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Abstract
Motivation: The knowledge of protein dynamics, or turnover, in patients provides invaluable information related to certain diseases, drug effi
cacy, or biological processes. A great corpus of experimental and computational methods has been developed, including by us, in the case of 
human patients followed in vivo. Moving one step further, we propose a novel modeling approach to capture population protein dynamics using 
Bayesian methods.
Results: Using two datasets, we demonstrate that models inspired by population pharmacokinetics can accurately capture protein turnover 
within a cohort and account for inter-individual variability. Such models pave the way for comparative studies searching for altered dynamics or 
biomarkers in diseases.
Availability and implementation: R code and preprocessed data are available from zenodo.org. Raw data are available from 
panoramaweb.org.

1 Introduction
There is great interest in learning about the dynamics of pro
teins (Doherty and Whitfield 2011), beyond the knowledge 
of protein abundance in various tissues (Meyer and Schilling 
2017). Protein dynamics is commonly referred to as protein 
turnover. It is the net rate at which proteins are produced or 
imported in a tissue, and simultaneously degraded or cleared. 
It provides a complementary perspective to protein abun
dance and it is relevant in a number of applications of clinical 
proteomics. For example, in various pathologies, abnormal 
turnover has been observed for specific proteins such as amy
loid-β (Aβ), Tau, or sTREM2 in Alzheimer disease (AD) 
(Mawuenyega et al. 2010, Su�arez-Calvet et al. 2016, Sato 
et al. 2018), retinol-binding protein 4 (RBP4) in diabetes 
(Jourdan et al. 2009), or tissue remodeling during early-stage 
human heart failure (Lam et al. 2014). Besides clinical appli
cations, protein turnover may link to fundamental biological 
processes such as heart morphogenesis (Konzer et al. 2013). 
Turnover data are typically acquired by mass spectrometry 
(MS) after introducing an isotopic tracer to label the newly 
synthesized proteins (Bateman et al. 2006, Jaleel et al. 2006, 
Claydon et al. 2012, Doherty et al. 2012, Guan et al. 2012, 
Rahman et al. 2016, Sadygov et al. 2018, Wilkinson 2018, 
Sadygov 2022). Relative isotope abundance (RIA) is the ratio 

of labeled to unlabeled protein abundances. The variation of 
RIA over time provides turnover information.

Different protocols can be used to introduce a tracer, e.g. 
via the diet, intravenous injections, or even the medium if we 
consider cells in culture or organoids. Our interest here is in 
human—or animal—in vivo studies, where biofluids repre
sent the most convenient and ethically acceptable material for 
sequential measures. Following an initial publication of our 
labeling protocol (Lehmann et al. 2015), we developed a flex
ible and accurate 2-compartment mathematical model 
(Lehmann et al. 2019). Specifically, we showed that this gen
eral model was able to fit data obtained by stable isotope la
beling kinetics (SILK) (Bateman et al. 2006) accurately and it 
compared favorably with preexisting models achieving the 
same accuracy with fewer parameters (Lehmann et al. 2019). 
SILK is a pulse-chase protocol in which 13C6-Leu is injected 
intravenously for 9 h, allowing new protein synthesis but also 
clearance to be observed by collecting sequential samples 
over time, 24 h for instance. The new work we present here is 
a follow-up that brings the modeling, and the extraction of 
kinetic parameters, to the population level. Namely, given a 
cohort or population of individuals that have undergone 
SILK, we want to learn the typical values, variability, and 
correlation of the protein dynamics parameters over the 
whole population. This type of mathematical model is 
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common in population pharmacokinetics (Bauer et al. 2007), 
where drug availability and clearance in patients need to be 
characterized population-wide in order to adjust standard 
regimens. In the case of protein turnover, our perspective is 
to provide robust and comprehensive models of healthy ho
meostatic states compared to disease states. This knowledge 
could obviously lead to advances in biomarker discovery as 
well as diagnostic applications beyond pure research and pro
tein classification.

