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Abstract. Medical devices used in cardiac diagnostics typically capture
only one aspect of heart function. For instance, 2D B-mode echocar-
diography reveals the heart’s anatomy and mechanical changes, while
an electrocardiogram (ECG) records the heart’s electrical activity from
various positions. These examinations, essential for diagnosing cardiac
diseases, are usually performed sequentially rather than simultaneously,
providing complementary information for the final diagnosis. Recently,
the integration of multi-modal information in AI research for healthcare
has gained popularity, aiming for more robust diagnostic outcomes. How-
ever, the scarcity of publicly available multi-modal data for cardiac dis-
ease diagnosis poses a significant challenge to multi-modal learning and
evaluation. In this study, we propose an uncertainty-based deep learning
framework that utilizes unpaired data from different modalities to im-
prove the diagnosis of myocardial infarction (MI) using both echocardiog-
raphy and ECG data. Specifically, we trained two unimodal classification
models incorporating uncertainty using public single-modal datasets. We
then performed multi-modal classification using uncertainty-based deci-
sion fusion on a paired dataset, without the need for transfer learning or
retraining. Our experiments demonstrated that uncertainty-based multi-
modal decision fusion outperforms conventional fusion strategies by 4%
in accuracy and unimodal models by 7% in accuracy. This approach is
both flexible and data-efficient, making uncertainty-based multi-modal
fusion a sustainable and strong solution for both unpaired and paired
multi-modal classification.

Keywords: Multi-modal classification · Echocardiography · Electrocar-
diogram.

1 Introduction

Clinicians usually combine information from different examinations and mea-
surements to make clinical decisions. However, most current AI research for
healthcare simply considers one single modality, which does not profit from the
complex and heterogeneous information that one can observe from patients using
different imaging modalities, sensor devices, biochemical tests, etc. Multi-modal



2 Y. Yang et al.

machine learning, which seeks to model the interactions between different modal-
ities, brings opportunities for improving the prevention, diagnosis and therapy
in AI-enabled healthcare [1–4].

One challenge in biomedical multi-modal learning is to determine how to fuse
information from different medical modalities for downstream tasks. Depending
on when the fusion occurs, one can distinguish: early fusion and late fusion
respectively. Early fusion combines the raw modality or extracted features at
the input level according to certain fusion approaches, such as concatenation,
multiplicative interaction [5], polynomial fusion [6], tensor fusion [7, 8], etc. Late
fusion aggregates the prediction outputs of different modalities at the decision
level (e.g. using majority voting, weighted voting etc.) to generate a final decision.
Early fusion usually demands paired multi-modality data to explore detailed
interaction strategies, while late fusion only need single modality outputs, thus
being less demanding for paired data.

In this study, we focus on detecting myocardial infarction (MI) using both
echocardiography (ECHO) and eletrocardiogram (ECG) data. Researchers have
explored different multi-modal approaches for MI detection, such as combining
ECG with demographic features [9], using images and clinical data together [10].
Very few have investigated the combination of ECHO and ECG, while ECHO
and ECG can reveal different diagnosis characteristics of MI respectively [11]. In
addition, with very limited paired multi-modal data by hand, we concentrate on
how to improve the late fusion strategy which can leverage on the most confident
modality.

The contribution of this paper is twofold. Firstly, we have adapted a trust-
worthy method to fuse decisions from different modalities by considering the
uncertainty of each prediction. The proposed fusion strategy is efficient and
flexible, capable of fully utilising public single-modal datasets and performing
test-time multi-modal fusion when paired multi-modal samples are available.
Secondly, our experiments on multi-modal myocardial infarction detection using
both ECHO and ECG demonstrate superior performance compared to single-
modal detection or conventional fusion methods. This suggests the potential of
combining ECHO and ECG for robust cardiac diagnosis.

2 Method

We first introduce how to quantify the uncertainty for unimodal classification
using evidential deep learning [12]. In the second part, we present test-time
multi-modal fusion strategy that takes into account the uncertainty from each
modality.

