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STABILITY OF KDV EQUATION ON A NETWORK

WITH BOUNDED AND UNBOUNDED BRANCHES

Hugo Parada1,* , Emmanuelle Crépeau2 and Christophe Prieur3

Abstract. In this work, we studied the exponential stability of the nonlinear KdV equation posed on
a star shaped network with a finite number of branches. On each branch of the network we define a KdV
equation posed on a finite domain (0, ℓj) or the half-line (0,∞). We start by proving well-posedness and
some regularity results. Then, we state the exponential stability of the linear KdV equation by acting
with a damping term on some branches. The main idea is to prove a suitable observability inequality. In
the nonlinear case, we obtain two kinds of results: The first result holds for small amplitude solutions,
and is proved using a perturbation argument from the linear case but without acting on all edges. The
second result is a semiglobal stability result, and it is obtained by proving an observability inequality
directly for the nonlinear system, but we need to act with damping terms on all the branches. In this
case, we are able to prove the stabilization in weighted spaces.

Mathematics Subject Classification. 35R02, 93C20, 35B35, 93D15.
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1. Introduction

In [1], the Korteweg–de Vries (KdV) equation was first proposed to model the behavior of long water waves
in a channel. This famous nonlinear third-order dispersive equation arises in various physical systems, including
water waves, tsunamis, the transmission of electrical signals in nerve fibers, plasma, cosmology, etc. (see, for
example, [2–4]). It is a prototypical example of a soliton equation, which admits solutions in the form of solitary
waves that preserve their shape and speed during propagation. If we study the KdV equation in a bounded
domain, the following model was suggested in [5]

∂tu+ ∂xu+ ∂3xu+ u∂xu = 0.

The KdV equation has been the subject of extensive research in recent years, with a particular focus on its
controllability and stabilization properties, which are detailed for instance in [6] and [7]. When it is defined on
a network, the KdV equation was proposed to model the pressure of an arterial tree [8]. We also mention [9, 10]
where controllability properties were studied and [11, 12] where the exponential stability was achieved by acting
with damping terms with time-delay and saturation, respectively (see [13] for more problems related to KdV in
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Figure 1. Star shaped network for NF = 4 and N∞ = 3.

networks). The main difference of this work with the previously cited is that we consider a star-shaped network
mixing bounded and unbounded lengths as, for example, [14, 15] in the case of wave equation.
With respect to the KdV equation defined on the half-line, we can mention, for instance, [5, 16] which focus
on the well-posedness properties. In [17], the exact controllability of the linear KdV equation defined on the
half-line was obtained by using Carleman estimates. A first result of exponential stability of the KdV equation
in the half-line considering a localized damping was derived in [18] under the assumption that the damping term
a(x) ≥ c > 0 in (0, δ)∪ (β,∞) with β > δ (see [19] for a similar problem in the context of KdV-Burger equation
in the whole-line and half-line). Then, in [20] exponential decay of the energy in weighted spaces was derived,
and it was noticed that the interval (0, δ) can be dropped. We can mention also [21] where similar ideas of [20]
were applied in the case of a Gear-Grimshaw system modeling long waves. This work is the continuation of [22]
(see also [23]) where the linear case was studied. Here we expose both linear and nonlinear problems in a sake
of completeness.

In this work inspired by [8, 18] we study the exponential stabilization problem of the KdV equation posed
on a star shaped network where the branches mix finite intervals and half-lines.

Let a < b, two real numbers, we set

Ja, bK = N ∩ [a, b], Ka, bK = N ∩ (a, b].

Let K = {kj : j ∈ J1, NK} be the set of the N = NF +N∞ edges of a network T described as the intervals Ij
for j ∈ J1, NK, where {

Ij = (0, ℓj) with ℓj > 0 j ∈ J1, NF K,
Ij = (0,∞) j ∈ KNF , NK.

The network T is defined by T =

N⋃
j=1

kj . We consider a network of N = NF + N∞ damped nonlinear KdV

equations (see Fig. 1), each one of them defined on Ij for j ∈ J1, NK, i.e.,

(∂tuj + ∂xuj + ∂3xuj + uj∂xuj + ajuj)(t, x) = 0, ∀x ∈ Ij , t > 0.
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These equations are connected by transmission conditions at 0 as follows
uj(t, 0) = uj′(t, 0), j, j′ ∈ J1, NK, t > 0,

(
continuity condition

)
,

N∑
j=1

∂2xuj(t, 0) = −αu1(t, 0)−
N

3
(u1(t, 0))

2, t > 0,
(
null-flux like condition

)
,

where α >
N

2
is chosen to have a non-increasing energy (see the end of this section), while the central node

conditions are inspired by [8, 11, 12] and are taken in order to model the blood pressure on the arterial tree.
For j ∈ J1, NF K, we complement the system with the classical null boundary conditions at the right end,

uj(t, ℓj) = ∂xuj(t, ℓj) = 0, t > 0.

In the case of the KdV equation posed in bounded domain, three boundary conditions are needed, i.e., two
at the right and one at the left. For the half-line (0,∞) case due to the sense of propagation and the sign
of the dispersive term, just one boundary condition is needed to the left for each equation [5, 16]1 At the
central node, we have N boundary conditions N − 1 coming from the continuity and one coming from the flux
condition. Finally, we consider initial condition uj(0, x) = u0j (x), x ∈ Ij for j ∈ J1, NK. According to the previous
hypothesis, the system studied in this work reads as:

(∂tuj + ∂xuj + uj∂xuj + ∂3xuj + ajuj)(t, x) = 0, ∀x ∈ Ij , t > 0, j ∈ J1, NK,
uj(t, 0) = uj′(t, 0), ∀j, j′ ∈ J1, NK,
N∑
j=1

∂2xuj(t, 0) = −αu1(t, 0)−
N

3
(u1(t, 0))

2, t > 0,

uj(t, ℓj) = ∂xuj(t, ℓj) = 0, t > 0, j ∈ J1, NF K,
uj(0, x) = u0j (x), x ∈ Ij , j ∈ J1, NK,

(KdV)

and its linearization around zero:

(∂tuj + ∂xuj + ∂3xuj + ajuj)(t, x) = 0, ∀x ∈ Ij , t > 0, j ∈ J1, NK,
uj(t, 0) = uj′(t, 0), ∀j, j′ ∈ J1, NK,
N∑
j=1

∂2xuj(t, 0) = −αu1(t, 0), t > 0,

uj(t, ℓj) = ∂xuj(t, ℓj) = 0, t > 0, j =∈ J1, NF K,
uj(0, x) = u0j (x), x ∈ Ij , j ∈ J1, NK,

(LKdV)

where α >
N

2
. The damping terms (aj)j∈J1,NK ∈ L∞(T ), act locally on the branches.

Remark 1.1. The limit case α =
N

2
was rid off in [9, 12] in the context of bounded branches using a specific

multiplier (different on each branch) in the well-posedness result. The adaptability of this strategy for unbounded

branches is open. As our focus is on stability results, we just analyze the case α >
N

2
.

1For instance in [16] was shown that for the equation ∂tu + ∂xu + ∂3
xu + u∂xu = 0, for x < 0, two boundary conditions are

needed, i.e. u(t, 0) = ∂xu(t, 0)) = 0.
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Figure 2. Structure of acted region (in red) in the case of bounded and unbounded branch.

Our purpose, is to achieve the exponential stability by acting with the damping terms, not necessarily in all
the branches. Let Iact ⊂ J1, NK the set of action index, formally the damping terms, are taken in the following
way:

� No action index: For j ∈ J1, NK \ Iact, aj ≡ 0.
� Local action: For j ∈ Iact, aj(x) ≥ cj > 0 in a nonempty open set ωj of Ij .
� Structure of action set in the half-line case: For the index j ∈KNF , NK ∩ Iact, we take a specific
structure of the set ωj = (βj ,∞), for βj > 0 given.

These properties are summarized in
aj ≡ 0 for j ∈ J1, NK \ Iact,
aj(x) ≥ cj > 0 in ωj ⊂ Ij , for j ∈ Iact,
ωj = (βj ,∞), for j ∈KNF , NK ∩ Iact.

(1.1)

To study the well-posedness properties of (KdV), we need to introduce some specific spaces. Let s = 1,2 and
for j ∈ J1, NF K consider the space

Hs
r (Ij) =

{
v ∈ Hs(Ij),

(
d

dx

)i−1

v(ℓj) = 0, 1 ≤ i ≤ s

}
,

where the index r is related to the null right boundary conditions, and the space Hs
e(T ) defined by

Hs
e(T ) =

u = (u1, . . . , uN )T ∈
NF∏
j=1

Hs
r (Ij)× (Hs(0,∞))N∞ , uj(0) = uj′(0),

∀j, j′ = 1, . . . , N} ,with s = 1, 2,

with its associated norm:

∥u∥2H1
e(T ) =

N∑
j=1

∥uj∥2H1(Ij)
, for s = 1.

We introduce also the product spaces: H3(T ) =

N∏
j=1

H3(Ij), L∞(T ) =

N∏
j=1

L∞(Ij), and L2(T ) =

N∏
j=1

L2(Ij), with

(u, v)L2(T ) =

NF∑
j=1

∫ ℓj

0

ujvjdx+

N∑
j=NF+1

∫ ∞

0

ujvjdx, ∀u, v ∈ L2(T ),
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and the weighted spaces

L2
(1+x)(0,∞) := {f ∈ L2(0,∞) :

∫ ∞

0

(1 + x)f2dx <∞},

L2
(1+x2)(0,∞) := {f ∈ L2(0,∞) :

∫ ∞

0

(1 + x2)f2dx <∞},

endowed with the norms

∥f∥L2
(1+x)

(0,∞) =

(∫ ∞

0

(1 + x)f2dx

)1/2

, ∥f∥L2
(1+x2)

(0,∞) =

(∫ ∞

0

(1 + x2)f2dx

)1/2

.

We also define the spaces Bj = C([0, T ], L2(Ij)) ∩ L2(0, T ;H1(Ij)) for j ∈ J1, NF K, B∞ = {f ∈

C([0, T ];L2
(1+x2)(0,∞)); such that ∂xf ∈ L2(0, T ;L2

(1+x)(0,∞))}, and B =

NF∏
j=1

Bj × (B∞)N∞ , endowed with

the norms

∥u∥Bj
= ∥u∥C([0,T ],L2(Ij)) + ∥u∥L2(0,T ;H1(Ij)), j ∈ J1, NF K,

∥u∥B∞ = ∥u∥C([0,T ];L2
(1+x2)

(0,∞)) + ∥∂xu∥L2(0,T ;L2
(1+x)

(0,∞)).

Finally, we define the spaces Y =

NF∏
j=1

L2(Ij)× (L2
(1+x2)(0,∞))N∞ and

Xs =

NF∏
j=1

L2(0, T ;Hs(0, ℓj))× (L2(0, T ;Hs
loc(0,∞)))N∞ , for s = −2,−1, 0, 1.

For the systems (KdV) and (LKdV) we define the natural L2(T ) energy of a solution by

E(t) =
1

2

N∑
j=1

∫
Ij

(uj(t, x))
2dx. (1.2)

We can check that for every sufficiently smooth solution of (KdV) or (LKdV) the energy satisfies

Ė(t) = −
(
α− N

2

)
(u1(t, 0))

2 − 1

2

N∑
j=1

(∂xuj(t, 0))
2 −

N∑
j=1

∫
Ij

aj(x)(uj(t, x))
2dx. (1.3)

Observe that, as aj ≥ 0, the term ajuj provides dissipation to the energy, then Ė(t) ≤ 0. This work is devoted to
prove that indeed the terms ajuj provides exponential stability of (LKdV) and (KdV). The article is organized
as follows. In Section 2, the well-posedness of (LKdV) and (KdV) is proven using semigroup theory and a fixed
point approach. In Section 3 some extra regularity results are obtained for (LKdV) and (KdV). In Section 4, the
stabilization problem is studied, and an observability inequality is used to prove exponential stability. Secondly,
we deduce a semiglobal exponential stability result for (KdV) by acting with the damping terms on all the
branches. In Section 5 also using damping terms actives in all the branches, we show the exponential stability of
(KdV) in Y, that is the same spaces for the well-posedness and stability. Finally, we present some conclusions
and final remarks.
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2. Well-posedness and regularity results for
LKdV and KdV system

Our idea is the following one, first we prove a well-posedness result for (LKdV) then we add a boundary
source term g(t) at the central node and internal source terms fj(t, x) to play the role of the nonlinear boundary

condition −N
3
u21(t, 0) and internal terms uj∂xuj respectively. Finally, to pass to the nonlinear case (KdV), we

use a fixed point argument. In what follows, we use the well known definitions of classical and mild solutions
[24], Chapter 4.

2.1. Linear case

Note that (LKdV) can be written as {
ut(t) = Au(t), t > 0,

u(0) = u0,
(2.1)

where the operator A is defined by,

Au = −(∂x + ∂3x + a)u,

D(A) =

u ∈ H3(T ) ∩H2
e(T ),

N∑
j=1

d2uj
dx2

(0) = −αu1(0)

 .

Let u ∈ D(A), then, after some integrations by parts,

(u,Au)L2(T ) = −
(
α− N

2

)
(u1(0))

2 − 1

2

N∑
j=1

(∂xuj(0))
2 −

N∑
j=1

∫
Ij

aj(uj)
2dx ≤ 0.

