+λ z(t,x), (1)
z(t,0) = 0, (2)
z(t,1) =U(t −D), (3)

y(t) = zx(t,1), (4)
z(t0,x) = z0(x), (5)

with an initial time t0 ≥ 0, a reaction term λ ∈ R, time
and space variables (t,x) ∈ [t0, t0 +D+T )× [0,1], the state
z(t,x) ∈ R, the control U(t) ∈ R, with the following initial
condition: U(t0 + s) = 0 for all s ∈ [−D,0], the collocated
output y(t) ∈ R, and the initial condition z0 ∈ L2(0,1).

Our main goal is to design a predictor-based output-
feedback controller achieving prescribed-time stabilization of
the closed-loop system (1)-(5) in the following sense: there
exist a positive fractional function M1(·), a positive constant
M2 > 0 and a continuous function µ : [t0, t0 +D+T )→ R+

that tends to infinity as t goes to t0+D+T , such that for any
initial condition z0 ∈ L2(0,1) and for all t ∈ [t0, t0 +D+T ),
the following estimate holds:

∥z(t, ·)∥L2(0,1) ≤ M1(µ(t − t0 −D))e−M2µ(t−t0−D) ∥z0∥L2(0,1).

Remark 1: Note that in our approach, it is necessary to
have a prescribed-time boundary controller for the delay-free
case of system (1)-(5).

A. Prescribed-time output boundary feedback stabilization
in the delay-free case

Before presenting our approach, let us briefly summarize
the main results of [18] on prescribed-time output boundary
feedback stabilization of the delay-free case system (1)-(5)
(i.e. D = 0). Consider the following blow-up function:

γm(t − t̄0) :=
γm

m,0T m

(t̄0 +T − t)m , (6)

for m ∈ N∗, defined for all t ∈ [t̄0, t̄0 +T ) where t̄0 ≥ 0 and
T > 0 is a priori fixed.

1) Observer design: Assuming that D = 0, the following
observer system was proposed in [18]:

ẑt(t,x) = ẑxx(t,x)+λ ẑ(t,x)+P(x, t − t̄0,T )

× [zx(t,1)− ẑx(t,1)] , (7)
ẑ(t,0) = 0, (8)
ẑ(t,1) =U(t), (9)

ẑ(t̄0,x) = ẑ0(x), (10)

with observer gain P given by

P(x, t − t̄0,T ) :=−γ3(t − t̄0)
2γ2

3,0
x
+∞

∑
n=0

γ3(t − t̄0)
1
3

4T γ
1
3

3,0

n

×
(−
(
1− x2

)
)n

(n+1)!

n

∑
j=0

j

∑
k=0

1
j!

(
j
k

)

×
(

n+2+ k
n− j

)(
−T γ3(t − t̄0)

2
3

2γ3,0

) j

,

(11)

and γ3 defined in (6). The observer state ẑ(t, ·) converges
to z(t, ·) within the prescribed terminal time t̄0 +T provided
that

γ3,0T >
3√4. (12)

More precisely, there exist a positive constant α1 and a
positive polynomial function Q1(·) in terms of γ2(t − t̄0)
such that, for any initial conditions z(t̄0, ·) and ẑ(t̄0, ·), the
following inequality holds for all t ∈ [t̄0, t̄0 +T ):

∥z(t, ·)−ẑ(t, ·)∥L2(0,1) ≤ ζ1(t−t̄0)∥z(t̄0, ·)−ẑ(t̄0, ·)∥L2(0,1),

(13)

where

ζ1(t − t̄0) := Q1
(
α1γ2(t − t̄0)

)
e−α1γ2(t−t̄0). (14)

In particular, ∥z(t, ·)− ẑ(t, ·)∥L2(0,1) → 0 as t → t̄0 +T .
2) Control design: We recall the following time-varying

boundary output control:

U(t) :=
∫ 1

0
K(1,s, t − t̄0)ẑ(t,s)ds, (15)

where the state ẑ(t, ·) is generated from (7)-(10) and the
control gain K is given explicitly as in [5, Lemma 1] by

K(x,s, t − t̄0) =−1
2

γ2(t − t̄0)s
∞

∑
n=0

(√
γ2(t − t̄0)

)n

(n+1)!