Searching for model parameters with classical optimization 
methods such as iterations that minimize the differences be
tween model predictions and experimental data requires ini
tial values for the searched parameters. The optimal 
parameters found may depend on the initial values if there 
are multiple local minima. In a complex hierarchical model 
consisting of a population level and then individual level 
parameters, this is a problem. A common and efficient solu
tion involves Bayesian modeling, where prior knowledge of 
typical parameter values replaces discrete initial values. That 
is, instead of choosing one or more initial values, a whole dis
tribution of initial values is considered. The observed data 
are then combined with this prior knowledge to infer the 
model parameters as statistical distributions (posteriors). If 
the experimental data are sufficient, the influence of the prior 
distribution is marginal and the problem of choosing the right 
initial values is eliminated. In addition, knowing the model 
parameters as posterior distributions provides information 
about their variability.

Accordingly, we decided to approach the problem of popu
lation protein dynamics with Bayesian modeling. Since this 
problem is very similar to population pharmacokinetics, we 
developed a hierarchical Bayesian model inspired by common 
practice in the field. Parameters were fitted using Markov- 
chain Monte-Carlo (MCMC) sampling. The new model is il
lustrated using an unpublished cohort of seven individuals 
whose blood plasma samples were analyzed by targeted MS, 
i.e. multiple reaction monitoring (MRM). To contrast this 
first, which showed moderate inter-individual variability, we 
used a second cohort of four individual cerebrospinal fluid 
(CSF) samples. The latter were not fully comparable and thus 
provided much more heterogeneous inter-individual data, 
allowing us to test the robustness of our population model.

2 Materials and methods
2.1 Human samples
Samples were generated following the clinical protocol “In 
Vivo Alzheimer Proteomics (PROMARA)” (ClinicalTrials 
Identifier: NCT02263235), which was authorized by the 
French ethical committee CPP Sud-M�editerran�ee IV (#2011– 
003926-28) and by the ANSM agency (#121457A-11). 
Enrolled patients (group a) were hospitalized in neurosurgery 
unit due to subarachnoid hemorrhage and received a tempo
rary ventricular derivation of the CSF. The experiment pro
tein turnover started 8–19 days after initial, medical 
ventricular drainage and normalization of CSF clinical chem
istry analysis [normal CSF protein content lies in the 0.2–0.4 
g/l range (Roche et al. 2008)]. Additional patients (group b) 
were hospitalized in neurology in relation with cognitive im
pairment etiologic investigation. Patient data are reported in 
Supplementary Table S1. CSF and blood plasma were col
lected at multiple time points after injection of the tracer for 
roughly 24 (CSF) or up to 36 (plasma) h. We applied the 

ethically approved (see above) original SILK 13C6-Leu 
infusion protocol (Bateman et al. 2006). Briefly, 13C6-Leu 
prepared per the European Pharmacopeia was intravenously 
administered. After a 10 min initial bolus at 2 mg/kg, an 8h50 
infusion at 2 mg kg/h was performed. Ventricular CSF or 
plasma EDTA samples were collected starting at the begin
ning of the 13C6-leucine infusion, roughly every 3 h (3–6 ml). 
Samples were transported to the laboratory at 4�C, and cen
trifuged at 2000g for 10 min. CSF and plasma samples were 
aliquoted into 1.5-ml polypropylene tubes and stored at 
−80�C until further analysis.

In this study, we analyzed CSF samples from four patients 
of group a (Pat1a–Pat4a) and seven of group b (Pat7b– 
Pat13b). Patients were selected based on availability of CSF 
and plasma MS samples at multiple time points.

2.2 Sample analysis
Sample preparation was automated on AssayMap BRAVO 
(Agilent T., Santa Clara, United States) to reduce preanalyti
cal variability. Briefly, 2 µl of plasma or 30 µl of CSF were 
used. Protein samples were reduced and alkylated, and 
digested with trypsin prior to LC–MS analysis.