Easy calculations show that A∗ is defined by

A∗v = (∂x + ∂3x + a)v,

D(A∗) =

v ∈ H3(T ) ∩H1
e(T ),

N∑
j=1

d2vj
dx2

(0) = (α−N)v1(0),
dvj
dx

(0) = 0,∀j ∈ J1, NK

 .

Similarly, we get that for all v ∈ D(A∗)

(v,A∗v)L2(T ) = −
(
α− N

2

)
(v1(0))

2 − 1

2

NF∑
j=1

(∂xvj(ℓj))
2 −

N∑
j=1

∫
Ij

aj(vj)
2dx ≤ 0.

Finally, A and A∗ are dissipative, and A is a densely defined closed operator, thus by [24], Corollary 4.4, Chapter
1 A is the infinitesimal generator of a C0 semigroup of contractions on L2(T ). Systems (LKdV) and (2.1) are
equivalent, thus we deduce the following result.

Theorem 2.1. Let u0 ∈ L2(T ), then, there exists a unique mild solution u ∈ C([0,∞);L2(T )) of (LKdV).
Moreover, if u0 ∈ D(A), then u is a classical solution and u ∈ C([0,∞);D(A)) ∩ C1([0,∞);L2(T )).
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2.2. Extra boundary condition and source term

Following [8], we prove now some regularity results for the linear KdV equation with extra boundary source
term g(t) at the central node and extra internal term fj(t, x)



(∂tuj + ∂xuj + ∂3xuj + ajuj)(t, x) = fj(t, x), ∀x ∈ Ij , t > 0, j ∈ J1, NK,
uj(t, 0) = uj′(t, 0), ∀j, j′ ∈ J1, NK,
N∑
j=1

∂2xuj(t, 0) = −αu1(t, 0) + g(t), t > 0,

uj(t, ℓj) = ∂xuj(t, ℓj) = 0, t > 0, j ∈ J1, NF K,
uj(0, x) = u0j (x), x ∈ Ij , j ∈ J1, NK.

(2.2)

Proposition 2.2. Let T > 0, (u0, g, f) ∈ L2(T )× L2(0, T )× L1(0, T ;L2(T )), then there exists a unique mild

solution u ∈ C([0, T ],L2(T )) of (2.2). If (u0, g, f) ∈ D(A)× C2
0 ([0, T ])× C1([0, T ];L2(T )) where C2

0 ([0, T ]) :=

{φ ∈ C2([0, T ]) : φ(0) = 0}, then, the solution is classical and u ∈ C([0,∞);D(A)) ∩ C1([0,∞);L2(T )).
Moreover, if f = 0 and g = 0, the following estimate holds

∥u0∥2L2(T ) ≤C

(
1

T
∥u∥2L2([0,T ];L2(T )) + ∥u1(·, 0)∥2L2(0,T ) + ∥∂xu(·, 0)∥2L2(0,T )

+

N∑
j=1

∫ T

0

∫
Ij

aj(uj)
2dxdt

)
.

(2.3)

Proof. Let (u0, g, f) ∈ D(A)× C2
0 ([0, T ])× C1([0, T ];L2(T )) and the lifting function ϕ defined as

ϕj(x) =



(x− ℓj)
2

ℓ2j

(
2

NF∑
k=1

ℓ−2
k + 2N∞ + α

) , j ∈ J1, NF K,

(x− 1)2

2

NF∑
k=1

ℓ−2
k + 2N∞ + α

η(x), j ∈KNF , NK,

where η ∈ C∞(0,∞) is a smooth function such that η(x) = 1, for x ∈ (0, δ0) and η(x) = 0 for x ∈ (δ0 + 1,∞)
for δ0 > 0 given. We can easily check that



ϕj(ℓj) = ϕ′j(ℓj) = 0, ∀j ∈ J1, NF K,

ϕj(0) =
1

2

NF∑
k=1

ℓ−2
k + 2N∞ + α

= ϕj′(0), ∀j, j′ ∈ J1, NK,

N∑
j=1

ϕ
′′

j (0) = 1− αϕ1(0).

(2.4)
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Define v := u− gϕ, then u is solution of (2.2) if and only if v is solution of (2.5)



(∂tvj + ∂xvj + ∂3xvj + ajvj)(t, x) = f̃j(t, x), ∀x ∈ Ij , t > 0, j ∈ J1, NK,
vj(t, 0) = vj′(t, 0), ∀j, j′ ∈ J1, NK,
N∑
j=1

∂2xvj(t, 0) = −αv1(t, 0), t > 0,

vj(t, ℓj) = ∂xvj(t, ℓj) = 0, t > 0, j ∈ J1, NF K,
vj(0, x) = u0j (x), x ∈ Ij , j ∈ J1, NK,

(2.5)

where f̃j(t, x) = fj(t, x)− ϕj(x)g
′(t)− (ϕ′j + ϕ′′′j + ajϕj)(x)g(t).

Thus, as f − ϕg′ − (ϕ′ + ϕ′′′ + aϕ)g ∈ C1([0, T ],L2(T )), by the classical semigroup theory and Theorem 2.1,

we deduce the existence of a unique solution v of (2.5). Moreover, v ∈ C([0, T ], D(A)) ∩ C1([0, T ];L2(T )) and
hence (2.2) admits a unique classical solution u ∈ C([0, T ], D(A)) ∩ C1([0, T ];L2(T )).

Now, let u be a classical solution of (2.2). Multiplying the first line of (2.2) by uj and integrating on [0, s]× Ij ,
after some integrations by parts we get for s ∈ (0, T )

N∑
j=1

∫
Ij

(uj(s, x))
2dx+

N∑
j=1

∫ s

0

(∂xuj(t, 0))
2dt+ (2α−N)

∫ s

0

(u1(t, 0))
2dt+ 2

N∑
j=1

∫ s

0

∫
Ij

aj(uj)
2dxdt

=

N∑
j=1

∫
Ij

(uj(0, x))
2dx+ 2

N∑
j=1

∫ s

0

∫
Ij

fjujdxdt+ 2

∫ s

0

u1(t, 0)g(t)dt.

(2.6)

Note that

2

N∑
j=1

∫ s

0

∫
Ij

fjujdxdt+ 2

∫ s

0

u1(t, 0)g(t)dt ≤2

N∑
j=1

∫ T

0

∥fj∥L2(Ij)∥uj∥L2(Ij)dt+ 2

∫ T

0

|u1(t, 0)g(t)|dt

≤2

N∑
j=1

∥uj∥C([0,T ],L2(Ij))

∫ T

0

∥fj∥L2(Ij)dt

+ 2

∫ T

0

|u1(t, 0)||g(t)|dt.

(2.7)

Using Young’s inequality, we get for all ε > 0

2

N∑
j=1

∫ s

0

∫
Ij

fjujdxdt+ 2

∫ s

0

u1(t, 0)g(t)dt ≤ε∥u∥2C([0,T ];L2(T )) +
1

ε
∥f∥2L1(0,T ;L2(T ))

+ ε∥u1(·, 0)∥2L2(0,T ) +
1

ε
∥g∥2L2(0,T ).
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Next, taking the supremum for s ∈ (0, T ) in each term of the left-hand-side of (2.6), recalling α > N
2 and

choosing ε small enough we deduce

∥u∥2C([0,T ];L2(T )) + ∥u1(·, 0)∥2L2(0,T ) + ∥∂xu(·, 0)∥2L2(0,T ) +

N∑
j=1

∫ T

0

∫
Ij

aj(uj)
2dxdt

≤ C
(
∥u0∥2L2(T ) + ∥f∥2L1(0,T ;L2(T )) + ∥g∥2L2(0,T )

)
,

(2.8)

for a suitable C > 0, that does not depend on u0, f and g. Thus, by density of D(A) × C2
0 ([0, T ]) ×

C1([0, T ];L2(T )) in L2(T ) × L2(0, T ) × L1(0, T ;L2(T )) we extend our result to arbitrary data (u0, g, f) ∈
L2(T )× L2(0, T )× L1(0, T ;L2(T )).

Finally, to prove (2.3), consider f = 0 and g = 0. Then, multiplying the first line of (2.2) by (T − t)uj and
integrating on [0, T ]× Ij , after some integrations by parts we get

T

N∑
j=1

∫ ℓj

0

(uj(0, x))
2dx =

N∑
j=1

∫ T

0

∫
Ij

(uj)
2dxdt+ (2α−N)

∫ T

0

(T − t)(u1(t, 0))
2dt

+

N∑
j=1

∫ T

0

(T − t)(∂xuj(t, 0))
2dt+ 2

N∑
j=1

∫ T

0

∫
Ij

(T − t)aj(uj)
2dxdt.

(2.9)

we deduce (2.3) easily from (2.9).

Remark 2.3. For a single nonlinear KdV equation posed on the half-line, from [25], Theorem 2.1 we know
that for any initial data in L2(0,∞) we have a unique solution in C([0, T ];L2(0,∞)). In the network case, due
to the semigroup approach, an analogous result is quite difficult to achieve. In fact, in the semigroup framework
we write our system as ut = Au + f , where f plays the role of the nonlinearity. As it is classical, we ask for

f ∈ L1(0, T ;L2(T )). For the nonlinear system, this requires that uj∂xuj ∈ L1(0, T ;L2(0,∞)). But we are not

able to prove this with initial data in L2(T ) (see also Rem. 2.5).

Motivated by this remark, we introduce the following proposition to obtain the classical L2(0, T ;H1(Ij))
regularity for solutions of the KdV equation, this will help us to deal with the nonlinearities, but the price to
pay is to consider more regular initial conditions on infinite edges.

Proposition 2.4. Let (u0, g, f) ∈ Y × L2(0, T ) × L1(0, T ;Y), then the mild solution u of (2.2) (given by
Prop. 2.2) satisfies u ∈ B. Moreover,

∥uj∥Bj
≤ C

(
∥u0∥L2(T ) + ∥f∥L1(0,T ;L2(T )) + ∥g∥L2(0,T )

)
, j ∈ J1, NF K,

∥uj∥B∞ ≤ C
(
∥u0∥L2(T ) + ∥u0j∥L2

(1+x2)
(0,∞) + ∥f∥L1(0,T ;L2(T )) + ∥fj∥L1(0,T ;L2

(1+x2)
(0,∞))

+∥g∥L2(0,T )

)
, j ∈ KNF , NK.
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Proof. Let u be a classical solution to (2.2), multiplying the first line of (2.2) by xuj , integrating on [0, T ]× Ij
after some integrations by parts we get

1

2

∫
Ij

x(uj(T, x))
2dx+

3

2

∫ T

0

∫
Ij

(∂xuj)
2dxdt+

∫ T

0

∫
Ij

ajx(uj)
2dxdt =

1

2

∫
Ij

x(u0j )
2dx

+
1

2

∫ T

0

∫
Ij

(uj)
2dxdt−

∫ T

0

u1(t, 0)∂xuj(t, 0)dt+

∫ T

0

∫
Ij

xfjujdxdt.

(2.10)

Now, using that for all x ≥ 0, x ≤ 1 + x2, we deduce

1

2

∫
Ij

x(u0j )
2dx ≤


ℓj
2
∥u0j∥2L2(Ij)

, j ∈ J1, NF K,

1

2
∥u0j∥2L2

(1+x2)
(0,∞)

, j ∈KNF , NK.

Similarly

∫ T

0

∫
Ij

xujfjdxdt ≤


ℓj∥uj∥C([0,T ];L2(Ij))∥fj∥L1(0,T ;L2(Ij)), j ∈ J1, NF K,

∥uj∥C([0,T ];L2(0,∞))∥fj∥L1(0,T ;L2
(1+x2)

(0,∞)), j ∈KNF , NK.

Thus, using the above inequalities, (2.10) and (2.8), we can obtain

∥∂xuj∥2L2(0,T ;L2(Ij))
≤ C

(
∥u0∥2L2(T ) + ∥f∥2L1(0,T ;L2(T )) + ∥g∥2L2(0,T )

)
, j ∈ J1, NF K,

∥∂xuj∥2L2(0,T ;L2(0,∞)) ≤ C

(
∥u0∥2L2(T ) + ∥u0j∥2L2

(1+x2)
(0,∞) + ∥f∥2L1(0,T ;L2(T ))

+∥fj∥2L1(0,T ;L2
(1+x2)

(0,∞)) + ∥g∥2L2(0,T )

)
, j ∈KNF , NK.

(2.11)

From the last inequalities we get ∂xu ∈ L2(0, T ;L2(T )), in particular for j ∈ J1, NF K, ∂xuj ∈ Bj . Now, for
j ∈KNF , NK multiplying by x2uj , integrating on [0, s]× (0,∞) after some integrations by parts we get

1

2

∫ ∞

0

x2(uj(s, x))
2dx+ 3

∫ s

0

∫ ∞

0

x(∂xuj)
2dxdt+

∫ s

0

∫ ∞

0

ajx
2(uj)

2dxdt =
1

2

∫ ∞

0

x2(u0j )
2dx

+

∫ s

0

∫ ∞

0

x(uj)
2dxdt+

∫ s

0

(u1(t, 0))
2dt+

∫ s

0

∫ ∞

0

x2fjujdxdt.

(2.12)

Note that, for all ε > 0

∫ s

0

∫ ∞

0

x(uj)
2dxdt ≤

∫ s

0

∥xuj∥L2(0,∞)∥uj∥L2(0,∞)dt ≤ ∥xuj∥C([0,T ];L2(0,∞))

∫ T

0

∥uj∥L2(0,∞)dt

≤ ε

2
∥xuj∥2C([0,T ];L2(0,∞)) +

T 2

2ε
∥uj∥2C([0,T ];L2(0,∞)).