×
(

x2 − s2

4T γ2,0

)n

L(1)
n

(
−T γ2,0

√
γ2(t − t̄0)

)
,

(16)

where L(1)
n (·) are the generalized Laguerre polynomials. In

addition, (16) can be simplified using the first-order modified
Bessel function I1(·) to get [5],

K(x,s, t − t̄0) =−γ2(t − t̄0)s e

√
γ2(t−t̄0)(x

2−s2)
4T γ2,0

× I1(
√

γ2(t − t̄0)(x2 − s2))√
γ2(t − t̄0)(x2 − s2)

,
(17)
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Fig. 1. Overview of the main change of coordinates employed throughout this paper.

for (x,s, t) ∈ T := {(x,s, t) ∈ [0,1]2×[t̄0, t̄0 +T ) : s ≤ x};
Using the control (15) and provided that

2γ2,0T > 1, (18)

the closed-loop PDE system (1)-(5) is prescribed-time stable
in the following sense: there exist two positive constants
α2 and α3 and two positive polynomial functions Q2(·) and
Q3(·) defined in terms of γ1(t − t̄0) such that for any initial
conditions z(t̄0, ·) and ẑ(t̄0, ·) at initial time t̄0, the following
inequality holds:

∥z(t, ·)∥L2(0,1)+∥ẑ(t, ·)∥L2(0,1) ≤ ζ2(t − t̄0)
(
∥z(t̄0, ·)∥L2(0,1)

+∥ẑ(t̄0, ·)∥L2(0,1)

)
,

(19)

for all t ∈ [t̄0, t̄0 +T ), where

ζ2(t − t̄0) := Q2
(
α2γ1(t − t̄0)

)
e−α2γ1(t−t̄0). (20)

Furthermore, we have

|U(t)| ≤ ζ3(t − t̄0)∥ẑ(t̄0, ·)∥L2(0,1), (21)

for all t ∈ [t̄0, t̄0 +T ), with

ζ3(t − t̄0) := Q3
(
α3γ1(t − t̄0)

)
e−α3γ1(t−t̄0). (22)

In particular, ∥ẑ(t, ·)∥L2(0,1) → 0, ∥z(t, ·)∥L2(0,1) → 0, and
|U(t)| → 0 when t → t̄0 +T .

III. PRESCRIBED-TIME STABILIZATION BY OUTPUT
FEEDBACK

Let us now come back to (1)-(5) and its PDE-PDE cascade
representation:

zt(t,x) = zxx(t,x)+λ z(t,x), (23)
z(t,0) = 0, (24)
z(t,1) = v(t,0), (25)

vt(t,y) = vy(t,y), (26)
v(t,D) =U(t). (27)

with (t,x,y)∈ [t0, t0+D+T )× [0,1]× [0,D], and v(t, ·) is the
transport PDE state whose solution is given by

v(t,y) =
{

0, t0 ≤ t + y ≤ t0 +D,
U(t + y−D), t + y ≥ t0 +D.

(28)

We propose the following observer for (1)-(5):

ẑt(t,x) = ẑxx(t,x)+λ ẑ(t,x)+P(x, t − t0,D+T )

× [zx(t,1)− ẑx(t,1)] , (29)
ẑ(t,0) = 0, (30)
ẑ(t,1) =U(t −D). (31)

with the observer gain P is given as in (11) where we replace
T by D+ T in the expression of γ3(t − t0) to ensure that
the convergence of ẑ(t, ·) to z(t, ·) is achieved in t0 +D+T
instead of t0 + T . Note that (31) can be always expressed
using v(t, ·) as it was done in (25), More precisely:

z(t,1) = v(t,0). (32)

Remark 2: As our goal is to design an output-feedback
control U(t) for (23)-(27), we do not need to estimate the
dynamics of (26)-(27) because it is expressed in terms of
the control U(t) which, in turn, is in terms of the observed
state ẑ(t, ·). Consequently, it is clear that, if γ3,0 satisfies the
following condition:

γ3,0(D+T )> 3√4, (33)

then, from (13), the following inequality holds:

∥z(t, ·)− ẑ(t, ·)∥L2(0,1) ≤ ζ1(t − t0 −D)∥z0 − ẑ0∥L2(0,1), (34)

for t ∈ [t0, t0 +D+T ) where z0 = z(t0, ·) and ẑ0 = ẑ(t0, ·). In
particular, ∥z(t, ·)∥L2(0,1) →∥ẑ(t, ·)∥L2(0,1) as t → t0 +D+T .