The MRM protocol was reported in previous publications 
(Percy et al. 2013, Hirtz et al. 2018, Lehmann et al. 2019); 
we hence only summarize the main steps here. Proteins were 
selected for their relevance to neurodegenerative diseases and 
clear detection in previous, proteome-wide experiments in 
plasma and CSF by our laboratory. The reporter peptides 
were selected for their high signal intensity in these previous 
experiments. Supplementary Tables S2 and S3 report the se
lected proteins and peptides for CSF and plasma samples. 
MRM was executed on the samples directly using a 1290 liq
uid chromatography (LC) system (Agilent Technologies) 
equipped with a reverse-phase column (RRHD Eclipse Plus 
C18) coupled with a QqQ MS instrument (6490, Agilent 
technologies). The MS instrument worked in dynamic MRM 
with a retention time window of 4.5 min and a maximum cy
cle time fixed at 700 ms. All the analyses were performed in 
duplicates. A minimum of one peptide per protein and three 
transitions by peptide were required. Skyline 4.1 was used to 
process raw MS data. Figure 1A presents an overview of the 
LC and MS pipeline.

Although they were not the object of this work, we also 
used two samples (CSF and plasma from PatA1) that were 
subjected to the proteome-wide (non MRM) protocol as de
scribe in our previous publication (Lehmann et al. 2019). The 
CSF sample was discussed in this latter publication, whereas 
the blood sample remains unpublished. The data generated 
were subjected to the data analysis workflow described be
low. We obtained reliable turnover data for roughly 200 pro
teins in each sample (see Supplementary Tables S4 and S5), 
whose parameters were only used to learn the typical range 
of parameter values for mathematical modeling (see below) 
from diverse proteins.

2.3 MS data processing and existing individual 
mathematical model
Integrated MS spectra by Skyline were used as input to fit 
protein dynamics models. Typical input data are shown in  
Fig. 1B. The processing of these data has been described in 
detail previously (Lehmann et al. 2019), so we provide only a 
summary. For a given peptide and a given time, the observed 
RIA (Fig. 1B) is defined by the ratio of the heavy Leu signal 
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PH (observed at a shifted mass of þ6Da per Leu) and the to
tal signal PLþPH, PL the signal at the nominal mass. The in
jection of the tracer is modeled by a function f ðtÞ, with 
f tð Þ ¼ 1 for t ≤ 9 and f tð Þ ¼ 0 for t>9. We denote the curve 
of RIA over time by βðtÞ. Our two-compartment model is 
based on a notion of the rate of tracer biological availability 
of the tracer (first compartment) denoted αðtÞ, which is in
volved in protein synthesis (second compartment). To paral
lel pharmacokinetic two-compartment models, αðtÞ relates to 
the ratio of initial drug concentration divided by the volume 
of distribution. Note that in the case of protein turnover, 
only ratios are modeled and therefore α and β are dimension
less. They are linked by the following ordinary differential 
equations (ODEs): 

dα
dt

¼ λf tð Þ � α
� �

kc;

dβ
dt

¼ α � βð Þkc;

8
>><

>>:

(1) 

with α 0ð Þ ¼ 0¼ βð0Þ. Figure 1C illustrates a typical dataset 
with the α and β curves. It is important to note that λ, which 
relates to tracer availability for protein synthesis, essentially 
acts as a scale parameter. The clearance/degradation rate kc 
acts primarily as a shape parameter that conditions the pro
tein half-life. Due to the generally large ratio of intensities be
tween PL and PH, we have shown that noise causes an almost 
uniform vertical shift of the observed RIA values (Lehmann 
et al. 2019, Giroux et al. 2024). Therefore, we proposed an 
algorithm that includes the computation of an optimal shift 
along with the parameters λ and kc to adjust βðtÞ to the data. 
Summed squared errors with respect to observed RIAs were 
weighted proportionally to 

ffiffiffiffiffiffiffi
PH
p

(RIAs with stronger PH sig
nals were more accurate). Weighted summed squared errors 
were minimized by a quasi-Newton iteration (function optim 
in R with method BFGS) to adjust the parameters. A quasi- 
Newton iteration is an optimization of the classical Newton 
iteration where the Jacobian matrix of the function to be 
minimized does not need to be recomputed at each step. 
Equation (1) was numerically integrated using the RADAU5 
method (Hairer and Wanner 1996). RADAU5 is an implicit 
fifth order Runge–Kutta method adapted to stiff problems 
that includes a fourth order dense output (estimation at any 
time point). Although the dynamical systems corresponding 

to good quality data presented in all figures of this article are 
not stiff, low signals, or erroneous data can lead to stiff sys
tems (Lehmann et al. 2019). Since the differential model is 
also used to filter the data, we practically had to deal with 
stiff cases and RADAU5 allowed us to do it quickly.