(2.13)
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∫ s

0

∫ ∞

0

x2fjujdxdt ≤
∫ s

0

∥xuj∥L2(0,∞)∥xfj∥L2(0,∞)dt ≤ ∥xuj∥C([0,T ];L2(0,∞))

∫ T

0

∥xfj∥L2(0,∞)dt

≤ ε

2
∥xuj∥2C([0,T ];L2(0,∞)) +

1

2ε
∥fj∥2L1(0,T ;L2

(1+x2)
(0,∞)).

Then, taking the supremum for s ∈ (0, T ) in (2.12), using (2.8) and choosing ε small enough we deduce

∥xuj∥2C([0,T ];L2(0,∞)) + ∥
√
x∂xuj∥2L2(0,T ;L2(0,∞)) ≤ C

(
∥u0∥2L2(T ) + ∥u0j∥2L2

(1+x2)
(0,∞)

+∥f∥2L1(0,T ;L2(T )) + ∥fj∥2L1(0,T ;L2
(1+x2)

(0,∞)) + ∥g∥2L2(0,T )

)
, j ∈KNF , NK.

(2.14)

We observe from (2.14), uj ∈ B∞ for j ∈KNF , NK and by (2.11), ∂xu ∈ L2(0, T ;L2(T )), therefore u ∈ B.

Remark 2.5. Note that in the proof of Proposition 2.4 we consider for the unbounded branches (j ∈ KNF , NK)
initial data such that u0 ∈ L2

(1+x2)(0,∞). One could ask why not only consider u0 ∈ L2
(1+x)(0,∞). First, note

that an estimate as (2.11) it is possible to obtain too

∥∂xuj∥2L2(0,T ;L2(0,∞)) ≤C
(
∥u0∥2L2(T ) + ∥u0j∥2L2

(1+x)
(0,∞) + ∥f∥2L1(0,T ;L2(T )) + ∥fj∥2L1(0,T ;L2

(1+x)
(0,∞))

+∥g∥2L2(0,T )

)
, j ∈KNF , NK,

this means that if u0j ∈ L2
(1+x)(0,∞) for j ∈KNF , NK, we still have ∂xu ∈ L2(0, T ;L2(T )). But we can not prove

that uj ∈ B∞ for j ∈KNF , NK, because the multiplier x2 is needed. The space B∞ it is strongly used to deal
with the nonlinearity, see Lemma 2.7.

2.3. Nonlinear case

The aim of this subsection is to use the well-posedness result for (LKdV) and a fixed point approach to obtain
the well-posedness of (KdV). In this spirit, the next three lemmas are needed to deal with the nonlinearities.

Lemma 2.6. Let y, z ∈ L2(0, T ;H1(0, L)). Then y∂xy ∈ L1(0, T ;L2(0, L)) and the map

y ∈ L2(0, T ;H1(0, L)) 7→ y∂xy ∈ L1(0, T ;L2(0, L))

is continuous. Moreover, we have

∥y∂xy − z∂xz∥L1(0,T ;L2(0,L)) ≤ C
(
∥y∥L2(0,T ;H1(0,L)) + ∥z∥L2(0,T ;H1(0,L))

)
∥y − z∥L2(0,T ;H1(0,L)). (2.15)

Lemma 2.7. Let y, z ∈ B∞. Then y∂xy ∈ L1(0, T ;L2
(1+x2)(0,∞)) and the map

y ∈ B∞ 7→ y∂xy ∈ L1(0, T ;L2
(1+x2)(0,∞))

is continuous. Moreover, we have

∥y∂xy − z∂xz∥L1(0,T ;L2
(1+x2)

(0,∞)) ≤ C(T 1/4 + T 1/2) (∥y∥B∞ + ∥z∥B∞) ∥y − z∥B∞ . (2.16)

Finally, for the nonlinearity in the central node condition we have the following result
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Lemma 2.8. Let u ∈ B, then, (u1(t, 0))2 ∈ L2(0, T ) and the map

u ∈ B 7→ (u1(t, 0))
2 ∈ L2(0, T )

is continuous. Moreover, we have the estimate,

∥u21(·, 0)∥L2(0,T ) ≤
1√
2
∥u∥2B. (2.17)

The proofs of Lemma 2.6 and Lemma 2.8 can be found in [26], Proposition 4.1 and [8], Proposition 2.6
respectively. Concerning Lemma 2.7 the proof is done in Appendix A.

Now, we are ready to prove the well-posedness result for (KdV) using the tools developed in the past sections.
We call mild solution of (KdV) any mild solution of (2.2) with fj = −uj∂xuj and g = −N

3 (u1(t, 0))
2, i.e. For

given u0 ∈ Y we search for a fix point of the map that for any (g, f) ∈ ×L2(0, T ) × L1(0, T ;Y) associate the
respective mild solution of (2.2).

Theorem 2.9. Let (ℓj)
NF
j=1 ⊂ (0,+∞)NF , T > 0, there exist C,ϵ > 0 such that for all u0 ∈ Y, with ∥u0∥Y ≤ ϵ,

then (KdV) has a unique mild solution u ∈ B. Moreover, it satisfies

∥u∥B ≤ C∥u0∥Y.

Proof. Let T ∗ > 0 arbitrary and u0 ∈ Y, with ∥u0∥Y ≤ ϵ where ϵ > 0 will be chosen later and u ∈ B. Thanks

to Lemmas 2.6, 2.7 and 2.8 we get that

(
u0,−N

3
(u1(·, 0))2,−u∂xu

)
∈ Y × L2(0, T ∗) × L1(0, T ∗;Y) and by

Proposition 2.4 we can consider the map Φ : B → B defined by Φ(u) = v where v is the mild solution of

(∂tvj + ∂xvj + ∂3xvj + ajvj)(t, x) = −uj∂xuj , ∀x ∈ Ij , t > 0, j ∈ J1, NK,
vj(t, 0) = vj′(t, 0), ∀j, j′ ∈ J1, NK,
N∑
j=1

∂2xvj(t, 0) = −αv1(t, 0)−
N

3
(u1(t, 0))

2, t > 0,

vj(t, ℓj) = ∂xvj(t, ℓj) = 0, t > 0, j ∈ J1, NF K,
vj(0, x) = u0j (x), x ∈ Ij , j ∈ J1, NK.

(2.18)

Then, u ∈ B is a solution of (KdV) if u is a fixed point of Φ. From Proposition 2.4, Lemma 2.6 and Lemma 2.8,
we get for all u, ũ ∈ B

∥Φ(u)∥B = ∥v∥B ≤ CT∗
(
∥u0∥Y + ∥u∥2B

)
,

∥Φ(u)− Φ(ũ)∥B ≤ CT∗ (∥u∥B + ∥ũ∥B) ∥u− ũ∥B.

We takeR > 0 to be defined later, and restrict Φ toBB(0, R) := {u ∈ B : ∥u∥B ≤ R}, then, for all u, ũ ∈ BB(0, R),
we have

∥Φ(u)∥B ≤ CT∗(ϵ+R2),

∥Φ(u)− Φ(ũ)∥B ≤ 2CT∗R∥u− ũ∥B.

Thus, if R <
1

2CT∗
and ϵ > 0 such that, CT∗(ϵ+R2) < R we obtain the local well-posedness result applying the

Banach fixed point Theorem. If T ≤ T ∗ then the solution up to T corresponds to the restriction to [0, T ] of the
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above solution. For T > T ∗, we can extend our solution by using some energy estimates. In fact, let j ∈ J1, NK,
multiplying (KdV) by uj and integrating on [0, s] × Ij , after some integrations by parts and summing over
j ∈ J1, NK we get

N∑
j=1

∫
Ij

(uj(s, x))
2dx+

N∑
j=1

∫ s

0

(∂xuj(t, 0))
2dt+ (2α−N)

∫ s

0

(u1(t, 0))
2dt+ 2

N∑
j=1

∫ s

0

∫
Ij

aj(uj)
2dxdt

=

N∑
j=1

∫
Ij

(uj(0, x))
2dx.

(2.19)

As in (2.8) we see that

∥u∥2C([0,T ];L2(T )) + (2α−N)∥u1(·, 0)∥2L2(0,T ) + ∥∂xu(·, 0)∥2L2(0,T ) + 2
N∑
j=1

∫ T

0

∫
Ij

aj(uj)
2dxdt ≤ ∥u0∥2L2(T ). (2.20)

Similarly, multiplying the first line of (KdV) by xuj , integrating on [0, s]× Ij after some integrations by parts
we get

1

2

∫
Ij

x(uj(s, x))
2dx+

3

2

∫ s

0

∫
Ij

(∂xuj)
2dxdt+

∫ s

0

∫
Ij

ajx(uj)
2dxdt =

1

2

∫
Ij

x(u0j )
2dx

+
1

2

∫ s

0

∫
Ij

(uj)
2dxdt−

∫ s

0

u1(t, 0)∂xuj(t, 0)dt+
1

3

∫ s

0

∫
Ij

u3jdxdt.

(2.21)

The problematic term to estimate is

∫ s

0

∫
Ij

u3jdxdt. Note that

∫ s

0

∫
Ij

u3jdxdt ≤
∫ T

0

∫
Ij

|uj |3dxdt ≤
∫ T

0

∥uj∥L∞(Ij)∥uj∥
2
L2(Ij)

dt ≤ C∥uj∥2C([0,T ];L2(Ij))

∫ T

0

∥uj∥H1(Ij)dt,

where C > 0 is the constant of the Sobolev embedding ofH1(Ij) in L
∞(Ij). Thus, by Cauchy–Schwarz inequality

and (2.20) ∫ T

0

∫
Ij

u3jdxdt ≤ C
√
T∥u0∥2L2(T )∥uj∥L2(0,T ;H1(Ij))dt. (2.22)

Consider now, j ∈ J1, NF K, we get from (2.21)∫ T

0

∫
Ij

(∂xuj)
2dxdt ≤C

(
T∥u0j∥2L2(Ij)

+ ∥u∥2L2(0,T ;L2(T )) + ∥u1(·, 0)∥2L2(0,T ) + ∥∂xuj(·, 0)∥2L2(0,T )

+

∫ T

0

∫
Ij

u3jdxdt

)
.

We deduce from (2.21), (2.20) and (2.22) that∫ T

0

∫
Ij

(∂xuj)
2dxdt ≤ C(1 + T )

(
∥u0∥2L2(T ) + ∥u0∥2L2(T )∥∂xu∥L2(0,T ;L2(T ))

)
. (2.23)
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Therefore, by Young inequality, we conclude that uj ∈ Bj for j ∈ J1, NF K. Similarly, for j ∈KNF , NK, we deduce
from (2.21)

∫
Ij

x(uj(s, x))
2dx+

∫ s

0

∫
Ij

(∂xuj)
2dxdt ≤ C(1+T )

(
∥u0j∥2L2

(1+x)
(0,∞) + ∥u0∥2L2(T ) + ∥u0∥2L2(T )∥∂xu∥L2(0,T ;L2(T ))

)
.

Therefore, taking the supremum for s ∈ (0, T )

∥
√
xuj∥C([0,T ];L2(0,∞)) + ∥∂xuj∥L2(0,T ;L2(0,∞)) ≤ C(1 + T )

(
∥u0j∥2L2

(1+x)
(0,∞) + ∥u0∥2L2(T ) + ∥u0∥4L2

)
. (2.24)

Now, multiplying by x2uj the first line of (KdV), integrating on [0, s]× (0,∞) for j ∈ KNF , NK, following (2.12)
we get

1

2

∫ ∞

0

x2(uj(s, x))
2dx+ 3

∫ s

0

∫ ∞

0

x(∂xuj)
2dxdt+

∫ s

0

∫ ∞

0

ajx
2(uj)

2dxdt =
1

2

∫ ∞

0

x2(u0j )
2dx

+

∫ s

0

∫ ∞

0

x(uj)
2dxdt+

∫ s

0

(u1(t, 0))
2dt+

2

3

∫ s

0

∫ ∞

0

xu3jdxdt.

Thus,

1

2

∫ ∞

0

x2(uj(s, x))
2dx+ 3

∫ s

0

∫ ∞

0

x(∂xuj)
2dxdt+

∫ s

0

∫ ∞

0

ajx
2(uj)

2dxdt

≤ 1

2

∫ ∞

0

x2(u0j )
2dx+

∫ s

0

∫ ∞

0

x(uj)
2dxdt+

∫ s

0

(u1(t, 0))
2dt+

2

3

∫ s

0

∫ ∞

0

x|uj |3dxdt.
(2.25)

Again, the problematic term to estimate is

∫ s

0

∫ ∞

0

x|uj |3dxdt. Note that similar to the previous case, we can

obtain

∫ s

0

∫ ∞

0

x|uj |3dxdt ≤
∫ T

0

∫ ∞

0

xu3jdxdt ≤ C∥xuj∥2C([0,T ];L2(0,∞))∥uj∥L2(0,T ;H1(0,∞)).

Now, for all ε > 0 using (2.13) and

∫ T

0

∫ ∞

0

x|uj |3dxdt ≤
Cε

2
∥xuj∥2C([0,T ];L2(0,∞)) +

C

2ε
∥uj∥L2(0,T ;H1(0,∞)).