2.1 Evidential Deep Learning for Unimodal Classification

Uncertainty and the Theory of Evidence Evidential deep learning (EDL)
quantifies the class probabilities and overall uncertainty in a unified theoretical
framework [12]. Considering a K classification problem, it introduces an idea of
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evidence ek, which represents a measure of the amount of support for kth class
category collected from data input. Using the evidence, the belief of possible
class label assignments bk and an overall uncertainty mass u can be obtained
through

bk =
ek
S

and u =
K

S
,S =

K∑
i=1

(ei + 1) (1)

The sum of the K + 1 mass values is one, i.e. u +
∑K

k=1 bk = 1. Actually, EDL
associates the belief of possible class label assignments (subjective opinion) with
the parameters of a Dirichlet Distribution [13], i.e. αk = ek + 1, including the
belief that the truth label is equally likely (i.e., "I do not know" for uncertainty
quantification).

The Dirichlet distribution is parameterised byK parameters α = [α1, ..., αK ].
Its probability density function (pdf) is given by

D(p|α) =

{
1

B(α)

∏K
i=1 p

αi−1
i for p ∈ SK ,

0 otherwise,
(2)

where SK represents the K-dimensional unit simplex SK = {p|
∑K

i=1 pi =
1 and 0 ≤ p1, ..., pk ≤ 1}, and B(α) is the K-dimensional multinomial beta
function. Given an opinion, the expected probability p̂k for the kth class category
is the mean of the corresponding distribution, p̂k = αk

S .
The above relationship reveals that the higher the evidence ek for kth class is

observed, the greater the class belief bk and the corresponding Dirichlet param-
eter αk will be. Similarly, when the total evidence observed from the input data
is small, i.e.

∑
ek is closer to 0 and αk, k = 1, ..K are closer to 1, the uncertainty

of the prediction becomes higher.

Learning to form opinions Evidential deep learning replaces the last softmax
activation in neural network classifiers with non-negative activation, such as
ReLU . The output of this final activation layer is taken as the evidence vector.
It forms class belief masses and constitutes the parameters for the estimated
Dirichlet distribution (illustrated in the upper right part of Figure 1).

We assume that yi is a one-hot vector of ground truth classification label
for input data xi. The cross-entropy loss is usually used in conventional neural
network classifiers:

LCE = −
N∑
i=1

K∑
j=1

yij log(pij), (3)

where pij is the predicted probability for sample xi belonging to class j. Under
the theory of evidence and Dirichlet distribution assumption, we can compute
the Bayes risk of cross-entropy loss function as

LUC
i =

∫
[

K∑
j=1

−yij log(pij)]
1

B(αi)

K∏
j=1

p
αij−1
ij dpi =

K∑
j=1

yij(ψ(Si)− ψ(αij)), (4)
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Fig. 1. Comparison of conventional fusion strategies and uncertainty based fusion.

where ψ(·) represents the digamma function.
The minimisation of the above loss does not guarantee that less evidence will

be generated when the model predicts incorrect labels. To guide the network
into learning zero total evidence for uncertain samples, a regularisation term is
introduced. This term deploys a Kullback-Leibler divergence term to penalise
the predictive Dirichlet distribution to be close to D(p|1).

KL[D(pi|α̃i)||D(pi|1)] = log(
Γ (

∑K
k=1 α̃ik)

Γ (K)
∏K

k=1 Γ (α̃ik)
)+

K∑
k=1

(α̃ik−1)[ψ(α̃ik)−ψ(
K∑

k=1

α̃ij)],

(5)
where Γ (·) represents the gamma function and 1 refers to a K-dim vector of
all ones. And α̃i = yi + (1 − yi) ⊙ αi, α̃i are the parameters that has removed
non-misleading evidence.

Thus, the final loss function for evidential deep learning neural networks
reads:

L =

N∑
i=1

LUC
i + λt

N∑
i=1

KL[D(pi|α̃i)||D(pi|1)], (6)

where λt = min(1, t/T ) ∈ [0, 1] is a balancing coefficient for regularisation and t
represents the current training epoch.