To achieve robust results in the presence of noisy RIAs, pa
rameter fitting was iterative with a first application of the 
above to call outlier RIAs. RIAs were considered outliers pro
vided they were located at a distance greater than half the dif
ference between the minimum and maximum values of the 
first fitted βðtÞ model. A second application of the quasi- 
Newton method was then performed without the outliers. In 
addition, RIAs at time 0 were always considered outliers, as 
no tracer incorporation had yet occurred. Our original data 
processing pipeline ended with the application of a bootstrap 
to estimate confidence intervals. Here, we used the R library 
boot to perform a nonparametric balanced bootstrap (100 
times), whereas the original publication used a parametric 
Gaussian bootstrap. Hereafter, we refer to the parameter and 
CI95 estimates obtained by this procedure as QNB for quasi- 
Newton-bootstrap.

3 Results and discussion
3.1 Initial Bayesian models
We began the construction of a Bayesian population model 
by first building a single individual Bayesian model equiva
lent to our QNB original procedure presented above. The 
posterior distributions of the parameters were estimated by 
Type II Maximum Likelihood. Assuming that RIAi to be the 
ith observation and βi the corresponding model value, we 
naturally have 

RIAi � N βi � s; σ2=wi
� �

;

with i 2 f1; . . . ;ng and n the number of RIAs, βi ¼ βðtiÞ, ti the 
time at which RIAi was observed (due to replicates, several ti 
can be identical with different indices i), wi the weight pro
portional to 

ffiffiffiffiffiffiffi
PH
p

for observation i, and s the vertical shift to 
acknowledge the noise in the ratios (see Supplementary 
Materials and Methods). Nða;b2Þ denotes a normal distribu
tion with mean a and variance b2.

To obtain a complete, hierarchical Bayesian model, we in
troduce prior distributions on the model parameters as well 

Figure 1. Simplified workflow. (A) Samples were collected at multiple time points and analysed by MS. Integration of all the spectra found for a given 
peptide at a given time point was performed with Skyline. Filtering of peptides for which sufficient and interpretable signals were available was 
performed employing a mathematical model of protein turnover. (B) Representative data for a given protein (A1BG), for which two different peptides 
were followed in MRM and both measured with double charges. Corresponding acquisition times and RIA (ratios) were available. (C) A1BG ratios (orange 
dots) along with the fitted mathematical model. The vertical line at 9 h indicates the end of tracer injection.
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as the mean and variance of the error normal distribution. 
Note that following common practice in the field, the model 
parameters were log-transformed to use a normal prior. The 
resulting Bayesian formulation is the following: 

dα
dt

¼ λf tð Þ � α
� �

kc;

dβ
dt

¼ α � βð Þkc;

lnðλÞ � N μlλ; σ2
lλ

� �
;

lnðkcÞ � N μlkc
; σ2

lkc

� �
;

s � N μs; σ2
s

� �
;

RIAi � N βi � s; σ2=wi
� �

;

σ� 2 � γ 0:001; 0:001ð Þ:

(2) 

We denote by γ a;bð Þ a Gamma distribution with shape a and 
rate b. The prior parameters for s, lnðkcÞ, and lnðλÞ were 
learned from a large number of models (roughly 200 distinct 
proteins) fitted with the QNB algorithm (see Supplementary 
Materials and Methods and Supplementary Tables S4 and 
S5). In the case of s, we set μs ¼ 0, and σ2

s at 10� 3 for the 
plasma samples and 1/500 for the slightly noisier CSF data. 
The gamma prior for σ� 2, i.e. the precision, is a commonly 
used vague (non-informative) prior.