Similarly

∫ T

0

∫ ∞

0

x(uj)
2dxdt ≤

∫ T

0

(∫ ∞

0

x2(uj)
2dx

)1/2(∫ ∞

0

(uj)
2dx

)1/2

dt

≤ Cε

2
∥xuj∥2C([0,T ];L2(0,∞)) +

C

2ε
∥uj∥C([0,T ];L2(0,∞)).
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Then, from (2.25) using the previous inequalities we get that for all ε > 0 and for all s ∈ (0, T )

1

2
∥xuj(s, ·)∥2L2(0,∞) + 3

∫ s

0

∥
√
x∂xuj(t, ·)∥2L2(0,∞)dt

≤ 1

2
∥xu0j∥2L2(0,∞) +

∫ T

0

(u1(t, 0))
2dt+

Cε

2
∥xuj∥2C([0,T ];L2(0,∞)) +

C

2ε
∥uj∥L2(0,T ;H1(0,∞))

+
C

2ε
∥uj∥C([0,T ];L2(0,∞)).

Taking the supremum for s ∈ (0, T ) and using and choosing ε small enough we deduce

∥xuj∥2C([0,T ];L2(0,∞)) + ∥
√
x∂xuj∥2L2(0,T ;L2(0,∞)) ≤C

(
∥xu0j∥2L2(0,∞) +

∫ T

0

(u1(t, 0))
2dt

+∥uj∥2C([0,T ];L2(0,∞) + ∥uj∥2L2(0,T ;H1(0,∞)

)
.

By using (2.20), (2.23) and (2.24) we observe

∥xuj∥2C([0,T ];L2(0,∞)) + ∥
√
x∂xuj∥2L2(0,T ;L2(0,∞)) ≤C

∥u0∥2L2(T ) +

N∑
j=NF+1

∥u0j∥2L2
(1+x2)

(0,∞)

+∥u0∥4L2(T )

)
.

(2.26)

Thus, we conclude that uj ∈ B∞ for j ∈KNF , NK.

3. Hidden regularity

As explained before Proposition 2.4, more regular initial conditions (u0j ∈ L2
(1+x2)(0,∞), j ∈KNF , NK) were

considered in order to demonstrate our well-posedness result for (KdV). The same assumption was used in [18],
Theorem 2.2 and [27], Theorem 4 to obtain L2(0, T ;H1(0,∞)) and B∞ regularity, respectively. Nevertheless,
we can still prove a similar regularity result, depending only on the L2(T ) norm of the initial data.

Definition 3.1. A function γ : [0,∞) → (0,∞) is said to be a class K∞ function if γ is continuous, nonnegative,
increasing, vanishing at 0, and such that limx→∞ γ(x) = ∞.

Proposition 3.2. Let u0 ∈ L2(T ) (resp. u0 ∈ Y with ∥u0∥Y ≤ ε, for ε > 0 small enough). Consider u the
associate mild solution of (LKdV) (resp. (KdV)). Then, u ∈ X1, moreover, the following estimates hold

� There exists C > 0 such that for all j ∈ J1, NF K:

∫ T

0

∫
Ij

(∂xuj)
2dxdt ≤

{
C∥u0∥2L2(T ), for (LKdV),

C(∥u0∥2L2(T ) + ∥u0∥4L2(T )), for (KdV).
(3.1)

� For any x0 > 0, there exist γ, a function of class K∞ and Cx0
> 0 such that for all j ∈KNF , NK:

∫ T

0

∫ x0+1

x0

(∂xuj)
2dxdt ≤

{
Cx0

∥u0∥2L2(T ), for (LKdV),

Cx0
γ(∥u0∥L2(T )), for (KdV).

(3.2)
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Figure 3. Graph of the function ψ(x).

Proof. Let λ = 0 or λ = 1 and consider the system



(∂tuj + ∂xuj + λuj∂xuj + ∂3xuj + ajuj)(t, x) = 0, ∀x ∈ Ij , t > 0, j ∈ J1, NK,
uj(t, 0) = uj′(t, 0), ∀j, j′ ∈ J1, NK,
N∑
j=1

∂2xuj(t, 0) = −αu1(t, 0)− λ
N

3
(u1(t, 0))

2, t > 0,

uj(t, ℓj) = ∂xuj(t, ℓj) = 0, t > 0, j ∈ J1, NF K,
uj(0, x) = u0j (x), x ∈ Ij , j ∈ J1, NK,

(3.3)

which represents (LKdV) (λ = 0) or (KdV) (λ = 1).

First, (3.1) can be easily deduced from (2.11) and (2.23). We focus now in the case, j ∈ KNF , NK. Inspired by
[25], Theorem 2.1, let x0 > 0 and K1,x0 , K2,x0 > 0 depending on x0. Consider ψ ∈ C∞(R) an increasing function
satisfying the following properties (see Fig. 3)



ψ(x) = 0, for x ≤ x0

2 ,

ψ(x) = 1, for x ≥ 3x0

2 + 1,

ψ′(x) ≥ K1,x0
, for x ∈ [x0, x0 + 1],

ψ′(x) ≥ 0, for x ∈ R,
|ψ(k)(x)| ≤ K2,x0

, for x ∈ R, k = 0, 1, 2, 3,
√
ψ′ ∈ H1

(
x0

2 ,
3x0

2 + 1
)
.

(3.4)

Multiplying the j − th equation of (3.3) by uj(t, x)ψ(x), and integrating over (0,∞) we get

1

2

d

dt

∫ ∞

0

(uj)
2ψ(x)dx+

1

2

∫ ∞

0

d

dx
(uj)

2ψ(x)dx+

∫ ∞

0

∂3xujujψ(x)dx+
λ

3

∫ ∞

0

d

dx
u3jψ(x)dx

+

∫ ∞

0

aj(uj)
2ψ(x)dx = 0,
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then, after some integrations by parts get

1

2

d

dt

∫ ∞

0

(uj)
2ψ(x)dx+

3

2

∫ ∞

0

(∂xuj)
2ψ′(x)dx+

∫ ∞

0

aj(uj)
2ψ(x)dx =

λ

3

∫ ∞

0

u3jψ
′(x)dx

+
1

2

∫ ∞

0

(uj)
2(ψ′(x) + ψ′′′(x))dx.

(3.5)

If λ = 0 (LKdV), recalling the definition of ψ (3.4), we observe that

K1,x0

∫ x0+1

x0

(∂xuj)
2dx ≤

∫ x0+1

x0

(∂xuj)
2ψ′(x)dx ≤

∫ ∞

0

(∂xuj)
2ψ′(x)dx. (3.6)

Thus using, (3.6) and (3.4) in (3.5) we deduce

1

2

d

dt

∫ ∞

0

|uj |2ψ(x)dx+
3

2
K1,x0

∫ x0+1

x0

|∂xuj |2dx ≤ K2,x0

∫ x0+1

x0

|uj |2dx,

We conclude the proof of (3.2) in the case λ = 0 integrating t between [0, T ] and using (2.20).

Now we focus on the case λ = 1 (KdV), again the tricky term is

∫ ∞

0

u3jψ
′(x)dx. This nonlinear term can be

estimated in the following manner:

Lemma 3.3. Let u the unique mild solution of (KdV), then for j ∈ KNF , NK the following estimate holds:

1

3

∫ ∞

0

u3jψ
′(x)dx ≤ 1

6

(∫ ∞

0

(uj)
2|ψ′′(x)|dx

)1/2 ∫ ∞

0

(uj)
2
√
ψ′(x)dx+

1

3
√
2

(∫ ∞

0

(uj)
2ψ′(x)dx

)1/4

×
(∫ ∞

0

(∂xuj)
2ψ′(x)dx

)1/4 ∫ ∞

0

(uj)
2
√
ψ′(x)dx.

Proof. The proof of Lemma 3.3 is given in Appendix B.

Using this Lemma in (3.5) we deduce

1

2

d

dt

∫ ∞

0

(uj)
2ψ(x)dx+

3

2

∫ ∞

0

(∂xuj)
2ψ′(x)dx ≤ 1

6

(∫ ∞

0

(uj)
2|ψ′′(x)|dx

)1/2 ∫ ∞

0

(uj)
2
√
ψ′(x)dx

+
1

3
√
2

(∫ ∞

0

(∂xuj)
2ψ′(x)dx

)1/4(∫ ∞

0

(uj)
2ψ′(x)dx

)1/4 ∫ ∞

0

(uj)
2
√
ψ′(x)dx

+
1

2

∫ ∞

0

(uj)
2(ψ′(x) + ψ′′′(x))dx.

Now by (3.4) we get for some Mx0
> 0

1

2

d

dt

∫ ∞

0

(uj)
2ψ(x)dx+

3

2

∫ ∞

0

(∂xuj)
2ψ′(x)dx ≤Mx0

((∫ ∞

0

(uj)
2dx

)1/2 ∫ ∞

0

(uj)
2dx

+

(∫ ∞

0

(∂xuj)
2ψ′(x)dx

)1/4(∫ ∞

0

(uj)
2dx

)1/4 ∫ ∞

0

(uj)
2dx +

∫ ∞

0

(uj)
2dx

)
.

(3.7)
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Now, by (2.20) in (3.7), there exists γ1(∥u0∥L2(T )) = max
(
∥u0∥3L2(T ), ∥u

0∥5/2L2(T ), ∥u
0∥2L2(T )

)
> 0, such that

1

2

d

dt

∫ ∞

0

(uj)
2ψ(x)dx+

3

2

∫ ∞

0

(∂xuj)
2ψ′(x)dx ≤2Mx0γ1(∥u0∥L2(T ))

+Mx0
γ1(∥u0∥L2(T ))

(∫ ∞

0

(∂xuj)
2ψ′(x)dx

)1/4

Using ab1/4 ≤ 3 · 4−4/3a4/3 + b, with a =Mx0
γ1(∥u0∥L2(T )) and b =

∫ ∞

0

(∂xuj)
2ψ′(x)dx we derive

d

dt

∫ ∞

0

(uj)
2ψ(x)dx+

∫ ∞

0

(∂xuj)
2ψ′(x)dx ≤ 2

(
2Mx0γ1(∥u0∥L2(T )) + 3 · 4−4/3M4/3

x0
γ1(∥u0∥L2(T ))

4/3
)

≤ Cx0γ(∥u0∥L2(T )),

where Cx0
= 2max

(
2Mx0

, 3 · 4−4/3M
4/3
x0

)
and γ(∥u0∥L2(T )) = γ1(∥u0∥L2(T )) + γ1(∥u0∥L2(T ))

4/3. We conclude,

as in the case λ = 0, using (3.6) and integrating t between [0, T ] and obtaining (3.2).

Several remarks are in order,

Remark 3.4. Note that the smallness condition on the initial data ∥u0∥Y ≤ ε is just used to ensure the
existence of solutions. In particular, if we are able to prove the existence of solutions without this assumption,
Proposition 3.2 is still valid.

Remark 3.5. An important fact about the last proposition is that in the right-hand-side of estimates (3.1) and
(3.2) we only have the L2(T ) norm of the initial data. As we see in the proof of the well-posedness of (KdV)
the introduction of the weighted spaces is necessary in our proof due to the perturbation approach. In our best
knowledge, a well-posedness result for (KdV) with initial data in L2(T ) is an open problem.

Remark 3.6. We can build a function ψ satisfying (3.4) in the following way: consider the bump function

κ ∈ C∞(R) defined by κ(x) = e−
1
x , for x > 0 and κ(x) = 0 for x ≤ 0. Then, we can take

ψ(x) =
κ(x− x0

2 )

κ(x− x0

2 ) + κ( 3x0

2 + 1− x)
,

it is not difficult to check that the above function satisfies all the hypotheses of (3.4).

4. Exponential stability in L2(T )

In this section, we prove our results related with the exponential stability in L2(T ). First, we study (LKdV),
in this case we are able to prove the stability without acting in all the branches of the network. Then, using
a perturbation argument, we obtain a stability result for (KdV) but for small and more regular initial data.
Finally, we present a semiglobal stability result for (KdV) but we need to act in all the branches.

First, note that to prove the exponential stability, it is enough to prove the following observability inequality,
with E defined in (1.2)

E(0) ≤ Cobs

∫ T

0

(u1(t, 0))
2 +

N∑
j=1

(∂xuj(t, 0))
2 +

N∑
j=1

∫
Ij

aj(uj)
2dx

 dt. (Obs1)
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Indeed, using (Obs1) and dissipation law (1.3) we can show E(t) ≤ γE(0) for 0 < γ < 1, finally as (KdV) (or
(LKdV)) is invariant by translation in time, we derive the exponential decay. This idea was used in several
works as [11, 12, 18, 28].
We recall the set N of critical lengths for the KdV equation introduced by Rosier in [26] defined by

N =

{
2π

√
k2 + kl + l2

3
, k, l ∈ N∗

}
,

and we define Ic = {j ∈ J1, NF K; ℓj ∈ N} the set of critical index, I∞ =KNF , NK and I∗c (resp I∗∞) be the subset
of Ic (resp I∞) where we remove one index.

4.1. Linear case

In this part, we will prove the first stabilization result.

Theorem 4.1. Let Iact ⊇ I∗c ∪ I∞ or Iact ⊇ Ic ∪ I∗∞, assume that the damping terms (aj)j∈J1,NK satisfy (1.1).
Then, there exist C, µ > 0 such that for all u0 ∈ L2(T ), the energy the unique solution of (LKdV) satisfies
E(t) ≤ CE(0)e−µt for all t > 0.

Proof. As we said at the beginning of the section, it is enough to prove (Obs1). To prove it, we follow a
contradiction argument as in [26]. Suppose that (Obs1) is false, then there exists (u0,n)n∈N ⊂ L2(T ) such that
∥u0,n∥L2(T ) = 1 and such that

∥un1 (t, 0)∥L2(0,T ) → 0,

∥∂xun(t, 0)∥L2(0,T ) → 0,

N∑
j=1

∫ T

0

∫
Ij

aj(u
n
j )

2dxdt→ 0, as n→ ∞,

where un, is the associated solution of (LKdV) with initial data u0,n given by Theorem 2.1.

