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Flows in phase space

In dynamical systems theory, a flow or phase flow, is a diffeo-
morphism ϕ(𝑡,x) that satisfies the following equation:

𝑑x

𝑑𝑡
= ¤x = f (x, 𝑡), (1)

where time is the only independent variable, x(𝑡) ∈ R𝑛 , and
f ∶ R𝑛+1 → R𝑛 a smooth differential map that generates the flow.
Phase space is the space spanned by the dependent variables x.

Lorenz Attractor & Rössler Attractor

Figure 1: The systems of equations that generate the Lorenz (2) (𝜎 = 10, 𝑟 =
24.74, 𝛼 = 8/3) and the Rössler (3) attractor (𝑎 = 0.43295, 𝑏 = 2, 𝑐 = 4).

Templex
• When a cell complex 𝐾 is used to describe a structure of a flow in phase

space, the flow will restrict the possibility of circulating along the cells of
a complex.

• In order to take the flow on the complex into account, the cell complex 𝐾
will be endowed with a directed graph 𝐷 = (𝑁, 𝐸) that prescribes the flow
direction between its highest-dimensional cells [2].

Definition 1. A templex𝑇 ≡ (𝐾, 𝐷) of dimension 𝑑 is made of a 𝑑-complex 𝐾
approximating a branched 𝑑-manifold associated with a flow in phase space,
and a digraph 𝐷 = (𝑁, 𝐸) such that (i) the nodes 𝑁 are the 𝑑-cells of 𝐾 and
(ii) the edges 𝐸 are the flow-allowed connections between the 𝑑-cells.

Definition 2. Let𝐾 be a two-dimensional complex and let 𝛾𝑖 denote its 2-cells.
The joining line is formed by the 1-cells shared by at least three 2-cells. The
1-cells and 2-cells with this property are called joining 1-cells and joining
2-cells respectively, and the set of joining cells are called the joining locus
(or loci).

Figure 2: The joining locus is formed by the 1-joining line (in red), the two
ingoing 2-cells 𝛾1, 𝛾2, and the outgoing 2-cell 𝛾3.

Definition 3. A generatex 𝐺 = (𝐾𝑔, 𝐷𝑔) is a subtemplex in 𝑇 = (𝐾, 𝐷),
where 𝐷𝑔 is a cycle of the digraph 𝐷, and 𝐾𝑔 ⊂ 𝐾 .

Definition 4. Generatexes 𝐺1 and 𝐺2 are equivalent if they have the same set
of ingoing and outgoing cells.

The generatexes stand for the non-equivalent ways of travelling through the
complex by the flow. The generatexes provide the ’topological fingerprinting’
of the dynamics of the system.

Figure 3: Segmentation of the point cloud for the Lorenz (a) and Rössler
(d) point-clouds. Cell complexes (b), (e). Digraphs (c), (f). They were all
computed using the algorithm in [1].

Figure 4: Simplified cell complexes 𝐾𝐿 (Lorenz) (a) and 𝐾𝑅 (Rössler)
(b). Digraphs with coloured cycles 𝐷𝐿 (b) and 𝐷𝑅 (e). (c) 3 gener-
atexes and a 2-component joining line 𝐽1 ∪ 𝐽2 (Lorenz), and (f) 2 gen-
eratexes and 1-component of the joining line 𝐽 (Rössler). The templex
𝑇𝐿 = (𝐾𝐿, 𝐷𝐿) has three generatexes {𝐺1, 𝐺2, 𝐺3} where: 𝐾𝐿 (𝐺1) =