We implemented MCMC sampling for σ, s, lnðkcÞ, and 
lnðλÞ in the above model using two approaches, both imple
mented in R. First, we defined a function proportional to the 
log probability density of (2) and used the R libraries mcmc 
(function metrop, Metropolis algorithm) and adaptMCMC 
[function MCMC, robust adaptive Metropolis (Vihola 
2012)]. Alternatively, we used BUGS to define the model and 
OpenBUGS (Lunn et al. 2000) through its R interface 
R2OpenBUGS. Some particular βðtÞ shapes such as apolipo
protein A1 (APOA1) in CSF illustrated in Fig. 2A were more 
difficult to fit, and adaptMCMC and mcmc failed to find cor
rect parameters (Supplementary Fig. S1). OpenBUGS man
aged to handle these more difficult data efficiently. In the 
majority of cases, typically illustrated by neuropilin-2 
(NRP2) and complex component 1s (C1S) in Fig. 2A, the 
three libraries produced nearly identical parameter estimates 
(Supplementary Fig. S1). Thus, the distribution-aware 
OpenBUGS Gibbs sampler was more effective for our appli
cation. We decided to use only OpenBUGS. The BUGS code 
and the R function for adaptMCMC and mcmc are provided 
in Supplementary Information. We found that 100000 itera
tions including 50000 burn-in were sufficient for OpenBUGS 
to converge safely. We systematically used two Markov 
chains, and a convergence diagnostic was obtained by com
paring within- and between-chain variability (Brooks and 
Gelman 1998). Each chain was initialized with random λ, 
and kc values drawn from their respective prior distributions. 
The shift s was initialized at 0 and σ2 at 0.1.

Outliers identified by the QNB algorithm were removed 
from the data given to OpenBUGS (same for mcmc and 
adaptMCMC). The latter was indeed sensitive to some ex
treme outliers (data not shown). Theoretically, it would be 
possible to replace the normal distribution for the errors on 
RIAi in Eq. (2) with a heavy-tailed distribution such as 

Student with 4 degrees of freedom to address outliers. 
However, our goal here was not to replace the satisfactory 
QNB algorithm, but to build a population model on top of it. 
We thus exploited QNB outlier calling.

Figure 2A shows that the Bayesian solution was usually 
close to QNB, with NRP2 and C1S being representative of 
the majority of cases. The inferred parameters for the two 
algorithms are reported in Fig. 2B with estimated 95% confi
dence intervals (QNB) and 95% credible intervals (BUGS). 
Indeed, when comparing the parameter values for all the 
plasma proteins in patients Pat7b–Pat13b (37 different pro
teins, 236 individual proteins in total, Supplementary Table 
S3), we found an excellent correlation (Fig. 2C). We also 
found a high agreement between the 95% confidence and 
credible intervals (Fig. 2D). As a general rule of thumb, the 
number of iterations in an MCMC estimation should be such 
that the MCMC standard error (MCSE) divided by the stan
dard deviation (SD) of the sampled parameter remains below 
5%. As shown in Fig. 2E, this was achieved for the three esti
mated parameters using a conservative value for the MCSE 
that was corrected for autocorrelation (OpenBUGS “Time-se
ries SE” estimates). This validated the choice of the number 
of iterations. Convergence according to Brooks and Gelman 
criterion is shown in Supplementary Fig. S2.

Considering CSF data (Pat1–Pat4, 26 different proteins, 92 
individual proteins in total, Supplementary Table S2), we 
made similar observations (Fig. 2F), but with a lower correla
tion. This is explained by the fact that in the CSF data, more 
difficult βðtÞ shapes similar to APOA1 in Fig. 2A roughly rep
resented half the data. Credible intervals estimated by 
OpenBUGS were reliable and almost always included QNB 
estimates, while the converse was more in the 70% range, but 
for the shift that was highly compatible with QNB estimates. 
MCSE/SD values remained below 5% and convergence was 
achieved, see Supplementary Figs S3 and S4.