By Proposition 3.2 we get that (un)n∈N is bounded in X1, as ∂tu
n
j = −∂xunj −∂3xunj −ajunj , we get that (∂tunj )n∈N

is bounded in X−2. Using [29], Corollary 4 we can extract a subsequence denoted by (un)n∈N which is convergent
in X0, by (2.3), we get that (u0,n)n∈N is a Cauchy sequence in L2(T ). Let u0 = limn→∞ u0,n and u the unique
mild solution of (LKdV) associated to u0. Then, we have that u solves the following problem



∂tuj + ∂xuj + ∂3xuj = 0, ∀x ∈ Ij , t ∈ (0, T ), j ∈ J1, NK,
uj(t, 0) = ∂xuj(t, 0) = 0, ∀j ∈ J1, NK,
N∑
j=1

∂2xuj(t, 0) = 0, t ∈ (0, T ),

uj(t, ℓj) = ∂xuj(t, ℓj) = 0, t > 0, j ∈ J1, NF K,
uj ≡ 0 in (0, T )× ωj , j ∈ Iact,
uj(0, x) = u0j (x), x ∈ Ij , j ∈ J1, NK,
∥u0∥L2(T ) = 1.

(4.1)

Here we have two cases:
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� Iact ⊇ I∗c ∪ I∞. In this case, for j ∈ I∞, w = uj solves
∂tw + ∂xw + ∂3xw = 0, ∀x ∈ (0,∞), t ∈ (0, T ),

w(t, 0) = ∂xw(t, 0) = 0, t ∈ (0, T ),

w ≡ 0 in (0, T )× ωj .

Then, by Holmgren’s Theorem (see also [18], Thm. 1.1), w ≡ 0 in (0,∞)× (0, T ). Therefore, we have the
following problem 

∂tuj + ∂xuj + ∂3xuj = 0, ∀x ∈ (0, ℓj), t ∈ (0, T ), j ∈ J1, NF K,
uj(t, 0) = ∂xuj(t, 0) = 0, ∀j ∈ J1, NF K,
NF∑
j=1

∂2xuj(t, 0) = 0, t ∈ (0, T ),

uj(t, ℓj) = ∂xuj(t, ℓj) = 0, t > 0, j ∈ J1, NF K,
uj ≡ 0 in (0, T )× ωj , j ∈ I∗c ,NF∑

j=1

∥u0j∥2L2(0,ℓj)

1/2

= 1.

The above system is exactly the same studied in [8]. Thus, by [8], Theorem 3.1 as we are acting in I∗c we
get uj ≡ 0 for j ∈ J1, NF K and finally, u ≡ 0 which is a contradiction with the fact ∥u0∥L2(T ) = 1.

� Iact ⊇ Ic ∪ I∗∞. Let j ∈ I∗∞, the same argument used in the previous case shows that uj ≡ 0 on (0,∞)×
(0, T ). Similarly, by Holmgren’s theorem for all j ∈ Ic uj ≡ 0 in (0, ℓj)× (0, T ). Now, for j ∈ J1, NF K∩ (Ic)

c,
uj solves 

∂tuj + ∂xuj + ∂3xuj = 0, ∀x ∈ (0, ℓj), t ∈ (0, T ),

uj(t, 0) = ∂xuj(t, 0) = 0, t > 0,

uj(t, ℓj) = ∂xuj(t, ℓj) = 0, t > 0.

Then, as ℓj /∈ N by [26], Lemma 3.5, uj ≡ 0 in (0, ℓj) × (0, T ). Finally, let j ∈KNF , NK ∩ (I∗∞)c, then
w = uj solves {

∂tw + ∂xw + ∂3xw = 0, ∀x ∈ (0,∞), t ∈ (0, T ),

w(t, 0) = ∂xw(t, 0) = ∂2xw(t, 0) = 0, t ∈ (0, T ).
(4.2)

It is enough to see that, due to the three null boundary conditions in 02, the unique solution is w ≡ 0.

Theorem 4.1 is optimal in the sense of acted branches. For instance, if we take a smaller set of acted index,
we can not derive the result as shows the next proposition.

Proposition 4.2. Let Iact ⊊ I∗c ∪ I∞ or Iact ⊊ Ic ∪ I∗∞, assume that the damping terms (aj)j∈J1,NK satisfy
(1.1). Then, there exists a nontrivial solution of (4.1).

2See for instance [17] where an implicit controllability result is obtained by imposing three boundary conditions at 0.
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Proof. It is enough to consider the case where we remove one index more. Let I∗∗c (resp I∗∗∞ ) be the subset of
Ic (resp I∞ ) where we remove two indexes. Let us show that, under these conditions, there exists nontrivial
solutions of (4.1).

� Iact = I∗∗c ∪ I∞. We get for all j ∈ I∞ uj ≡ 0. Thus, we get the optimality from [8], Lemma 3.2.

� Iact = I∗c ∪ I∗∞. Consider NF = N∞ = 1, ℓ1 = 2π. Following the computations of the proof of Theorem 4.1
we obtain the system.



∂tuj + ∂xuj + ∂3xuj = 0, ∀x ∈ Ij , t ∈ (0, T ), j = 1, 2

u1(t, 0) = ∂xu1(t, 0) = 0, t > 0,

u2(t, 0) = ∂xu2(t, 0) = 0, t > 0,

u1(t, 2π) = ∂xu1(t, 2π) = 0, t > 0,

∂2xu1(t, 0) + ∂2xu2(t, 0) = 0, t ∈ (0, T ),

uj(0, x) = u0j (x), x ∈ Ij , j = 1, 2,

∥u0∥L2(T ) = 1.

Consider the stationary functions u1 = K1(1− cos(x)) and u2 = K2(1− cos(x)) for x ∈ (0, 2π) and u2 = 0
for x ≥ 2π. We observe that u1 and u2 satisfies a linear KdV equation. Moreover, u1(0) = ∂xu1(0) =
u1(2π) = ∂xu1(2π) = 0, u2(0) = ∂xu2(0) = 0 and ∂2xu1(0) + ∂2xu1(0) = K1 +K2. Therefore, if K1 = −K2

we found nontrivial solutions of (4.1) and ∥u0∥L2(T ) = 1.

� Iact = Ic ∪ I∗∗∞ . Consider the case NF = 0. Then we obtain the system



∂tuj + ∂xuj + ∂3xuj = 0, ∀x ∈ (0,∞), t ∈ (0, T ), j = 1, 2

u1(t, 0) = ∂xu1(t, 0) = 0, t > 0,

u2(t, 0) = ∂xu2(t, 0) = 0, t > 0,

∂2xu1(t, 0) + ∂2xu2(t, 0) = 0, t ∈ (0, T ),

uj(0, x) = u0j (x), x ∈ (0,∞),

∥u0∥L2(T ) = 1.

Similarly to the past case, we can consider, u1 = K1(1 − cos(x)) for x ∈ (0, 2π) and u1 = 0 for x ≥ 2π,
u2 = K2(1− cos(x)) for x ∈ (0, 2π) and u2 = 0 for x ≥ 2π, such that K1 = −K2 and ∥u0∥L2(T ) = 1. This
concludes the proof.

4.2. Nonlinear case: small amplitude solutions

In this subsection, we will prove a stabilization result for (KdV) by imposing small amplitude solutions.

Theorem 4.3. Let Iact ⊇ I∗c ∪ I∞ or Iact ⊇ Ic ∪ I∗∞, assume that the damping terms (aj)j∈J1,NK satisfy (1.1).

Then there exist C, C̃, µ, ϵ > 0 such that for all u0 ∈ Y, with ∥u0∥L2(T ) ≤ ϵ and

N∑
j=NF+1

∥u0j∥2L2
(1+x2)

(0,∞) ≤

C̃∥u0∥2L2(T ), the energy of any solution of (KdV) satisfies E(t) ≤ CE(0)e−µt for all t > 0.
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Proof. Following the same idea as the linear case, it is enough to show that ∥u∥C([0,T ];L2(T )) ≤ γ∥u0∥L2(T ) for
0 < γ < 1 and u solution of (KdV). Let u = u1 + u2 where u1 and u2 are respectively solutions of

(∂tu
1
j + ∂xu

1
j + ∂3xu

1
j + aju

1
j )(t, x) = 0, ∀x ∈ Ij , t > 0, j ∈ J1, NK,

u1j (t, 0) = u1j′(t, 0), ∀j, j′ ∈ J1, NK,
N∑
j=1

∂2xu
1
j (t, 0) = −αu11(t, 0), t > 0,

u1j (t, ℓj) = ∂xu
1
j (t, ℓj) = 0, t > 0, j ∈ J1, NF K,

u1j (0, x) = u0j (x), x ∈ Ij , j ∈ J1, NK,

(4.3)

and 

(∂tu
2
j + ∂xu

2
j + ∂3xu

2
j + aju

2
j )(t, x) = −uj∂xuj , ∀x ∈ Ij , t > 0, j ∈ J1, NK,

u2j (t, 0) = u2j′(t, 0), ∀j, j′ ∈ J1, NK,
N∑
j=1

∂2xu
2
j (t, 0) = −αu21(t, 0)−

N

3
(u1(t, 0))

2, t > 0,

u2j (t, ℓj) = ∂xu
2
j (t, ℓj) = 0, t > 0, j ∈ J1, NF K,

u2j (0, x) = 0, x ∈ Ij , j ∈ J1, NK.

(4.4)

Then, using Theorem 4.1 for u1, Proposition 2.2 and (2.8) for u2 we get

∥u∥C([0,T ];L2(T )) ≤ ∥u1∥C([0,T ];L2(T )) + ∥u2∥C([0,T ];L2(T ))

≤ γ∥u0∥L(T ) + C
(
∥u∂xu∥L1(0,T ;L2(T )) + ∥u1(·, 0)2∥L2(0,T )

)
,

(4.5)

where γ < 1. By Lemma 2.6, Lemma 2.7 and Lemma 2.8 we get ∥u∥C([0,T ];L2(T )) ≤ γ∥u0∥L2(T ) +C∥u∥2B. In the
sequel, a more explicit estimate of u solution of (KdV) in the B norm is needed. We deduce from (2.23) and
(2.24)

∥∂xu∥2L2(0,T ;L2(T )) ≤ C

∥u0∥2L2(T ) +

N∑
j=NF+1

∥u0j∥2L2
(1+x2)

(0,∞) + ∥u0∥4L2(T )

 . (4.6)

Thus, by (2.20) and (4.6)

∥u∥2B ≤ C

∥u0∥2L2(T ) +

N∑
j=NF+1

∥u0j∥2L2
(1+x2)

(0,∞) + ∥u0∥4L2(T )

 . (4.7)

Using this estimation and the smallness assumption on the initial data and (4.5), we get ∥u∥C([0,T ];L2(T )) ≤ (γ+

C(1+ C̃)ϵ+Cϵ3)∥u0∥L2(T ). We conclude by choosing ϵ > 0 small enough such that γ̃ = γ+C(1+ C̃)ϵ+Cϵ3 < 1,
which is possible because γ < 1.

Theorem 4.3 is interesting in the sense that we derive an exponential stability result for the nonlinear system
without all the damping actives (see Fig. 4).

In the sequel results, we need to all the damping terms to be active, but as will be shown in Section 5 we are
able to show the exponential stability in the same spaces as our well-posedness result.
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Figure 4. Possible acted branches of Theorem 4.1 and Theorem 4.3.

4.3. Nonlinear case: semiglobal result

In this subsection we prove an exponential stability result in L2(T ) working directly with the nonlinear
system but acting in all branches.

Theorem 4.4. Assume that the damping terms (aj)j∈J1,NK satisfy (1.1) and let R > 0. If Iact = J1, NK, then,
there exist C(R) > 0 and µ(R) > 0 such that for all u0 ∈ Y with ∥u0∥L2(T ) ≤ R, the energy of any solution of
(KdV) satisfies E(t) ≤ CE(0)e−µt for all t > 0.

Proof. Our idea will be to prove the observability inequality (Obs1) directly for (KdV). Similar to the linear
case, multiplying (KdV) by (T − t)uj and integrating on [0, T ]× Ij , after some integrations by parts we get

T

N∑
j=1

∫
Ij

(uj(0, x))
2dx =

N∑
j=1

∫ T

0

∫
Ij

(uj)
2dxdt+ (2α−N)

∫ T

0

(T − t)(u1(t, 0))
2dt

+

N∑
j=1

∫ T

0

(T − t)(∂xuj(t, 0))
2dt+ 2

N∑
j=1

∫ T

0

∫
Ij

(T − t)aj(uj)
2dxdt.

Therefore,

∥u0∥2L2(T ) ≤
1

T
∥u∥2L2([0,T ];L2(T )) + (2α−N)∥u1(·, 0)∥2L2(0,T ) + ∥∂xu(·, 0)∥2L2(0,T )

+ 2

N∑
j=1

∫ T

0

∫
Ij

aj(uj)
2dxdt.