A. Time-varying infinite-dimensional backstepping trans-
formation

We consider the following time-varying infinite-
dimensional backstepping transformation:

ω(t,y) = v(t,y)−F (t + y− t0 −D, ϕ̂(t, ·,y)), (35)



where F has the same structure as in (15), i.e.,

F (t + y− t0 −D, ϕ̂(t, ·,y)) :=
∫ 1

0
K(1,s, t + y− t0 −D)

× ϕ̂(t,s,y)ds (36)

and ϕ̂ is chosen to satisfy ϕ̂(t,x,y)= ẑ(t+y,x), and therefore,
is solution of the following parabolic PDE:

ϕ̂y(t,x,y) = ϕ̂xx(t,x,y)+λϕ̂(t,x,y)+P(x, t+y−t0,D+T )

× [ϕx(t,1,y)− ϕ̂x(t,1,y)] , (37)
ϕ̂(t,0,y) = 0, (38)
ϕ̂(t,1,y) = v(t,y), (39)
ϕ̂(t,x,0) = ẑ(t,x). (40)

with the predictor ϕ is chosen to satisfy ϕ(t,x,y) = z(t+y,x)
which means it is the solution of

ϕy(t,x,y) = ϕxx(t,x,y)+λϕ(t,x,y), (41)
ϕ(t,0,y) = 0, (42)
ϕ(t,1,y) = v(t,y), (43)
ϕ(t,x,0) = z(t,x). (44)

with (t,x,y) ∈ {(t,x,y) ∈ [t0, t0 +D+T )× [0,1]× [0,D] : t +
y ∈ [t0 +D, t0 +D+T )}.

B. Target System
Using (35), we transform respectively (23)-(27) and (29)-

(31) into the two following target systems:

zt(t,x) = zxx(t,x)+λ z(t,x), (45)
z(t,0) = 0, (46)
z(t,1) = ω(t,0)+F (t − t0 −D, ẑ(t, ·)), (47)

ωt(t,y) = ωy(t,y), (48)
ω(t,D) = 0. (49)

and

ẑt(t,x) = ẑxx(t,x)+λ ẑ(t,x)+P(x, t − t0,D+T )

× [zx(t,1)− ẑx(t,1)] , (50)
ẑ(t,0) = 0, (51)
ẑ(t,1) = ω(t,0)+F (t − t0 −D, ẑ(t, ·)). (52)

where ω : [t0, t0 +D+T )× [0,D]→ R is the transport PDE
state.

Note that using the fact that ϕ(t,x,y) = z(t + y,x) and
ϕ̂(t,x,y) = ẑ(t + y,x) for all (t,x,y) ∈ [t0, t0 + D + T ) ×
[0,1]× [0,D], it is clear that (35) verifies (48)-(49).

C. Time-varying infinite-dimensional inverse transforma-
tion

The inverse transformation is given by,

v(t,y) = ω(t,y)+F (t + y− t0 −D, ψ̂(t, ·,y)), (53)

where

F (t + y− t0 −D, ψ̂(t, ·,y)) :=
∫ 1

0
K(1,s, t + y− t0 −D)

× ψ̂(t,s,y)ds (54)

where ψ̂ is the solution of

ψ̂y(t,x,y) = ψ̂xx(t,x,y)+λψ̂(t,x,y)+P(x, t+y−t0,D+T )

× [ψx(t,1,y)− ψ̂x(t,1,y)] , (55)
ψ̂(t,0,y) = 0, (56)
ψ̂(t,1,y) = ω(t,y)+F (t+y−t0−D, ψ̂(t, ·,y)), (57)
ψ̂(t,x,0) = ẑ(t,x). (58)

and ψ is generated from

ψy(t,x,y) = ψxx(t,x,y)+λψ(t,x,y), (59)
ψ(t,0,y) = 0, (60)
ψ(t,1,y) = ω(t,y)+F (t+y−t0−D, ψ̂(t, ·,y)), (61)
ψ(t,x,0) = z(t,x). (62)

Similarly, from the inverse transformation (53), we recover
(26)-(27).