To better understand the CSF results, we first observed that 
in the typical example of APOA1 (Fig. 2A), the βðtÞ curve was 
correctly fitted to the experimental RIAs by both algorithms. 
However, the QNB and BUGS αðtÞ curves were different. This 
indicated a stronger correlation between the model parameters 
λ and kc that manifested by the ability to compensate variation 
of one by the value of the other. Indeed, comparing the proba
bility density estimated by MCMC sampling over the 
ðλ;kcÞ-space, we found a larger and narrower region for CSF 
Pat4 APOA1, but a more confined and rounder region for 
plasma Pat7b NRP2 (Fig. 2H). The latter configuration is usu
ally easier to explore and leads to faster convergence, whereas 
the former is often associated with slower convergence due to 
inefficient exploration of the parameter space. This was also 
reflected in the BUGS credible interval sizes in Fig. 2B. The 
Bayesian approach was better at estimating realistic 95% credi
ble intervals, almost always including QNB estimates. This was 
not the case for the QNB-estimated 95% confidence intervals, 
which tended to be too narrow including no more than �70% 
of the BUGS estimates. Lastly, it is important to remember that 
in Eq. (1), the most relevant, shape or half-life related parameter 
is kc for which a rather high R2 ¼ 0:85 (Spearman) was 
obtained. All the model parameter estimates for all the CSF and 
plasma models are available as OpenBUGS output in 
Supplementary Data.
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3.2 Population hierarchical Bayesian model
To develop a population model, we start with plasma data, 
typical examples are featured in Fig. 3A (the 27 plasma pro
teins for which we had data for every patient are depicted in 
Supplementary Fig. S5).

The principle of population Bayesian modeling consists in 
adding a population level to the model in Eq. (2). This addi
tional level should capture the typical values of the parame
ters as well as potential correlations between them (Fig. 2H). 
If we define the parameter vector 

θ ¼
lnðλÞ
lnðkcÞ

 !

;

then this is achieved by a 2D normal distribution 

θ � N2 μθ;Ωð Þ;

with mean μθ and variance Ω. Hyper-priors are introduced 
for these two quantities 

Figure 2. Initial Bayesian models of single proteins in single patients. (A) Three representative examples comparing the BUGS fitted models with the 
original QNB solutions. (B) Comparison of the BUGS versus QNB fitted parameters shift, kc and λ. Spearman squared correlation is denoted R2. (C) 
Global comparison of BUGS versus QNB-estimated parameters over all the plasma proteins and patients. (D) Rate of inclusion of the QNB parameter 
estimates in the BUGS 95% credible intervals, and conversely. (E) Autocorrelation-corrected MCSE/estimate standard deviation distributions. (F) BUGS 
versus QNB parameter estimate correlation over all the CSF proteins and patients. (G) Inclusion rates of QNB estimates in BUGS 95% credible intervals 
and vice versa. (H) MCMC sampled probability density over the ðλ;kcÞ-space. Marginal means are featured by the gray crosses.
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μθ � N2 μ;Σð Þ;

Ω� 1 � Wi2 R; 2ð Þ;

where the vector μ 2 R2 components are respectively set to 
the means of lnðλÞ and lnðkcÞ. Those means were obtained 
from a large set of previous observations as we did for the in
dividual models above (Supplementary Table S4). For Σ, we 
employed a commonly used vague hyper-prior with 

Σ� 1 ¼
10� 4 0
0 10� 4

 !

:

Wi2ðR;2Þ denotes a 2D Wishart distribution that general
izes the Gamma distribution to multidimensional variates 
(compare Ω� 1 above with σ� 2 in Eq. (2)). A widely used 
vague hyper-prior is obtained with 

R ¼
0:175 0
0 0:175

 !