{𝛾1, 𝛾2, 𝛾4, 𝛾6}, and 𝐷𝐿 (𝐺1) = {1 → 2 → 4 → 6 → 1} (light blue);
𝐾𝐿 (𝐺2) = {𝛾8, 𝛾9, 𝛾11, 𝛾13}, and 𝐷𝐿 (𝐺2) = {8 → 9 → 11 → 13 → 9}
(red); and 𝐾𝐿 (𝐺3) = {𝛾1, 𝛾3, 𝛾5, 𝛾7, 𝛾8, 𝛾10, 𝛾12, 𝛾14}, and 𝐷𝐿 (𝐺3) = {1 →
3 → 5 → 7 → 8 → 10 → 12 → 14 → 1} (green). The templex 𝑇𝑅 = (𝐾𝑅, 𝐷𝑅)
has two generatexes {𝐺1, 𝐺2} where: 𝐾𝑅(𝐺1) = {𝛾1, 𝛾2, 𝛾3, 𝛾5} and
𝐷𝑅(𝐺1) = {1 → 2 → 3 → 5 → 1} (red), and 𝐾𝑅(𝐺2) = {𝛾1, 𝛾2, 𝛾4, 𝛾6}
and 𝐷𝑅(𝐺2) = {1 → 2 → 4 → 6 → 1} (green).

Local dimension
The dynamics of an attractor can be characterised by studying the recurrence
of a state 𝜁 on the attractor. This recurrence is measured by two scalars: 𝐷1 the
local dimension and 𝜃 the extremal index. 𝐷1 and 𝜃 are computed using the
Poincaré recurrence theorem and the Extreme Value Theory [4, 3]. Extreme
values of the function 𝑔(𝑡, 𝜁) = −𝑙𝑜𝑔(𝑑𝑖𝑠𝑡 (𝑥(𝑡), 𝜁)) measure the recurrences
of a state 𝜁 on the attractor. Let 𝑃(𝑔(𝑡, 𝜁) > 𝑞, 𝜁) ≃ 𝑒−(𝑥−𝜇(𝜁))/𝜎(𝜁) be the
distribution of the extremes. For a state 𝜁 , the local dimension is defined as:
𝐷1(𝜁) = 1/𝜎(𝜁) and it measures the density of neighbouring points (similar
configurations). The stability of the state 𝜁 is measured by the extremal index
𝜃 (𝜁), defined as the inverse of the average persistence time of trajectories near
𝜁 . The more persistent the state 𝜁 , the more the previous and subsequent
states of the system will resemble 𝜁 .

Figure 5: Local dimension 𝐷1 for the Lorenz (a) and Rössler (b) attractors.
Note that regions with high values of 𝐷1 are associated with the joining locus
at each cell complex.

Persistent Generatexes
Let {𝑡 𝑗}1≤ 𝑗≤𝑁 , 𝑁 ∈ N be a monotonically increasing sequence of times and
{𝑥(𝑡 𝑗) ∈ R𝑛} a point cloud in the n-dimensional phase space, where {𝑥(𝑡 𝑗)}
is a trajectory obtained from a dynamical system. Let 𝑆 = ∪𝑘

𝑚=1𝑆𝑚 be a
segmentation of the point cloud,such that: 𝑆𝑚 = {{𝑥(𝑡 𝑗𝑖)} ∶ 𝑗𝑖 ⊆ {1⋯𝑁}} and
𝑆𝑚𝑖 ∩ 𝑆𝑚 𝑗

= ∅, ∀𝑖, 𝑗 .
Filtration is defined as a nested subsequence of digraphs,

𝐺0 ⊇ 𝐺1 ⊇ ⋯ ⊇ 𝐺 𝑝𝑙 ⊇ ⋯,

where 𝐺 𝑝𝑙 = (𝑁𝑝𝑙 , 𝐸𝑝𝑙) and 𝑝𝑙 ∈ R≥0 is the parameter of filtration with
0 ≤ 𝑝0 ≤ 𝑝1 ≤ ⋯ ≤ 𝑝𝑙⋯ ≤ 𝑝 𝑓 ≤ 1.