(4.8)

Thus, in order to show the observability inequality (Obs1), we show

∥u∥2L2([0,T ];L2(T )) ≤ Cobs2

∫ T

0

(u1(t, 0))
2 +

N∑
j=1

(∂xuj(t, 0))
2 +

N∑
j=1

∫
Ij

aj(uj)
2dx

 dt. (Obs2)



24 H. PARADA ET AL.

To prove it, we follow a contradiction argument as in [28]. Suppose that (Obs2) is false, then there exists
(un)n∈N ⊂ C([0, T ];L2(T )) such that un is solution of (KdV) and

lim
n→∞

∥un∥2L2([0,T ];L2(T ))∫ T

0

(un1 (t, 0))
2 +

N∑
j=1

(∂xu
n
j (t, 0))

2 +

N∑
j=1

∫
Ij

aj(u
n
j )

2dx

dt

= ∞. (4.9)

Let λn = ∥un∥L2([0,T ];L2(T )) and v
n = un

λn
, then vn satisfies



(∂tv
n
j + ∂xv

n
j + λnv

n
j ∂xv

n
j + ∂3xv

n
j + ajv

n
j )(t, x) = 0, ∀x ∈ Ij , t > 0, j ∈ J1, NK,

vnj (t, 0) = vnj′(t, 0), ∀j, j′ ∈ J1, NK,
N∑
j=1

∂2xv
n
j (t, 0) = −αvn1 (t, 0)− λn

N

3
(vn1 (t, 0))

2 t > 0,

vnj (t, ℓj) = ∂xv
n
j (t, ℓj) = 0, t > 0, j ∈ J1, NF K,

(4.10)

and

∥vn∥L2([0,T ];L2(T )) = 1,∫ T

0

(vn1 (t, 0))
2 +

N∑
j=1

(∂xv
n
j (t, 0))

2 +

N∑
j=1

∫
Ij

aj(v
n
j )

2dx

 dt −→ 0.
(4.11)

Using (4.8), (4.9) and (4.11), we get that (v(0, ·))n∈N is bounded in L2(T ) and then by Proposition 3.2 (and
Rem. 3.4) we get (vn)n∈N is bounded in X1. Note that

∥vnj ∂xvnj ∥L1(0,T ;L2(Ij)) ≤ C∥vnj ∥L∞(0,T ;L2(Ij))∥v
n
j ∥L2(0,T ;H1(Ij)), j ∈ J1, NF K,

∥vnj ∂xvnj ∥L1(0,T ;L2
loc(0,∞)) ≤ C∥vnj ∥L∞(0,T ;L2

loc(0,∞))∥vnj ∥L2(0,T ;H1
loc(0,∞)), j ∈KNF , NK,

which implies that (vnj ∂xv
n
j )n∈N is a subset of L1(0, T ;L2(Ij)) (resp. L

1(0, T ;L2
loc(0,∞))) for j ∈ J1, NF K (resp.

j ∈KNF , NK). Moreover, as ∥un(0, ·)∥L2(T ) ≤ R by (2.20) we deduce λn ≤ R. Then, similarly to the linear case,
observing that ∂tv

n
j = −∂xvnj − ∂3xv

n
j − λnv

n
j ∂xv

n
j − ajv

n
j , we get that (∂tv

n
j )n∈N is bounded in X−2, using [29],

Corollary 4 we can extract a subsequence denoted by (vn)n∈N which is convergent in X0 to v. By the structure
of ωj in (1.1) and following [18] we get

∥v∥2L2([0,T ];L2(T )) =

N∑
j=1

(∫ T

0

∫
ωj

(vj)
2dxdt+

∫ T

0

∫
ωj

c

(vj)
2dxdt

)
= 1.
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Thus, for all Kj ⊂ (0,∞) for j ∈KNF , NK we get

∥∂xv(t, 0)∥2L2(0,T ) + ∥v1(t, 0)∥2L2(0,T ) +

NF∑
j=1

∫ T

0

∫
ωj

aj(vj)
2dxdt+

N∑
j=NF+1

∫ T

0

∫
Kj

aj(vj)
2dxdt

≤ lim inf

∥∂xvn(t, 0)∥2L2(0,T ) + ∥vn1 (t, 0)∥2L2(0,T ) +

NF∑
j=1

∫ T

0

∫
ωj

aj(v
n
j )

2dxdt

+

N∑
j=NF+1

∫ T

0

∫
Kj

aj(v
n
j )

2dxdt

 = 0.

In addition, as (λn)n∈N is bounded, we can extract a convergent subsequence, such that λn → λ ≥ 0. We have
now two situations. If λ = 0, the system solved by v is linear. Therefore, as we are acting in all the branches by
Holmgrem’s Theorem v ≡ 0, that contradicts the fact that ∥v∥L2(0,T ;L2(T )) = 1. In the case λ > 0 we have for
j ∈ J1, NF K that vj solves


∂tvj + ∂xvj + λvj∂xvj + ∂3xvj = 0, ∀x ∈ (0, ℓj), t ∈ (0, T ),

vj(t, 0) = ∂xvj(t, 0) = 0,

vj(t, ℓj) = ∂xvj(t, ℓj) = 0, t > 0,

vj ≡ 0, in (0, T )× ωj .

Then, the idea is to apply the following unique continuation property.

Lemma 4.5. [[30], Lemma 3.5] Let L > 0 and T > 0 be two real numbers, and let ω ⊂ (0, L) be a nonempty
open set. If v ∈ L∞(0, T ;H1(0, L)) solves


∂tv + ∂xv + a(v)∂xv + ∂3xvj = 0, ∀x ∈ (0, ℓj), t ∈ (0, T ),

v(t, 0) = v(t, L) = 0, t > 0,

v ≡ 0, in (0, T )× ωj

with a ∈ C0(R,R), then v ≡ 0.

Note that we can not apply directly to vj , j ∈ J1, NF K Lemma 4.5, but by [30], Theorem 1.2, Remark (ii), for
any ε > 0, vj ∈ C([ε, T ];H3(Ij)) ∩ L2(ε, T ;H4(Ij)) and thus, we have enough regularity. Then, we get vj ≡ 0
for j ∈ J1, NF K.

For j ∈KNF , NK,


∂tvj + ∂xvj + λvj∂xvj + ∂3xvj = 0, ∀x ∈ (0,∞), t ∈ (0, T ),

vj(t, 0) = ∂xvj(t, 0) = 0, t > 0,

vj ≡ 0, in (0, T )× ωj .
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Let L > βj , as vj(0, x) ∈ L2(0,∞), then vj ∈ C([0, T ];L2(0,∞)) ∩ L2(0, T ;H1
loc(0,∞)). By using vj ≡ 0, in

(0, T )× ωj , we get vj(·, L) = 0. Then wj = vj

∣∣∣
(0,L)

solves


∂twj + ∂xwj + λwj∂xwj + ∂3xwj = 0, ∀x ∈ (0, L), t ∈ (0, T ),

wj(t, 0) = wj(t, L) = ∂xwj(t, 0) = 0, t > 0,

wj ≡ 0, in (0, T )× (βj , L),

wj(0, x) ∈ L2(0, L).

Thus, as in the past case, we get wj = vj ≡ 0 in (0, T ) × (0, L) and as L > βj it is arbitrary we deduce that
vj ≡ 0 for j ∈KNF , NK. Finally v ≡ 0, that contradicts ∥v∥L2(0,T ;L2(T )) = 1.

Remark 4.6. Note that if we are able to prove a well-posedness result for (KdV) with initial data only in
L2(T ), Theorem 4.4 still holds in this case, but we can not guarantee the same for Theorem 4.3, because we
strongly use that u0 ∈ Y.

5. Exponential stability in weighted Sobolev spaces

In this section, we present our main result about the exponential stability of (KdV) in the space Y, which
is the space of initial data for the well-posedness result. This section is inspired by [20], Section 3.1 where the
exponential stability of a single nonlinear KdV equation in weighted spaces was deduced. Note first, that by
Theorem 4.4 we already have the exponential stability in L2(Ij) for j ∈ J1, NK, thus we only have to prove the
exponential stability in L2

(1+x2)(0,∞) for j ∈KNF , NK.

Take V0(u(t, ·)) = E(t), where E(t) is defined by (1.2) and for m = 1,2 we define

Vm(u) =
1

2

N∑
j=1

∫
Ij

(1 + xm)(uj)
2dx+ dm−1Vm−1(u), (5.1)

where d0, d1 > 0 are large enough.

5.1. Exponential stability in the case m = 1

The idea of the following lines is to deduce first the exponential stability with energy V1. To show that, we
use the exponential stability in L2(T ) and the observability inequality (Obs2). More specifically, the aim of this
subsection is to prove the following result

Proposition 5.1. Assume that the damping terms (aj)j∈J1,NK satisfy (1.1) and let R > 0. If Iact = J1, NK,
then, there exists C(R) > 0 such that for all u0 ∈ Y with ∥u0∥L2(T ) ≤ R, we have for u solution of (KdV)

V1(u(T, ·))− V1(u
0) ≤ −C(R)V1(u0). (5.2)

Clearly, (5.2) gives the desired decay, V1(u) ≤ Ce−µtV1(u
0).
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Proof. We start by noticing that, using (2.19) and (2.21) it is not difficult to see that

V1(u)− V1(u
0) +

1 + d0
2

(2α−N)

∫ T

0

(u1(t, 0))
2dt+

N∑
j=1

∫ T

0

(∂xuj(t, 0))
2dt

+2

N∑
j=1

∫ T

0

∫
Ij

aj(uj)
2dxdt

+
3

2

N∑
j=1

∫ T

0

∫
Ij

(∂xuj)
2dxdt− 1

2

N∑
j=1

∫ T

0

∫
Ij

(uj)
2dxdt

−1

3

N∑
j=1

∫ T

0

∫
Ij

u3jdxdt+

N∑
j=1

∫ T

0

u1(t, 0)∂xuj(t, 0)dt+

N∑
j=1

∫ T

0

∫
Ij

xaj(uj)
2dxdt = 0.

(5.3)

Note now that,

∫
Ij

u3jdx ≤ ∥uj∥L∞(Ij)∥uj∥
2
L2(Ij)

, and by [31], Corollary 1.2, we obtain

∫
Ij

u3jdx ≤

∥∂xuj∥1/2L2(Ij)
∥uj∥5/2L2(Ij)

. Then for all ε > 0, using Young inequality ab = (4ε)1/4a 1
(4ε)1/4

b ≤ ε|a|4 + Cε|b|4/3 we
get ∫

Ij

u3jdx ≤ ε∥∂xuj∥2L2(Ij)
+ Cε∥uj∥10/3L2(Ij)

.

If we choose u0 such that, ∥u0∥L2(T ) ≤ 1, we observe that

∥uj∥10/3L2(Ij)
≤ ∥uj∥4/3L2(Ij)

∥uj∥2L2(Ij)
≤ C∥u0∥4/3L2(T )∥uj∥

2
L2(Ij)

≤ C∥uj∥2L2(Ij)
.

Therefore

N∑
j=1

∫ T

0

∫
Ij

u3jdxdt ≤ ε

N∑
j=1

∫ T

0

∫
Ij

(∂xuj)
2dxdt+ Cε

N∑
j=1

∫ T

0

∫
Ij

(uj)
2dxdt. (5.4)

Moreover, using (Obs2) we derive

N∑
j=1

∫ T

0

∫
Ij

u3jdxdt ≤ε
N∑
j=1

∫ T

0

∫
Ij

(∂xuj)
2dxdt+ CεCobs2

∫ T

0

(u1(t, 0))
2dt+

N∑
j=1

∫ T

0

(∂xuj(t, 0))
2dt

+

N∑
j=1

∫ T

0

∫
Ij

aj(uj)
2dxdt

 .

Using this inequality, (Obs2), with ε small enough and d0 big enough in (5.3) we conclude the existence of C̃ > 0
such that

V1(u)− V1(u
0) ≤− C̃

∫ T

0

(u1(t, 0))
2dt+

N∑
j=1

∫ T

0

(∂xuj(t, 0))
2dt+

N∑
j=1

∫ T

0

∫
Ij

(1 + x)aj(uj)
2dxdt

+

N∑
j=1

∫ T

0

∫
Ij

(∂xuj)
2dxdt

 .

(5.5)

Now, we state the following Lemma,
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Lemma 5.2. Let u0 and (aj)j∈J1,NK as in the statement of Proposition 5.1. Then, there exists C > 0 such that

∫ T

0

V1(u)dt ≤ C

∫ T

0

(u1(t, 0))
2dt+

N∑
j=1

∫ T

0

(∂xuj(t, 0))
2dt+

N∑
j=1

∫ T

0

∫
Ij

(1 + x)aj(uj)
2dxdt

 . (5.6)

Proof. The proof of this Lemma is postponed to Appendix C.

Now, we estimate the term V1(u
0). First, using (4.8) and (Obs2) we observe

∥u0∥2L2(T ) ≤ C

∫ T

0

(u1(t, 0))
2dt+

N∑
j=1

∫ T

0

(∂xuj(t, 0))
2dt+

N∑
j=1

∫ T

0

∫
Ij

aj(uj)
2dxdt

 . (5.7)

Secondly, multiplying (KdV) by (T − t)xuj and integrating on [0, T ]× Ij , after some integrations by parts we
get

T

N∑
j=1

∫
Ij

x(uj(0, x))
2dx =

N∑
j=1

∫ T

0

∫
Ij

x(uj)
2dxdt+ 3

N∑
j=1

∫ T

0

∫
Ij

(T − t)(∂xuj)
2dxdt

−
N∑
j=1

∫ T

0

∫
Ij

(T − t)(uj)
2dxdt+ 2

N∑
j=1

∫ T

0

(T − t)u1(t, 0)∂xuj(t, 0)dt

+2

N∑
j=1

∫ T

0

∫
Ij

(T − t)xaj(uj)
2dxdt− 2

3

N∑
j=1

∫ T

0

∫
Ij

(T − t)u3jdxdt.