:

Lastly, writing RIAki the ith observed RIA for patient k, 
the residuals likelihood is defined by 

dαk

dt
¼ expðθ1kÞ f tð Þ � αk

� �
exp θ2kð Þ;

dβk

dt
¼ αk � βkð Þ exp θ2kð Þ;

θk � N2 μθ;Ωð Þ;

μθ � N2 μ;Σð Þ;

Ω� 1 � Wi2 R; 2ð Þ;

sk � N μs; σ2
s

� �
;

RIAki � N βki � sk; σ2=wki
� �

;

σ� 2 � γ 0:001; 0:001ð Þ;

(3) 

with (similar to the individual model) βki the value of βkðtÞ at 
the time where RIAki was observed, and the corresponding 
weight wki. Then, θ1k is lnðλkÞ and θ2k is lnðkckÞ, the loga
rithms of patient k turnover parameters.

As with the individual models, we ran the BUGS model 
(reported in Supplementary Information) for 100 000 itera
tions including 50 000 burn-ins, using two chains. The 
Markov chains were initialized with random θk drawn from 

their prior, sk ¼ 0, and σ2 ¼ 0:01. Convergence was achieved 
for all the proteins except alpha-1-microglobulin/bikunin pre
cursor (AMBP), beta-2-microglobulin (B2M), C1S, and 
NRP2. Running the BUGS models, same data and initial 
chains, with WinBUGS that offers real-time visual tracking, 
we found that θ components diverged in opposite directions. 
One parameter became infinitely large, and the other one be
came infinitely small to compensate. We could easily solve 
these four cases by starting the two chains with the parameter 
values θk set to the QNB estimates. Alternatively, an informa
tive prior N2ðμ;ΣÞ with μ and Σ learned from the seven QNB 
estimates available for each protein gave similar results 
(μ was set to the average, and diagonal elements of Σ� 1 to 

Figure 3. Four example proteins in plasma data. (A) Variability of individual parameters for the seven patients. Dots represent QNB estimates, the vertical 
color bars their respective CI95s, and a boxplot computed form the individual estimates was added to the background to suggest population dispersion. 
(B) Areas covered in the ðλ;kcÞ parameter space by the true Bayesian population models. Concentric boundaries indicate the space occupied by 95% 
(inside the innermost boundary), 99% and 99.5% of the population as estimated from the available cohort.

Figure 4. Population dynamics in plasma samples. Areas in the (time, 
RIA)-space that are covered by 95% of the population as estimated by our 
model based on the available cohort. The gray 95% area was obtained by 
generating 500 (λ, kc) pairs and computing the CI95 of all the 500 resulting 
β(t) curves at each time point. The individual curves for the BUGS model 
were obtained from the population model (3) using patient-specific θk 

values. They were as accurate as the solutions found by individual BUGS 
model using Eq. (2) and illustrated in Fig. 2A.
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1/variances). Applying these two alternative priors to the 
23 proteins for which the vague prior worked, we found no 
real differences in the learned population models 
(Supplementary Fig. S6A and B). This indicates that the data 
were strong enough to eliminate any potential bias intro
duced by a specific prior. The four cases that failed with the 
vague prior (AMBP, B2M, C1S, and NRP2) shared the same 
fast turnover dynamics. The two alternative priors produced 
similar estimates for these four proteins (Supplementary Fig. 
S6C). Supplementary Figure S7 features seven proteins with 
individual dynamics and population dynamics represented by 
posterior predictive distributions to further illustrate the lack 
of bias introduced by the prior. Based on these results, we 
opted for the informative prior and obtained bona fide popu
lation parameters for the 27 plasma proteins. Control plots 
to justify the number of iterations and the convergence with 
this specific prior are reported in Supplementary Fig. S8.  
Figure 3B illustrates the population models for the example 
proteins in Fig. 3A. In particular, Fig. 3B shows the popula
tion probability density over the parameter space ðλ;kcÞ. We 
note that the additional area of parameter space covered 
when moving from 95% to 99% or 99.5% of the population 
is very small indicating a robust estimate of turnover diversity 
for each protein.

Another advantage of a population model is that it allows 
us to estimate the range of protein dynamics that can be 
expected from 95% of the population, or any percentage of 
interest. This is done simply by simulating the predictive pos
terior distribution of the population model N2ðμθ;ΩÞ. In  
Fig. 4, four examples of protein dynamic ranges are featured 
along with the individual curves fitted from the same popula
tion model (Eq. (3)), but using θk values.