D. Prescribed-time predictor-based output controller

We recover the expression of the boundary control U(t)
as follows:

U(t) = v(t,D) = F (t − t0, ϕ̂(t, ·,D))

:=
∫ 1

0
K(1,s, t − t0)ϕ̂(t,s,D)ds,

(63)

from (35) at y = D, where ϕ̂ is generated from (41)-(44) and
K is given in (17). Likewise from (53) at y = D, we can get

U(t) = v(t,D) = F (t − t0, ψ̂(t, ·,D)), (64)

where ψ̂ is generated from (55)-(58).

Remark 3: To achieve exponential output-feedback stabi-
lization, it is sufficient to replace the control gain K and the
observer gain P respectively by

Kexp(x,s) =−(λ +λ0)s
I1(
√

(λ +λ0)(x2 − s2))√
(λ +λ0)(x2 − s2)

, (65)

Pexp(x) =−(λ +λ0)x
I1(
√

(λ +λ0)(1− x2))√
(λ +λ0)(1− x2)

, (66)

for λ0 ≥ 0 and (x,s) ∈T := {(x,s) ∈ [0,1]2 : s ≤ x}. The ex-
pression of the exponential predictor-based output-feedback
controller Uexp(t) is then given by

Uexp(t) =
∫ 1

0
Kexp(1,s)ϕ̂(t,s,D)ds, (67)

or

Uexp(t) =
∫ 1

0
Kexp(1,s)ψ̂(t,s,D)ds, (68)

with ϕ̂ and ψ̂ are respectively generated from (37)-(40) and
(55)-(58) using the observer gain Pexp(x) in (66).



E. Stability analysis
Proposition 1: For the transport PDE v(t,x) satis-

fying (26), there exists a positive polynomial func-
tion Q4(·) in terms of γ1(t − t0 − D) such that the
following estimate holds: ∥v(t, ·)∥L2(0,D) ≤ ζ4(t − t0 −
D)
(
∥z(t0 +D, ·)∥L2(0,1)+∥ẑ(t0 +D, ·)∥L2(0,1)

)
, for all t ∈

[t0+D, t0+D+T ), where ζ4(t− t0−D)2 := Q4(α3γ1(t+y−
t0−D))e−α3γ1(t+y−t0−D) with γ1(·) given in (6). In particular,
it holds ∥v(t, ·)∥L2(0,D) → 0 for all t → t0 +D+T .

Proof: The proof is a direct application of (53) with
the fact that ω(t,y) = 0,∀(t,y) ∈ [t0 +D, t0 +D+T )× [0,D]
and ψ̂(t, ·,y) = ẑ(t + y, ·), and using (21) for t̄0 := t0 +D.

Let us now give our main result,
Theorem 1: Let γ2,0 > 0, and γ3,0 > 0 be chosen such

that (18) and (33) are ensured. Let T > 0, D > 0 and
t0 ≥ 0. Then, the solution of the closed-loop system (23)-
(27) with the observer (29)-(31) and the prescribed-time
time-varying output control (63) (or (64)) is prescribed-
time stable in the following sense: For any initial conditions
z0 and ẑ0, the quantities ∥z(t, ·)∥L2(0,1), ∥ẑ(t, ·)∥L2(0,1), and
∥v(t, ·)∥L2(0,D) remain bounded for all t ∈ [t0, t0 + D]; and
for all t ∈ [t0 +D, t0 +D+ T ), the following norm I(t) =
∥z(t, ·)∥L2(0,1)+∥ẑ(t, ·)∥L2(0,1)+∥v(t, ·)∥L2(0,D) satisfies,

I(t)≤ LDζ5(t−t0−D)
(
∥z0∥L2(0,1)+∥ẑ0∥L2(0,1)

)
, (69)

for LD > 0 with ζ5(·) := ζ2(·)+ζ4(·). In particular, I(t)→ 0
as t → t0 +D+T and |U(t)| → 0 as t → t0 +T .