2.2 Multi-modal Fusion with Uncertainty

Considering two independent sets of evidence values {e1k}Kk=1 and {e2k}Kk=1, the
corresponding parameters of Dirichlet distribution are {α1

k = e1k + 1}Kk=1 and
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{α2
k = e2k + 1}Kk=1. We propose to fuse opinions from all modalities through

uncertainty-weighted fusion (illustrated in the lower right part of Figure 1):

αk = (1− u1)α1
k + (1− u2)α2

k, u =
K∑
αk

(7)

3 Experiments and Results

3.1 Datasets

Two independent datasets of ECHO and ECG are involved in this study:

– HMC-QU dataset [14]: contains 130 long-axis 2-chamber view sequences (68
with MI) and 162 long-axis 4-chamber view sequences (93 with MI).

– PTB-XL dataset [15]: contains 12-lead ECG data (with 7185 samples of
healthy controls and 2955 samples with 100%-certain MI).

In addition, a small number of paired ECHO and ECG data were collected
retrospectively from Nice University hospital (CHU-Nice). This dataset contains
data from 56 patients, with 56 paired data of ECG and 4-chamber view ECHO,
along with 50 paired data of ECG and 2-chamber view ECHO. Detailed dataset
information is listed in Table 1.

Table 1. Dataset statistics. 2ch: 2 chambers view, 4ch: 4 chambers view.

Dataset Modality MI non-MI Total

HMC-QU ECHO 2ch 68 62 130
HMC-QU ECHO 4ch 93 69 162

PTB-XL ECG 12-lead 2955 7185 10140

CHU-Nice ECHO(2ch) + ECG 33 17 50
CHU-Nice ECHO(4ch) + ECG 36 20 56

3.2 Experiments

We first extracted interpretable features from ECHO data in HMC-QU dataset
and from ECG data in PTB-XL dataset (refer to Figure 2(a)). For ECHO data,
we used a motion tracking model [16] to predict the temporal motion of 10
key points around the myocardium (refer to Figure 2(b)). From the temporal
motion trace, we constructed a 40-dimension vector which composed of mean
and standard deviation of the 10 key points along x- and y- axis. For ECG
data, we followed the work [17] to decompose single-heartbeat ECG signal into
5 sub-components and used the predicted 21 parameters to constitute a 21×12-
dimension vector as ECG features. We trained single modality models with 10-
fold cross validation for ECG data (PTB-XL) and 5-fold cross validation for
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Fig. 2. ECHO and ECG feature extraction pipeline.

ECHO data (HMC-QU) using a 4-layer fully connected network (FCN) respec-
tively. The baseline single modality model without uncertainty (w/o UC) was
trained using cross-entropy loss (Equation 3) and the uncertainty model (w UC)
with Equation 6.

For models without uncertainty (w/o UC), we assumed that the output of
FCN after Sigmoid function was pkc and the prediction class was ȳk, where c ∈
{0, 1} refers to class and k ∈ {0, 1} refers to modality. The MI class was set to
label 1. The following fusion strategies were included in our study:

– Max fusion: pc = max{pkc , k = 1, ...,K}, ȳ = argmax
c
pc;

– Mean fusion: pc = mean{pkc , k = 1, ...,K}, ȳ = argmax
c
pc;

– Rank fusion: ȳ = (
∑

k ȳ
k) ≥ 1;

– Multiply fusion: pc =
∏

k p
k
c , ȳ = argmax

c
pc.

The multi-modal fusion with uncertainty was performed according to Equation
7.

3.3 Implementation

The uncertainty model for ECHO and ECG were trained using the following
hyper-parameters:

– ECG: learning rate 0.01, batch size 512, total epochs 200, T = 10 for λt;
– ECHO: learning rate 0.0001, batch size 8, total epochs 200, T = 50 for λt.

We chose the model with the best validation loss during training.

3.4 Results

First, we present the cross validation results on HMC-QU and PTB-XL dataset
in Table 2 and Table 3. Although evidential deep learning (EDL) model demon-
strated reduced performance compared with model trained using standard cross-
entropy loss, its performance was comparable when using mixed 2-chamber and
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Fig. 3. The change of prediction accuracy with respect to uncertainty threshold on
PTB-XL ECG dataset and HMC-QU ECHO dataset (2CH/4CH mixed). Bar plots
represent the percentage of samples kept under varying uncertainty thresholds.