For a segmentation 𝑆, 𝑁𝑝𝑖 = 𝑁𝑝 𝑗 = 𝑁 ∀𝑖, 𝑗 , and each node in 𝑁 represents
a segment in 𝑆. The set of edges 𝐸𝑝𝑖 are the connections between the nodes
depending on a filtration parameter 𝑝𝑖: (𝑖, 𝑗) ∈ 𝐸𝑝𝑖 if there is a proportion ≥ 𝑝
of points ∈ 𝑆𝑖 such that 𝑥𝑖 (𝑡 + 𝑑𝑡) ∈ 𝑆 𝑗 , where 𝑑𝑡 is a time interval.

This flow-filtration law leads to a sequence of nested set of edges:

𝐸𝑝0 ⊇ 𝐸𝑝1 ⊇ ⋯ ⊇ 𝐸𝑝𝑙 ⊇ ⋯

Figure 6: (a) Segmentation of the Lorenz point-cloud, (b) connected compo-
nents of the digraph as the parameter 𝑝 increases, and (c) example of a nested
sequence of digraphs.

Definition 5. A templex filtration {𝑇𝑝𝑙 ≡ (𝑆, 𝐾, 𝐺 𝑝𝑙)}𝑙∈{1⋯ 𝑓 } is defined as a
sequence of templexes where 𝑆 is a segmentation of a point cloud, 𝐾 is a cell

complex associated with the point-cloud, and 𝐺 𝑝𝑙 = (𝑁, 𝐸𝑝𝑙) is a digraph
such that (i) the nodes 𝑁 are segments in 𝑆 which represent the 𝜅-cells of 𝐾
and (ii) the edges 𝐸𝑝𝑙 are the connections between these 𝜅-cells associated
with the flow-filtration parameter 𝑝𝑙.
Definition 6. The joining locus of a segmentation 𝑆 is formed by the set of
outgoing and ingoing nodes. A node 𝑛 ∈ 𝑁 in the digraph 𝐺 𝑝𝑙 = (𝑁, 𝐸𝑝𝑙) is
defined as an outgoing node if: (i) 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒(𝑛) ≥ 2 and (ii) there is 𝑚 ∈ 𝑁
such that (𝑚, 𝑛) ∈ 𝐸𝑝𝑙 , and 𝐷1(𝑆𝑚) ≥ 𝜏, where 𝑆𝑚 is the segment associated
with the node 𝑚, and 𝜏 is a threshold on the local dimension 𝐷1. This node
𝑚 will be called an ingoing node.

For each filtration parameter 𝑝𝑙, the subset of cycles of 𝐺 𝑝𝑙 , where in each
cycle a pair of ingoing-outgoing node is present, will be noted as 𝐶 (𝑝𝑙).
Definition 7. Each cycle of 𝐶 (𝑝𝑙), is associated with a chain of segments
and 𝜅-cells which forms a sub-templex called psedougeneratex. Two pse-
dougeneratexes are equivalent if they have the same set of outgoing-ingoing
nodes.
Definition 8. The set of persistent generatexes is the non equivalent set of
pseudogeneratexes that persists the most in the barcode of pseudogeneratexes.

Figure 7: Barcode of pseudogeneratexes (top) for the Lorenz attractor. There
are three persistent generatexes coloured in green (a), red (b) and magenta (c)
(bottom).

Figure 8: Barcode of pseudogeneratexes (top) for the Rössler attractor. There
are two persistent generatexes coloured in red (left) and green (right) (bottom).

Conclusions & Future work
• The templex approach allows to determine the non-equivalent paths com-

patible with the flow along the structure and the topological structure of
the branched manifold.

• In the case of flows where the dimension of the space space is high (at-
mospheric flows), we may obtain a dynamical characterisation by using
persistent generatexes.

• The examples shown here are all three-dimensional systems, but four-
dimensional cases are being treated as well.

• Persistent generatexes approach allows us to determine the non-equivalent
paths and the joining locus between the clusters of a point cloud.

• It is an ongoing work: exploring the use of different types of segmentations
(kmeans, BraMaH), measuring the robustness of the method, etc.
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