Proof: Due to space limitation, we give only a sketch
of the proof. On one hand, seeing that the control input U(t)
is initialized by zero on [t0 −D, t0], the boundedness of the
state of (23)-(25) is proven from the explicit computation
of the solution from [13, Chapter 3] and consequently the
boundedness of the observer state is also ensured from (34).
On the other hand, inequality (69) is directly obtained from
(19) and Proposition 1. In particular, the convergence I(t) to
the origin is ensured when t → t0 +D+T . Furthermore, the
boundedness of the norms ∥z(t, ·)∥L2(0,1) and ∥ẑ(t, ·)∥L2(0,1)
is ensured on [t0, t0 +D+ T ) and since v(t,y) is given on
[t0, t0 +D]× [0,D] in terms of U(s−D) for s ∈ [t0, t0 +D]
(which is bounded because it is expressed in terms of ẑ(s, ·)
and K(1, ·,s−t0−D) that are bounded for all s ∈ [t0, t0+D]),
the boundedness of ∥v(t, ·)∥L2 on [t0, t0+D] is also deduced.
Finally, the convergence of the control U(t) to the origin,
in a prescribed time t0 +T , is deduced from the expression
(64) and what was proven before.

IV. NUMERICAL RESULTS

In this section, we give numerical simulations for the
closed-loop system (23)-(27) with prescribed-time predictor-
based output-feedback controller U(t) given in (64) used
to attain prescribed-time stabilization. We take the delay
D = 0.5s, the reaction coefficient λ = 11, the initial time
t0 = 0, the prescribed time T = 1s and the initial conditions:
z0(x) = 10(x− x2), ẑ0(x) = 0, v0(y) = 0. We take the initial

conditions of the blow-up functions γ2 and γ3, given in (6),
respectively as γ2(0) = 3.3 and γ3(0) = 2.2.

In the top and middle of Figure 2, we give a comparison
between the norm of the closed-loop system (23)-(27) us-
ing first the prescribed-time predictor-based output-feedback
controller U(t) given in (64) (in red solid line) and afterwards
using the exponential predictor-based controller Uexp(t) given
in (68) with the constant-gain λ +λ0 = 11 involved in the
control and observer kernels Kexp and Pexp given in Remark
3 (in black dashed line). In particular, we compare the case
with a higher constant-gain λ +λ0 = 28 (in blue dashed line).
On the bottom of Figure 2, we give a comparison between
the controllers U(t) (in red solid line) and Uexp(t) with the
gain λ +λ0 = 11 (in black dashed line) and with a higher
gain λ +λ0 = 28 (in blue dashed line).

As it can be observed, at the delay D = 0.5s, the norm
of the closed-loop system (23)-(27) using the exponential
controller Uexp(t) (with the higher gain λ +λ0 = 28) exhibits
the “peaking phenomenon” [19] (see the blue dashed curve
in the top plot of Figure 2). After that the delay D = 0.5s,
the norm outpaces the same norm using the prescribed-time
controller U(t). However, as time progresses, the curves of
the two norms cross, and from then on the norm of the
closed-loop system (23)-(27) using the prescribed-time con-
troller U(t) outperforms the same norm using the exponential
controller Uexp(t). This is due to the fact that the exponential
controller starts with an aggressive control effort, because
of the high gain λ +λ0, but with time its effort diminishes
(see the middle of Figure 2). In contrast, the prescribed-time
controller U(t) starts with a moderate effort to avoid peeking
and then gradually increases its control effort towards the end
of the simulation to ensure that the convergence is completed
in the prescribed time.

V. CONCLUSION

This paper dealt with the problem of output-feedback
stabilization in prescribed time of a 1D reaction-diffusion
system with boundary input delay. The system is rewritten
into a PDE-PDE setting (a cascade of a parabolic PDE
with a hyperbolic PDE), where the hyperbolic PDE models
the effect of the delay on the input. The predictor-based
output controller is designed using a time-varying infinite-
dimensional backstepping transformation that transforms the
PDE-PDE unstable system into a well-chosen target system.
The inverse transformation ensures the desired convergence.
Numerical simulations are given to illustrate the results.
Future work will extend this result to more complex dynam-
ics, e.g., stabilization in prescribed time of parabolic PDEs
coupled with hyperbolic PDEs.
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