4-chamber (2CH/4CH mixed) views together (292 samples in total). We ob-
tained a similar observation on ECG classification using uncertainty-based loss.
Figure 3 shows how the test accuracy changes when EDL only keeps predictions
under varying uncertainty thresholds. Notably, on both datasets, the accuracy
increased as the uncertainty threshold decreased, which reflected the effective-
ness of uncertainty quantification predicted by the model.

Table 2. ECHO classification: 5-fold CV results on HMC-QU dataset. w/o UC: without
uncertainty, w UC: with uncertainty.

Method View Accuracy Sensitivity Specificity

KNN [14] 2CH 0.75 0.72 0.77
Ours (w/o UC) 2CH 0.78 0.74 0.82
Ours (w UC) 2CH 0.72 0.59 0.85

Random Forest [14] 4CH 0.86 0.84 0.85
Ours (w/o UC) 4CH 0.81 0.82 0.80
Ours (w UC) 4CH 0.82 0.83 0.81

Ours (w/o UC) 2CH + 4CH (mixed) 0.78 0.78 0.79
Ours (w UC) 2CH + 4CH (mixed) 0.78 0.78 0.78

Table 3. ECG classification: 10-fold CV results on PTB-XL dataset. w/o UC: without
uncertainty, w UC: with uncertainty.

Method Lead Accuracy Sensitivity Specificity

SVM [17] 12-lead 0.96 0.93 0.96
Ours (w/o UC) 12-lead 0.95 0.89 0.97
Ours (w UC) 12-lead 0.93 0.88 0.95
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Table 4. Evaluation on CHU-Nice dataset (with 2-chamber view and 4-chamber view
mixed together, in total 106 paired samples). w/o UC: without uncertainty, w UC: with
uncertainty.

Method Modality Accuracy Sensitivity Specificity

Ours (w/o UC) ECG 0.69 0.84 0.43
Ours (w/o UC) ECHO 0.75 0.75 0.76
Max Fusion ECG + ECHO 0.73 0.81 0.57
Mean fusion ECG + ECHO 0.75 0.86 0.54
Rank fusion ECG + ECHO 0.73 0.96 0.30
Multiply fusion ECG + ECHO 0.68 0.87 0.32

Ours (w UC) ECG 0.72 0.86 0.48
Ours (w UC) ECHO 0.71 0.68 0.76
Uncertain fusion ECG + ECHO 0.79 0.83 0.73

We show the test-time multi-modal fusion evaluation on the CHU-Nice dataset
in Table 4. The performance of conventional fusion (upper part) was limited by
the best performing modality, in our case, by the ECHO modality. The mean
fusion strategy outperformed the other conventional methods, with a slight im-
provement in sensitivity but significant reduction in specificity due to the erro-
neous output of the ECG prediction. In the lower part of Table 4, we observe
that uncertainty-based fusion improved largely the prediction accuracy com-
pared to single modalities with uncertainty (by 7%). In addition, this approach
well combined the advantages of each modality: higher sensitivity than single
ECHO output and higher specificity than single ECG output, with only a slight
decrease compared with the best value of single modality outputs. As evidenced
by the fusion results, uncertainty-based fusion generated multi-modal predic-
tion according to the most trustworthy modality, therefore improving the final
prediction of diagnosis.

4 Conclusion

In this study, we explored various multi-modal late fusion strategies and found
that uncertainty-based fusion outperformed conventional methods, improving
classification accuracy by 4%. This approach, utilizing single-modality evidential
deep learning, assessed the uncertainty of each modality’s prediction to prioritize
the most reliable input for the final decision. Additionally, it required no sam-
pling steps and was straightforward to implement with deep learning techniques.
The test-time fusion setting maximized the use of large public single-modality
datasets while preserving valuable paired multi-modal data for evaluation. De-
spite promising preliminary results, several limitations demand further inves-
tigation. First, we need to quantify the impact of error propagation through
feature extraction on downstream classification tasks. Second, the uncertainty
predicted within the evidential framework is not fully calibrated, necessitating
the incorporation of uncertainty calibration for both modalities before fusion.
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