3.3 Population modeling of heterogeneous data
The CSF protein data showed a much higher inter-patient 
heterogeneity than the plasma dataset. This variability was 
due to the fact that the four CSF patients experienced sub
arachnoid hemorrhage, which introduced blood into the 
CSF. Part of their treatment included ventricular CSF drain
age, which provided the opportunity to collect the samples. 
Although these samples were collected at a late stage of the 
therapy, when the CSF protein concentration was judged to 
have returned to a normal range (Supplementary Table S1), 
we cannot consider the CSF samples to be fully comparable. 
In this methodological work, where no biological conclusions 
are drawn, this provided an opportunity to confront our 
Bayesian approach with much more variable data.

Figure 5. Modeling heterogeneous dynamics. (A) Individual parameter variability in the four CSF patients from group a. (B) Areas in the areas covered in 
the (λ, kc) parameter space by the true Bayesian population models. Concentric boundaries indicate the space occupied by 95% (inside the innermost 
boundary), 99% and 99.5% of the population as estimated from the available cohort. We could not build a population model for AMBP. (C) Extreme 
heterogeneity for AMBP individual dynamics with a very strong outlier. (D) Population dynamics, the gray area represents 95% of the population 
dynamics according to the model based on available data.
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Of the 19 proteins for which we had data for all four 
patients, 12 could be modeled using a vague prior with ran
dom initial values for θk (θ prior parameters were trained on 
a set of roughly 200 different CSF proteins, Supplementary 
Table S5). The vague prior for θk with initial values from 
QNB estimates did not improve to the contrary of what we 
observed in plasma data. The θk informative prior trained on 
individual QNB estimates (see above) could nonetheless im
prove and resulted in 18/19 successful models. The AMBP 
model remained unestimated. Figure 5A illustrates different 
CSF cases covering all configurations of heterogeneity in sig
nal intensity (λ) and turnover (kc). See Supplementary Fig. S9 
for all the 18 models and Supplementary Fig. S10 for infor
mation on sampling convergence. Figure 5B shows the popu
lation coverage of the parameter space. Figure 5C explains 
why CSF AMBP was so refractory to population modeling, 
and Fig. 5D illustrates the population dynamics. We note 
that our population model was successful in heterogeneous 
cases such as A2M or TTR (Fig. 5D).

4 Conclusion
In a previous publication, we introduced a mathematical model 
along with a data processing and filtering pipeline to analyze 
protein turnover data (Lehmann et al. 2019). This methodol
ogy, which we refer to as QNB in this article, enabled us to ob
tain turnover parameters for individual proteins in individual 
samples. Here, we have proposed an extension to integrate the 
population level, i.e. the variability within a cohort of individu
als for each protein. Population-level modeling relied on a hier
archical Bayesian approach combined with MCMC sampling 
to infer model parameters. This is an approach used in popula
tion pharmacokinetic studies (Duffull et al. 2005, Bauer et al. 
2007). Population modeling of protein turnover allowed us 
both to describe inter-individual variability in terms of the typi
cal regions of the parameter space, and to derive accurate, 
individual-specific models capable of accurately inferring turn
over parameters. We also showed that the choice of a specific 
prior had no real impact on the posterior distribution due to 
sufficient experimental data.

Two MRM datasets were exploited. One human blood 
plasma dataset exhibited limited inter-individual variability 
resulting in relatively easy modeling. Another human ventric
ular CSF dataset featured high inter-individual variability, 
which challenged our methodology. We were able to obtain 
accurate models for 18/19 proteins available for each patient, 
the last protein being pathological with one patient having 
massively different dynamics. For a larger cohort with high 
variability, one could imagine to identify subgroups of 
patients beforehand, or to include the notion of subgroup in 
the hierarchical Bayesian model, which is in principle well 
suited for such tasks. This possibility needs to be explored in 
future work with more data.

This study has established a new type of mathematical 
model for the protein turnover community, which we believe 
should greatly facilitate the description and comparison of 
natural and pathological protein turnover at the most rele
vant scale, the population.
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