Recalling that ∥u0∥L2(T ) ≤ 1 we can use (5.4) to obtain

N∑
j=1

∫
Ij

x(uj(0, x))
2dx ≤C

 N∑
j=1

∫ T

0

∫
Ij

(1 + x)(uj)
2dxdt+

N∑
j=1

∫ T

0

∫
Ij

(∂xuj)
2dxdt+

∫ T

0

(u1(t, 0))
2dt

+

N∑
j=1

∫ T

0

(∂xuj(t, 0))
2dt+

N∑
j=1

∫ T

0

∫
Ij

xaj(uj)
2dxdt


≤C

∫ T

0

V1(u)dt+

N∑
j=1

∫ T

0

∫
Ij

(∂xuj)
2dxdt+

∫ T

0

(u1(t, 0))
2dt

+

N∑
j=1

∫ T

0

(∂xuj(t, 0))
2dt+

N∑
j=1

∫ T

0

∫
Ij

xaj(uj)
2dxdt

 .
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Using this inequality, Lemma 5.2 and (5.7) we deduce

V1(u
0) ≤C

∫ T

0

(u1(t, 0))
2dt+

N∑
j=1

∫ T

0

(∂xuj(t, 0))
2dt+

N∑
j=1

∫ T

0

∫
Ij

(1 + x)aj(uj)
2dxdt

+

N∑
j=1

∫ T

0

∫
Ij

(∂xuj)
2dxdt

 .

(5.8)

Finally, joining the estimates (5.5) and (5.8), we obtain (5.2) in the case ∥u0∥L2(T ) ≤ 1. To conclude, note that

as u0 ∈ Y ⊂ L2(T ) with ∥u0∥L2(T ) ≤ R using Theorem 4.4 we know that ∥u(t, ·)∥L2(T ) ≤ C̃e−µ̃t∥u0∥L2(T ), for

some C̃ = C̃(R) and µ̃ = µ̃(R). Now, as u ∈ C([0, T ];L2(T )) taking T > 0 such that C̃e−µ̃TR < 1 we deduce
our stability result.

Remark 5.3. As in the proof of (4.4), we use u0 ∈ Y only for the existence of solutions u ∈ C([0, T ];L2(T )). In
this case, if we are able to prove a well-posedness result for initial data u0 ∈ L2(T ), such that u0j ∈ L2

(1+x)(0,∞)

for j ∈KNF , NK Proposition 5.1 still holds. Moreover, as was pointed in [20], Remark 1 in the case of a single
KdV equation in the half-line adapting the ideas of [20], Theorem 2.5 it is possible to show the existence of
solution mild solutions in C([0, T ];L2

(1+x)(0,∞)) with initial data in L2
(1+x)(0,∞) but the uniqueness is an open

problem. We expect the same behavior in the network case.

5.2. Exponential stability in the case m = 2

In this part, using all the tools developed in the past sections, we show the exponential stability of (KdV)
in Y.

Theorem 5.4. Assume that the damping terms (aj)j∈J1,NK satisfy (1.1) and let R > 0. If Iact = J1, NK, then,
there exist C(R) > 0 and µ(R) > 0 such that for all u0 ∈ Y with ∥u0∥Y ≤ R, we have for u solution of (KdV)
V2(t) ≤ CV2(0)e

−µt, for all t > 0.

Proof. We start by noting that as in Proposition 5.1 it is enough to prove that for some C(R) > 0

V2(u(T, ·))− V2(u
0) ≤ −C(R)V2(u0), (5.9)

which is equivalent to show the existence of some C = C(R) > 0 such that

V2(u)− V2(u
0) ≤ −C

∫ T

0

(u1(t, 0))
2dt+

N∑
j=1

∫ T

0

(∂xuj(t, 0))
2dt+

N∑
j=1

∫ T

0

∫
Ij

(1 + x2)aj(uj)
2dxdt

+

N∑
j=1

∫ T

0

∫
Ij

(1 + x)(∂xuj)
2dxdt

 ,

(5.10)

and

V2(u
0) ≤ C

∫ T

0

(u1(t, 0))
2dt+

N∑
j=1

∫ T

0

(∂xuj(t, 0))
2dt+

N∑
j=1

∫ T

0

∫
Ij

(1 + x2)aj(uj)
2dxdt

+

N∑
j=1

∫ T

0

∫
Ij

(1 + x)(∂xuj)
2dxdt

 .

(5.11)
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Let V = V2 − d1V1, using (2.19), (2.25) and deriving a similar computation for a bounded branch is not difficult
to see that

V (u)− V (u0) +
1

2

(2α−N)

∫ T

0

(u1(t, 0))
2dt+

N∑
j=1

∫ T

0

(∂xuj(t, 0))
2dt+ 2

N∑
j=1

∫ T

0

∫
Ij

aj(uj)
2dxdt


+3

N∑
j=1

∫ T

0

∫
Ij

x(∂xuj)
2dxdt−

N∑
j=1

∫ T

0

∫
Ij

x(uj)
2dxdt− 2

3

N∑
j=1

∫ T

0

∫
Ij

xu3jdxdt−N

∫ T

0

(u1(t, 0))
2dt

+

N∑
j=1

∫ T

0

∫
Ij

x2aj(uj)
2dxdt = 0.

(5.12)

Now, by (5.5) and (5.6) we get

N∑
j=1

∫ T

0

∫
Ij

x(uj)
2dxdt ≤

∫ T

0

V1(u)dt ≤ −C
(
V1(u)− V1(u

0)
)
. (5.13)

Secondly, as

∣∣∣∣∣
∫
Ij

xu3jdx

∣∣∣∣∣ ≤ ∥uj∥L∞(Ij)

∫
Ij

x(uj)
2dx, we get similarly as in the past section

∣∣∣∣∣
∫
Ij

xu3jdx

∣∣∣∣∣ ≤
∥∂xuj∥1/2L2(Ij)

∥uj∥1/2L2(Ij)

∫
Ij

x(uj)
2dx, then for all ε > 0 using Young inequality

∫
Ij

xu3jdx ≤ ε∥∂xuj∥2L2(Ij)
+ Cε∥uj∥2L2(Ij)

(∫
Ij

x(uj)
2dx

)2

.

Assume now that

N∑
j=1

∫
Ij

x(uj(t, x))
2dx < 1, for all t > 0, then we get

N∑
j=1

∫ T

0

∫
Ij

xu3jdxdt ≤ ε

N∑
j=1

∫ T

0

∫
Ij

(∂xuj)
2dxdt+ Cε

N∑
j=1

∫ T

0

∫
Ij

(uj)
2dxdt. (5.14)

Finally, using this inequality for ε > 0 small enough, d1 > 0 big enough, (5.13) and (Obs2) we see

V2(u)− V2(u
0) ≤− C

∫ T

0

(u1(t, 0))
2dt+

N∑
j=1

∫ T

0

(∂xuj(t, 0))
2dt+

N∑
j=1

∫ T

0

∫
Ij

(1 + x2)aj(uj)
2dxdt

+

N∑
j=1

∫ T

0

∫
Ij

(1 + x)(∂xuj)
2dxdt

+
d1
2

(
V1(u)− V1(u

0)
)
.



STABILITY OF KDV EQUATION ON A NETWORK WITH BOUNDED AND UNBOUNDED BRANCHES 31

Finally, (5.5) yields (5.10). Let us check (5.11), multiplying (KdV) by (T − t)x2uj and integrating on [0, T ]× Ij ,
after some integrations by parts we get

T

2

N∑
j=1

∫
Ij

x2(u0j )
2dx = 3

N∑
j=1

∫ T

0

∫
Ij

(T − t)x(∂xuj)
2dxdt+

N∑
j=1

∫ T

0

∫
Ij

(T − t)ajx
2(uj)

2dxdt

+

N∑
j=1

∫ T

0

∫
Ij

(T − t)x(uj)
2dxdt+N

∫ T

0

(T − t)(u1(t, 0))
2dt−

N∑
j=1

2

3

∫ T

0

∫
Ij

(T − t)xu3jdxdt.

As we assumed

N∑
j=1

∫
Ij

x(uj(t, x))
2dx < 1 for all t > 0, we get

N∑
j=1

∫
Ij

x2(uj(0, x))
2dx ≤C

 N∑
j=1

∫ T

0

∫
Ij

(1 + x)(uj)
2dxdt+

N∑
j=1

∫ T

0

∫
Ij

x(∂xuj)
2dxdt+

∫ T

0

(u1(t, 0))
2dt

+

N∑
j=1

∫ T

0

∫
Ij

x2aj(uj)
2dxdt

 .

From where we obtain (5.11) using (5.6), (5.7) and (5.8). Thus, we obtain the exponential stability in the

case

N∑
j=1

∫
Ij

x(uj(t, x))
2dx < 1. To conclude, note that as u0 ∈ Y with ∥u0∥Y ≤ R which in particular implies

∥u0∥L2(T ) ≤ R and V1(u
0) ≤ R̃ using Proposition 5.1 we know that V1(u(t, ·)) ≤ C̃e−µ̃tV1(u

0), for some C̃ =

C̃(R̃) and µ̃ = µ̃(R̃). Now, as u ∈ B taking T > 0 such that C̃e−µ̃T R̃ < 1 we deduce our stability result.

Conclusions and final remarks

The well-posedness and exponential stability of the nonlinear KdV equation posed in star shaped network
mixing bounded, and unbounded edges were investigated. The well-posedness results were obtained by con-
sidering first the linearization around zero and semigroup theory. Then, by the introduction of some weighted
Sobolev spaces and a fixed point approach, the well-posedness for the original nonlinear system was deduced.
In this sense, as was pointed in Remark 3.5 the introduction of the weighted spaces is due to the perturbation
approach. Regarding that, note that a stability result was presented in Theorem 4.4 which in spirit did not use
that the initial data is in Y and thus the open problem about well-posedness with the classical L2(T ) initial
data is interesting. In [20] the strategy to prove the well-posedness was quite different. The idea of [20] was
first to derive the well-posedness in weighted spaces with exponential weights using semigroup theory and fixed
point results. Then, by compactness argument the well-posedness in the spaces L2

(1+x)m(0,∞) was deduced in

[20], we expect that similar ideas can be applied in the networks case. Actually in that work, the authors were
able to prove the exponential stability in the spaces L2

(1+x)m(0,∞), for m ≥ 1.

An interesting open problem becoming of our contradiction strategy to prove the observability inequalities is
the possibility to remove one index in Theorem 4.4 (or Prop. 5.1, Theorem 5.4). For instance, if we remove one
index for j ∈ J1, NF K and following the proof of Theorem 4.4, we are asking to prove that the unique solution of

∂tv + ∂xv + v∂xv + ∂3xv = 0, ∀x ∈ (0, ℓ), t ∈ (0, T ),

v(t, 0) = ∂xv(t, 0) = ∂2xv(t, 0) = 0, t > 0,

v(t, ℓ) = ∂xv(t, ℓ) = 0, t > 0,

(5.15)



32 H. PARADA ET AL.

is the null solution. Up to our knowledge, this is an open problem, but it is known that the condition ∂2xv(t, 0) = 0
is really needed. In fact, in [32] the following result was proved regarding the stationary solutions of the KdV
equation, considering the system

∂xϕ+
1

2
∂x(ϕ

2) + ∂3xϕ = 0, in [0, L], (5.16)

Theorem 5.5 (Theorem 1, [32]). For all L ∈ (0, 2π), there exists a stationary solution ϕ ∈ C∞(R) of (5.16)
with boundary conditions ϕ(0) = ∂xϕ(0) = 0, satisfying ϕ(x+ L) = ϕ(x), ∀x ∈ R and ∂2xϕ(0) ̸= 0.

Note that by the periodicity we have in particular ϕ(L) = ∂xϕ(L) = 0. In [33] a more general result was
presented,

Lemma 5.6 (Lemma 1, [33]). If ϕ ∈ C3([0, L]) is a solution of (5.16) with boundary conditions ϕ(0) = ϕ(L) =
∂xϕ(L) = 0, then it is infinitely smooth and periodic with period L.

Theorem 5.7 (Theorem 1, [33]). If L2 ̸= 4π2, then there exists a unique non-trivial solution of period L of
(5.16) with boundary conditions ϕ(0) = ϕ(L) = ∂xϕ(L) = 0. If L2 = 4π2 such a solution does not exist.

By Lemma 5.6 and Theorem 5.7, we have the existence of a stationary solution ϕ ∈ C∞([0, L]) of (5.15).

But this solution does not satisfy ∂2xϕ(0) = 0. Indeed, consider the substitution η(x) = L2

4 ϕ
(

L
4 (x+ 1)

)
, then η

satisfies system

b∂xη + η∂xη + ∂3xη = 0, in [−1, 1], η(−1) = ∂xη(−1) = 0,

where b = L2

4 . Note that this equation is equivalent to bη +
1

2
η2 + ∂2xη = c, for some c ∈ R. In particular, if

∂2xη(−1) = 0 we get c = 0. But from [33], Theorem 1 and [33], Lemma 2 we have that c must be not null.
Similarly, in [34], Section 4.4 the existence of some stationary solutions η of KdV equation in [−1, 1] with
η(−1) = η(1) = ∂xη(−1) = ∂xη(1) = 0 was shown, but ∂2xη(−1) ̸= 0.

In addition, again recalling (5.15) and the regularizing effect of the nonlinear KdV equation, we get using
the boundary conditions and the equation that all the spatial derivatives evaluated at x = 0 are null, i.e.
∂kxu(t, 0) = 0 for all k ∈ N. Thus, if we can show that the solution of (5.15) is analytic we obtain that u ≡ 0, but
this it is also unknown. In the linear case, is known, that the semigroup generated by the linear KdV equation
is not analytic but a semigroup of Gevrey class δ > 3/2 for all lengths L > 0 see [35], Theorem 1.1.

Appendix A. Proof of Lemma 2.7

Let y, z ∈ B∞, then

∥y∂xy − z∂xz∥L1(0,T ;L2
(1+x2)

(0,∞)) ≤
∫ T

0

∥(y − z)∂xy∥L2
(1+x2)

(0,∞)dt+

∫ T

0

∥z(∂xy − ∂xz)∥L2
(1+x2)

(0,∞)dt. (A.1)

Here we follow the strategies used in [27]. Let w = y − z, thus, the first term to estimate is
∥w∂xy∥L1(0,T ;L2

(1+x2)
(0,∞)),

∫ T

0

∥w∂xy∥L2
(1+x2)

(0,∞)dt ≤
∫ T

0

∥w∂xy∥L2(0,∞)dt+

∫ T

0

∥xw∂xy∥L2(0,∞)dt,
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the first term can be estimated as∫ T

0

∥w∂xy∥L2(0,∞)dt ≤
∫ T

0

∥w∥L∞(0,∞)∥∂xy∥L2(0,∞)dt

≤ C

∫ T

0

∥w∥H1(0,∞)∥∂xy∥L2(0,∞)dt

≤ C∥w∥L2(0,T ;H1(0,∞))∥y∥L2(0,T ;H1(0,∞))

≤ C∥w∥B∞∥y∥B∞ ,

(A.2)

where we have used the embedding of H1(0,∞) in L∞(0,∞). For the other term, we can observe that

∫ T

0

∥xw∂xy∥L2(0,∞)dt =

∫ T

0

(∫ ∞

0

x2(w)2(∂xy)
2dx

)1/2

dt =

∫ T

0

(∫ ∞

0

(
√
xw)2(

√
x∂xy)

2dx

)1/2

dt

≤
∫ T

0

∥
√
xw∥L∞(0,∞)∥∂xy∥L2

(1+x)
(0,∞)dt.

(A.3)

We cannot apply directly apply the embedding of H1(0,∞) in L∞(0,∞) to estimate the L∞(0,∞) norm of
√
xw. In fact, we have, ∂x(

√
xw) =

1

2
√
x
w +

√
x∂xw which is not necessarily in L2(0,∞). With this in mind,

we study the term ∥
√
xw∥L∞(0,∞) in the following way:

∥
√
xw∥L∞(0,∞) = sup

{
∥
√
xw∥L∞(0,1), ∥

√
xw∥L∞(1,∞)

}
,

for the first term, as x ∈ (0, 1)

∥
√
xw∥L∞(0,1) ≤ ∥w∥L∞(0,1) ≤ C∥w∥1/2L2(0,1)∥∂xw∥

1/2
L2(0,1) ≤ C∥w∥1/2L2(0,∞)∥∂xw∥

1/2
L2(0,∞)

≤ ∥w∥1/2
L2

(1+x2)
(0,∞)

∥∂xw∥1/2L2
(1+x)

(0,∞)
.

(A.4)

Similarly,

∥
√
xw∥L∞(1,∞) ≤ C∥

√
xw∥1/2L2(1,∞)∥∂x(

√
xw)∥1/2L2(1,∞).

Using that x ≥ 1, we observe that ∥∂x(
√
xw)∥1/2L2(1,∞) ≤ C(∥w∥L2(1,∞) + ∥

√
x∂xw∥L2(1,∞))

1/2 and thus

∥
√
xw∥L∞(1,∞) ≤ C

(
∥
√
xw∥1/2L2(1,∞)

[
∥w∥L2(1,∞) + ∥

√
x∂xw∥L2(1,∞)

]1/2)
≤ C

(
∥w∥1/2

L2
(1+x2)

(0,∞)

[
∥w∥L2

(1+x2)
(0,∞) + ∥∂xw∥L2

(1+x)
(0,∞)

]1/2)
≤ C

(
∥w∥1/2

L2
(1+x2)

(0,∞)
∥∂xw∥1/2L2

(1+x)
(0,∞)

+ ∥w∥L2
(1+x2)

(0,∞)

)
.

(A.5)

Then by (A.4) and (A.5)

∥
√
xw∥L∞(0,∞) ≤ C

(
∥w∥1/2

L2
(1+x2)

(0,∞)
∥∂xw∥1/2L2

(1+x)
(0,∞)

+ ∥w∥L2
(1+x2)

(0,∞)

)
.
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Using this in (A.3) we obtain

∫ T

0

∥xw∂xy∥L2(0,∞)dt ≤C
∫ T

0

(
∥w∥1/2

L2
(1+x2)

(0,∞)
∥∂xw∥1/2L2

(1+x)
(0,∞)

+ ∥w∥L2
(1+x2)

(0,∞)

)
× ∥∂xy∥L2

(1+x)
(0,∞)dt

≤C

(∫ T

0

∥w∥1/2
L2

(1+x2)
(0,∞)

∥∂xw∥1/2L2
(1+x)

(0,∞)
∥∂xy∥L2

(1+x)
(0,∞)dt

+

∫ T

0

∥w∥L2
(1+x2)

(0,∞)∥∂xy∥L2
(1+x)

(0,∞)dt

)

≤C

(
∥w∥1/2

C([0,T ];L2
(1+x2)

(0,∞))

∫ T

0

∥∂xw∥1/2L2
(1+x)

(0,∞)
∥∂xy∥L2

(1+x)
(0,∞)dt

+∥w∥C([0,T ];L2
(1+x2)

(0,∞))

∫ T

0

∥∂xy∥L2
(1+x)

(0,∞)dt

)

≤C

∥w∥1/2B∞

(∫ T

0

∥∂xw∥L2
(1+x)

(0,∞)dt

)1/2(∫ T

0

∥∂xy∥2L2
(1+x)

(0,∞)dt

)1/2

+∥w∥B∞

∫ T

0

∥∂xy∥L2
(1+x)

(0,∞)dt

]

≤C

∥w∥1/2B∞
∥y∥B∞

(∫ T

0

∥∂xw∥L2
(1+x)

(0,∞)dt

)1/2

+∥w∥B∞

∫ T

0

∥∂xy∥L2
(1+x)

(0,∞)dt

]
.

Using Cauchy–Schwarz in the two remaining time integrals

∫ T

0

∥xw∂xy∥L2(0,∞)dt ≤C

∥w∥1/2B∞
∥y∥B∞

(∫ T

0

∥∂xw∥2L2
(1+x)

(0,∞)dt

)1/2(∫ T

0

dt

)1/2
1/2

+∥w∥B∞

(∫ T

0

∥∂xy∥2L2
(1+x)

(0,∞)dt

)1/2(∫ T

0

dt

)1/2


≤C(T 1/4 + T 1/2)∥w∥B∞∥y∥B∞ .

Therefore ∫ T

0

∥w∂xy∥L2
(1+x2)

(0,∞)dt ≤ C∥w∥B∞∥y∥B∞ .

For the second term of (A.1), it is enough to note that it can be written as ∥y∂xw∥L1(0,T ;L2
(1+x2)

(0,∞)) for

w = y − z.
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Appendix B. Proof of Lemma 3.3

In this part we prove Lemma 3.3. First note that as ψ′(x) = 0 for x /∈
(

x0

2 ,
3x0

2 + 1
)
, thus

1

3

∫ ∞

0

u3jψ
′(x)dx =

1

3

∫ 3x0
2 +1

x0
2

u3jψ
′(x)dx ≤ 1

3
sup

x∈(
x0
2 ,

3x0
2 +1)

|uj(t, x)
√
ψ′(x)|

∫ 3x0
2 +1

x0
2

(uj)
2
√
ψ′(x)dx.

Define f = uj(t, x)
√
ψ′(x), by Theorem 2.9 u ∈ B and we can consider that uj(t, ·) ∈ H1(x0

2 ,
3x0

2 +1). Moreover,

by (3.4)
√
ψ′ ∈ H1(x0

2 ,
3x0

2 + 1), then as H1(x0

2 ,
3x0

2 + 1) is an algebra, we get that f ∈ H1(x0

2 ,
3x0

2 + 1). Now,
observe that

|f(x)||f ′(x)| =
∣∣∣uj√ψ′(x)

∣∣∣ ∣∣∣∣∣∂xuj√ψ′(x) +
ujψ

′′(x)

2
√
ψ′(x)

∣∣∣∣∣
≤ |uj∂xujψ′(x)|+ 1

2

∣∣u2jψ′′(x)
∣∣ . (B.1)

As f ∈ H1(x0

2 ,
3x0

2 + 1), using [31], Corollary 1.2 we have

sup
x∈(

x0
2 ,

3x0
2 +1)

|f(x)| ≤ 1√
2

(∫ 3x0
2 +1

x0
2

|f(x)||f ′(x)|dx

)1/2

,

thus

sup
x∈(

x0
2 ,

3x0
2 +1)

|uj(t, x)
√
ψ′(x)| ≤ 1√

2

(∫ 3x0
2 +1

x0
2

|uj∂xujψ′(x)|dx+
1

2

∫ 3x0
2 +1

x0
2

∣∣u2jψ′′(x)
∣∣dx)1/2

≤ 1√
2

(∫ 3x0
2 +1

x0
2

|uj∂xujψ′(x)|dx

)1/2

+
1

2

(∫ 3x0
2 +1

x0
2

∣∣u2jψ′′(x)
∣∣dx)1/2

.

Writing uj∂xujψ
′(x) = uj

√
ψ′(x)∂xuj

√
ψ′(x), we get

sup
x∈(

x0
2 ,

3x0
2 +1)

|uj(t, x)
√
ψ′(x)| ≤ 1√

2

(∫ ∞

0

(uj)
2ψ′(x)dx

)1/4(∫ ∞

0

(∂xuj)
2ψ′(x)dx

)1/4

+
1

2

(∫ ∞

0

(uj)
2|ψ′′(x)|dx

)1/2

.

Finally, we deduce

1

3

∫ ∞

0

u3jψ
′(x)dx ≤ 1

6

(∫ ∞

0

(uj)
2|ψ′′(x)|dx

)1/2 ∫ ∞

0

(uj)
2
√
ψ′(x)dx+

1

3
√
2

(∫ ∞

0

(uj)
2ψ′(x)dx

)1/4

×
(∫ ∞

0

(∂xuj)
2ψ′(x)dx

)1/4 ∫ ∞

0

(uj)
2
√
ψ′(x)dx.
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Appendix C. Proof of Lemma 5.2

First, note that

∫ T

0

V1(u)dt =
1

2

N∑
j=1

∫ T

0

∫
Ij

(1 + x)(uj)
2dxdt+

d0
2

N∑
j=1

∫ T

0

∫
Ij

(uj)
2dxdt,

clearly as u0 ∈ Y ⊂ L2(T ), from (Obs2)

1 + d0
2

N∑
j=1

∫ T

0

∫
Ij

(uj)
2dxdt ≤Cobs2(1 + d0)

2

∫ T

0

(u1(t, 0))
2dt+

N∑
j=1

∫ T

0

(∂xuj(t, 0))
2dt

+
N∑
j=1

∫ T

0

∫
Ij

aj(uj)
2dxdt

 .

For the other term, we observe that

1

2

N∑
j=1

∫ T

0

∫
Ij

x(uj)
2dxdt =

1

2

NF∑
j=1

∫ T

0

∫
Ij

x(uj)
2dxdt+

1

2

N∑
j=NF+1

∫ T

0

∫ βj

0

x(uj)
2dxdt

+
1

2

N∑
j=NF+1

∫ T

0

∫ ∞

βj

x(uj)
2dxdt

≤
maxj∈J1,NF K ℓj

2

NF∑
j=1

∫ T

0

∫
Ij

(uj)
2dxdt+

1

2

N∑
j=NF+1

∫ T

0

∫ ∞

βj

x(uj)
2dxdt

+
maxj∈J1,NF K βj

2

N∑
j=NF+1

∫ T

0

∫ βj

0

x(uj)
2dxdt

≤C

∫ T

0

(u1(t, 0))
2dt+

N∑
j=1

∫ T

0

(∂xuj(t, 0))
2dt+

N∑
j=1

∫ T

0

∫
Ij

aj(uj)
2dxdt


+

1

2

N∑
j=NF+1

∫ T

0

∫ ∞

βj

x
aj
cj

(uj)
2dxdt.

Therefore

1

2

N∑
j=1

∫ T

0

∫
Ij

x(uj)
2dxdt ≤C

∫ T

0

(u1(t, 0))
2dt+

N∑
j=1

∫ T

0

(∂xuj(t, 0))
2dt

+

N∑
j=1

∫ T

0

∫
Ij

(1 + x)aj(uj)
2dxdt

 .

(C.1)

Joining these two estimates, we deduce (5.6).
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[9] E. Cerpa, E. Crépeau and C. Moreno, On the boundary controllability of the Korteweg–de Vries equation on a
star-shaped network. IMA J. Math. Control Inform. 37 (2020) 226–240.

[10] H. Parada, Null controllability of KdV equation in a star-shaped network. Evol. Equ. Control Theory 13 (2024)
719–750.
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